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ABSTRACT

We develop a model in which financially constrained arbitrageurs exploit price discrepancies

across segmented markets. We show that the dynamics of arbitrage capital are self-correcting:

following a shock that depletes capital, returns increase, which allows capital to be gradually

replenished. Spreads increase more for trades with volatile fundamentals or more time to con-

vergence. Arbitrageurs cut their positions more in those trades, except when volatility concerns

the hedgeable component. Financial constraints yield a positive cross-sectional relationship be-

tween spreads/returns and betas with respect to arbitrage capital. Diversification of arbitrageurs

across markets induces contagion, but generally lowers arbitrageurs’ risk and price volatility.
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The assumption of frictionless arbitrage is central to finance theory and all of its practical ap-

plications. It is hard to reconcile, however, with the large body of evidence on so-called market

anomalies, in particular those concerning price discrepancies between assets with almost identical

payoffs. Such discrepancies arise during both crises and more tranquil times. For example, large

and persistent violations of covered interest parity have been documented for all major currency

pairs, during and after the global financial crisis. Price discrepancies that are hard to reconcile with

frictionless arbitrage have also been documented for stocks, government bonds, corporate bonds,

and credit default swaps.1

To address these anomalies, one approach is to abandon the assumption of frictionless arbitrage

and study the constraints faced by real-world arbitrageurs, for example, hedge funds or trading

desks in investment banks. Arbitrageurs have limited capital, which can constrain their activity and

ultimately affect market liquidity and asset prices. Empirical studies show that various measures

of arbitrage capital are related to the magnitude of the anomalies.

Since arbitrage capital can be targeted at multiple anomalies, returns to investing in the anoma-

lies are interdependent and hence so are arbitrageurs’ positions. This interdependence raises a num-

ber of questions. How should arbitrageurs allocate their limited capital across anomalies, and how

should this allocation respond to shocks to capital? Which anomalies’ returns are more sensitive to

changes in arbitrage capital? How do the expected returns offered by the different anomalies relate

to sensitivity to arbitrage capital and other characteristics? How do the expected returns offered

by anomalies evolve over time, and how do these dynamics relate to those of arbitrage capital? in

this paper we develop a model to address these questions.

We consider a discrete-time, infinite-horizon economy with a riskless asset and a number of

“arbitrage opportunities” (the anomalies within our model) that consist of a pair of risky assets

with correlated payoffs. Each risky asset is traded in a different segmented market by risk-averse

investors who can trade only that asset and the riskless asset. Investors experience endowment

shocks that generate a hedging demand for the risky asset in their market. Shocks are opposites

within each pair, so a positive hedging demand for one asset in the pair is associated with a

1References to the empirical literature are provided in Sections I.B.3 and III.C.2. In these sections we also explain

how to map our model and results to the empirical settings.
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negative hedging demand of equal magnitude for the other. This simplifying assumption ensures

that arbitrageurs trade only on the price discrepancy between the two assets. Market segmentation

is exogenous in our model, but could arise because of regulation, agency problems, or a lack of

specialized knowledge.

We make two key assumptions. First, we assume that unlike other investors, arbitrageurs can

trade all assets. They therefore have better opportunities than other investors. By exploiting price

discrepancies between paired assets, arbitrageurs intermediate trade between otherwise segmented

investors, providing them liquidity: they buy cheap assets from investors with negative hedging

demand, and sell expensive assets to investors with positive hedging demand. We refer to the price

discrepancies that arbitrageurs seek to exploit as “arbitrage spreads” and use them as an inverse

measure of liquidity.

Second, we assume that arbitrageurs are constrained in their access to external capital. We

derive their financial constraint following the logic of market segmentation and assuming that they

can walk away from their liabilities unless they are backed by collateral. Consider an arbitrageur

who wishes to buy an asset and short the other asset in its pair. The arbitrageur could borrow the

cash required to buy the former asset, but the loan must be backed by collateral. Posting the asset

as collateral would leave the lender exposed to a decline in its value. The arbitrageur could post as

additional collateral the short position in the other asset, which can offset declines in the value of

the long position. Market segmentation, however, prevents investors other than arbitrageurs from

dealing in multiple risky assets, which implies that the additional collateral must be a riskless asset

position. We assume that collateral must be sufficient to protect the lender fully against default.

This implies that positions in assets with more volatile payoffs require endogenously more collateral

so that lenders are protected against larger losses. The need for collateral limits the positions that

an arbitrageur can establish, and that constraint is a function of his wealth. The positions that

arbitrageurs can establish as a group are constrained by their aggregate wealth, which we refer to

as arbitrage capital.2

When assets in each pair have identical payoffs, arbitrage is riskless. We analyse this case,

2In Internet Appendix Section II we formulate equilibrium in our model under general collateralized contracts.

We allow, for example, loan repayments to be state-contingent and to extend over several periods. We show that

under some conditions, contracts can be restricted to the ones that we consider in our main model. See Section I.C.2.
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which is a natural benchmark, first. If spreads are positive, then the riskless return offered by

arbitrage opportunities exceeds the riskless rate. Arbitrageurs, however, may not be able to scale

up their positions to exploit that return because of their financial constraint. Their optimal policy

is to invest in the opportunities that offer maximum return per unit of collateral. Equilibrium is

characterized by a cutoff return per unit of collateral: arbitrageurs invest in opportunities above

the cutoff, which drives their return down to the cutoff, and do not invest in opportunities below

the cutoff. The cutoff is inversely related to arbitrage capital. For example, when capital increases,

arbitrageurs become less constrained and can hold larger positions. This drives down the returns

of the opportunities they invest in.

The inverse relationship between returns and capital implies self-correcting dynamics and a

deterministic steady state. If arbitrage capital is low, then arbitrageurs hold small positions,

returns are high, and capital gradually increases. Conversely, if capital is high, then returns are

low and capital decreases because of arbitrageurs’ consumption. In steady state, arbitrage remains

profitable enough to offset the natural depletion of capital due to consumption.

We next analyze the case in which payoffs within each asset pair consist of a component that is

identical across the two assets and hedgeable by arbitrageurs and a component that differs across

the two assets. Because asset payoffs are not identical, arbitrage is risky. As in the case of riskless

arbitrage, arbitrageurs invest in the opportunities that offer maximum return per unit of collateral.

Unlike in that case, however, the relevant return is the expected return net of a risk adjustment

that depends on arbitrageur risk aversion and position size. The financial constraint binds when

the risk-adjusted return exceeds the riskless rate.

To compute the equilibrium under risky arbitrage in closed form, we specialize our analysis to the

case in which asset payoffs are near-identical and hence arbitrage risk is small. In the stochastic

steady state, the financial constraint always binds and arbitrage capital follows an approximate

AR(1) process. Moreover, the first-order effect of arbitrage risk on equilibrium variables operates

through the financial constraint rather than through risk aversion. Indeed, price movements caused

by shocks to arbitrage capital represent an additional source of risk for a collateralized position.

The required collateral must then increase by an amount proportional to the standard deviation of

these movements. On the other hand, the risk adjustment induced by risk aversion is proportional
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to the variance because it is an expectation of gains and losses weighted by marginal utility.

Using our closed-form solutions, we can determine the cross-section of expected returns and

arbitrageur positions. We show that expected returns are high for arbitrage opportunities involving

assets with volatile payoffs because these opportunities require more collateral. They are also high

for “long-horizon” opportunities, that is, opportunities for which price discrepancies take longer

to disappear because endowment shocks have longer duration. Indeed, because spreads for these

opportunities are more sensitive to shocks to arbitrageur wealth, the losses that arbitrageurs can

incur are larger, implying higher collateral requirements.

The characteristics associated with high expected returns are also associated with high sensi-

tivity of spreads to arbitrage capital, that is, high “arbitrage-capital betas.” Since opportunities

with volatile payoffs require more collateral, they must offer higher expected returns. Since, in

addition, changes in capital impact the return per unit of collateral, arbitrage-capital betas for

the same opportunities are high. In the case of long-horizon opportunities, the causal channel is

different: high arbitrage-capital betas result in high collateral requirements, which in turn result in

high expected returns. Our results are consistent with the relationship between expected returns

or spreads on the one hand and arbitrage-capital betas on the other being increasing in the cross-

section, as documented in Avdjiev et al. (2016) in the context of covered interest arbitrage and

Cho (2016) in the context of stock market anomalies.

The cross-section of arbitrageur positions differs from that of expected returns. Arbitrageurs

hold larger positions in opportunities where the hedgeable component of payoff volatility is larger,

but smaller positions in opportunities where the unhedgeable component is larger or where horizon

is longer. Intuitively, volatility has two countervailing effects on arbitrageur positions: it lowers

them because it raises collateral requirements, but it raises them because it raises investors’ hedging

demand and need for intermediation. The effect of each component of volatility on collateral

requirements is proportional to its standard deviation, while that on hedging demand is proportional

to its variance. The former is larger in the case of small unhedgeable volatility, that is, small

arbitrage risk. The effect of volatility on the dynamics of positions parallels that on average

positions. Following drops in arbitrage capital, positions in opportunities with higher unhedgeable

volatility are cut by more, while positions in opportunities with higher hedgeable volatility are cut
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by less.

We finally use our model to study how the degree of mobility of arbitrage capital affects market

stability: does capital mobility stabilize markets, or does it propagate shocks causing contagion

and instability? To do so, we consider the possibility that any given arbitrageur can allocate his

wealth to exploit only one opportunity. That is, arbitrage markets themselves are segmented so

that arbitrage capital cannot be reallocated from one opportunity to another. For simplicity we

take opportunities to be symmetric with independent payoffs. If an arbitrageur can diversify across

opportunities but others remain undiversified, then the variance of his wealth decreases because

spreads are independent. If instead all arbitrageurs can diversify, then spreads become perfectly

correlated, as arbitrageurs act as conduits transmitting shocks in one market to all markets—a

contagion effect. We show, however, that because collective diversification causes the variance

of each spread to decrease, the variance of each arbitrageur’s wealth decreases. In fact, collective

diversification lowers wealth variance by as much as individual diversification. In that sense, capital

mobility stabilizes markets.

Our paper belongs to a growing theoretical literature on the limits of arbitrage, and more

precisely to the strand emphasizing arbitrageurs’ financial constraints.3 We contribute to this

literature by deriving the cross-section and dynamics of arbitrageur returns and positions in a

setting in which arbitrageurs exploit price discrepancies between assets with similar payoffs.

Shleifer and Vishny (1997) are the first to derive a two-way relationship between arbitrage capi-

tal and asset prices. Gromb and Vayanos (2002) introduce some of our model’s building blocks: ar-

bitrageurs intermediate trade across segmented markets, and a collateral-based financial constraint

limits the liquidity they can provide. That model assumes a single arbitrage opportunity and fi-

nite horizon. These assumptions rule out, respectively, cross-sectional effects and self-correcting

dynamics.

Our result that arbitrage opportunities with higher collateral requirements offer higher returns is

related to a number of papers. In Geanakoplos (2003), Garleanu and Pedersen (2011), and Brumm

et al. (2015), multiple risky assets differ in their collateral value, that is, the amount that agents

can borrow using the asset as collateral. Assets with low collateral value must offer higher expected

3For a survey of this literature, see Gromb and Vayanos (2010).
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returns, and violations of the law of one price can arise.4 These violations, however, are different

in nature from those in our model: we assume that both assets in a pair have the same collateral

value but differ in investors’ hedging demand. Empirical studies confirm that hedging demand (or

more generally, demand unrelated to collateral value) is a key driver of arbitrage spreads.5

In Brunnermeier and Pedersen (2009), collateral-constrained arbitrageurs invest in assets with

maximum return per unit of collateral. Since volatile assets require more collateral, their returns

are higher and more sensitive to changes in arbitrage capital. However, in their paper there is no

segmentation and the law of one price holds. Moreover, the analysis does not address dynamic

issues such as the effect of horizon or the recovery from shocks.

Our results on self-correcting dynamics are related to several papers. In Duffie and Strulovici

(2012), capital recovers following adverse shocks because new capital enters the market. In Xiong

(2001), He and Krishnamurthy (2013), and Brunnermeier and Sannikov (2014), recovery occurs

because existing capital grows faster—the same channel as in our model. However, in these papers

arbitrageurs invest in a single risky asset. This rules out cross-sectional effects and violations of

the law of one price.6

Finally, our analysis of integration versus segmentation relates to Wagner (2011), who shows

that investors choose not to hold the same diversified portfolio because this exposes them to the

risk that they all liquidate at the same time, and to Guembel and Sussman (2015) and Caballero

and Simsek (2017), who show that segmentation generally raises volatility and reduces investor

welfare. Contagion effects resulting from changes in arbitrageur capital or portfolio constraints are

also derived in, for example, Kyle and Xiong (2001) and Pavlova and Rigobon (2008).

The rest of the paper is organized as follows. Section I presents the model. Section II derives

the equilibrium when arbitrage is riskless because assets in each pair have identical payoffs. Section

4Detemple and Murthy (1997), Basak and Croitoru (2000, 2006), and Chabakauri (2013) derive related results

for more general portfolio constraints.
5See, for example, the literature on covered interest arbitrage, summarized in Section I.B.3.
6Kondor and Vayanos (2017) derive self-correcting dynamics in a setting in which arbitrageurs can invest in mul-

tiple risky assets. However, arbitrageurs in their setting do not intermediate trades because there is no segmentation,

and the law of one price holds. Greenwood, Hanson, and Liao (2015) assume gradual rebalancing of arbitrageur

portfolios across markets, in the spirit of Duffie (2010) and Duffie and Strulovici (2012), and allow for multiple risky

assets within each market. However, arbitrageurs in their setting face no financial constraints.
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III analyzes risky arbitrage and derives the cross-sectional properties of prices and positions, as

well as the effects of capital mobility. Section IV concludes. Proofs are in the Internet Appendix.7

I. The Model

A. Assets

There is an infinite number of discrete periods indexed by t ∈ N. There is one riskless asset

with exogenous return r > 0, and a continuum I of infinitely lived risky assets, all in zero supply.

Risky assets come in pairs. Asset i’s payoff per share in period t is

di,t ≡ di + ϵi,t + ηi,t, (1)

where di is a positive constant, and ϵi,t and ηi,t are random variables distributed symmetrically

around zero in the intervals [−ϵi, ϵi] and [−ηi, ηi], respectively. The other asset in i’s pair is

denoted by −i and its payoff per share in period t is

d−i,t ≡ di + ϵi,t − ηi,t. (2)

If ηi = 0, then assets i and −i have identical payoffs and a trade consisting of a one-share long

position in one asset and a one-share short position in the other involves no risk. If instead ηi > 0,

then payoffs are not identical and the long-short trade is risky. In both cases, we refer to asset pair

(i,−i) as an arbitrage opportunity. This corresponds to textbook arbitrage when ηi = 0 and the

two assets trade at different prices.

We assume that the variables
ϵi,t
ϵi

are i.i.d. over time and identically distributed across asset

pairs. (Correlation across pairs is possible.) We make the same assumption for the variables
ηi,t
ηi

,

which we also assume are independent of
ϵi,t
ϵi
. Because distributions are identical across asset pairs,

ϵi and ηi are proportional to the standard deviations of ϵi,t and ηi,t, respectively, and we refer to

them as volatilities. We restrict di to be larger than ϵi + ηi so that asset payoffs are nonnegative.

We denote by pi,t the ex-dividend price of asset i in period t, and we define the asset’s price discount

7The Internet Appendix is available in the online version of the article on the Journal of Finance website.
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as

ϕi,t ≡
di
r
− pi,t, (3)

that is, the present value of expected future payoffs discounted at the riskless rate r, minus the

price.

B. Outside Investors

B.1. Market Segmentation

For some agents, who we refer to as outside investors, the markets for the risky assets are

segmented. Each outside investor can invest in only two assets: the riskless asset and one specific

risky asset. We refer to the outside investors who can invest in risky asset i as i-investors. We

assume that i-investors are competitive and infinitely lived, form a continuum with measure µi,

consume in each period, and have negative exponential utility

−Et

[ ∞∑
s=t+1

γs−t exp (−αci,s)

]
, (4)

where α is the coefficient of absolute risk aversion and γ is the subjective discount factor. In period

t, an i-investor chooses positions {yi,s}s≥t in asset i and consumption {ci,s}s≥t+1 to maximize (4)

subject to a budget constraint. We denote the investor’s wealth in period t by wi,t. We study

optimization in period t after consumption ci,t has been chosen, which is why we optimize over

ci,s for s ≥ t + 1. Accordingly, we define wi,t as the wealth net of ci,t. We assume that i- and

−i-investors are identical in terms of their measure, that is, µi = µ−i. Negative exponential utility

of outside investors simplifies our analysis because it ensures that their demand for risky assets is

independent of their wealth. The only wealth effects in our model concern the arbitrageurs.
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B.2. Endowment Shocks

Outside investors receive random endowments, which affect their appetite for risky assets. In

period t each i-investor receives an endowment equal to

ui,t−1(ϵi,t + ηi,t), (5)

where ui,t−1 is known in period t− 1. We assume that ui,t is equal to zero, except over a sequence

ofMi periods t ∈ {hi−Mi, .., hi−1} during which it can become equal to a constant ui. When this

occurs, we say that i-investors experience an endowment shock of intensity ui and duration Mi.

An endowment shock in market i is accompanied by an endowment shock in market −i. If the

shocks were identical, then assets i and −i would be trading at the same price in the absence of

arbitrageurs because of symmetry. To ensure a difference in prices and hence a role for arbitrageurs,

we assume that endowment shocks differ. We further restrict the shocks to be opposites, that is,

ui = −u−i. This assumption, together with that of zero supply, ensures that the price discounts of

assets i and −i are opposites in equilibrium. With opposite price discounts, arbitrageurs (described

in Section I.C) find it optimal to hold opposite positions in the two assets, and hence trade only on

the price discrepancy between them. This simplifies the equilibrium because arbitrageurs are not

exposed to the shock ϵi,t, and thus they earn a riskless return when assets i and −i have identical

payoffs.

In exploiting price discrepancies, arbitrageurs intermediate trade between, and provide liquidity

to, investors. Suppose, for example, that i-investors experience a shock ui > 0. Their endowment

then becomes positively correlated with ϵi,t+ηi,t and hence with asset i’s payoff. As a consequence,

asset i becomes less attractive to them. Conversely, asset −i becomes more attractive to −i-

investors, who experience a shock u−i < 0. In the absence of arbitrageurs, the equilibrium price

of asset i would decrease and that of asset −i would increase. Arbitrageurs can exploit this price

discrepancy by buying asset i from i-investors and selling asset −i to −i-investors. In doing so, they

intermediate trade between the two sets of investors, which market segmentation otherwise prevents.

Because of arbitrageurs, prices are less sensitive to endowment shocks and price discrepancies are

smaller.8

8If endowment shocks for i- and −i-investors were not opposites, then arbitrageurs would not hold opposite
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When investors i and −i experience endowment shocks, we say that arbitrage opportunity

(i,−i) is active. We identify active opportunities with the assets with positive endowment shocks:

we set

At ≡ {i ∈ I : ui,t > 0}

and refer to active opportunity (i,−i) for i ∈ At as opportunity i. We assume that the set At

of active opportunities is finite. We also assume that the probability of an opportunity becoming

active (an event that may occur in period hi −Mi for opportunity i) is arbitrarily small. This is

consistent with opportunities forming a continuum and a finite number being active in each period.

This also ensures that endowment shocks do not affect prices until they actually hit investors.

B.3. Interpretation

Our assumptions fit settings in which assets with similar payoffs trade in partially segmented

markets. These include Siamese twin stocks, covered interest arbitrage across currencies, govern-

ment bonds, corporate bonds, and credit default swaps (CDS).

Siamese twin stocks have identical dividend streams but differ in the country where most of

their trading occurs. Rosenthal and Young (1990) find that price differences between Siamese

twins can be significant. Dabora and Froot (1999) show that a stock tends to appreciate relative

to its Siamese twin when the aggregate stock market in the country where the stock is mostly

traded goes up. They argue that one reason Siamese twin stocks differ in their main trading venue

is that each stock belongs to a different country’s main stock index. Thus, index funds in each

positions in assets i and −i. They would still intermediate trade between investors, however, if they are sufficiently

risk averse. Suppose, for example, that i-investors experience a shock ui > 0 but −i-investors do not, that is, u−i = 0.

Arbitrageurs would buy asset i from i-investors to benefit from its positive price discount. If they are sufficiently risk

averse, they would hedge that position by selling asset −i to −i-investors, thereby intermediating trade between i-

and −i-investors. Because buying asset i yields a higher expected excess return than selling asset −i, arbitrageurs

would choose not to be fully hedged, and hence would be exposed to the risk that ϵi,t is low.

If assets i and −i were in positive rather than in zero supply, then arbitrageurs would hold a larger long position

in asset i and would be more exposed to the risk that ϵi,t is low. If assets without endowment shocks were also

in positive supply, then they would trade at a positive price discount but one that would be smaller than asset i’s.

Because positions in the no-endowment-shock assets require a comparable level of collateral as in assets i and −i but

earn a lower expected return, arbitrageurs would not trade those assets if their wealth were small enough.
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country can invest only in one of the stocks. Index funds in that setting correspond to our model’s

outside investors, flows in or out of these funds correspond to our model’s endowment shocks, and

market segmentation arises from restricted fund mandates (which are possibly a response to agency

problems).

Covered interest arbitrage exploits violations of covered interest parity (CIP), the relationship

implied by the absence of arbitrage between the spot and forward exchange rates for a currency

pair and the interest rates on the two currencies. Violations of CIP can be measured by the cross-

currency basis (CCB). Taking one of the currencies to be the dollar, the CCB is the difference

between the dollar interest rate minus its CIP-implied value. A negative CCB indicates that the

dollar is cheaper in the forward market than its CIP-implied value.

Violations of CIP were small between 2000 and the beginning of the global financial crisis,

but were large during the crisis and have remained large since. Explanations of CIP violations

during the crisis have focused on increased counterparty risk and difficulty borrowing in dollars.9

These factors subsided after the crisis, however. Explanations of CIP violations after the crisis have

focused instead on hedging pressure in the forward market combined with financially constrained

arbitrage. Borio et al. (2016) construct measures of the hedging demand of banks, institutional

investors (such as pension funds and insurance companies), and nonfinancial firms. Consistent

with the hedging pressure explanation, they find that a negative CCB is more likely when these

institutions seek to hedge against a drop in the dollar. Du, Tepper, and Verdelhan (2016) argue

that the demand for hedging against a drop in the dollar should be high for currencies with low

interest rates relative to the dollar, and find that a negative CCB is indeed more likely for those

currencies. They also relate the CCB to measures of arbitrageurs’ financial constraints.10

Our model can be applied to covered interest arbitrage by interpreting the two assets in a pair

as a currency forward and its synthetic counterpart. Outside investors in the forward market are

the hedgers that Borio et al. (2016) consider: these agents may lack the specialized knowledge or

trading infrastructure to access synthetic forwards. Likewise, outside investors in the synthetic

9See, for example, Baba and Packer (2009), Coffey, Hrung, and Sarkar (2009), and Mancini Griffoli and Ranaldo

(2012).
10Other related work on CIP violations after the crisis includes Avdjiev et al. (2016), Iida, Kimura, and Sudo

(2016), Liao (2016), and Sushko et al. (2016).
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forward market may be prevented from trading forwards because of restricted mandates.11

Bonds with similar coupon rates and times to maturity can trade at significantly different yields.

Fontaine and Garcia (2012) and Hu, Pan, and Wang (2013) aggregate such deviations across the

nominal term structure by fitting it to a smooth curve. They find that the fit worsens when

arbitrageurs’ financial constraints tighten, for example, during financial crises or when the leverage

of shadow banks decreases. In that context, outside investors can represent investors who must

hold bonds with specific coupon rates and times to maturity. Such investors might be insurance

companies or pension funds, and their preferences could be driven by asset-liability management

or tax considerations.

Fleckenstein, Longstaff, and Lustig (2014) find that nominal government bonds tend to be

significantly more expensive than their synthetic counterparts formed by inflation-indexed bonds,

inflation swaps, and zero-coupon bonds. Moreover, price discrepancies become larger when arbi-

trage capital, measured by hedge-fund assets, is depleted. The additional finding that nominal and

inflation-indexed bonds are owned by different types of institutions suggests a degree of market

segmentation.

Duffie (2010) documents price discrepancies between corporate bonds and matched CDS. These

discrepancies became particularly large during the global financial crisis, but remained significant

afterwards. One driver of market segmentation in that setting is that individual investors can trade

corporate bonds but not CDS.

11Consider, for example, U.S. nonfinancial firms that issue debt in euros to benefit from lower credit spreads in

the euro area relative to the U.S. (Borio et al. (2016)). Those firms seek to hedge against a drop in the dollar as they

earn most of their profits in dollars but must pay euro-denominated debt. They can hedge in the forward market, but

trading synthetic forwards may be too complicated or impossible for them—in particular, they would have to borrow

dollars without paying a credit spread. Conversely, bond mutual funds can invest in euro- or dollar-denominated

bonds but may be prevented by their mandates from trading currency forwards. Liao (2016) links CIP violations to

the hedging demand of nonfinancial firms using a segmented-markets model.
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C. Arbitrageurs

C.1. Better Investment Opportunities

Arbitrageurs can invest in all risky assets and in the riskless asset. Hence, they are the only

agents who can overcome market segmentation. We assume that they are competitive and infinitely

lived, form a continuum with measure one, consume in each period, and have logarithmic utility

Et

[ ∞∑
s=t+1

βs−t log (cs)

]
, (6)

where β is the subjective discount factor.12 In period t, an arbitrageur chooses positions {xi,s}i∈I,s≥t

in all risky assets and consumption {cs}s≥t+1 to maximize (6). The arbitrageur is subject to

a financial constraint (see Section I.C.2) and a budget constraint. We denote the arbitrageur’s

wealth in period t by Wt and assume that W0 > 0. Since arbitrageurs have measure one, Wt is also

their aggregate wealth, which we refer to as arbitrage capital. Logarithmic utility of arbitrageurs

simplifies our analysis because it ensures that their consumption is a constant fraction of their

wealth.

C.2. Financial Constraint

We assume that agents must collateralize their asset positions. Consider an agent who wants

to establish a long position in a risky asset. If the agent needs to borrow cash to buy the asset,

then he must post collateral as a commitment to repay the cash loan. Consider next an agent who

wants to establish a short position in a risky asset. The agent must borrow the asset so that he can

sell it, and must post collateral as a commitment to return the asset. We assume that i-investors

have enough wealth to collateralize any position they may want to establish, that is, up to µiui.

12By fixing the measure of arbitrageurs, we are ruling out entry and focusing on the evolution of existing arbi-

trageurs’ wealth as the driver of price dynamics. Duffie and Strulovici (2012) study how entry impeded by search

frictions affects price dynamics. Their analysis provides a complementary perspective to ours. Note that the duration

Mi of endowment shocks can be interpreted as the time it takes for enough new arbitrageurs to enter the market for

arbitrage opportunity (i,−i) and eliminate that opportunity.
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However, arbitrageurs may be constrained by their wealth.13

Standard asset pricing models assume that agents can establish any combination of asset posi-

tions provided they have sufficient wealth to cover any liabilities that their positions generate. One

interpretation of this constraint is that a central clearinghouse registers all positions and prevents

agents from undertaking liabilities that they cannot cover. The constraint is formally equivalent to

requiring wealth to be nonnegative, and thus is redundant for agents with logarithmic utility.

We assume that arbitrageurs are subject to a stronger constraint. We require that they have

sufficient wealth in each market to cover any liabilities that their positions generate in that market.

The positions of arbitrageurs in market i consist of a position in asset i and a position in the riskless

asset. We require that this combined position always have nonnegative value. Thus, liability is

calculated market-by-market rather than by aggregating across all markets. This is in the spirit of

market segmentation: the same informational or regulatory frictions that prevent i-investors from

investing in risky assets other than asset i could also be preventing arbitrageurs’ lenders in market

i from accepting such assets as collateral.14

To derive the financial constraint of an arbitrageur, we denote by xi,t his position in asset i, by

z0i,t his investment in the riskless asset held in market i, and by zi,t = xi,tpi,t + z0i,t the value of his

combined position in market i, all in period t. The value of the arbitrageur’s combined position in

13Our assumption that outside investors are unconstrained does not necessarily imply that they are wealthier than

arbitrageurs because their positions could be smaller. This could be the case for two reasons. First, the position

that arbitrageurs as a group establish in asset i is the opposite of that of i-investors. Therefore, if arbitrageurs are

in smaller measure than i-investors, they hold a larger position per capita in asset i. Second, each arbitrageur can

trade more risky assets than each outside investor, leading to a larger aggregate position.
14Using one asset as collateral for a position in the other is known as cross-netting. One situation in which

cross-netting is generally not possible is when one asset is traded over-the-counter and the other in an exchange,

for example, U.S. bonds are traded over the counter and U.S. bond futures are traded in the Chicago Mercantile

Exchange. For a more detailed description of the frictions that hamper cross-netting see, for example, Gromb and

Vayanos (2002) and Shen, Yan, and Zhang (2014). While our model rules out cross-netting, it can be generalized to

allow for partial cross-netting.
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market i in period t+ 1 is

zi,t+1 = z0i,t(1 + r) + xi,t [di,t+1 + pi,t+1]

= zi,t(1 + r) + xi,t [di,t+1 + pi,t+1 − (1 + r)pi,t] (7)

and must be nonnegative. Requiring (7) to be nonnegative for all possible realizations of uncertainty

in period t+ 1 yields

zi,t ≥ max
{ϵj,t+1,ηj,t+1}j∈I

{
xi,t

(
pi,t −

di,t+1 + pi,t+1

1 + r

)}
. (8)

The right-hand side of (8) represents the maximum loss, in present value terms, that the arbitrageur

can realize in market i between periods t and t + 1. This loss must be smaller than the value of

the arbitrageur’s combined position in market i in period t. Thus, the arbitrageur can finance a

long position in asset i by borrowing cash with the asset as collateral, but must contribute enough

cash of his own to cover against the most extreme price decline. Conversely, the arbitrageur can

borrow and short-sell asset i using the cash proceeds as collateral for the loan, but must contribute

enough cash of his own to cover against the most extreme price increase.

Aggregating (8) across markets yields the financial constraint

Wt =
∑
i∈I

zi,t ≥
∑
i∈I

max
{ϵj,t+1,ηj,t+1}j∈I

{
xi,t

(
pi,t −

di,t+1 + pi,t+1

1 + r

)}
(9)

since the value of the arbitrageur’s positions summed across markets is his wealth Wt. The con-

straint (9) requires that the arbitrageur have enough wealth to cover his maximum loss in each

market.15

Our formulation of the financial constraint assumes that the only assets that arbitrageurs can

15The constraint (9) can extend to a continuous-time limit of our model if that limit involves jumps. With jumps,

the support of {ϵj,t+1, ηj,t+1}j∈I does not converge to zero and neither does the maximum loss in period t + 1. If

instead the support of {ϵj,t+1, ηj,t+1}j∈I converges to zero, as it would in a Brownian limit, then the maximum loss

converges to zero and (9) is always met. For a derivation of a financial constraint in a continuous-time limit with

jumps, see Chabakauri and Han (2017).
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trade with i-investors, or use as collateral in market i, are asset i and the riskless asset. Under a more

general formulation, arbitrageurs could trade with i-investors any contracts that are contingent on

future uncertainty. These contracts could be collateralized by the riskless asset, by asset i, or by

any other contracts traded in market i. Moreover, contracts could extend over any number of

periods. In Internet Appendix Section II we formulate equilibrium in our model under such general

contracts. The only restrictions that we maintain are that i-investors cannot contract directly

with j-investors for j ̸= i (they can contract only indirectly through arbitrageurs) and arbitrageurs

cannot use contracts traded with j-investors as collateral for contracts traded with i-investors.

These restrictions are consistent with the logic of market segmentation.

We show in Internet Appendix Section II that, without loss of generality, contracts can be

assumed to be fully collateralized and hence default-free. Moreover, when assets in each pair have

identical payoffs (ηi = 0) and distributions are binomial (ϵi,t binomial), contracts can be restricted

to those studied in this section—only asset i and the riskless asset are traded and used as collateral

in market i. This generalizes, within our setting, the no-default result of Fostel and Geanakoplos

(2015) shown under the assumption that contracts extend over one period.16 Thus, the financial

constraint (9) can be derived under general contracts that are consistent with market segmentation.

D. Symmetric Equilibrium

We look for a competitive equilibrium that is symmetric in the sense that price discounts and

agents’ positions are opposites for the assets in each pair.

DEFINITION 1: A competitive equilibrium consists of prices pi,t and positions in the risky assets

yi,t for the i-investors and xi,t for the arbitrageurs, such that positions are optimal given prices and

the markets for all risky assets clear:

µiyi,t + xi,t = 0. (10)

16Besides allowing for dynamic contracts, we allow a contract to serve as collateral for other contracts, in a recursive

manner. A similar recursive construction can be found in Gottardi and Kubler (2015). Simsek (2013) characterizes

default rates in collateral equilibrium for general distributions in a static setting. For more references on leverage

and collateral equilibrium, see the survey by Fostel and Geanakoplos (2015).

16



DEFINITION 2: A competitive equilibrium is symmetric if for the assets (i,−i) in each pair the

price discounts are opposites (ϕi,t = −ϕ−i,t), the positions of outside investors are opposites (yi,t =

−y−i,t), and the positions of arbitrageurs are opposites (xi,t = −x−i,t).

Symmetry implies that the price discount of each asset is one-half of the difference between its

price and the price of the other asset:

ϕi,t =
pi,t − p−i,t

2
.

Since the price discount measures the price difference between paired assets, we also refer to it as

the spread. The spread is an inverse measure of the liquidity that arbitrageurs provide to outside

investors.

E. Optimization Problems

E.1. Outside Investors

The budget constraint of an i-investor is

wi,t+1 = yi,t(di,t+1 + pi,t+1) + (1 + r)(wi,t − yi,tpi,t) + ui,t(ϵi,t+1 + ηi,t+1)− ci,t+1. (11)

The investor holds yi,t shares of asset i in period t, and these shares are worth yi,t(di,t+1 + pi,t+1)

in period t+ 1. The investor also holds wi,t − yi,tpi,t units of the riskless asset in period t, that is,

wealth wi,t minus the investment yi,tpi,t in asset i. This investment is worth (1 + r)(wi,t − yi,tpi,t)

in period t+1. Finally, the random endowment ui,t(ϵi,t+1+ηi,t+1) is added to the investor’s wealth

in period t+ 1, while consumption ci,t+1 lowers wealth.

We can simplify (11) by introducing the return per share of asset i in excess of the riskless asset.

This excess return is

Ri,t+1 ≡ di,t+1 + pi,t+1 − (1 + r)pi,t

= (1 + r)ϕi,t − ϕi,t+1 + ϵi,t+1 + ηi,t+1, (12)
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where the second step follows from (1) and (3). The expected excess return of asset i is

Φi,t ≡ Et (Ri,t+1) = (1 + r)ϕi,t − Et (ϕi,t+1) . (13)

Using (12) and (13), we can write (11) as

wi,t+1 = (1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)(ϵi,t+1 + ηi,t+1) + yi,t [Et(ϕi,t+1)− ϕi,t+1]− ci,t+1. (14)

The investor’s wealth in period t+1 is uncertain as of period t because of the payoff shock ϵi,t+1 +

ηi,t+1 and the price discount ϕi,t+1. The investor’s exposure to the payoff shock is the sum of her

asset position yi,t and endowment shock ui,t, while her exposure to the price discount is yi,t.

We conjecture that the investor’s value function in period t is

Vi,t(wi,t) = − exp (−Awi,t − Fi,t) , (15)

where Fi,t is a possibly stochastic function and A is a constant. The value function is negative

exponential in wealth because the utility function depends on consumption in the same manner.

E.2. Arbitrageurs

The budget constraint of an arbitrageur is

Wt+1 =
∑
i∈I

xi,t(di,t+1 + pi,t+1) + (1 + r)

(
Wt −

∑
i∈I

xi,tpi,t

)
− ct+1. (16)

The differences with the budget constraint (11) of an i-investor are that the arbitrageur can invest

in all assets and receives no endowment. We next simplify the budget constraint (16) and the

financial constraint (9) by using properties of a symmetric equilibrium.

A first simplifying property is that ϕi,t = 0 for assets that are not part of active opportunities.

This property holds in equilibrium, as we explain here and show formally in Sections II and III.

An implication of this property is that Et(ϕi,t+1) = Φi,t = 0 since the probability of an opportunity

becoming active is arbitrarily small. Since Φi,t = 0, investing in assets that are not part of active
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opportunities exposes arbitrageurs to risk that is not compensated in terms of expected excess

return. Investing in those assets also tightens the financial constraint (9). Hence, the optimal

position is zero. Outside investors’ optimal position is also zero because they have zero endowment

and hence would hold a nonzero position only if the expected excess return were nonzero. Therefore,

the markets for assets that are not part of active opportunities clear with zero price discount,

confirming our conjecture that ϕi,t = 0. Using that property as well as (12), (13), ϵi,t+1 = ϵ−i,t+1,

ηi,t+1 = −ηi,t+1, and ϕi,s = −ϕ−i,s for s = t, t+ 1, we can write the budget constraint (16) as

Wt+1 = (1+r)Wt+
∑
i∈At

(xi,t−x−i,t) [Φi,t + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1]+
∑
i∈At

(xi,t+x−i,t)ϵi,t+1−ct+1,

(17)

and the financial constraint (9) as

Wt ≥
∑
i∈At

[
max

{ϵj,t+1,ηj,t+1}j∈I

xi,t [−Φi,t − ϵi,t+1 − ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1]

1 + r

+ max
{ϵj,t+1,ηj,t+1}j∈I

x−i,t [Φi,t − ϵi,t+1 + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1]

1 + r

]
. (18)

Two further simplifying properties are that ϕi,t+1 is independent of ϵi,t+1 and that xi,t and x−i,t

must have opposite signs. The first property holds in equilibrium, as we show in Sections II and

III. Intuitively, when arbitrageurs hold opposite positions in assets i and −i, their wealth Wt+1

is independent of ϵi,t+1 and the same is true of spreads, which depend on wealth. The second

property follows from arbitrageurs’ optimization. Indeed, if xi,t and x−i,t had the same sign, then

an arbitrageur would be able to reduce both in absolute value while holding xi,t − x−i,t constant.

That would reduce his risk without affecting his expected excess return, as can be seen from the

budget constraint (17), and would relax the financial constraint (18). Using the two simplifying

properties, we can write (18) as

Wt ≥
∑
i∈A

(|xi,t|+ |x−i,t|) ϵi + 2max{ηi′,t+1}i′∈I
{(xi,t − x−i,t) [−Φi,t − ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1]}

1 + r
.

(19)

A final simplifying property is that xi,t and x−i,t must be (exact) opposites. Indeed, if xi,t +
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x−i,t ̸= 0, then an arbitrageur could set xi,t + x−i,t = 0 while holding xi,t − x−i,t constant. That

would eliminate his exposure to ϵi,t+1 without affecting his expected excess return, his exposure to

ηi,t+1 and ϕi,t+1, and the financial constraint (19). Using this property, we can simplify the budget

constraint (17) to

Wt+1 = (1 + r)Wt + 2
∑
i∈At

xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1]− ct+1, (20)

and the financial constraint (19) to

Wt ≥ 2
∑
i∈A

|xi,t|ϵi +max{ηj,t+1}j∈I {xi,t [−Φi,t − ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1]}
1 + r

. (21)

The arbitrageur’s optimization problem reduces to choosing positions in assets i ∈ At, that is,

those with positive endowment shocks. Positions in the corresponding assets −i are opposites, and

positions in assets that are not part of active opportunities are zero. We conjecture that the value

function of an arbitrageur in period t is

Vt(Wt) = B log(Wt) +Gt, (22)

where Gt is a possibly stochastic function and B is a constant.

II. Riskless Arbitrage

In this section we solve for equilibrium when assets in each pair have identical payoffs (ηi = 0).

With identical payoffs, arbitrageur wealth Wt does not depend on the payoff realizations because

arbitrageurs hold opposite positions in the assets in each pair. Hence, the return that arbitrageurs

earn from one period to the next is riskless. That riskless return could change stochastically,

however, over time. We rule out stochastic variation by assuming that the set

Ct ≡ {(ϵi, ηi, ui, µi, hi − t) : i ∈ At}
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describing the characteristics of active opportunities is deterministic. Thus, while arbitrageurs are

uncertain as to which opportunities will become active, they know what their overall return will

be. With a deterministic Ct, the dynamics of arbitrageur wealth, arbitrageur positions, and spreads

are deterministic. With deterministic spreads, the expected excess return of asset i simplifies to

Φi,t = (1 + r)ϕi,t − ϕi,t+1. (23)

One setting that yields a deterministic Ct and that we emphasize later is as follows. The universe

I of risky assets is divided into 2N disjoint families In for n = 1, .., N , with the assets in each family

forming a continuum and having the same characteristics (ϵi, ηi, ui, µi,Mi). Moreover, one asset

from each family is randomly drawn in each period to form an active opportunity (together with

the other asset in its pair). Under these assumptions, Ct is not only deterministic, but constant.

The case of riskless arbitrage is a natural benchmark. It is highly tractable and yields useful

results and intuitions, which facilitate the analysis of risky arbitrage in Section III. We start by

deriving the first-order conditions of outside investors and arbitrageurs in an equilibrium of the

conjectured form, that is, symmetric with deterministic price discounts. We then impose market

clearing and show that such an equilibrium exists.

A. First-Order Conditions

A.1. Outside Investors

Since ηi,t+1 = 0 and ϕi,t+1 is deterministic, the budget constraint (14) of an i-investor simplifies

to

wi,t+1 = (1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)ϵi,t+1 − ci,t+1. (24)

The only risk borne by the investor between periods t and t+ 1 is the payoff shock ϵi,t+1, and the

investor’s exposure to that risk is yi,t + ui,t.

PROPOSITION 1: The value function of an i-investor in period t is given by (15), where A = rα

and Fi,t is deterministic. The investor’s optimal position in asset i is given by the first-order
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condition

Φi,t − ϵif
′ [(yi,t + ui,t)ϵi] = 0, (25)

where the function f(y) is defined by

exp

[
αAf(y)

α+A

]
≡ E

[
exp

(
− αAyϵi,t
(α+A)ϵi

)]
. (26)

The first-order condition (25) takes an intuitive form. The first term in the left-hand side, Φi,t,

is the expected excess return of asset i. The second term, ϵif
′ [(yi,t + ui,t)ϵi], is a risk adjustment,

reflecting the investor’s risk from holding the position. Since the function f(y) is convex, as shown

in Lemma 1, the risk adjustment is increasing in the investor’s exposure yi,t + ui,t. The investor’s

first-order condition amounts to setting the risk-adjusted expected excess return that she derives

from asset i to zero. This yields a standard downward-sloping demand: the investor’s position yi in

asset i is increasing in the asset’s expected excess return Φi,t and hence is decreasing in the asset’s

price pi,t.
17

LEMMA 1: The function f(y) is nonnegative, symmetric around the vertical axis (f(−y) = f(y)),

and strictly convex. It also satisfies f ′(−y) = −f ′(y),f ′(0) = 0, and limy→∞ f ′(y) = 1.

The function αAf(y)
α+A is the cumulant-generating function of − αAyϵi,t

(α+A)ϵi
. Cumulant-generating

functions are convex. Symmetry around the vertical axis follows because ϵi,t is distributed sym-

metrically around zero. Symmetry implies f ′(−y) = −f ′(y) and f ′(0) = 0.

The first-order condition of −i-investors yields an optimal position that is the opposite of that of

i-investors. This follows from (25), the observations that price discounts, expected excess returns,

and endowment shocks are opposites for assets i and −i, and the fact that f ′(y) = −f ′(−y).
17The function ϵif

′ [(yi,t + ui,t)ϵi] can be interpreted as a “pricing function,” yielding the expected excess return

Φi,t as a function of the position yi,t of the “marginal investor.”
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A.2. Arbitrageurs

Since ηi,t+1 = 0 and ϕi,t+1 is deterministic, the budget constraint (20) of an arbitrageur simplifies

to

Wt+1 = (1 + r)Wt + 2
∑
i∈At

xi,tΦi,t − ct+1, (27)

and the financial constraint (21) simplifies to

Wt ≥ 2
∑
i∈At

|xi,t|ϵi − xi,tΦi,t

1 + r
. (28)

Equation (27) confirms that the dynamics of arbitrageur wealth are deterministic. The per-share

return of an active opportunity i is 2Φi,t, that is, twice the expected excess return Φi,t of asset i.

This return is nonnegative in equilibrium, as we show in Section II.B. While i-investors earn Φi,t as

compensation for risk, arbitrageurs earn it risk-free because they can combine a position in asset i

with one in asset −i. Thus, when Φi,t > 0, arbitrageurs can earn a riskless return above the riskless

rate r.

Equation (28) shows that the collateral required to hold a position in an active opportunity i is

larger when asset payoffs are more volatile, that is, ϵi is larger, and when the opportunity offers a

lower return, that is, Φi,t is smaller. In both cases this is, because the maximum loss of the position

is larger.

PROPOSITION 2: The value function of an arbitrageur in period t is given by (22), where B = β
1−β

and Gi,t is deterministic. The arbitrageur’s optimal consumption is

ct =
1− β

β
Wt. (29)

• If all active opportunities offer zero return, that is, Φi,t = 0 for all i ∈ At, then the arbitrageur

is indifferent between any combination of positions in these opportunities.

• If instead some active opportunities offer a positive return and the remainder zero return,

then the arbitrageur holds nonzero positions only in opportunities with maximum return per
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unit of collateral:

i ∈ argmaxj∈At

Φj,t

ϵj − Φj,t
. (30)

For these opportunities, positions are long in assets i ∈ At, that is, those with positive en-

dowment shocks. Moreover, the financial constraint (28) binds.

Arbitrageurs’ optimal investment policy can be derived intuitively as follows. Substituting the

optimal consumption (29) into the budget constraint (27), we can write the latter as

Wt+1 = β

[
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t

]
. (31)

Since assets i ∈ At offer non negative expected excess returns, arbitrageurs do not benefit from

shorting them. Therefore, we can write the financial constraint (28) as

Wt ≥ 2
∑
i∈At

xi,t (ϵi − Φi,t)

1 + r
. (32)

Maximizing Wt+1 in (31) subject to (32) and xi,t ≥ 0 is a simple linear programming problem.

Arbitrageurs invest only in those opportunities that offer the maximum return Φi,t per unit of

collateral ϵi − Φi,t. Moreover, when some opportunities offer a nonzero return, arbitrageurs “max

out” their financial constraint (32) because they can earn a riskless return above the riskless rate

r. Maximizing return per unit of collateral, Φi,t
ϵi−Φi,t , is equivalent to maximizing return per unit of

volatility Φi,t
ϵi

. We focus on the latter from now on.

B. Equilibrium

B.1. Arbitraging Arbitrage

Combining arbitrageurs’ optimal investment policy with that of outside investors and imposing

market clearing, we can derive a sharp characterization of equilibrium returns and positions. We

denote by

Tt ≡ {i ∈ At : xi,t > 0}
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the set of active opportunities that arbitrageurs actually trade in period t, that is, those in which

they hold nonzero positions.

PROPOSITION 3: In equilibrium, there exists Πt ∈ [0, 1) such that in period t:

• Arbitrageurs trade only active opportunities i such that f ′(uiϵi) > Πt, that is,

Tt = {i ∈ At : f
′(uiϵi) > Πt}.

• All active opportunities that arbitrageurs trade offer the same return Πt per unit of volatility,

while those that they do not trade offer return f ′(uiϵi) ∈ (0,Πt] per unit of volatility. That is,

i ∈ Tt ⇒
Φi,t

ϵi
= Πt,

i ∈ At/Tt ⇒
Φi,t

ϵi
= f ′(uiϵi) ∈ (0,Πt].

Proposition 3 implies that active opportunities can be ranked according to f ′(uiϵi). As can

be seen by setting yi,t = 0 in outside investors’ first-order condition (25), f ′(uiϵi) is the return

per unit of volatility that opportunity i would offer in the absence of arbitrageurs. Arbitrageurs

trade only those opportunities for which f ′(uiϵi) is above a cutoff Πt ∈ (0, 1). Their activity causes

the return per unit of volatility offered by these opportunities to decrease to the common cutoff.

Opportunities for which f ′(uiϵi) is below that cutoff are not traded, and their return per unit of

volatility remains equal to f ′(uiϵi).

Since the function f(y) is convex, it follows that f ′(uiϵi) is increasing in the endowment shock

ui and in volatility ϵi. Thus, arbitrageurs are more likely to trade opportunities with higher

volatility and higher endowment shocks: these are the opportunities offering higher return per unit

of volatility in the absence of arbitrageurs.

The equalization of returns across traded opportunities can be interpreted as “arbitraging ar-

bitrage.” If a traded opportunity offered lower return per unit of volatility than another oppor-

tunity, arbitrageurs could raise their profit by redeploying their scarce capital to the latter. The

arbitraging-arbitrage result is at the basis of the contagion effects derived in Section III. Suppose,

for example, that arbitrageurs experience losses in opportunity i. This would force them to scale
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back their position in that opportunity, causing its return to increase. In turn arbitraging arbi-

trage would induce them to redeploy capital to that opportunity and away from others, causing

the return of others to increase as well.

B.2. Dynamics of Arbitrage Capital

Using Proposition 3, we can determine the dynamics of arbitrageur wealth and the relationship

between wealth and Πt.

PROPOSITION 4: In equilibrium, arbitrageur wealth evolves according to

Wt+1 = β
1 + r

1−Πt
Wt. (33)

• If Wt > Wc,t ≡ 2
1+r

∑
i∈At

µiuiϵi, then the financial constraint is slack, arbitrageurs earn the

riskless rate r, all active opportunities are traded, and their return Πt per unit of volatility is

zero.

• If Wt < Wc,t, then the financial constraint binds and arbitrageurs earn a riskless return above

the riskless rate r. The return Πt per unit of volatility offered by all traded opportunities is

the unique positive solution of

2
1−Πt

1 + r

∑
i∈Tt

µi
[
uiϵi − (f ′)−1(Πt)

]
=Wt, (34)

and decreases in Wt.

When the variables ϵi,t have a binomial distribution, Πt is a convex function of Wt.

The financial constraint is slack when all active opportunities offer zero return, that is, Φi,t = 0

for all i ∈ At. This happens when arbitrageurs fully absorb the endowment shocks of outside

investors, that is, xi,t = µiui for all i ∈ At. Setting Φi,t = 0 and xi,t = µiui in (32), we find that Wt

must exceed the threshold Wc,t defined in Proposition 4. Since all active opportunities offer zero

return, Πt = 0 and arbitrageurs earn the riskless rate r.

When instead Wt < Wc,t, arbitrageurs cannot fully absorb the endowment shocks of outside
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investors. Therefore, all active opportunities offer a positive return, the return Πt per unit of

volatility offered by all traded opportunities is also positive, and arbitrageurs earn a riskless return

above r. Moreover, when Wt decreases, Πt increases because arbitrageurs are less able to absorb

the endowment shocks.

Convexity of Πt means that a given drop in Wt causes a larger increase in Πt when it occurs

in a region in which Wt is smaller. Clearly, this comparison holds between the constrained and

the unconstrained regions: a drop in Wt raises Πt when Wt < Wc,t, but has no effect on Πt when

Wt > Wc,t. The intuition for why the comparison can also hold within the constrained region is as

follows. WhenWt is less than but close toWc,t, all active opportunities are traded and hence a drop

in Wt causes arbitrageurs to reduce their positions in all opportunities. Since the effect is spread

out across many opportunities, the reduction in each position is small and thus the increase in Πt

is small. When instead Wt is close to zero, arbitrageurs concentrate their investment in a small

number of opportunities, in which case a drop in Wt triggers a large reduction in each position.

Proposition 4 confirms the convexity of Πt under the sufficient condition that the variables ϵi,t that

describe asset payoffs have a binomial distribution. Proposition 5 shows that an equilibrium with

all the properties conjectured or shown in this section exists.

PROPOSITION 5: A symmetric equilibrium exists in which price discounts ϕi,t, outside investors’

positions yi,t, and arbitrageurs’ positions xi,t and wealth Wt are deterministic. In this equilibrium,

price discounts are zero for assets that are not part of active opportunities, and expected excess

returns Φi,t are nonnegative for assets with positive endowment shocks.

C. Steady State and Convergence Dynamics

We next derive a steady state by specializing our model to the stationary “asset family” set-

ting described at the beginning of Section II. This steady state is deterministic and used as

a basis for constructing a stochastic steady state in Section III. We index the 2N families by

n ∈ {−N, ..,−1, 1, .., N}, where for an asset in family n, the other asset in its pair belongs to family

−n, and where families n = 1, .., N comprise the assets with the positive endowment shocks. We

denote by (ϵn, ηn, un, µn,Mn) the characteristics (ϵi, ηi, ui, µi,Mi) for all assets i in family n. (As
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in the rest of Section II, we assume ηi = 0.) The set of active opportunities in period t is

A = {(n,m) : n ∈ {1, .., N},m ∈ {1, ..,Mn}}.

Opportunity (n,m) consists of one asset in family n ∈ {1, .., N} and one asset in family −n, and

it remains active for m − 1 more periods. We denote the former asset by (n,m) and the latter

by (−n,m), and refer to m as the horizon of opportunity (n,m). The expected excess returns of

assets (n,m) and (−n,m) do not depend on m (Proposition 3), nor do arbitrageurs’ and outside

investors’ positions (Equations (10) and (25)). Accordingly, we index these quantities by the family

subscript, n or −n, and the time subscript, t. The price discounts of the two assets depend on m,

and thus we index them by the additional subscript m. Since arbitrageurs’ positions do not depend

on m, we can write the set of active opportunities traded in period t as

Tt = {(n,m) : n ∈ Nt,m ∈ {1, ..,Mn}},

where we denote by Nt the subset of families in {1, .., N} whose assets are traded. We drop the

time subscript for steady-state values.

PROPOSITION 6: In equilibrium, the wealth Wt of arbitrageurs and the return Πt per unit of

volatility offered by all traded opportunities converge over time monotonically to steady-state values

W and Π.

• If β(1 + r) > 1, then Wt increases toward W = ∞ and Πt decreases toward Π = 0.

• If β(1 + r) < 1 − Π, where Π ≡ maxn=1,...,N f ′(unϵn) < 1, then Wt decreases toward W = 0

and Πt increases toward Π = Π.

• Otherwise, the steady-state values are given by

W = 2
1−Π

1 + r

∑
n∈N

µnMn

[
unϵn − (f ′)−1(Π)

]
∈ (0,Wc), (35)

Π = 1− β(1 + r) ∈ (0,Π), (36)

where Wc ≡ 2
1+r

∑N
n=1 µnMnunϵn. If Wt < W , then Wt increases toward W and Πt decreases
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toward Π. If Wt > W , then Wt decreases toward W and Πt increases toward Π.

The dynamics in Proposition 6 can be derived by specializing Proposition 4 to the stationary

case. According to Proposition 4, the wealth of arbitrageurs increases between periods t and t+ 1

if β 1+r
1−Πt

> 1. Intuitively, wealth increases if the return earned by arbitrageurs exceeds the rate at

which they consume. Arbitrageurs earn the riskless (net) return 1+r
1−Πt

− 1 and consume at the rate

1−β
β as shown in (29).

Using Proposition 4, we can characterize how the return 1+r
1−Πt

−1 earned by arbitrageurs depends

on their wealth Wt. When Wt > Wc, all active opportunities offer zero return, Πt = 0, and

arbitrageurs earn the riskless rate r. When instead Wt < Wc, Πt is positive and arbitrageurs earn

a riskless return above r. Decreases in Wt within that region raise Πt and in turn arbitrageurs’

return, which reaches its maximum value (corresponding to the maximum value of Πt) when Wt

goes to zero. Setting yi,t = 0 in outside investors’ first-order condition (25), we find that the return

per unit of volatility from an active opportunity (i,−i) in the absence of arbitrageurs is equal to

f ′(uiϵi). Therefore, the maximum value of Πt is Π ≡ maxn=1,...,N f ′(unϵn). Specializing Proposition

4 to the stationary case ensures that the function linking Πt toWt, and in particular the parameters

Wc and Π, are constant over time.

The dynamics of wealth in the stationary case follow from the above observations. When

β(1 + r) > 1, arbitrageurs consume at a rate smaller than the riskless rate. Hence, their wealth

increases over time even if Πt = 0, that is, all active opportunities offer zero return, and becomes

arbitrarily large. When instead β(1 + r) < 1 − Π, arbitrageurs consume at a rate larger than the

maximum return that their trades can offer. Hence, their wealth decreases over time and converges

to zero.

In the intermediate case 1 − Π < β(1 + r) < 1, arbitrageurs’ wealth converges to an interior

steady-state value. Indeed, when wealth is large, all active opportunities offer zero return, and

wealth decreases because β(1 + r) < 1. When instead wealth is close to zero, active opportunities

offer close to their maximum return, and wealth increases because 1−Π < β(1+ r). Dynamics are

self-correcting: wealth decreases when it is large because arbitrageurs earn a low return, and wealth

increases when it is small because arbitrageurs earn a high return. The steady-state valueW implied

by these dynamics is smaller than Wc because the steady-state return earned by arbitrageurs must
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exceed r to offset consumption. An increase in the subjective discount factor raises consumption,

and thus raises the steady-state return and lowers the steady-state wealth.

III. Risky Arbitrage

Most real-life arbitrage involves some risk. To introduce arbitrage risk in our model, we allow

assets in each pair to have nonidentical payoffs (ηi > 0). The return that arbitrageurs earn from one

period to the next is then risky and arbitrageurs’ wealth Wt is stochastic. We look for a symmetric

equilibrium in which Wt is the only stochastic state variable. We maintain the assumption that the

set Ct describing the characteristics of active opportunities is deterministic. This prevents charac-

teristics from becoming additional state variables. Because arbitrageurs hold opposite positions in

the two assets in each pair, Wt does not depend on the realizations of ϵi,t; rather, it depends only

on the realizations of ηi,t. The same is true for positions and spreads.

We start by deriving the first-order conditions of outside investors and arbitrageurs in an equi-

librium of the conjectured form. We then specialize our analysis to the case in which arbitrage risk

is small (ηi small) and we compute the equilibrium in closed form. Using our analytical solution,

we study how spreads, expected excess returns, and arbitrageur positions depend on cross-sectional

characteristics, how they respond to shocks, and whether the mobility of arbitrage capital across

markets makes them more stable.

A. First-Order Conditions

A.1. Outside Investors

An i-investor bears more risk than in the riskless-arbitrage case (ηi = 0). This is because asset

i’s payoff includes the additional component ηi,t+1, and because the asset’s price discount ϕi,t+1

varies stochastically following changes in arbitrageur wealth. As in the riskless-arbitrage case, the

investor sets the risk-adjusted expected excess return that she derives from asset i to zero. The

risk adjustment, however, includes a term reflecting the additional risk. This is the third term in

the left-hand side of (37).
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PROPOSITION 7: The value function of an i-investor in period t is given by (15), where A = rα

and Fi,t is a function of Wt. The investor’s optimal position in asset i is given by the first-order

condition

Φi,t − ϵif
′ [(yi,t + ui,t)ϵi] + Et

[
Mi,t+1

Et[Mi,t+1]
(ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1)

]
= 0, (37)

where

Mi,t+1 ≡ exp

(
−α {A [(yi,t + ui,t)ηi,t+1 − yi,tϕi,t+1] + Fi,t+1}

α+A

)
.

A.2. Arbitrageurs

An arbitrageur bears the risk represented by ηi,t+1 and ϕi,t+1. Because of that risk, he may

benefit from shorting assets i ∈ At, and thus may amplify the price discrepancies induced by outside

investors’ endowment shocks. Short positions in assets i ∈ At may be beneficial even though they

earn negative expected excess returns because they hedge long positions in other such assets. In the

rest of this section we assume that short positions in assets i ∈ At do not arise in equilibrium. This

assumption is satisfied, for example, when arbitrage risk is small and the expected excess returns

Φi,t of assets i ∈ At exceed a (strictly) positive bound. This result is shown in Proposition 8 and

extends a result shown in Proposition 2 under riskless arbitrage.

When arbitrageurs hold long positions in asset i ∈ At, an increase in ηi,t+1 raises their wealth

and hence lowers the spread ϕi,t+1 (which is positive). When instead arbitrageurs hold no position

in the asset, ϕi,t+1 is independent of ηi,t+1. In either case, the minimum value −ηi of ηi,t+1 can

be realized jointly with the maximum value of ϕi,t+1, which we denote by ϕi,t+1. Conversely, the

maximum value ηi of ηi,t+1 can be realized jointly with the minimum value of ϕi,t+1, which we

denote by ϕ
i,t+1

. Using these observations, we can simplify arbitrageurs’ financial constraint (21)

because we can determine the maximum loss scenario. A long position in asset i ∈ At suffers

its maximum loss when ηi,t+1 = −ηi and ϕi,t+1 = ϕi,t+1 (maximum spread and hence maximum

price discount for asset i). Conversely, a short position in the asset suffers its maximum loss when
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ηi,t+1 = ηi and ϕi,t+1 = ϕ
i,t+1

. Equation (21) thus becomes

Wt ≥ 2
∑
i∈At

|xi,t| (ϵi + ηi) + x+i,t
[
ϕi,t+1 − Et(ϕi,t+1)

]
− x−i,t

[
Et(ϕi,t+1)− ϕ

i,t+1

]
− xi,tΦi,t

1 + r
, (38)

where x+i,t = max{xi,t, 0} and x−i,t = min{xi,t, 0}. Moreover, when xi,t ≥ 0 for all i ∈ At, (38)

simplifies to

Wt ≥ 2
∑
i∈At

xi,t
[
ϵi + ηi + ϕi,t+1 − Et(ϕi,t+1)− Φi,t

]
1 + r

. (39)

The constraint is more stringent than in the case of riskless arbitrage because of the additional

risks that the arbitrageur is subject to.

PROPOSITION 8: The value function of an arbitrageur in period t is given by (22), where B = β
1−β

and Gt is a function of aggregate arbitrageur wealth. The arbitrageur’s optimal consumption is given

by (29). When short positions in assets i ∈ At are not optimal, as is the case when mini∈At Φi,t

exceeds a positive bound and maxi∈At{ηi, ϕi,t+1 − Et(ϕi,t+1)} is small,

• The arbitrageur’s optimal positions are nonzero only in opportunities with maximum risk-

adjusted return per unit of collateral

i ∈ argmaxj∈At

Φj,t + Et

[
Mt+1

Et[Mt+1]
(ηj,t+1 + Et(ϕj,t+1)− ϕj,t+1)

]
ϵj + ηj + ϕj,t+1 − Et(ϕj,t+1)− Φj,t

, (40)

where

Mt+1 ≡
1

(1 + r)Wt + 2
∑

j∈At
xj,t [Φj,t + ηj,t+1 + Et(ϕj,t+1)− ϕj,t+1]

.

For these opportunities, positions are long in assets i ∈ At.

• The financial constraint (39) is slack if the maximum risk-adjusted return per unit of collateral

is zero, and binds if it is positive.

As in the case of riskless arbitrage, the arbitrageur invests only in those opportunities that offer

the maximum return per unit of collateral. When arbitrage is risky, however, that return includes
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a risk adjustment that depends on arbitrageur risk aversion and position size. The risk adjustment

for arbitrageurs is different than for outside investors because market segmentation implies that

arbitrageurs bear different risks.

The arbitrageur’s portfolio problem combines two objectives: allocate scarce capital to the

most profitable opportunities, and trade off risk and return. When the financial constraint is slack,

only the second objective is present. The arbitrageur invests in any given arbitrage opportunity

i to take advantage of its positive expected excess return 2Φi,t. As he increases his position in

that opportunity, he bears more risk and hence his risk-adjusted return decreases. The optimal

position renders the risk-adjusted return equal to zero. This is the standard first-order condition

of a risk-averse investor.18

If the optimal positions under a slack financial constraint violate that constraint, then the first

objective of the portfolio problem kicks in. To meet the financial constraint, the arbitrageur scales

down his positions. As a consequence, he bears less risk and risk-adjusted returns become positive.

Positions are scaled down until the constraint is met, and in such a way as to maintain risk-adjusted

returns per unit of collateral equal across all opportunities for which positions remain positive.

The two objectives of the arbitrageur’s portfolio problem can be completely separated in two

special cases. When asset payoffs are identical, only the first objective is present because the

arbitrageur faces no risk. When instead the common payoff shock ϵi,t+1 to both assets in a pair

(i,−i) is zero for all pairs (ϵi = 0), only the second objective is present: the arbitrageur determines

his positions by trading off risk and return, and the financial constraint is always slack.

COROLLARY 1: When ϵi = 0 for all i ∈ At and short positions in assets i ∈ At are not optimal,

arbitrageurs’ financial constraint is slack.

The intuition for Corollary 1 is that when the common shock is not present, a long position in

18The standard first-order condition in a one-period setting is

E(MR) = 0 ⇔ E(R) + E

(
M

E[M]
[R− E(R)]

)
= 0,

where R is an asset’s excess return over the riskless asset and M is the pricing kernel. The risk adjustment is

E
(

M
E[M]

[R− E(R)]
)
. It depends on the size of the position, which is why the investor diversifies across assets. (That

is, if the investor invested all his wealth in only one asset, the risk-adjusted return of that asset would decline below

that of other assets, inducing the investor to also invest in the other assets.)
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asset i and a short position in asset −i can achieve their maximum loss at the same time. (That

is not possible when the common shock is present because the long position achieves its maximum

loss when ϵi,t+1 = −ϵi while the short position achieves its maximum loss when ϵi,t+1 = ϵi.) Hence,

requiring arbitrageurs to have sufficient wealth in each market to cover any liabilities in that market

is equivalent to requiring that they be able to cover any overall liability. Moreover, arbitrageurs

choose their positions so as to keep positive wealth and hence cover any overall liability because

logarithmic utility makes zero consumption prohibitively costly.

B. Equilibrium for Small Arbitrage Risk

To study the case in which arbitrage risk is small, we set ηi = λiη and take η to be small holding

λi constant. We also specialize our model to the stationary “asset family” setting described at the

beginning of Section II, and focus on parameters for which the steady state derived in Section II.C is

interior, that is, arbitrageur wealth does not converge to zero or infinity. Since arbitrageur wealth

Wt converges to the steady-state value W when η = 0, it converges to a stationary probability

distribution with support close to W when η is small. When Wt moves within the support of

the stationary distribution, as we assume from now on, the subset Nt of families whose assets are

traded in equilibrium could change over time. However, if we rule out the nongeneric case in which

f ′(unϵn) = Π for some n ∈ {1, .., N}, then for η small enough, Nt remains constant over time and

so does the set Tt of traded active opportunities. We therefore drop the time subscript from both

sets. Since the support of the stationary distribution is close to W , expected excess returns Φi,t

of assets i ∈ At exceed a positive bound. Hence, short positions in assets i ∈ At are not optimal,

arbitrageurs’ first-order condition is (40), and the financial constraint (39) binds.

We look for spreads, expected excess returns, and positions of arbitrageurs and outside investors
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that take the form

ϕn,m,t = ϕ0n,m,t + ϕ1n,m,tη + o (η) , (41)

Φn,m,t = Φ0
n,t +Φ1

n,m,tη + o (η) , (42)

xn,m,t = x0n,t + x1n,m,tη + o (η) , (43)

yn,m,t = y0n,t + y1n,m,tη + o (η) , (44)

for asset (n,m). The superscript 0 denotes the value of the corresponding variable, as a function of

Wt, in the case of riskless arbitrage (Section II). The superscript 1 denotes a first-order term in η

introduced by risk. As in Section II.C, we drop the time subscript from the zeroth- and first-order

terms in (41) to (44) when these are evaluated at the steady-state value W .

We look for dynamics of wealth, within the support of the stationary distribution, that take

the form

Wt+1 =W + ρ(Wt −W ) + νη +
∑

(n,m)∈T

σnηn,m−1,t+1 + o (η) , (45)

where (ρ, ν, {σn}n∈N ) are constants. We compute these constants, as well as the first-order terms in

(42) to (44), in the Internet Appendix (Proposition IA1). We confirm in particular, that ρ ∈ (0, 1).

Thus, to a first order in η, Wt follows an AR(1) process. The mean to which this process reverts

is equal to W plus a first-order term in η. Variation around the mean is caused by the shocks

ηn,m−1,t+1 for (n,m) ∈ T . The coefficient σn describing how ηn,m−1,t+1 affects Wt+1 is given by

σn =
2βx0n

1 + 2β
∑

(n′,m)∈T x
0
n′

dϕ0
n′,m−1,t+1

dWt+1

, (46)

where the derivatives in the denominator are evaluated at Wt+1 = W . The intuition for (46) can

be seen from the budget constraint (20). Substituting the optimal consumption (29) and changing
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asset subscripts from i to (n,m), we can write (20) as

Wt+1 = β

(1 + r)Wt + 2
∑

(n,m)∈T

xn,m,t [Φn,m,t + ηn,m−1,t+1 + Et(ϕn,m−1,t+1)− ϕn,m−1,t+1]

 .
(47)

A negative shock ηn,m−1,t+1 reduces the wealth of arbitrageurs through the term 2βxn,m,tηn,m−1,t+1.

This is the direct effect of the shock, holding spreads ϕn′,m−1,t+1 constant, and corresponds to the

numerator in (46). There is also an indirect amplification effect that operates through a change

in spreads: because Wt decreases due to the direct effect, spreads increase and this amplifies the

reduction in Wt. The indirect effect corresponds to the second term in the denominator in (46),

which is negative and thus lowers the denominator and raises σn.

C. Economic Implications

C.1. Spreads, Returns, and Positions in the Cross-Section

An arbitrage opportunity (n,m) is described by five characteristics: the volatility ϵn of the payoff

shock that is common to the two assets and that arbitrageurs can hedge via a long-short trade;

the volatility ηn of the payoff shock that arbitrageurs cannot hedge away; the endowment shock

un of outside investors, which determines their relative demand for the two assets; the measure µn

of outside investors; and the horizon m of the opportunity. We examine how these characteristics

affect spreads ϕn,m,t, expected excess returns Φn,m,t, and arbitrageur positions xn,m,t.

PROPOSITION 9: Suppose that arbitrage risk η is small. Holding constant all other characteristics

as well as arbitrageur wealth:

• An opportunity with higher hedgeable volatility ϵn has a higher spread and expected excess

return, and attracts more investment by arbitrageurs.

• An opportunity with higher nonhedgeable volatility ηn has a higher spread and expected excess

return, and attracts less investment by arbitrageurs. The same holds for an opportunity with

longer horizon m.

• An opportunity with larger endowment shock un attracts more investment by arbitrageurs. It
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has a higher spread and expected excess return, except when the comparison is between traded

opportunities, in which case spreads and expected excess returns are the same to the first order

in η.

• An opportunity with larger measure of outside investors µn attracts more investment by arbi-

trageurs.

Outside investors in more volatile opportunities, that is, those with higher ϵn or ηn, are more

eager to share risk. Therefore, those opportunities offer higher expected excess returns in arbi-

trageurs’ absence. Their expected excess returns remain higher even if arbitrageurs invest in them.

Indeed, arbitrageurs invest in opportunities with the highest return per unit of collateral, and more

volatile opportunities require more collateral. In turn, higher returns imply higher spreads. Indeed,

spreads are a present value of future expected excess returns discounted at the riskless rate,

ϕn,m,t = Et

(
m−1∑
s=0

Φn,m−s,t+s

(1 + r)s+1

)
, (48)

as can be seen by solving (13) backwards with the terminal condition ϕn,0,t+m = 0.19

The source of volatility, ϵn or ηn, matters for arbitrageurs’ positions. When hedgeable volatility

is higher (higher ϵn), positions are larger. When instead nonhedgeable volatility is higher (higher

ηn), positions are smaller. The intuition comes from higher volatility having two countervailing

effects on arbitrageur positions: it raises positions because expected excess returns increase, but it

lowers positions because collateral requirements increase. Expected excess returns in arbitrageurs’

absence are proportional to the return variance, which for small η is proportional to ϵ2n plus second-

order terms in η.20 Collateral requirements are equal to a position’s maximum possible loss, which

is ϵn + ηn + ϕn,m−1,t+1 − Et(ϕn,m−1,t+1) − Φn,m,t from (39). The ratio of these quantities (return

per unit of collateral) is increasing in ϵn but decreasing in ηn. In particular, an increase in ηn has

19Because (13) is linear in spreads and expected excess returns, (48) is exact and not a small-risk approximation.
20The return variance can be computed using (12), the independence between ϵn,t and {ηn′,t}n′∈N , the fact that

Wt is the only stochastic state variable affecting spreads, and the dynamics of Wt in (45). Note that since the effect

of arbitrage risk on the return variance is second order in η, our analysis of the equilibrium for small arbitrage risk

would not change if instead of holding ϵn constant when ηn varies, we also vary ϵn so that the return variance in the

absence of arbitrageurs’ remains constant. Indeed, the required variation in ϵn would be second order in η.
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a second-order effect on the variance but a first-order effect on the collateral requirement.

More generally, when arbitrage risk is small, its dominant effect on equilibrium variables is

through the financial constraint rather than through risk aversion. Arbitrage risk raises the maxi-

mum possible loss of a position by a first-order term in η. The risk adjustments that it induces in

(37) and (40), however, are second order in η, as they involve an expectation of gains and losses

weighted by marginal utility. It is because of the effect through the financial constraint that the

equilibrium variables in (41) to (44) include a first-order term in η.

The effect of horizon m on spreads follows from (48). Spreads of opportunities with a longer

horizon are the present value of a longer sequence of future returns and hence are higher. The

effect of horizon on expected excess returns and arbitrageur positions is more subtle. Spreads

of opportunities with a longer horizon are more sensitive to shocks to arbitrageur wealth, as

we show in Section III.C.2. As a consequence, these opportunities require more collateral (term

ϕn,m−1,t+1−Et(ϕn,m−1,t+1) in (39)), and higher collateral requirements push expected excess returns

up and arbitrageur positions down. Note that horizon has no effect on expected excess returns or

positions under riskless arbitrage. The effect instead arises because arbitrage risk impacts collateral

requirements and is included in the first-order terms in (42) to (44).

The effect of the endowment shock un on spreads, expected excess returns, and arbitrageur

positions is the same as under riskless arbitrage. In particular, spreads and expected excess returns

increase with un for nontraded opportunities and become flat when un is large enough so that

opportunities are traded. The flat part arises because traded opportunities offer the same return

per unit of collateral and because un does not affect the collateral requirement. The effect of the

measure µn of outside investors on arbitrageur positions is also the same as under riskless arbitrage:

arbitrageurs hold larger positions in an opportunity where there are more outside investors.

C.2. Response to Shocks

We next examine how spreads, expected excess returns, and arbitrageur positions respond to

shocks to arbitrageur wealth, and how these dynamics depend on the characteristics of arbitrage

opportunities. We focus on traded opportunities; nontraded opportunities are not affected by

shocks.
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For any given traded opportunity, spreads, expected excess returns, and arbitrageur positions

change over time both because arbitrageur wealth changes and because the opportunity’s horizon

shortens. We focus on the wealth-induced variation, keeping horizon constant. Hence, we compare

spreads, expected excess returns, and arbitrageur positions across opportunities within the same

family and with the same horizon (same (n,m)) but at different points in time.

PROPOSITION 10: Suppose that arbitrage risk η is small and that a shock in period t lowers

arbitrageur wealth below its mean.

• The immediate effect is that spreads and expected excess returns increase, and arbitrageurs

scale down their positions.

• Following this immediate reaction, there is a recovery phase, during which spreads, expected

excess returns, and positions are expected to revert gradually toward their original values.

The dynamics in Proposition 10 follow from the self-correcting dynamics (45) of arbitrageur

wealth. Following a shock that lowers wealth in period t, wealth is expected to increase gradually

back to its mean. Spreads and expected excess returns are decreasing functions of wealth, and hence

increase instantly and then decrease gradually. By contrast, positions are increasing functions of

wealth, and hence decrease instantly and then increase gradually.

PROPOSITION 11: Suppose that arbitrage risk η is small and that a shock in period t lowers

arbitrageur wealth below its mean. Holding constant all other characteristics:

• For an opportunity with higher hedgeable volatility ϵn, the immediate increase in spread and

expected excess return is larger, and the immediate decrease in arbitrageur positions is smaller.

• For an opportunity with higher nonhedgeable volatility ηn, the immediate increase in spread

and expected excess return is larger, and so is the immediate decrease in arbitrageur positions.

• For an opportunity with longer horizon m, the immediate increase in spread is larger. The im-

mediate increase in expected excess return and the immediate decrease in arbitrageur positions

are also larger if the steady-state value W of arbitrageur wealth Wt is large enough.

These comparisons remain the same during the recovery phase.
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Spreads and expected excess returns of more volatile opportunities, that is, those with higher

ϵn or ηn, are more sensitive to changes in arbitrageur wealth. This is because changes in wealth

impact the return per unit of collateral, which arbitrageurs equalize across all opportunities in

which they invest. The resulting impact on returns, and hence on spreads, is stronger for more

volatile opportunities because they require more collateral.

Arbitrageur positions in more volatile opportunities can be more or less sensitive to changes in

wealth, depending on the source of volatility. Positions are less sensitive when volatility is higher

because of ϵn, but more sensitive when it is higher because of ηn. The intuition parallels that

in Proposition 9. Following a drop in arbitrageur wealth, positions in all opportunities must be

scaled down, and the return per unit of collateral is equalized across opportunities at a higher

level. The increase in expected excess returns resulting from a cut in arbitrageur positions (i.e.,

the inverse elasticity of the demand of outside investors) is proportional to the return variance,

and hence to ϵ2n plus second-order terms in η. The ratio of this quantity to the collateral required

ϵn + ηn + ϕn,m−1,t+1 −Et(ϕn,m−1,t+1)−Φn,m,t is increasing in ϵn, and so positions in opportunities

with higher ϵn must be cut by less to achieve the new higher level of return per unit of collateral.

The ratio is instead decreasing in ηn, and so positions in opportunities with higher ηn must be cut

by more. Put differently, by cutting positions in opportunities with higher ηn, arbitrageurs save

a larger amount of collateral, and the returns of these opportunities do not increase sufficiently

following the cuts to compensate for that.

Spreads of opportunities with a longer horizon are more sensitive to changes in wealth because

they depend on a longer sequence of future returns, all of which are sensitive to wealth changes.

Because their spreads are more sensitive to changes in wealth, collateral requirements are higher

for long-horizon opportunities. In turn, this implies that expected excess returns and arbitrageur

positions for long-horizon opportunities tend to be more sensitive to wealth changes. At the same

time, wealth changes affect the required collateral as a function of horizon because they affect the

volatility of equilibrium prices. If the incremental collateral required by longer-horizon opportuni-

ties decreases following a wealth drop, then expected excess returns and arbitrageur positions for

these opportunities can be less sensitive to changes in wealth. This possibility is ruled out if W is

large enough.
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Taken together, the results of Sections III.C.1 and III.C.2 imply an increasing cross-sectional

relationship between spreads or expected excess returns on the one hand and betas with respect

to arbitrageur wealth on the other. Indeed, Proposition 9 shows that spreads and expected excess

returns are higher for more volatile opportunities and for opportunities with a longer horizon.

Moreover, Proposition 11 shows that spreads for the same opportunities increase more following a

drop in wealth. Hence, their realized returns decrease more and their wealth betas are higher.

The cross-sectional relationship implied by our model is consistent with recent empirical ev-

idence. Avdjiev et al. (2016) study the behavior of the cross-currency basis, which is defined in

Section I.B.3 and is an arbitrage spread associated with violations of CIP. They find that currencies

with a higher basis are also those for which the basis increases more when the dollar exchange rate

increases. Moreover, increases in the exchange rate are associated with tighter funding conditions of

currency market arbitrageurs. Cho (2016) studies the relationship between alphas of a wide cross-

section of stock market anomalies and the sensitivities of these anomalies’ returns to the funding

conditions of broker-dealers. He finds no relationship before 1993. After 1993, however, anomalies

with higher alphas are also these that yield lower returns when funding conditions tighten. These

findings are consistent with arbitrageurs becoming more active in trading the anomalies in the more

recent sample.21

We show that an increasing cross-sectional relationship between spreads/returns and wealth

betas arises because of two mutually reinforcing mechanisms. High collateral requirements cause

spreads and expected excess returns to be high (through the equalization of return per unit of

collateral) and wealth betas to be high (through the dynamics implied by same channel). Moreover,

high wealth betas cause collateral requirements to be high (because the maximum possible loss of

a position increases) and feed back into high spreads and expected excess returns. Exogenous

characteristics can “activate” either of the two mechanisms, setting off the mutually reinforcing

cycle. Payoff shock volatility (ϵn and ηn) activates the first mechanism, as higher volatility pushes

collateral requirements up. Horizon (m) activates the second mechanism, as a longer horizon renders

21Cho (2016) also finds that anomalies with higher profitability before 1993 tend to have higher wealth betas after

1993. This is consistent with arbitrageurs allocating more wealth to the more profitable anomalies: anomalies with

small un do not attract any investment and are not sensitive to changes in wealth, while the opposite holds when un

exceeds a threshold.
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spreads more sensitive to wealth. Versions of the first mechanism have been shown in a number of

papers (e.g., Gromb and Vayanos (2002), Geanakoplos (2003), Brunnermeier and Pedersen (2009),

Garleanu and Pedersen (2011), and Brumm et al. (2015)). The second mechanism is new to our

model.

D. Mobility of Arbitrage Capital

Finally, we use our model to study how the mobility of arbitrage capital affects market stability.

Our maintained assumption so far is that all arbitrageurs can trade all assets and hence arbitrage

capital is fully mobile across markets. We contrast full mobility to the case in which the assets in

each family pair (n,−n) for n = 1, .., N are traded by a separate set of arbitrageurs. We refer to the

former case as integrated arbitrage markets and to the latter as segmented arbitrage markets. These

notions of integration and segmentation are distinct from the asset-level segmentation concerning

outside investors and collateral requirements, which we continue to assume. Integration of arbitrage

markets could be triggered, for example, by deregulation of international capital flows.

When arbitrage is riskless, integration and segmentation of arbitrage markets yield the same

steady state. Indeed, Proposition 6 applied to each segmented arbitrage market implies that ar-

bitrageurs in market n have nonzero wealth in steady state if f ′(unϵn) > 1 − β(1 + r). Moreover,

the return per unit of volatility is Π = 1 − β(1 + r) in the markets where arbitrageur wealth is

nonzero, and f ′(unϵn) ≤ Π in the markets where it is zero. Since this return is the same across the

nonzero-wealth markets and is lower in the zero-wealth markets, lifting the segmentation restriction

has no effect: arbitrageurs are indifferent between staying in their market or diversifying into other

nonzero-wealth markets, and the return per unit of volatility in all markets does not change.

COROLLARY 2: Suppose that η = 0 (riskless arbitrage). In steady state, integration of arbitrage

markets has no effect on spreads and returns.

When arbitrage is risky, arbitrageurs strictly prefer diversifying across arbitrage markets as

long as risks are imperfectly correlated. We assume that risks are independent across markets,

that is, the shocks ηn,m,t are independent across n. But while diversification is beneficial for any

given arbitrageur assuming that others do not diversify, it has a countervailing effect when they
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all diversify: it induces correlation between arbitrage markets, which makes diversification less

effective. This is because arbitrageurs who hold positions in multiple markets react to negative

shocks in one market by cutting positions in all markets—a contagion effect.

To examine whether diversification remains effective despite the correlation that it induces, we

compute the variance of arbitrageur wealth. We also compute the variance of spreads, which can

be interpreted a measure of market stability. We first compare integration and segmentation when

arbitrage opportunities are symmetric, that is, (ϵn, ηn, µn, un,Mn) is independent of n. We then

consider the asymmetric case.

PROPOSITION 12: Suppose that arbitrage risk η is small and that arbitrage opportunities are

symmetric.

• The variance of each arbitrageur’s wealth under integration is 1
N times that under segmenta-

tion. It is also equal to the wealth variance of an arbitrageur who diversifies across markets

when other arbitrageurs do not.

• The variance of each spread under integration is 1
N times that under segmentation.

An arbitrageur who diversifies across markets when other arbitrageurs do not enjoys a reduction

in the variance of his wealth by a factor ofN . This follows from a standard result in portfolio theory:

optimal diversification across N assets with i.i.d. returns results in a variance that is N times lower

than without diversification. Surprisingly, diversification lowers the variance by a factor of N even

when all other arbitrageurs diversify and hence markets become correlated. This is because while

spreads become perfectly correlated across markets, their variance is divided by N .

The intuition for why the variance of the spreads is divided by N under integration is as

follows. Since the aggregate position of arbitrageurs in each market is the same under integration

as under segmentation when arbitrage is riskless, the same holds for small arbitrage risk to the

highest order in η. Hence, a negative shock ηn,m,t causes the same drop in aggregate arbitrageur

wealth under integration as under segmentation, holding spreads constant. Under segmentation,

only arbitrageurs in market n are affected, and they cut their positions in that market. Under

integration, all arbitrageurs are affected, and they cut their positions in all markets. Because the

drop in aggregate wealth is the same in both cases and because markets are symmetric, the cut in
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each market under integration is 1
N times the cut in market n under segmentation. Hence, spreads

in all markets under integration increase by 1
N times the increase in the spreads in market n under

segmentation. Moreover, the contribution of the shock ηn,m,t to the variance of the spreads in

market n under integration is 1
N2 of its contribution under segmentation. Because, however, N

times as many shocks (i.e., all shocks) contribute to the variance under integration, the variance of

the spreads is N × 1
N2 = 1

N times that under segmentation.

PROPOSITION 13: Suppose that arbitrage risk η is small and that arbitrage opportunities are

asymmetric. Spreads of traded opportunities n ∈ N for which unϵn−(f ′)−1(Π)
maxn′∈N [un′ϵn′−(f ′)−1(Π)]

or ηn
maxn′∈N ηn′

are sufficiently small have higher variance under integration than under segmentation.

Integration can raise the variance of spreads of opportunities with small endowment shocks

(small un) or low volatility (small ϵn or ηn). For example, because arbitrageurs hold small positions

in opportunities with small un, payoff shocks ηn,m,t have small effects on their wealth and on spreads,

resulting in low variances under segmentation. Instead, under integration, these opportunities are

exposed to shocks coming from other markets, so variances can increase.

IV. Conclusion

We develop a model in which arbitrageurs’ limited access to capital affects the functioning

of financial markets. Arbitrageurs in our model are uniquely able to exploit price discrepancies

between assets traded in segmented markets, but face financial constraints limiting their ability to

do so. We compute the equilibrium in closed form when arbitrage is riskless and when arbitrage risk

is small. In the latter case, arbitrage capital follows AR(1) dynamics in a stochastic steady state. We

determine how arbitrageurs allocate their limited capital across mispriced assets in steady state, and

how this allocation changes following shocks to capital. We also determine which arbitrage trades

offer the highest expected returns and how these returns relate to the trades’ sensitivity to arbitrage

capital and other characteristics. We finally examine how the diversification of arbitrageurs across

markets affects the risk they bear and the volatility of spreads.

When arbitrage risk is small, its first-order effect on equilibrium variables is through the finan-

cial constraint rather than through risk aversion. Hence, our results on how characteristics such
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as volatility, horizon, and investor demand affect expected returns and arbitrageur positions are

driven by the characteristics’ effects on the financial constraint. For general arbitrage risk, risk

aversion would come into play, and its effects might differ from those of the financial constraint.

Determining the combined effects of risk aversion and the financial constraint on the cross-section

of expected returns and arbitrageur positions is a natural extension of our research. This would

require computing the equilibrium for general arbitrage risk. Analysis of this equilibrium would

shed light on the role of arbitrage capital as a risk factor, and on how the significance of this factor

is affected by the capitalization and diversification of arbitrageurs.
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Internet Appendix to

“The Dynamics of Financially Constrained Arbitrage”

DENIS GROMB and DIMITRI VAYANOS ∗

Section I provides the proofs of the results stated in the main text. Section II analyzes equilibrium

under general collateralized contracts.

I. Proofs

Proof of Proposition 1: The proposition follows from Proposition 7 by setting ηi = 0 and noting

that arbitrageur wealth and spreads are deterministic.

Proof of Lemma 1: To prove the properties in the lemma, we set α̂ ≡ αA
α+A and ϵ̂i,t ≡ ϵi,t

ϵi
. Since

the distribution of ϵ̂i,t is independent of i and t, so is the function f(y). Since ϵ̂i,t has mean zero,

Jensen’s inequality implies that

E [exp (−α̂yϵ̂i,t)] ≥ exp(0) = 1,

and hence f(y) ≥ 0. Since ϵ̂i,t is distributed symmetrically around zero,

E [exp (−α̂yϵ̂i,t)] = E [exp (α̂yϵ̂i,t)] ,

and hence f(−y) = f(y). Differentiating f(−y) = f(y) we find f ′(−y) = −f ′(y), and setting y = 0

in f ′(−y) = −f ′(y) we find f ′(0) = 0. To show that f(y) is strictly convex, we show f ′′(y) > 0.

Since

f(y) =
log {E [exp (−α̂yϵ̂i,t)]}

α̂
,

differentiating once we find

f ′(y) = −E [ϵ̂i,t exp (−α̂yϵ̂i,t)]
E [exp (−α̂yϵ̂i,t)]

, (IA1)

∗Citation format: Gromb, Denis, and Dimitri Vayanos, Internet Appendix to “The Dynamics of Financially

Constrained Arbitrage,” Journal of Finance [DOI STRING]. Please note: Wiley-Blackwell is not responsible for the

content or functionality of any supporting information supplied by the authors. Any queries (other than missing

material) should be directed to the authors of the article.
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and differentiating twice we find

f ′′(y) = α̂
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)]− {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]}2

{E [exp (−α̂yϵ̂i,t)]}2
. (IA2)

The numerator in (IA2) is positive because of the Cauchy-Schwarz inequality

[E(XY )]2 ≤ E(X2)E(Y 2),

which is strict when the random variables X and Y are not proportional. We can use the Cauchy-

Schwarz inequality by setting

X ≡ ϵ̂i,t exp

(
− α̂yϵ̂i,t

2

)
,

Y ≡ exp

(
− α̂yϵ̂i,t

2

)
,

and noting that X and Y are not proportional because ϵ̂i,t is stochastic. Therefore, f
′′(y) > 0. To

show that limy→∞ f ′(y) = 1, we show that |f ′(y)−1| can be made smaller than 2η for any arbitrary

η > 0 when y goes to infinity. Using (IA1) and the fact that ϵ̂i,t is distributed symmetrically around

zero with the supremum of its support being one, we find

|f ′(y)− 1| = E [(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)]
E [exp (−α̂yϵ̂i,t)]

=
E
[
(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)1{ϵ̂i,t∈[−1,−1+η]}

]
E [exp (−α̂yϵ̂i,t)]

+
E
[
(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)1{ϵ̂i,t∈(−1+η,1]}

]
E [exp (−α̂yϵ̂i,t)]

.

(IA3)

Since

(1 + ϵ̂i,t)1{ϵ̂i,t∈[−1,−1+η]} ≤ η,

the first term in the right-hand side of (IA3) is smaller than η. The second term can also be made

smaller than η for large y. Indeed, multiplying the numerator and denominator by exp (−α̂y(1− η)),
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we can write this term as

E
[
(1 + ϵ̂i,t) exp (−α̂y(ϵ̂i,t + 1− η))1{ϵ̂i,t∈(−1+η,1]}

]
E [exp (−α̂y(ϵ̂i,t + 1− η))]

. (IA4)

Since ϵ̂i,t in the numerator of (IA4) exceeds −1 + η, the numerator remains bounded when y goes

to infinity. The denominator of (IA4) converges to infinity, however, because ϵi,t takes values in

[−1,−1 + η) with positive probability.

Proof of Proposition 2: The results on the value function and optimal consumption follow from

Proposition 8 by noting that arbitrageur wealth is deterministic. Optimal positions are derived by

maximizing (IA26) below with respect to {xi,t}i∈At subject to the financial constraint (21). Since

ηi = 0 and arbitrageur wealth and spreads are deterministic, we can write (IA26) as

max
{xi,t}i∈At

{
β(B + 1) log

(
(1 + r)Wt + 2

∑
i∈At

xi,tΦi,t

)
+ βB log(B)− β(B + 1) log(B + 1) + βGt+1

}
(IA5)

and (21) as (28). When Φi,t = 0 for all i ∈ At, any combination of positions in the active

opportunities yields the same value for (IA5). When instead Φj,t > 0 for some j ∈ At, (28)

binds for the optimal positions because otherwise the arbitrageur could raise (IA5) by raising xj,t.

Moreover, xi,t ≥ 0 for all i ∈ At: if xj,t < 0 for some j ∈ At, then setting xj,t to zero would relax

(28) but not lower (IA5). Since xi,t ≥ 0 for all i ∈ At, (28) becomes (32). The maximization in

(IA5) subject to (32) and xi,t ≥ 0 for all i ∈ At implies that xi,t > 0 only if i ∈ At maximizes

return per unit of collateral.

Proof of Proposition 3: Proposition 2 implies that if arbitrageurs trade opportunity i, then
Φi,t

ϵi
is

equal to a value Πt that is independent of i, whereas if they do not trade the opportunity then

Φi,t

ϵi
≤ Πt. In the former case, xi,t > 0 and (10) imply that yi,t < 0. Substituting into (25) and

using the convexity of f(y), we find that f ′(uiϵi) >
Φi,t

ϵi
= Πt. In the latter case, xi,t = 0 and (10)

imply that yi,t = 0. Substituting into (25), we find that f ′(uiϵi) =
Φi,t

ϵi
≤ Πt. Since f ′(y) < 1 for

all y, Πt < 1.

Proof of Proposition 4: Proposition 3 shows that for all i ∈ At, either xi,t > 0 and
Φi,t

ϵi
= Πt, or
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xi,t = 0. We can therefore write (31) and (32) as

Wt+1 = β

[
(1 + r)Wt + 2Πt

∑
i∈At

xi,tϵi

]
, (IA6)

Wt ≥ 2(1−Πt)
∑
i∈At

xi,tϵi
1 + r

, (IA7)

respectively. If Πt = 0, then (IA6) becomes (33). If instead Πt > 0, then (IA7) holds as an equality,

and substituting it into (IA6) we again find (33).

If Πt = 0, then arbitrageurs earn the riskless rate r and Proposition 3 implies that all active

opportunities are traded. To determine a lower bound on Wt, we use market clearing and the

financial constraint. Equation (25) implies that f ′[(yi,t+ui)ϵi] =
Φi,t

ϵi
= 0 for all i ∈ At. Since f(y)

is symmetric around the vertical axis (Lemma 1), f ′(0) = 0. Strict convexity of f(y) implies that

f ′(y) is invertible and hence yi,t+ui = 0. Combining this result with (10), we find that xi,t = µiui.

Substituting xi,t = µiui into (IA7) and using Πt = 0, we find that Wt ≥Wc,t.

If Πt > 0, then arbitrageurs earn the riskless return 1+r
1−Πt

− 1 > r and Proposition 2 implies

that the financial constraint binds. To determine how Πt relates to Wt, we use market clearing and

the financial constraint. Equation (25) and Proposition 3 imply that f ′[(yi,t + ui)ϵi] =
Φi,t

ϵi
= Πt

for all i ∈ Tt. Inverting this equation yields

(yi,t + ui)ϵi = (f ′)−1(Πt)

⇒ xi,t = µiui − µi
(f ′)−1(Πt)

ϵi
, (IA8)

where the second step follows from (10). Substituting (IA8) into (IA7), and recalling that xi,t = 0

for all i ∈ At/Tt, we find (34). Moreover, (IA7) implies that Wt < Wc,t because Πt ∈ (0, 1),

0 < xi,t < µiui,t for all i ∈ Tt (from (IA8)), and xi,t = 0 for all i ∈ At/Tt.

The left-hand side of (34) decreases in Πt because f
′′(y) > 0 implies that f ′(y) is increasing.

Moreover, it is equal to zero for Πt = maxi∈At f
′(uiϵi) and to Wc,t for Πt = 0. Therefore, (34) has

a unique positive solution for Wt ∈ (0,Wc,t), which decreases in Wt.
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To show convexity of Πt, we differentiate (34) implicitly with respect to Wt. We find

dΠt

dWt
= − 1

2
1+r

∑
i∈Tt µi

[
uiϵi − (f ′)−1(Πt) +

1−Πt
f ′′[(f ′)−1(Πt)]

] . (IA9)

The derivative dΠt
dWt

is continuous, except at Wt =Wc,t and at the points where the set Tt changes.

For those values of Wt, the left derivative is smaller than the right derivative. For Wt = Wc,t,

this is because the left derivative is negative and the right derivative is zero. For a point where Tt

changes, this is because the denominator for the right derivative minus that for the left derivative

is

2

1 + r

∑
i∈DT t

µi

[
uiϵi − (f ′)−1(Πt) +

1−Πt

f ′′ [(f ′)−1(Πt)]

]
=

2

1 + r

∑
i∈DT t

µi

[
1−Πt

f ′′ [(f ′)−1(Πt)]

]
> 0,

where DT t denotes the additional opportunities that become traded to the right of that point.

Therefore, Πt is convex if the function

uiϵi − (f ′)−1(Πt) +
1−Πt

f ′′ [(f ′)−1(Πt)]

is increasing in Wt or, equivalently, is decreasing in Πt. This is also equivalent to the function

G(y) ≡ −y + 1− f ′(y)

f ′′(y)

being decreasing in y because f ′(y) is increasing. The derivative of G(y) with respect to y has the

same sign as the function

G1(y) ≡ −2f ′′(y)2 − f ′′′(y)
(
1− f ′(y)

)
.
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Differentiating (IA2), we find

f ′′′(y) = α̂2

2E [ϵ̂i,t exp (−α̂yϵ̂i,t)]
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)]− {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]}2

{E [exp (−α̂yϵ̂i,t)]}3

+
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [ϵ̂i,t exp (−α̂yϵ̂i,t)]− E

[
ϵ̂3i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)]

{E [exp (−α̂yϵ̂i,t)]}2

 .
(IA10)

Using (IA1), (IA2) and (IA10), we find

G1(y) = −α̂2

[
2
(
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)] + E [ϵ̂i,t exp (−α̂yϵ̂i,t)]

)

×
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)]− {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]}2

{E [exp (−α̂yϵ̂i,t)]}4

+ E [(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)]

×
E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
E [ϵ̂i,t exp (−α̂yϵ̂i,t)]− E

[
ϵ̂3i,t exp (−α̂yϵ̂i,t)

]
E [exp (−α̂yϵ̂i,t)]

{E [exp (−α̂yϵ̂i,t)]}3

 .
When the distribution of ϵi,t is binomial, ϵ̂i,t has also a binomial distribution that takes the values

1 and -1 with equal probabilities. Therefore,

E [exp (−α̂yϵ̂i,t)] = E
[
ϵ̂2i,t exp (−α̂yϵ̂i,t)

]
= cosh(α̂y),

E [ϵ̂i,t exp (−α̂yϵ̂i,t)] = E
[
ϵ̂3i,t exp (−α̂yϵ̂i,t)

]
= − sinh(α̂y),

and the function G1(y) becomes

G1(y) = −α̂2 2
(
cosh2(α̂y)− sinh(α̂y)

)
cosh4(α̂y)

.

Since cosh(x) ≥ 1 and cosh(x) > sinh(x), G1(y) is negative and hence G(y) is decreasing.

Proof of Proposition 5: Suppose that in equilibrium (i) expected excess returns Φi,t for assets i ∈ At
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are given by Propositions 3 and 4, (ii) price discounts ϕi,t for assets i ∈ At are given by solving

(13) backwards with the terminal condition ϕi,hi
= 0,

ϕi,t =

hi−t−1∑
s=0

Φi,t+s

(1 + r)s+1
, (IA11)

(iii) expected excess returns and price discounts for assets −i, i ∈ At, are opposites of those for

assets i, and (iv) expected excess returns and price discounts for assets that are not part of active

opportunities are zero. The first-order conditions of investors and arbitrageurs are then as in Section

II.A of the main article. The analysis in that section and in Section II.B of the main article ensures

that the markets for all assets clear and that the quantities (Wt, ϕi,t, yi,t, xi,t) have the properties

in the proposition.

Proof of Proposition 6: The dynamics of Wt in the three cases of the proposition are as follows:

• If β(1 + r) > 1, then (33) implies that Wt increases to W = ∞.

• If β(1+ r) < 1−Π, then (33) implies that Wt decreases to W = 0 because Π is the maximum

value of Πt.

• If 1−Π < β(1 + r) < 1, then (33) implies that Wt remains constant when Πt is equal to the

steady-state value Π given by (36). The steady-state value W of Wt is given by (35) because

of (34). When Wt < W , (33) implies that Wt+1 > Wt because Πt > Π. Conversely, when

Wt > W , (33) implies that Wt+1 < Wt because Πt < Π. To show that convergence of Wt to

W is monotone, we need to show that Wt+1 < W in the former case and Wt+1 > W in the

latter case. Since (33) implies that

Wt+1 −W = β(1 + r)

(
Wt

1−Πt
− W

1−Π

)
,

convergence is monotone if the function F (Wt) =
Wt

1−Πt
is increasing inWt, where Πt is defined

implicitly as a function of Wt from Proposition 4. When Wt > Wc, F (Wt) is increasing in Wt
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because Πt = 0. When Wt < Wc, (34) implies that

F (Wt) =
2

1 + r

∑
i∈Tt

µi
[
uiϵi − (f ′)−1(Πt)

]
.

Since f(y) is strictly convex and Πt decreases in Wt, F (Wt) is increasing in Wt. Since Π > 0,

Proposition 4 implies that W ∈ (0,Wc).

The dynamics of Πt in each of the three cases follow from the dynamics of Wt and from the

dependence of Πt on Wt derived in Proposition 4.

Proof of Proposition 7: The investor’s Bellman equation is

Vi,t(wi,t) = max
ci,t+1,yi,t

Et {−γ exp(−αci,t+1) + γVi,t+1(wi,t+1)} . (IA12)

Substituting (14) and (15) into (IA12), we find

− exp (−Awi,t − Fi,t) = max
ci,t+1,yi,t

Et {−γ exp(−αci,t+1)

−γ exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1]− Fi,t+1)} ,

(IA13)

where

Γi,t+1(yi,t) ≡ yi,tΦi,t + (yi,t + ui,t)ηi,t+1 + yi,t [Et(ϕi,t+1)− ϕi,t+1] .

The first-order condition with respect to consumption is

α exp(−αci,t+1) = A exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1]− Fi,t+1)

(IA14)

⇒ ci,t+1 =
A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1] + Fi,t+1 + log

(
α
A

)
α+A

. (IA15)
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Hence, we can write the right-hand side of (IA13) as

max
yi,t

Et

{
−γ(α+A)

α
exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1]− Fi,t+1)

}

= max
yi,t

Et

{
−γ(α+A)

α
exp

(
−α {A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1] + Fi,t+1}+A log

(
α
A

)
α+A

)}
(IA16)

= max
yi,t

Et

{
−γ(α+A)

α
exp

(
−α {A [(1 + r)wi,t + Γi,t+1(yi,t)− f [(yi,t + ui,t)ϵi]] + Fi,t+1}+A log

(
α
A

)
α+A

)}
,

(IA17)

where the first step follows from (IA14), the second from (IA15), and the third from the indepen-

dence of ϵi,t+1 and Γi,t+1(yi,t) and from (26) by setting y ≡ (yi,t + ui,t)ϵi. Using the definition of

Γi,t+1(yi,t), we find that the first-order condition with respect to yi,t is

Et

{
exp

(
−α {A [(1 + r)wi,t + Γi,t+1(yi,t)− f [(yi,t + ui,t)ϵi]] + Fi,t+1}+A log

(
α
A

)
α+A

)

×
{
Φi,t − ϵif

′[(yi,t + ui,t)ϵi] + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1

}}
= 0. (IA18)

Rearranging terms, we find (37).

Substituting (IA17) into (IA13), we find that the Bellman equation holds for all values of the

single state variable wi,t if

A =
αA(1 + r)

α+A
, (IA19)

Fi,t = − log Et

{
γ(α+A)

α
exp

(
−α {A [Γi,t+1(yi,t)− f [(yi,t + ui,t)ϵi]] + Fi,t+1}+A log

(
α
A

)
α+A

)}
,

(IA20)

where yi,t denotes the optimal position. Equation (IA19) implies that A = rα. Substituting into
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(IA20), we find

Fi,t = − log Et

{
γ(1 + r) exp

(
−rα [Γi,t+1(yi,t)− f [(yi,t + ui,t)ϵi]]− Fi,t+1 − r log(r)

1 + r

)}
. (IA21)

Equation (IA21) determines Fi,t in terms of yi,t and Fi,t+1.

Proof of Proposition 8: The arbitrageur’s Bellman equation is

Vt(Wt) = max
ct+1,{xi,t}i∈At

Et {β log(ci,t+1) + βVt+1(Wt+1)} . (IA22)

Substituting (20) and (22) into (IA22), we find

B log(Wt)+Gt = max
ct+1,{xi,t}i∈At

Et

{
β log(ci,t+1) + βB log

(
(1 + r)Wt + 2

∑
i∈At

Γi,t+1(xi,t)− ct+1

)
+ βGt+1

}
,

(IA23)

where

Γi,t+1(xi,t) ≡ xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1] .

The first-order condition with respect to consumption is

1

ci,t+1
− B

(1 + r)Wt + 2
∑

i∈At
Γi,t+1(xi,t)− ct+1

= 0

⇒ ci,t+1 =
(1 + r)Wt + 2

∑
i∈At

Γi,t+1(xi,t)− ct+1

B
=
Wt+1

B
(IA24)

⇒ ci,t+1 =
(1 + r)Wt + 2

∑
i∈At

Γi,t+1(xi,t)

B + 1
, (IA25)

where the second equality in (IA24) follows from (20). Using (IA25), we can write the right-hand

side of (IA23) as

max
{xi,t}i∈At

Et

{
β(B + 1) log

(
(1 + r)Wt + 2

∑
i∈At

Γi,t+1(xi,t)

)
+ βB log(B)− β(B + 1) log(B + 1) + βGt+1

}
.

(IA26)

The maximization is subject to the financial constraint (21).
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The optimal values of {xi,t}i∈At are linear in Wt, as can be seen by setting xi,t ≡ Wtωi,t and

noting that the maximization objective and constraint can be written solely in terms of {ωi,t}i∈At .

Using this observation and substituting (IA26) into (IA23), we find that the Bellman equation

holds for all values of the single state variable Wt if

B = β(B + 1), (IA27)

Gt = Et

{
β(B + 1) log

(
(1 + r) + 2

∑
i∈At

Γi,t+1(ωi,t)

)
+ βB log(B)− β(B + 1) log(B + 1) + βGt+1

}
,

(IA28)

where {ωi,t}i∈At denote the optimal positions as fractions of wealth. Equation (IA19) implies that

B = β
1−β . Substituting into (IA24), we find (29). Equation (IA28) determines Gt in terms of

{ωi,t}i∈At and Gt+1.

To characterize the optimal positions {xi,t}i∈At , which are assumed to be nonnegative, we first

compute the derivative of (IA26) with respect to xi,t. This derivative is

2β(B + 1)Et

{
Φi,t + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1

(1 + r)Wt + 2
∑

j∈At
Γj,t+1(xj,t)

}
= 2β(B + 1)Et [Mt] Φ̂i,t, (IA29)

where

Φ̂i,t ≡ Φi,t + Et

[
Mt

Et[Mt]
(ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1)

]
.

We next show that under the optimal positions, either (i) Φ̂i,t = 0 for all i ∈ At and (21) is slack,

or (ii) Φ̂j,t > 0 for some j ∈ At and (21) binds. If Φ̂j,t > 0 for some j ∈ At, then (21) binds because

otherwise the arbitrageur could raise (IA26) by raising xj,t. If instead Φ̂i,t ≤ 0 for all i ∈ At, then

these inequalities must hold as equalities, and hence (21) is slack (because Φ̂i,t = 0 for all i ∈ At is

the first-order condition from the maximization in (IA26) when the constraint (21) is not imposed).

To show that the inequalities must hold as equalities, we proceed by contradiction, assuming that

Φ̂j,t < 0 for some j ∈ At and distinguishing three cases. If xj,t > 0, then lowering xj,t would raise

(IA26) and relax (21). If xj,t = 0 and xj′,t > 0 for some j′ ∈ At, j
′ ̸= j, then lowering xj′,t would

relax (21) but not lower (IA26) because Φ̂j′,t ≤ 0. With (21) relaxed, the arbitrageur could raise
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(IA26) by lowering xj,t (to a negative value). If, finally, xi,t = 0 for all i ∈ At, then (21) is slack,

and hence lowering xj,t would raise (IA26).

When optimal positions {xi,t}i∈At are nonnegative, the maximization in (IA26) can be carried

out subject to (39) and xi,t ≥ 0, rather than subject to (21). This maximization implies that

xi,t > 0 only if i ∈ At maximizes risk-adjusted return per unit of collateral. (This is obvious in the

case in which Φ̂i,t = 0 for all i ∈ At. In the case in which Φ̂j,t > 0 for some j ∈ At, it can be shown

by lowering xi,t > 0 for an i ∈ At that does not maximize risk-adjusted return per unit of collateral

and raising xi,t ≥ 0 for an i that does, in a way that keeps (39) binding.)

When mini∈At Φi,t exceeds a positive bound and maxi∈At{ηi, ϕi,t+1−Et(ϕi,t+1)} is small, Φ̂i,t > 0

for all i ∈ At and hence (21) binds. Moreover, short positions are not optimal: if xj,t < 0 for some

j ∈ At, then setting xj,t to zero would raise (IA26) and relax (21).

Proof of Corollary 1: When optimal positions {xi,t}i∈At are nonnegative, the maximization in

(IA26) can be carried out subject to (39) and xi,t ≥ 0. Consider this maximization when (39) is

not imposed. Because of logarithmic utility, the solution satisfies

(1 + r)Wt + 2
∑
i∈At

Γi,t+1(xi,t) > 0

⇔ (1 + r)Wt + 2
∑
i∈At

xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1)− ϕi,t+1] > 0 (IA30)

for all realizations of uncertainty in period t+1, including when ηi,t+1 = −ηi for all i ∈ At. Under

the latter realization, and because {xi,t}i∈At are nonnegative, the spreads ϕi,t+1 for all i ∈ At reach

their maximum values ϕi,t+1. Since a long position in asset i ∈ At suffers its maximum loss when

ηi,t+1 = −ηi and ϕi,t+1 = ϕi,t+1, (IA30) holds for all realizations of uncertainty in period t+ 1 if

(1 + r)Wt + 2
∑
i∈At

xi,t
[
Φi,t − ηi + Et(ϕi,t+1)− ϕi,t+1

]
> 0. (IA31)

Equation (IA31) implies that when ϵi = 0 for all i ∈ At, (39) holds as a strict inequality and hence

is slack.

We next state and prove Proposition IA1, which characterizes the equilibrium for small arbitrage
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risk. We denote by Π′ the derivative of Πt defined in (34) with respect to Wt at the steady-state

value Wt =W .

PROPOSITION IA1: Suppose that η is small. The dynamics of arbitrageur wealth take the form

(45), with

ρ = 1 +
WΠ′

1−Π
, (IA32)

ν = 2β
∑

(n,m)∈T

(
x0nΦ

1
n,m + x1n,mΦ0

n

)
, (IA33)

and σn given by (46). Expected excess returns and positions of arbitrageurs and outside investors

take the form (42) to (44), with (Φ0
n,t, x

0
n,t, y

0
n,t) as in Section II of the main article, and

Φ1
n,m,t =


Πt

(
λn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tλn′

)
+Π1

t ϵn, if (n,m) ∈ T

0, otherwise

(IA34)

x1n,m,t = −µny1n,m,t, (IA35)

y1n,m,t =
Φ1
n,m,t

ϵ2nf
′′
[(
y0n,t + un

)
ϵn
] , (IA36)

Π1
t ≡

(1−Πt)
∑

(n,m)∈T

[
x0n,t −

µnΠt

ϵnf ′′[(y0n,t+un)ϵn]

](
λn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tλn′

)
∑

n∈N

[
x0n,tϵn + (1−Πt)

µnΠt

f ′′[(y0n,t+un)ϵn]

] ,

(IA37)

σn,t ≡
2βx0n,t

1 + 2β
∑

(n′,m)∈T x
0
n′,t

dϕ0
n′,m−1,t+1

dWt+1

. (IA38)

The derivative
dϕ0

n,m−1,t+1

dWt+1
in (IA34), (IA37), and (IA38) is evaluated for Wt+1 implied by the

dynamics (33) under riskless arbitrage.

Proof: The dynamics (45) of arbitrageur wealth can be derived from (47). Since the spreads

{ϕn,m−1,t+1}(n,m)∈T depend on Wt+1, (47) determines Wt+1 implicitly as a function F of Wt, of

13



the shocks {ηn,m−1,t+1}(n,m)∈T , and of η. For a fixed Wt and small η, the Taylor expansion of F is

Wt+1 = F +
∑

(n,m)∈T

∂F

∂ηn,m−1,t+1
ηn,m−1,t+1 +

∂F

∂η
η + o (η) , (IA39)

where F and its derivatives are evaluated at (Wt, 0, 0). Using (IA39), we find

Et(ϕn,m−1,t+1)− ϕn,m−1,t+1 = Et(ϕ
0
n,m−1,t+1)− ϕ0n,m−1,t+1 + o (η)

= Et

ϕ0n,m−1,t+1(F ) +
dϕ0n,m−1,t+1

dWt+1

 ∑
(n′,m′)∈T

∂F

∂ηn′,m′−1,t+1
ηn′,m′−1,t+1 +

∂F

∂η
η



− ϕ0n,m−1,t+1(F )−
dϕ0n,m−1,t+1

dWt+1

 ∑
(n′,m′)∈T

∂F

∂ηn′,m′−1,t+1
ηn′,m′−1,t+1 +

∂F

∂η
η

+ o (η)

= −
dϕ0n,m−1,t+1

dWt+1

∑
(n′,m′)∈T

∂F

∂ηn′,m′−1,t+1
ηn′,m′−1,t+1 + o (η) , (IA40)

where the derivative
dϕ0

n,m−1,t+1

dWt+1
is evaluated for Wt+1 = F (Wt, 0, 0). Substituting (41) to (43),

(IA39), and (IA40) into (47), we find

F +
∑

(n,m)∈T

∂F

∂ηn,m−1,t+1
ηn,m−1,t+1 +

∂F

∂η
η = β

(1 + r)Wt + 2
∑

(n,m)∈T

(x0n,t + x1n,m,tη)

×

Φ0
n,t +Φ1

n,m,tη + ηn,m−1,t+1 −
dϕ0n,m−1,t+1

dWt+1

∑
(n′,m′)∈T

∂F

∂ηn′,m′−1,t+1
ηn′,m′−1,t+1

+ o (η) .

(IA41)

Identifying highest-order terms in ηn,m−1,t+1 in (IA41), we find

∂F

∂ηn,m−1,t+1
=

2βx0n,t

1 + 2β
∑

(n′,m′)∈T x
0
n′,t

dϕ0
n′,m′−1,t+1

dWt+1

= σn,t, (IA42)
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and identifying highest-order terms in η, we find

∂F

∂η
= 2β

∑
(n,m)∈T

(
x0n,tΦ

1
n,m,t + x1n,m,tΦ

0
n,t

)
. (IA43)

When Wt lies in the support of the stationary distribution, its maximum distance from the

steady-state value W is of order η since this is the maximum size of the shocks. Hence, we can

write (IA39) as

Wt+1 =W +
∂F

∂Wt
(Wt −W ) +

∑
(n,m)∈T

∂F

∂ηn,m−1,t+1
ηn,m−1,t+1 +

∂F

∂η
η + o (η) , (IA44)

where F and its derivatives are now evaluated at (W, 0, 0). Since F (Wt, 0, 0) = β 1+r
1−Πt

Wt,

∂F

∂Wt
= β

1 + r

1−Π
+ β

(1 + r)Π′

(1−Π)2
W = 1 +

WΠ′

1−Π
,

where the second step follows from (36). Since, in addition, (IA42) and (IA43) imply

∂F

∂ηn,m−1,t+1
= σn,

∂F

∂η
= ν,

respectively, when partial derivatives are evaluated at (W, 0, 0), (IA44) becomes (45). The coefficient

ρ is less than one because Πt decreases in Wt. It is greater than zero because the function Wt
1−Πt

increases in Wt, as shown in the proof of Proposition 6.

We next derive the first-order terms in expected excess returns and positions. Substituting (42)

and (44) into (37), and noting that the third term in the left-hand side is of second order in η, we

find

Φ0
n,t +Φ1

n,m,tη − ϵif
′ [(y0n,t + ui,t)ϵi

]
− ϵ2i f

′ [(y0n,t + ui,t)ϵi
]
y1n,m,tη + o (η) = 0. (IA45)

Identifying terms in η, we find (IA36). Substituting (43) and (44) into (10) and identifying terms
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in η, we find (IA35). Substituting (42), (43), (IA40), and (IA42) into (40), and noting that the

second term in the numerator is of second order in η, we find that

Φ0
n,t +Φ1

n,m,tη

ϵn + ηn − dϕ0
n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tηn′

is identical for all (n,m) ∈ T to a first order in η. Since
Φ0

n,t

ϵn
= Πt for all (n,m) ∈ T ,

Φ0
n,t +Φ1

n,m,tη

ϵn + ηn − dϕ0
n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tηn′

−Πt

=

Φ1
n,m,tη −Πt

(
ηn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tηn′

)
ϵn + ηn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tηn′

≡ Π1
t η (IA46)

is identical for all (n,m) ∈ T to a first order in η. Multiplying by the denominator in (IA46), we

find

Φ1
n,m,tη = Πt

(
ηn −

dϕ0n,m−1,t+1

dWt+1

∑
n′∈N

Mn′σn′,tηn′

)
+Π1

t ϵnη + o (η) (IA47)

for all (n,m) ∈ T . Since ηn = λnη, (IA47) implies (IA34) for (n,m) ∈ T . For (n,m) /∈ T ,

xn,m,t = 0 and hence x1n,m,t = 0. Equation (IA35) then implies y1n,m,t = 0, and (IA36) implies

Φ1
n,m,t = 0.

To compute Π1
t , we use the financial constraint (39), which binds. Substituting (42), (43),

(IA40), and (IA42) into (39), we find

Wt = 2
∑

(n,m)∈T

(
x0n,t + x1n,m,tη

)(
ϵn + ηn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tηn′ − Φ0

n,t − Φ1
n,m,tη

)
1 + r

+o (η) .

(IA48)
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Identifying first-order terms in η, we find

∑
(n,m)∈T

[
x0n,t

(
ηn −

dϕ0n,m−1,t+1

dWt+1

∑
n′∈N

Mn′σn′,tηn′ − Φ1
n,m,tη

)
+ x1n,m,tη

(
ϵn − Φ0

n,t

)]
= 0

⇔ (1−Πt)
∑

(n,m)∈T

[
x0n,t

(
λn −

dϕ0n,m−1,t+1

dWt+1

∑
n′∈N

Mn′σn′,tλn′

)
+ x1n,m,tϵn

]
−Π1

t

∑
(n,m)∈T

x0n,tϵn = 0,

(IA49)

where the second step follows from (IA47) and
Φ0

n,t

ϵn
= Πt for all (n,m) ∈ T . Noting from (IA34)

to (IA36) that

x1n,m,t = −µny1n,m,t

= −
µnΦ

1
n,m,t

ϵ2nf
′′
[(
y0n,t + un

)
ϵn
]

= −
µn

[
Πt

(
λn − dϕ0

n,m−1,t+1

dWt+1

∑
n′∈N Mn′σn′,tλn′

)
+Π1

t ϵn

]
ϵ2nf

′′
[(
y0n,t + un

)
ϵn
] ,

and substituting into (IA49), we find a linear equation in Π1
t , whose solution is (IA37).

Proof of Proposition 9: For each characteristic, we compare two arbitrage opportunities that dif-

fer only in that characteristic, and we assume that arbitrage risk is small. We can perform the

comparison by examining how spreads, expected excess returns, and positions corresponding to one

arbitrage opportunity (n,m) depend on that characteristic, holding aggregate variables constant. If

zeroth-order terms in spreads, expected excess returns, and positions depend on the characteristic,

then we use those to determine the characteristic’s effect; otherwise, we use first- or second-order

terms.

The comparative statics with respect to ϵn follow from the zeroth-order terms. Proposition 3

implies that Φ0
n,t increases in ϵn: it does so both in the region where the opportunity is not traded

because ϵn is below a threshold and in the region where the opportunity is traded because ϵn is

above the threshold. Since Φ0
n,t increases in ϵn, so does ϕ0n,m,t because of (48). The arbitrageur

position xn,m,t increases in ϵn because it is zero in the region where the opportunity is not traded
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and because (IA8) implies that x0n,t increases in ϵn in the region where the opportunity is traded.

The comparative statics with respect to ηn follow from the first-order terms, or from the second-

order terms, or are trivial. Suppose that the opportunity is traded. Equation (IA34) implies that

Φ1
n,m,t increases in λn and hence in ηn. Equation (48) then implies that ϕ1n,m,t increases in ηn,

and (IA35) and (IA36) imply that x1n,m,t decreases in ηn. Suppose next that the opportunity is

not traded. Equation (IA34) implies that Φ1
n,m,t = 0, so we need to consider the second-order

term, which we can derive from the first-order condition of outside investors. Since the opportunity

is not traded, the presence of arbitrageurs is immaterial, so spreads and outside investors’ value

function are independent of arbitrageur wealth. Using these observations, the independence of the

payoff shocks (ϵn,m,t, ηn,m,t), and the same arguments as in the proof of Proposition 7, we find the

first-order condition

Φn,m,t − ϵnf
′ (unϵn)− ηnf

′ (unηn) = 0. (IA50)

Equation (IA50) implies that Φn,m,t increases in ηn. Equation (48) then implies that ϕn,m,t also

increases in ηn. The arbitrageur position xn,m,t is zero and hence decreases weakly in ηn.

The comparative statics of spreads with respect to m follow from the zeroth-order term. Those

of expected excess returns and positions follow from the first-order terms or are trivial. Identifying

zeroth-order terms in (48) and noting that at the zeroth order the dynamics ofWt are deterministic,

we find

ϕ0n,m,t =
m−1∑
s=0

Φ0
n,t+s

(1 + r)s+1
(IA51)

⇒
dϕ0n,m,t

dWt
=

m−1∑
s=0

1

(1 + r)s+1

dΦ0
n,t+s

dWt

⇒
dϕ0n,m,t

dWt
=

m−1∑
s=0

1

(1 + r)s+1

dΦ0
n,t+s

dWt+s

dWt+s

dWt
. (IA52)
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Subtracting (IA51) and (IA52) from their counterparts for m+ 1, we find

ϕ0n,m+1,t − ϕ0n,m,t =
Φ0
n,t+m

(1 + r)m+1
, (IA53)

dϕ0n,m+1,t

dWt
−
dϕ0n,m,t

dWt
=

1

(1 + r)m+1

dΦ0
n,t+m

dWt+m

dWt+m

dWt
, (IA54)

respectively. Since Φ0
n,t+m > 0, (IA53) implies that ϕ0n,m,t increases in m. Since the function

Wt
1−Πt

is increasing in Wt (as shown in the proof of Proposition 6), Proposition 4 implies that Wt+s

increases in Wt for s ≥ 1. Since, in addition, Πt decreases in Wt (Proposition 4), Proposition

3 implies that Φ0
n,t for a traded opportunity decreases in Wt. Hence, (IA52) implies that ϕ0n,m,t

decreases in Wt. Moreover, (IA54) implies that
dϕ0

n,m,t

dWt
decreases in m, becoming more negative for

larger m. Equation (IA34) then implies that Φ1
n,m,t increases in m, and (IA35) and (IA36) imply

that x1n,m,t decreases in m. Equation (IA50) implies that Φn,m,t is independent ofm for a nontraded

opportunity and hence increases weakly in m. The arbitrageur position xn,m,t is zero and hence

decreases weakly in m.

The comparative statics with respect to un follow from the zeroth-order terms, or cannot be

determined from the zeroth- and first-order terms, or are trivial. Proposition 3 implies that Φ0
n,t

increases in un in the region where the opportunity is not traded because un is below a threshold.

Equation (IA34) then implies that ϕ0n,m,t increases in un. In the region where the opportunity is

traded because un is above the threshold, both zeroth- and first-order terms in expected excess

returns are independent of un. The arbitrageur position xn,m,t increases in un because it is zero in

the region where the opportunity is not traded and because (IA8) implies that x0n,t increases in un

in the region where the opportunity is traded.

The comparative statics with respect to µn follow from the zeroth-order terms or are trivial.

For a traded opportunity, (IA8) implies that x0n,t increases in µn. For a nontraded opportunity

xn,m,t is zero and hence increases weakly in µn.

Proof of Proposition 10: The proposition follows by combining the AR(1) dynamics (45) of ar-

bitrageur wealth Wt with the dependence of spreads, expected excess returns, and arbitrageur

positions on Wt. This dependence can be deduced from the zeroth-order terms. As shown in the
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proof of Proposition 9, Φ0
n,t and ϕ

0
n,m,t decrease in Wt. Moreover, since Πt decreases in Wt, (IA8)

implies that x0n,t increases in Wt.

Proof of Proposition 11: The comparative statics with respect to ϵn follow from the zeroth-order

terms. Since Φ0
n,t = Πtϵn for traded opportunities, Φ0

n,t is more sensitive to changes in Wt for an

opportunity with higher ϵn. The higher sensitivity of Φ0
n,t translates to a higher sensitivity of ϕ0n,m,t

because of (IA52). Equation (IA8) implies that x0n,t is less sensitive to changes in Wt.

The comparative statics with respect to ηn follow from the first-order terms. Since (IA34)

implies that
∂2Φ1

n,m,t

∂Πt∂λn
> 0, Φ1

n,m,t is more sensitive to changes in Wt for a traded opportunity with

higher ηn. The higher sensitivity of Φ1
n,m,t translates to a higher sensitivity of ϕ1n,m,t because of

(48), and to a higher sensitivity of x0n,m,t because of (IA35) and (IA36).

The comparative statics of spreads with respect to m follow from
dϕ0

n,m+1,t

dWt
<

dϕ0
n,m,t

dWt
< 0. Those

of expected excess returns and positions follow from the first-order terms. Equation (IA34) implies

that

Φ1
n,m+1,t − Φ1

n,m,t = −Πt

d(ϕ0n,m,t+1 − ϕ0n,m−1,t+1)

dWt+1

∑
n′∈N

Mn′σn′,tλn′

= − Πt

(1 + r)m+1

dΦ0
n,t+m+1

dWt+1

∑
n′∈N

Mn′σn′,tλn′

⇒
dΦ1

n,m+1,t

dWt
−
dΦ1

n,m,t

dWt
= −

dΠt
dWt

(1 + r)m+1

dΦ0
n,t+m+1

dWt+1

∑
n′∈N

Mn′σn′,tλn′

− Πt

(1 + r)m+1

d

dWt

(
dΦ0

n,t+m+1

dWt+1

∑
n′∈N

Mn′σn′,tλn′

)
, (IA55)

where the second step follows from (IA51). If Πt is positive but close to zero (as is the case when

the steady-state value W of Wt is smaller than but close to Wc), then the first term in the right-

hand side of (IA55) is negative and bounded away from zero, while the second term is close to

zero. Hence,
dΦ1

n,m+1,t

dWt
<

dΦ1
n,m,t

dWt
. Since the zeroth-order term in Φn,m,t is independent of m and

dΦ0
n,t

dWt
< 0,

dΦ1
n,m+1,t

dWt
<

dΦ1
n,m,t

dWt
implies that

dΦn,m+1,t

dWt
<

dΦn,m,t

dWt
< 0. Hence, Φn,m,t is more sensitive

to changes in Wt for a traded opportunity with higher m. To show that positions are also more

20



sensitive, we note from (IA35) and (IA36) that

dx1n,m+1,t

dWt
−
dx1n,m,t

dWt
= −

µn

(
dΦ1

n,m+1,t

dWt
− dΦ1

n,m,t

dWt

)
ϵ2nf

′′
[(
y0n,t + un

)
ϵn
] +

µn
(
Φ1
n,m+1,t − Φ1

n,m,t

)
ϵnf ′′

[(
y0n,t + un

)
ϵn
] f ′′′ [(y0n,t + un

)
ϵn
] dy0n,t
dWt

.

(IA56)

If Πt is close to zero, then Φ0
n,t and y

0
n,t + un are as well (Propositions 3 and 1, respectively). Since

f(y) is symmetric around the vertical axis, f ′′′(0) = 0 and hence f ′′′
[(
y0n,t + un

)
ϵn
]
is close to zero

when y0n,t + un is close to zero. Since the first term in the right-hand side of (IA56) is positive and

the second is close to zero,
dx1

n,m+1,t

dWt
>

dx1
n,m,t

dWt
. Since the zeroth-order term in xn,m,t is independent

of m and
dx0

n,t

dWt
> 0,

dx1
n,m+1,t

dWt
>

dx1
n,m,t

dWt
implies that

dxn,m+1,t

dWt
>

dxn,m,t

dWt
> 0. Hence, xn,m,t is more

sensitive to changes in Wt for a traded opportunity with higher m.

Proof of Corollary 2: The proof follows from the argument in the paragraph just before the propo-

sition.

Proof of Proposition 12: Using (IA8), we can write (46) for a traded opportunity (n,m) as

σn =
2βµn

[
un − (f ′)−1(Π)

ϵn

]
1 + 2β

∑
(n′,m)∈T µn′

[
un′ − (f ′)−1(Π)

ϵn′

] dϕ0
n′,m−1,t+1

dWt+1

=
2β
[
un − (f ′)−1(Π)

ϵn

]
1 + 2β

∑
n′∈N

[
un′ − (f ′)−1(Π)

ϵn′

]∑Mn−1
m=1

dϕ0
n′,m,t

dWt

. (IA57)

Since Φ0
n,t = Πtϵn, (IA52) implies that

dϕ0n,m,t

dWt
=
dΠt

dWt
ϵn

m−1∑
s=0

1

(1 + r)s+1

dWt+s

dWt

=
dΠt

dWt
ϵn

m−1∑
s=0

1

(1 + r)s+1

s−1∏
s′=0

dWt+s′+1

dWt+s′
. (IA58)
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Equation (IA9) implies that in steady state

∂Πt

∂Wt
= − 1

2
1+r

∑
n∈N µnMn

[
unϵn − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] . (IA59)

The argument used in the proof of Proposition IA1 to show the AR(1) dynamics of Wt implies that

in steady state and for s ≥ 0,

dWt+s+1

dWt+s
=
dWt+1

dWt
= ρ. (IA60)

Using (IA32), we find

ρ = 1 +
WΠ′

1−Π

= 1−

2 1−Π
1+r

∑
n∈N µnMn[unϵn−(f ′)−1(Π)]

2
1+r

∑
n∈N µnMn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
1−Π

=

∑
n∈N µnMn

1−Π
f ′′[(f ′)−1(Π)]∑

n∈N µnMn

[
unϵn − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] , (IA61)

where the second step follows from (IA59). Using (IA59) to (IA61), we can write (IA58) as

∂ϕ0n,m,t

∂Wt
= −

ϵn
∑m−1

s=0
ρs

(1+r)s

2
∑

n′∈N µn′Mn′

[
un′ϵn′ − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] , (IA62)

and (IA57) as

σn =
2βµn

[
un − (f ′)−1(Π)

ϵn

]
1−

β
∑

n′∈N µn′ [un′ϵn′−(f ′)−1(Π)]
∑Mn−1

m=1

∑m−1
s=0

ρs

(1+r)s∑
n′∈N µn′Mn′

[
un′ϵn′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

] . (IA63)

Under segmentation, the wealth Wn,t of arbitrageurs in market n ∈ N evolves according to the
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AR(1) process

Wn,t+1 =Wn + ρn(Wn,t −Wn) + νnη + σn,n

Mn∑
m=1

ηn,m−1,t+1 + o (η) . (IA64)

The counterparts of (IA61) to (IA63) can be obtained by removing the summation over N , and

are given by

ρn =

1−Π
f ′′[(f ′)−1(Π)]

unϵn − (f ′)−1(Π) + 1−Π
f ′′[(f ′)−1(Π)]

, (IA65)

∂ϕ0n,m,t

∂Wn,t
= −

ϵn
∑m−1

s=0
ρsn

(1+r)s

2µnMn

[
unϵn − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] , (IA66)

σn,n =
2βµn

[
un − (f ′)−1(Π)

ϵn

]
1−

β[unϵn−(f ′)−1(Π)]
∑Mn−1

m=1

∑m−1
s=0

ρsn
(1+r)s

Mn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

] , (IA67)

respectively.

Suppose next that opportunities are symmetric, and denote by (ϵ, η, µ, u,M) the common values

of (ϵn, ηn, µn, un,Mn) and by σ2η the common variance of ηn,m,t. Symmetry and an interior steady

state imply that all opportunities are traded, that is, N = {1, .., N}. Moreover, for all n = 1, .., N ,

ρn = ρ =

1−Π
f ′′[(f ′)−1(Π)]

uϵ− (f ′)−1(Π) + 1−Π
f ′′[(f ′)−1(Π)]

(IA68)

∂ϕ0n,m,t

∂Wt
=

1

N

∂ϕ0n,m,t

∂Wn,t
= −

ϵ
∑m−1

s=0
ρs

(1+r)s

2µM
[
uϵ− (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

] ≡ ϕW,m (IA69)

σn = σn,n =
2βµ

[
u− (f ′)−1(Π)

ϵ

]
1−

β[uϵ−(f ′)−1(Π)]
∑M−1

m=1

∑m−1
s=0

ρs

(1+r)s

M

[
uϵ−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

] ≡ σ, (IA70)

because of (IA61) and (IA65), (IA62) and (IA66), and (IA63) and (IA67), respectively.

The variance of arbitrageur wealth under integration follows from the mean-reverting dynamics
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(45), and is given by

Var(Wt) =

∑
(n,m)∈T σ

2
nVar(ηn,m,t)

1− ρ2
+ o

(
η2
)
. (IA71)

Likewise, the variance of arbitrageur wealth under segmentation can be computed from (IA64),

and is given by

Var(Wn,t) =

∑Mn
m=1 σ

2
n,nVar(ηn,m,t)

1− ρ2n
+ o

(
η2
)
. (IA72)

Under symmetry, the highest-order term in (IA71) is
NMσ2σ2

η

1−ρ2
, and that in (IA72) is

Mσ2σ2
η

1−ρ2
. Since

the wealth of the arbitrageurs who are in market n under segmentation is Wt
N under integration, the

highest-order term in the variance of those arbitrageurs’ wealth is
Mσ2σ2

η

N(1−ρ2)
under integration and

Mσ2σ2
η

1−ρ2
under segmentation. Therefore, the variance of each arbitrageur’s wealth under integration is

N times smaller than under segmentation. The variance of wealth of an arbitrageur who diversifies

across all opportunities equally under segmentation is N times smaller than without diversification

because spreads are independent across n.

The variance of the spread associated with opportunity (n,m) is

Var(ϕn,m,t) =

(
dϕ0n,m,t

dWt

)2

Var(Wt) + o
(
η2
)

(IA73)

under integration and

Var(ϕn,m,t) =

(
dϕ0n,m,t

dWn,t

)2

Var(Wn,t) + o
(
η2
)

(IA74)

under segmentation, where the derivative is evaluated at Wt = W . Under symmetry, the highest-

order term in (IA73) is
NMσ2σ2

ηϕ
2
W,m

1−ρ2
, and that in (IA74) is

N2Mσ2σ2
ηϕ

2
W,m

1−ρ2
. Therefore, the variance

of spreads under integration is N times smaller than under segmentation.

Proof of Proposition 13: Equations (IA61), (IA63), and (IA71) imply that the variance of arbi-
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trageur wealth under integration is

Var(Wt) =

4β2
∑

n∈N µ2
nMn

[
un− (f ′)−1(Π)

ϵn

]2
σ2
η,n

1−

β
∑

n∈N µn[unϵn−(f ′)−1(Π)]
∑Mn−1

m=1
∑m−1

s=0


∑

n∈N µnMn
1−Π

f ′′[(f ′)−1(Π)]

(1+r)
∑

n∈N µnMn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s

∑
n∈N µnMn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]



2

1−

 ∑
n∈N µnMn

1−Π

f ′′[(f ′)−1(Π)]∑
n∈N µnMn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]
2 +o

(
η2
)
,

(IA75)

where we denote by σ2η,n the common variance of ηn,m,t across m = 1, ..,Mn. Likewise, (IA65),

(IA67), and (IA72) imply that in a segmented market n with traded opportunities, the variance of

arbitrageur wealth is

Var(Wn,t) =

4β2µ2
nMn

[
un− (f ′)−1(Π)

ϵn

]2
σ2
η,n

1−

β[unϵn−(f ′)−1(Π)]
∑Mn−1

m=1
∑m−1

s=0


1−Π

f ′′[(f ′)−1(Π)]

(1+r)

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s

Mn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]



2

1−

 1−Π
f ′′[(f ′)−1(Π)][

unϵn−(f ′)−1(Π)+ 1−Π
f ′′[(f ′)−1(Π)]

]
2 + o

(
η2
)
. (IA76)

Combining (IA75) with (IA62) and (IA73), we find that the variance of the spread associated
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with a traded opportunity (n,m) under integration is

Var(ϕn,m,t) =

β2ϵ2n

[∑
n′∈N µ2

n′Mn′

[
un′− (f ′)−1(Π)

ϵn′

]2
σ2
η,n′

]∑m−1
s=0

 ∑
n′∈N µn′Mn′ 1−Π

f ′′[(f ′)−1(Π)]

(1+r)
∑

n′∈N µn′Mn′

[
un′ ϵn′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s


1−

β
∑

n′∈N µn′ [un′ ϵn′−(f ′)−1(Π)]
∑Mn′−1

m=1
∑m−1

s=0


∑

n′∈N µn′Mn′ 1−Π
f ′′[(f ′)−1(Π)]

(1+r)
∑

n′∈N µn′Mn′

[
un′ ϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s

∑
n′∈N µn′Mn′

[
un′ ϵn′−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]



2

[∑
n′∈N µn′Mn′

[
un′ϵn′ − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

]]2
−
[∑

n′∈N µn′Mn′ 1−Π
f ′′[(f ′)−1(Π)]

]2 +o
(
η2
)
.

(IA77)

Likewise, combining (IA76) with (IA66) and (IA74), we find that the variance of the spread asso-

ciated with opportunity (n,m) under segmentation is

Var(ϕn,m,t) =

β2µ2
nMn[unϵn−(f ′)−1(Π)]

2
σ2
η,n

∑m−1
s=0

 1−Π
f ′′[(f ′)−1(Π)]

(1+r)

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s


1−

β[unϵn−(f ′)−1(Π)]
∑Mn−1

m=1
∑m−1

s=0


1−Π

f ′′[(f ′)−1(Π)]

(1+r)

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]

s

Mn

[
unϵn−(f ′)−1(Π)+ 1−Π

f ′′[(f ′)−1(Π)]

]



2

[
µnMn

[
unϵn − (f ′)−1(Π) + 1−Π

f ′′[(f ′)−1(Π)]

]]2
−
[∑

n∈N µnMn
1−Π

f ′′[(f ′)−1(Π)]

]2 + o
(
η2
)
.

(IA78)

If unϵn − (f ′)−1(Π) or ση,n/η are close to zero for n but are sufficiently large for n′ ∈ N\{n}, then

Var(ϕn,m,t) is close to zero under segmentation but not under integration. Hence, Var(ϕn,m,t) is

larger under integration.

II. General Contracts

A. Contracts and Equilibrium

A contract ω that arbitrageurs can trade with i-investors in period t is characterized by (i)

payments πω,t′ that the seller of the contract must make to the buyer in periods t′ > t, (ii) a price

qω,t that the seller of the contract receives from the buyer in period t, and (iii) collateral that the

seller of the contract must post with the buyer. The payments πω,t′ can depend on information
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available in all markets including market i. We assume that payments are nonnegative and are not

all equal to zero. No-arbitrage then implies that the price qω,t must be positive. Collateral must be

in the form of cash or other contracts. A contract ω can be traded in any period t ∈ {tω, .., tω − 1},

where tω occurs before the first positive payment and tω is when the last positive payment is made.

The period tω can be infinite, and if it is finite we set qω,tω = 0. We denote by Ωi,t the set of

contracts that can be traded in market i and period t.

To specify how contracts can be collateralized using other contracts, we define contracts recur-

sively. Contracts of level 1 are collateralized by the riskless asset. Contracts of level n + 1 are

collateralized by the riskless asset and by a finite number of contracts of levels 1 up to n. For

a contract ω ∈ Ωi,t and period t, we denote by ψω,t ≥ 0 the units of the riskless asset and by

ψω,ω′,t ≥ 0 the units of a lower-level contract ω′ ∈ Ωi,t that are required as collateral. We also

denote by ℓ(ω, t) the level of the contract. The collateral amounts ψω,t and ψω,ω′,t and the level

ℓ(ω, t) can depend on information available in all markets including market i.

We denote by yω,t the position of i-investors and xω,t the position of arbitrageurs in a contract

ω ∈ Ωi,t and period t. Because the number of contracts is infinite, there is an infinite set of positions.

We assume that only a finite number of the positions are nonzero.

The collateral that short positions require must be covered by long positions. Suppose, for

example, that arbitrageurs have a short position in a contract ω ∈ Ωi,t, which requires contract

ω′ ∈ Ωi,t as collateral. This does not necessarily imply that arbitrageurs must have an overall long

position in contract ω′: they must buy contract ω′ to post as collateral for the short position in

contract ω, but they could undertake an additional transaction in contract ω′ to establish an overall

short position in that contract. We decompose the position xω′,t in contract ω′ into

xω′,t = xcω′,t + x̂ω′,t,

where xcω′,t ≥ 0 is collateral set aside for short positions in higher-level contracts ω ∈ Ωi,t, and x̂ω′,t

is the remainder of the position, which can be negative. The collateral xcω′,t must satisfy

xcω′,t =
∑

ω∈Ωi,t
ℓ(ω,t)>ℓ(ω′,t) and x̂ω,t<0

(−x̂ω,t)ψω,ω′,t. (IA79)
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The collateral vi,t in the riskless asset required for contracts in market i must likewise satisfy

vi,t =
∑

ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)ψω,t. (IA80)

The wealth that arbitrageurs “tie up” in market i is
∑

ω∈Ωi,t
xω,tqω,t + vi,t, the value of their

positions in the contracts traded in market i and of the riskless collateral. The financial constraint

of arbitrageurs requires that the sum of that quantity across markets not exceed arbitrageurs’ total

wealth Wt:

Wt ≥
∑
i∈I

 ∑
ω∈Ωi,t

xω,tqω,t + vi,t

 . (IA81)

As in Section I.C.2 of the main article, we assume that i-investors have enough wealth that their

financial constraint is never binding.

Investors and arbitrageurs can default on their short positions in the contracts. Defaulting

on a unit short position in a contract ω ∈ Ωi,t in period t + 1 raises the wealth of an agent by

πω,t+1 + qω,t+1 since the agent does not make the payment πω,t+1 and no longer has the liability

qω,t+1. At the same time, the agent loses the collateral associated with the position. Default is

costlier to the agent than no default if

πω,t+1 + qω,t+1 ≤ (1 + r)ψω,t +
∑

ω′∈Ωi,t
ℓ(ω,t)>ℓ(ω′,t)

ψω,ω′,t(πω′,t+1 + qω′,t+1), (IA82)

that is, the amount saved by not making the payment is smaller than the value of the collateral

seized. Without loss of generality, we can assume that there is no default. This is because we

can replace a contract ω that involves default by one with the same collateral and with required

payments equal to the actual payments (including the effects of default) under ω.

Under no default, the budget constraint of an i-investor is

wi,t+1 =
∑

ω∈Ωi,t

yω,t(πω,t+1 + qω,t+1) + (1 + r)

wi,t −
∑

ω∈Ωi,t

yω,tqω,t

+ ui,tϵi,t+1 − ci,t+1, (IA83)
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and of an arbitrageur is

Wt+1 =
∑
i∈I

∑
ω∈Ωi,t

xω,t(πω,t+1 + qω,t+1) + (1 + r)

Wt −
∑
i∈I

∑
ω∈Ωi,t

xω,tqω,t

− ct+1. (IA84)

Equations (IA83) and (IA84) are counterparts of (14) and (16), with the positions in the contracts

replacing those in the risky assets.

DEFINITION IA1: A competitive equilibrium with no default consists of prices qω,t for all contracts

ω ∈ Ωi,t, and positions in the contracts yω,t for the i-investors and xω,t for the arbitrageurs, such

that (IA82) holds, positions are optimal given prices, and the markets for all contracts clear:

µiyω,t + xω,t = 0. (IA85)

B. Binomial Payoffs

We next assume that the variables ϵi,t have a binomial distribution and the variables ηi,t are

equal to zero. Given symmetry, the binomial assumption implies that the variables
ϵi,t
ϵi

take the

values 1 and -1 with probabilities one-half.

PROPOSITION IA2: There exists a competitive equilibrium with no default such that the dynamics

of wealth of i-investors and arbitrageurs are as in Section II.B of the main article and the prices

qω,t of all contracts ω ∈ Ωi,t are given by

qω,t =
exp(−Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi)

(1 + r) [exp(−Zi,t) + exp(Zi,t)]
,

(IA86)

where

Zi,t ≡
αA

α+A
(yi,t + ui,t)ϵi

and yi,t is as in Section II.B of the main article.

Proof of Proposition IA2: We first study optimization by i-investors. We proceed as in the proof

of Proposition 1, conjecture the value function (15) with A = rα and Fi,t given by (IA21), and use
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the budget constraint (IA83) instead of (14). Optimal consumption is given by

ci,t+1 =
A
[
(1 + r)wi,t +

∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1

]
+ Fi,t+1 + log

(
α
A

)
α+A

,

(IA87)

which is the counterpart of (IA15). Optimal positions in the contracts solve

max
yω,t

Et

− exp

− αA

α+A

(1 + r)wi,t +
∑

ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1

 ,

(IA88)

which is the counterpart of (IA16) after omitting terms that are known in period t. The first-order

condition with respect to yω,t is

Et

[πω,t+1 + qω,t+1 − (1 + r)qω,t]

× exp

− αA

α+A

 ∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1

 = 0. (IA89)

Equation (IA86), which characterizes equilibrium prices, can be written as

Et

{
[πω,t+1 + qω,t+1 − (1 + r)qω,t] exp

(
− αA

α+A
(yi,t + ui,t)ϵi,t+1

)}
= 0. (IA90)

Equations (IA89) and (IA90) imply that if positions in the contracts satisfy

∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] = yi,tϵi,t+1 + Gt, (IA91)

where Gt is known in period t, then they are optimal because the first-order condition (IA89) is

met. Positions satisfying (IA91) are not unique, and we present one implementation at the end of

this proof. Equation (IA91) implies that the dynamics of wealth of i-investors are the same as in

Section II.B of the main article. Indeed, multiplying (IA90) by yω,t and summing across ω ∈ Ωi,t,
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we find

Et

 ∑
ω∈Ωi,t

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] exp

(
− αA

α+A
(yi,t + ui,t)ϵi,t+1

) = 0. (IA92)

Moreover, the maximization in (IA16) implies that

Et

{
yi,t (Φi,t + ϵi,t+1) exp

(
− αA

α+A
(yi,t + ui,t)ϵi,t+1

)}
= 0. (IA93)

Substituting
∑

ω∈Ωi,t
yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] from (IA91) into (IA92) and comparing with

(IA93), we find that Gt = Φi,t. Substituting Gt = Φi,t into (IA91), we find that the budget constraint

(IA83) of i-investors becomes identical to the budget constraint (14) in Section II.B of the main

article. Since the dynamics of i-investors’ wealth are the same as in that section, the conjectured

value function (15) satisfies the Bellman equation.

We next study optimization by arbitrageurs. We proceed in two steps: in Step 1 we show that

the dynamics of arbitrageur wealth are deterministic, and in Step 2 we show that they are as in

Section II.B of the main article.

Step 1: To show deterministic dynamics, we show that if arbitrageurs choose in period t a

portfolio of contracts whose aggregate payoff in period t + 1 is risky, then there exists another

portfolio that is riskless and has a return that is at least as high as the expected return of the

risky portfolio. We construct a “dominant” riskless portfolio for each market i separately and then

aggregate across markets. From the budget constraint (IA84), the (excess) return that arbitrageurs

earn on their portfolio of contracts in market i is

∑
ω∈Ωi,t

xω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] . (IA94)

Consider first a market i without an endowment shock, that is, ui,t = 0. Since Zi,t = 0, (IA86)
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implies that

qω,t =
Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi)

2(1 + r)
=
Et (πω,t+1 + qω,t+1)

1 + r
,

and hence the expected return in (IA94) is zero. A dominant riskless portfolio is one with zero

positions.

Consider next a market i with an endowment shock. If the expected return in (IA94) is non-

positive, then a dominant riskless portfolio is one with zero positions. If the expected return in

(IA94) is positive, then we construct a dominant riskless portfolio that involves positions in markets

i and −i. As an intermediate step in this construction, we show that the original risky portfolio

has the same expected return and ties up the same amount of arbitrageur wealth as a unit long

position in a single contract ω̂i that is traded in market i and has binary payoffs. The payoffs of

ω̂i are

Et

 ∑
ω∈Ωi,t

xω,t (πω,t+1 + qω,t+1)

∣∣∣∣∣∣ ϵi,t+1 = ϵi

+ (1 + r)vi,t ≡ Qi,t+1 + (1 + r)vi,t,

Et

 ∑
ω∈Ωi,t

xω,t (πω,t+1 + qω,t+1)

∣∣∣∣∣∣ ϵi,t+1 = −ϵi

+ (1 + r)vi,t ≡ Q
i,t+1

+ (1 + r)vi,t,

in period t+ 1 and states ϵi,t+1 = ϵi and ϵi,t+1 = −ϵi, respectively, and zero afterwards. The price

of ω̂i in period t is

exp(−Zi,t)
[
Qi,t+1 + (1 + r)vi,t

]
+ exp(Zi,t)

[
Q

i,t+1
+ (1 + r)vi,t

]
(1 + r) [exp(−Zi,t) + exp(Zi,t)]

=
∑

ω∈Ωi,t

xω,t
exp(−Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi)

(1 + r) [exp(−Zi,t) + exp(Zi,t)]
+ vi,t

=
∑

ω∈Ωi,t

xω,tqω,t + vi,t

≡ Qi,t + vi,t,
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where the first step follows from (IA86), the second from using the definitions of (Qi,t+1, Qi,t+1
) and

rearranging terms, and the third from (IA86). Therefore, the wealth Qi,t + vi,t that arbitrageurs

tie up in market i is the same as that under the original risky portfolio. The expected return from

buying ω̂i is

1

2

[
Qi,t+1 + (1 + r)vi,t

]
+

1

2

[
Q

i,t+1
+ (1 + r)vi,t

]
− (1 + r) (Qi,t + vi,t)

=
1

2

(
Qi,t+1 +Q

i,t+1

)
− (1 + r)Qi,t

=
∑

ω∈Ωi,t

xω,t

[
1

2
[Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi)]− (1 + r)qω,t

]

=
∑

ω∈Ωi,t

xω,tEt [πω,t+1 + qω,t+1 − (1 + r)qω,t] ,

where the third step follows from the definitions of (Qi,t, Qi,t+1, Qi,t+1
). The expected return from

buying ω̂i is thus the same as under the original risky portfolio. To complete the analysis of ω̂i, we

must show that it is a proper contract in the sense that its payoffs are nonnegative. Multiplying

(IA82) by −x̂ω,t for those ω ∈ Ωi,t for which x̂ω,t < 0 ]and summing across ω, we find

∑
ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)(πω,t+1 + qω,t+1)

≤ (1 + r)
∑

ω∈Ωi,t
x̂ω,t<0

(−x̂ω,t)ψω,t +
∑

ω∈Ωi,t
x̂ω,t<0

∑
ω′∈Ωi,t

ℓ(ω,t)>ℓ(ω′,t)

(−x̂ω,t)ψω,ω′,t(πω′,t+1 + qω′,t+1)

= (1 + r)vi,t +
∑

ω′∈Ωi,t

∑
ω∈Ωi,t

ℓ(ω,t)>ℓ(ω′,t) and x̂ω,t<0

(−x̂ω,t)ψω,ω′,t(πω′,t+1 + qω′,t+1)

= (1 + r)vi,t +
∑

ω′∈Ωi,t

xcω′,t(πω′,t+1 + qω′,t+1), (IA95)
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where the second step follows from (IA79) and the third from (IA80). Equation (IA95) implies that

∑
ω∈Ωi,t

(−x̂ω,t)(πω,t+1 + qω,t+1) ≤ (1 + r)vi,t +
∑

ω∈Ωi,t

xcω,t(πω,t+1 + qω,t+1)

⇒ (1 + r)vi,t +
∑

ω∈Ωi,t

xω,t(πω,t+1 + qω,t+1) ≥ 0. (IA96)

Taking expectations in (IA96) conditional on ϵi,t+1 = ϵi and ϵi,t+1 = −ϵi, we find that Qi,t+1+(1+

r)vi,t and Qi,t+1
+ (1 + r)vi,t, respectively, are nonnegative.

We next combine the unit long position in the contract ω̂i with a unit short position in a contract

ω̂−i that is traded in market −i, has the same payoffs as ω̂i, and is collateralized with v−i,t units

of the riskless asset. The price of ω̂−i in period t is

exp(−Z−i,t)
[
Qi,t+1 + (1 + r)vi,t

]
+ exp(Z−i,t)

[
Q

i,t+1
+ (1 + r)vi,t

]
(1 + r) [exp(−Z−i,t) + exp(Z−i,t)]

=
exp(Zi,t)Qi,t+1 + exp(−Zi,t)Qi,t+1

(1 + r) [exp(Zi,t) + exp(Zi,t)]
+ vi,t

=
Qi,t+1 +Q

i,t+1

1 + r
−Qi,t + vi,t

≡ Q−i,t + vi,t, (IA97)

where the first step follows from (IA86), the second from Z−i,t = −Zi,t, and the third from the

definition of Qi,t. The wealth that arbitrageurs tie up in market −i is

−(Q−i,t + vi,t) + v−i,t,

and is equal to the wealth that they tie up in market i if

v−i,t = Qi,t +Q−i,t + 2vi,t. (IA98)
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The expected return from shorting ω̂−i is

− 1

2

[
Qi,t+1 + (1 + r)vi,t

]
− 1

2

[
Q

i,t+1
+ (1 + r)vi,t

]
+ (1 + r) (Q−i,t + vi,t)

= −1

2

(
Qi,t+1 +Q

i,t+1

)
+ (1 + r)Q−i,t

=
1

2

(
Qi,t+1 +Q

i,t+1

)
− (1 + r)Qi,t,

where the third step follows from the definition of Q−i,t. Therefore, the expected return of the

short position in ω̂−i is the same as that of the long position in ω̂i. To complete the analysis of ω̂−i,

we must show that arbitrageurs do not default on their short position. Equation (IA82) implies

that default does not occur if

max{Qi,t+1, Qi,t+1
}+ (1 + r)vi,t ≤ (1 + r)v−i,t

⇔ max{Qi,t+1, Qi,t+1
} ≤ (1 + r) (Qi,t +Q−i,t + vi,t)

⇔ max{Qi,t+1, Qi,t+1
} ≤ Qi,t+1 +Q

i,t+1
+ (1 + r)vt, (IA99)

where the second step follows from (IA98) and the third from the definition of Q−i,t. Equation

(IA99) holds because the payoffs Qi,t+1 + (1 + r)vi,t and Qi,t+1
+ (1 + r)vi,t of ω̂i are nonnegative.

The riskless portfolio that dominates the original risky portfolio in market i consists of a half-

unit long position in ω̂i and a half-unit short position in ω̂−i. Since a unit long position in ω̂i and

a unit short position in ω̂−i each has the same expected return as the original risky portfolio, the

combination of two half-unit positions also has the same expected return. The same applies to the

amount of arbitrageur wealth that is tied up: it is the same under the combination of two half-unit

positions as under the original risky portfolio. Therefore, the arbitrageurs’ financial constraint is

still met. Finally, the portfolio is riskless because ω̂i and ω̂−i have the same payoffs.

Step 2: From Step 1, we can assume that the portfolio of arbitrageurs in period t is as follows:

(i) in each market i with ui,t > 0, arbitrageurs hold a long position in a contract with one-period

payoffs, (ii) in each market −i with ui,t < 0, arbitrageurs hold a short position of the same size as in

market i and in a contract with the same payoffs, (iii) the payoffs of the contracts in markets i and
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−i are binary and contingent on ϵi,t+1, (iv) the short position in market −i is collateralized with

an investment in the riskless asset such that the arbitrageur wealth tied up in market −i equals

that in market i, and (v) in each market i with ui,t = 0, arbitrageurs hold a zero position.

Since the long position in the contract traded in each market i with ui,t > 0 must have positive

expected return, (IA86) implies that the contract must have larger payoff when ϵi,t+1 = ϵi than

when ϵi,t+1 = −ϵi. Moreover, we can take the payoff when ϵi,t+1 = −ϵi to be zero since the contract

price would then be lower, and hence arbitrageurs would be able to tie up less wealth in their long

position in market i. We normalize the payoff when ϵi,t+1 = ϵi to 2ϵi, and denote by ω′
i the contract

in market i and by ω′
−i the contract in market −i. We also denote by xi,t the number of units of

the long position in ω′
i and of the short position in ω′

−i, by qi,t the price of ω
′
i, and by q−i,t the price

of ω′
−i.

The budget constraint (IA84) of arbitrageurs can be written as

Wt+1 = (1 + r)Wt + (1 + r)
∑
i∈At

xi,t(q−i,t − qi,t)− ct+1

= (1 + r)Wt + 2
∑
i∈At

xi,t [ϵi − (1 + r)qi,t]− ct+1, (IA100)

where the second step follows because the same calculations as in (IA97) imply that

q−i,t =
2ϵi
1 + r

− qi,t.

Since arbitrageurs must tie up wealth xi,tqi,t in each of markets i and −i, their financial constraint

(IA81) becomes

Wt ≥ 2
∑
i∈At

xi,tqi,t. (IA101)

Equations (IA100) and (IA81) become identical to (27) and (32), respectively, by setting

Φi,t ≡ ϵi − (1 + r)qi,t.

Because of this equivalence, if the dynamics of Φi,t are as in Section II.B of the main article, then
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arbitrageurs’ optimal positions xi,t and the dynamics of their wealth are also as in that section.

Using (IA86) to substitute for qi,t, we find

Φi,t = ϵi −
2 exp(−Zi,t)ϵi

exp(−Zi,t) + exp(Zi,t)
= ϵi

exp(Zi,t)− exp(−Zi,t)

exp(−Zi,t) + exp(Zi,t)
.

This coincides with Φi,t given by (25) when ϵi,t+1 has a binomial distribution. Therefore, arbi-

trageurs’ optimal positions xi,t and the dynamics of their wealth are as in Section II.B of the main

article. Equation (IA91) implies that the optimal positions of i-investors are yi,t, are also as in that

section. Since µiyi,t + xi,t = 0, markets clear.

An alternative implementation of the equilibrium derived in Proposition IA2 is through the

contracts assumed in Section I.C.2 of the main article. Two contracts are traded in market i. The

first is asset i, with short positions in that contract being collateralized by the riskless asset. The

second is a contract with a riskless payoff, with short positions in that contract being collateralized

by asset i. The first contract is level 1, and the second is level 2. The collateral for each contract

is the minimum required so that the no-default condition (IA82) is met. A short position of

arbitrageurs in the first contract, combined with the required collateral, yields zero if ϵt+1 = ϵi

and 2ϵi if ϵt+1 = −ϵi. A short position of arbitrageurs in the second contract, combined with the

required collateral, yields 2ϵi if ϵt+1 = ϵi and zero if ϵt+1 = −ϵi. The former is equivalent to the

short position in ω′
−i, and the latter is equivalent to the long position in ω′

i.
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