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Abstract

We propose a model of organizational decision making, in which information process-

ing is decentralized. Our model incorporates two features of many actual organizations:

aggregation entails a loss of useful information, and the decision problems of different

agents interact. We assume that an organization forms a portfolio of risky assets, follow-

ing a hierarchical procedure. Agents’ decision rules and the organization’s hierarchical

structure are derived endogenously. Typically, in the optimal hierarchical structure, all

agents have one subordinate, and returns to ability are at least as high at the bottom

as at the top. However, these results can be reversed in the presence of returns to

specialization.
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1 Introduction

Organizational decisions are usually based on large quantities of information. Such infor-

mation cannot be processed by a single agent. Therefore, information processing has to be

decentralized among many agents. Consider, for example, the decision to expand a produc-

tion plant. This decision depends on information about the plant’s cost, known mainly by

the plant manager. It also depends on information about the demand for the plant’s output,

known by marketing managers. Finally, it can depend on broader information about the

organization’s strategy, known by top-level managers.

This paper proposes a model of organizational decision making, in which information

processing is decentralized, and information is communicated along hierarchical lines. The

model has two novel elements, relative to previous literature. First, aggregation entails a loss

of useful information, in the sense that when agents summarize their information to their

hierarchical superiors, information which is useful to the superiors is lost. Second, agents’

decision problems interact, in the sense that an agent’s optimal decision should depend on

information held by agents in other parts of the organization. We use our model to examine

issues of organization design. In particular, we determine what hierarchical structure an

organization should adopt, and in what hierarchical level the returns to employing agents

who are better able to process information are the highest.

Our model is motivated from how investment firms form their portfolios. Because of the

large number of securities involved, investment firms rarely perform a full-scale portfolio

optimization. Rather, they follow a multi-stage hierarchical procedure. An example of this

procedure, for the case of three stages, is described in Sharpe (1985, p.657):

In the first stage (security selection), combinations of securities in each of the several

stock groups and in each of the several bond groups are selected. The second stage

(group selection) involves the determination of an appropriate combination of the stock

group portfolios and an appropriate combination of the bond group portfolios. The final

stage is devoted to asset allocation, using the bond and stock portfolios as asset-class

portfolios. In every stage but the last, decisions are made myopically, considering only

a subset of the available securities. In every stage but the first, groups of securities are

“locked together” in fixed proportions determined in prior stages.

In this hierarchical procedure, agents’ decision problems obviously interact. Consider,

for example, an analyst forming a portfolio of stocks within a given group. The analyst’s
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optimal portfolio should depend on information about all securities, including those outside

the group. If, for example, the securities outside the group have high systematic risk,

the analyst should favor those securities within the group that have low systematic risk.

Analysts seem, however, to form their portfolios myopically, without using information on

the securities outside their groups, presumably because they have little such information.

In addition to interactions, the hierarchical procedure involves aggregation loss. A stock

analyst, for example, summarizes his information on the stocks within his group, through

his choice of a group portfolio. This summary, however, entails a loss of useful information

for the manager in charge of the overall stock portfolio. Indeed, if the manager knew the

analyst’s detailed information, he could add it to his own information on the other stock

groups, and improve on the analyst’s portfolio. It is worth noting that asset-class managers

seem not to change the composition of analysts’ portfolios, presumably because they lack

the detailed information to do so.

Our model is as follows. An organization can invest in one riskless and multiple risky

assets. Investing in a risky asset involves both systematic and idiosyncratic risk. Systematic

risk is represented by one aggregate factor (e.g., the business cycle). Assets differ only in

how sensitive their returns are to the factor, and we refer to these return sensitivities as

factor loadings.

The organization’s portfolio formation process is subject to three constraints. The

communication constraint is that the organization must have a hierarchical structure, and

communication must take place along hierarchical lines, as follows. An agent at the bottom

of the hierarchy examines some assets, and observes their factor loadings. He then forms

a portfolio of these assets, and communicates the portfolio’s factor loading to his (direct)

superior. The superior forms a portfolio of the assets included in his subordinates’ portfolios,

and of any additional assets he examines directly. He then communicates this portfolio’s

factor loading to his own superior, and so on. The scaling constraint is that agents cannot

change the composition of their subordinates’ portfolios, but can only scale portfolios up

or down, i.e., multiply the investment in each asset by the same scalar. The processing

constraint is that agents can form a portfolio of at most K < ∞ inputs, where an input can

be either an asset examined directly, or a subordinate’s portfolio. The processing constraint

captures agents’ limitations in processing information.

The organization is designed optimally, subject to the three constraints above. The

design of the organization takes place ex-ante, before factor loadings are realized. There
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are three design parameters: the hierarchical structure, the assets each agent examines,

and agents’ decision rules, i.e., the way agents map their information into portfolio weights.

The optimal set of parameters must implement a decision rule for the organization that

maximizes the expected utility of asset payoffs. Intuitively, this decision rule must select

a portfolio that is the closest possible to the first-best portfolio, selected in the absence of

agents’ information processing limitations.

While our model is motivated from portfolio formation in investment firms, it is also

applicable to other organizational settings. A direct application is to risk management,

by both financial and non-financial firms. Indeed, risk management can be viewed as a

hierarchical portfolio formation procedure, where each unit in a firm determines its portfolio

of risky activities, and then risk managers control the overall level of risk.1 A more indirect

application is to capital budgeting, i.e., firms’ choice of physical investments. Consider,

for example, the decision to build a production plant, and suppose that the plant’s design

(which can be viewed as a “portfolio” of attributes) should depend significantly on the

specific mix of products that will be manufactured in the plant. A design proposed to

headquarters by the organization’s manufacturing department might then be suboptimal,

because it might be missing important marketing information. Such interactions between

manufacturing and marketing, or between different manufacturing departments, seem quite

common in practice.2

To solve the organization design problem, we must make an assumption on the proba-

bility distribution of factor loadings as of the design stage. We first consider the simple case

where factor loadings are i.i.d. across assets, with mean zero. Agents’ optimal decision rules

are then myopic as described in Sharpe (1985), i.e., agents form their portfolios ignoring

interactions with assets outside the portfolios. Under these decision rules, the organization’s

investment in a particular asset differs from the first-best investment, as long as the agent

at the top of the hierarchy does not examine the asset directly. This is because the top

agent needs to adjust the investment in the asset to take into account interactions ignored

1For a general presentation of risk management and value at risk, see, for example, Litterman (1996),
Alexander (1998), and Jorion (2000). Ch.9 in Alexander and ch.16 in Jorion emphasize, in particular, that
while risk managers set limits for the level of risk that each unit in a firm can take, they do not dictate the
portfolio of a unit’s risky activities. For the notion that the portfolios formed by different units in a firm
may fail to be globally optimal, see also Naik and Yadav (2001). These authors find that dealers in the
London Stock Exchange control their inventories without fully taking into account the covariance with the
inventories of other dealers in the same firm.

2Bower (1970) presents four detailed case studies of capital budgeting in a large corporation. Closest
to our discussion is the case on Specialty Plastics, where a proposal for a new plant was formulated by
engineers in one manufacturing department. The proposal was not very successful, and one reason was that
although the engineers had consulted with divisional headquarters, they had not consulted sufficiently with
their marketing department, or with other manufacturing departments that could benefit from using the
plant.
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by his subordinates. Since he has only aggregated information, however, his adjustment is

imperfect.

Given the optimal decision rules, we can evaluate the performance of different hierar-

chical structures. Quite surprisingly, in the optimal hierarchical structure, all agents have

one subordinate. The intuition is that for independent factor loadings, the average factor

loading of even a small set of assets differs significantly from the factor loading of each

asset in the set. Therefore, aggregation results in a loss of useful information, even when it

concerns only a few assets. As a result, it is optimal for the top agent to examine directly

as many assets as possible.

In the optimal hierarchical structure, all agents work at full capacity, handling exactly

K assets or portfolios. Only one agent may work below capacity, due to integer constraints.

Interestingly, this agent can be at any hierarchical level. Interpreting this agent as a low

ability agent, who can handle fewer than K assets or portfolios, our result implies that

returns to ability are independent of the hierarchical level. Intuitively, the benefit of the

top agent working at full capacity is that he can process more disaggregated information,

while the corresponding benefit for the bottom agent is that he can take more interactions

into account. For independent factor loadings, these turn out to be equal.

When factor loadings are not i.i.d., the organization design problem becomes more

complicated, and we solve it only in some special cases. We first assume that factor loadings

are the sum of a component common to all assets, and an i.i.d. component. We show that

the one-subordinate result of the i.i.d. case still holds, but returns to ability are highest

at the bottom of the hierarchy. We next consider an example where assets are partitioned

into groups, and factor loadings are the sum of a group and an i.i.d. component. The

one-subordinate result holds again, which is perhaps more surprising than in the i.i.d. and

common component cases. Indeed, one would expect the loss from information aggregation

to decrease if the top agent has multiple subordinates, each examining assets in one group.

One feature of actual organizations which is not captured in our model, and which might

explain why agents have multiple subordinates, is that there are returns to specialization.

In investment firms, for example, it is efficient to assign all stocks within an industry sector

to a single analyst, so that the analyst can develop expertise on that sector. To capture

returns to specialization, we consider our group component example, with the modification

that agents observe factor loadings imperfectly. This ensures that knowing an asset’s factor

loading is useful when observing factor loadings of other assets in the same group. We then
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show that it is optimal for the top agent to have multiple subordinates, and that returns to

ability are highest at the top of the hierarchy. These results are, of course, derived in the

context of an example, but they suggest an interesting direction to extend the model.

This paper belongs to a large literature that studies organizations with boundedly ratio-

nal agents, and abstracts from incentive issues.3 Crémer (1980), Aoki (1986), and Geanakop-

los and Milgrom (1991), study resource allocation in organizations, using the team-theoretic

approach of Marschak and Radner (1972). We also use this approach in the derivation of

agents’ optimal decision rules. The main difference with these papers is that we consider

hierarchical communication, where an agent’s information comes from his subordinates.

Radner (1993) considers a model with hierarchical communication. He assumes that

an organization performs an associative operation involving many items. An agent needs

one unit of time to perform the operation on two items. Decentralizing the operation to a

hierarchy of agents, where agents communicate partial results to their superiors, is valuable

because it reduces the time it takes to process all the items. Van Zandt (1999b) extends

Radner’s “batch processing” framework to “real-time processing”, where items arrive in

each period, and the organization has to select which items to process.4 Beckmann (1960,

1983) and Keren and Levhari (1979, 1983) are precursor papers that restrict attention to

balanced hierarchies, where all agents at a given level have the same number of subordinates.

Bolton and Dewatripont (1994) assume that decentralization is valuable not because it

reduces delay, but because it allows agents to specialize by processing the same type of

items more frequently. These papers, however, consider associative operations, where there

is no aggregation loss and no interactions.5

Garicano (2000) and Beggs (2001) consider hierarchical communication in organizations

that handle heterogeneous tasks. Tasks that cannot be handled by agents at a given level,

are sent one level up, where agents can either handle a larger set of tasks (Beggs), or

specialize in handling less frequent tasks (Garicano). In these papers, however, tasks can

be handled independently, and thus there are no interactions.

Harris and Raviv (2001) assume interactions between activities, and examine how these

determine the structure (matrix, functional, or divisional) that an organization should

3For a survey of this literature, see Van Zandt (1999a).
4The batch and real-time processing models have been applied to a number of organizational issues such

as returns to scale (Radner and Van Zandt (1992), Van Zandt and Radner (2001)), resource allocation (Van
Zandt (2000a, 2000b)), returns to ability (Prat (1997)), and internal structure (Orbay (2002)).

5Consider, for example, the selection of the best project out of a pool, i.e., the maximum operation.
There is no aggregation loss because the best project out of a subset is a “sufficient statistic” for all the
projects in the subset. There are no interactions because the best project out of a subset does not depend
on the quality of the projects outside the subset.

5



adopt. Hart and Moore (2000) also emphasize interactions in their theory of allocation

of decision rights within a firm. These papers, however, adopt a reduced-form approach in

modelling interactions.

The rest of this paper is organized as follows. Section 2 presents the model. Section 3

considers the case where factor loadings are i.i.d., and Section 4 considers the general case.

Section 5 concludes, and all proofs are in two Appendices.

2 The Model

We consider an organization that forms an asset portfolio, over three periods, 0, 1, and 2. In

period 0, the organization is designed. In period 1, the assets’ factor loadings are randomly

drawn, and the organization forms its portfolio in a way that depends on its design. Finally,

in period 2, the assets pay off. We first describe the assets in which the organization can

invest, and then the organization designer’s objective, constraints, and choice variables.

2.1 Assets

There is one riskless and N risky assets. The return on the riskless asset is zero. The

returns on the risky assets follow a simple factor structure. Asset n, n = 1, .., N , returns

rn = µn + λnη + εn, (1)

where µn is a constant, η an aggregate factor (e.g., the business cycle), λn asset n’s factor

loading (the sensitivity to the factor), and εn asset n’s idiosyncratic risk. The idiosyncratic

risk is independent across assets, and is independent of the aggregate factor. Both the

aggregate factor and the idiosyncratic risk have mean zero, and thus µn is asset n’s expected

return.6

In addition to assuming a simple factor structure, we assume the following. First, η

and {εn}n=1,..,N are normal, and thus portfolio choice can be reduced to a mean-variance

problem. Second, all assets have the same expected return and idiosyncratic variance, i.e.,

µn = µ and E(ε2
n) = σ2 for all n. Assets thus differ only in their factor loadings. Finally,

E(η2) = σ2, which is without loss of generality, since we can redefine the factor loadings.

6The assumption of only one aggregate factor is for notational simplicity. The analysis can easily be
generalized to multiple factors.
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2.2 Organization Designer’s Objective

We assume that in period 0, the organization designer knows µ and σ2. (He does not know,

however, the factor loadings {λn}n=1,..,N , which are randomly drawn according to some

probability distribution in period 1.) The organization designer maximizes the expected

utility of the organization’s period 2 asset payoffs where, for simplicity, utility is exponential

with CARA a. Since the organization designer evaluates expected utility in period 0, the

expectation is computed w.r.t. η, {εn}n=1,..,N , and {λn}n=1,..,N .

Asset payoffs are
N
∑

n=1

xn(1 + rn) + (W −

N
∑

n=1

xn),

where xn denotes the organization’s investment in risky asset n, and W the organization’s

initial wealth. Setting, for simplicity, W = 0, and using equation (1), we can write the

expected utility of asset payoffs as

−E exp

[

−a
N
∑

n=1

xnrn

]

= −E exp

[

−a

(

N
∑

n=1

xnµ +

(

N
∑

n=1

xnλn

)

η +
N
∑

n=1

xnεn

)]

.

Taking expectations w.r.t. η and {εn}n=1,..,N , which are independent and normal, we can

write expected utility as

−E exp



−a





N
∑

n=1

xnµ−
a

2





(

N
∑

n=1

xnλn

)2

σ2 +
N
∑

n=1

x2
nσ2











 , (2)

where the expectation is now w.r.t. {λn}n=1,..,N only. Equation (2) represents the organi-

zation designer’s objective. This objective takes an intuitive form. For a given set of factor

loadings, the organization designer takes into consideration the mean and the variance of

the organization’s portfolio. The mean is equal to
∑N

n=1 xnµ, while the variance is the sum

of two terms. First, a term which corresponds to aggregate risk, and depends on the factor

loading of the organization’s portfolio (
∑N

n=1 xnλn), and second, a term which corresponds

to idiosyncratic risk.

2.3 Organization Designer’s Constraints

The organization designer is subject to three constraints.

Communication Constraint: We assume that (i) the organization must have a hi-

erarchical structure, and (ii) communication must take place along hierarchical lines, from
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the bottom to the top of the hierarchy. We represent the agents in a hierarchy by sequences

of positive integers. The agent at the top corresponds to the null sequence, “·”. His first

subordinate, starting from the left, corresponds to the sequence 1, his second subordinate

to the sequence 2, and so on. Similarly, the first subordinate of the first subordinate cor-

responds to the sequence 1,1, the second subordinate to the sequence 1,2, and so on. We

denote a sequence by j, and refer to the corresponding agent as agent j. We denote by

J the set of all agents. Finally, we denote by S(j) the number of (direct) subordinates of

agent j. Figure 1 illustrates the notation for a simple hierarchy.

Each agent in the hierarchy may examine some risky assets, i.e., observe their factor

loadings. We denote by M(j) the number of assets that agent j examines, and by AM (j)

their set. We assume that each asset is examined by only one agent, i.e., the sets {AM (j)}j∈J

form a partition of {1, .., N}. We refer to the assets examined by agent j, or by his direct

or indirect subordinates, as the assets under j’s control. We denote by N(j) the number of

these assets, and by AN (j) their set.

Communication takes place as follows. An agent at the bottom of the hierarchy observes

the factor loadings of the assets he examines. He then forms a portfolio of these assets, and

communicates the portfolio’s factor loading to his superior. The superior observes the factor

loadings of his subordinates’ portfolios, and of the assets he (directly) examines. He then

forms a portfolio of all the assets under his control, and communicates the portfolio’s factor

loading to his own superior. This process continues until the top of the hierarchy, and the

portfolio formed by the top agent is also that of the organization. We denote by xn(j) the

investment of agent j in an asset n under his control, and by

λ(j) ≡
∑

n∈AN (j)

xn(j)λn,

the factor loading of agent j’s portfolio.

Scaling Constraint: We assume that agents cannot change the composition of their

subordinates’ portfolios, but can only scale portfolios up or down, i.e., multiply the invest-

ment in each asset by the same scalar. We denote by yi(j) the scaling factor that agent j

applies to the portfolio of his ith subordinate, i = 1, .., S(j). The investment of agent j in

an asset n ∈ AN (j, i) is thus xn(j) = yi(j)xn(j, i).

Processing Constraint: We assume that agents can form a portfolio of at most K < ∞

inputs, where an input can be either an asset agents (directly) examine, or a subordinate’s
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portfolio.7 The processing constraint for agent j is

S(j) + M(j) ≤ K. (3)

The processing constraint is fundamental to the organization design problem, since in

its absence (i.e., if K = ∞) the organization would trivially consist of only one agent.

This constraint might be capturing agents’ limitations in collecting information, i.e., ob-

serving assets’ factor loadings, and learning portfolios’ factor loadings from subordinates.

Alternatively, it might be capturing agents’ limitations in processing the information. Both

types of limitations seem quite important in practice.8 The communication and scaling

constraints capture some features of the portfolio formation process in investment firms.

Needless to say, it would be desirable to derive these features endogenously. In Section 4,

we show that in some cases, the scaling constraint can indeed be endogenized. We also

discuss generalizations of the communication constraint.

2.4 Organization Designer’s Choice Variables

The organization designer can choose three aspects of the organization, all of which can

influence the portfolio the organization forms in period 1.

Hierarchical Structure: The organization designer can choose any hierarchical struc-

ture satisfying the processing constraint (3).

Assignment of Assets to Agents: The organization designer can choose which assets

each agent examines. Of course, this choice is trivial when the assets are identical ex-ante,

i.e., as of period 0.

Agents’ Decision Rules: The organization designer can choose the decision rules that

agents use when forming their portfolios. A decision rule for agent j is a mapping from j’s

information to j’s controls. Agent j’s information is

γ(j) ≡
(

{λn}n∈AM (j), {λ(j, i)}i=1,..,S(j)

)

,

7Note that treating a subordinate’s portfolio as a single asset is consistent with the communication and
scaling constraints. Indeed, under the communication constraint, an agent’s information on a subordinate’s
portfolio is only the factor loading, as in the case of a single asset. Moreover, under the scaling constraint,
the agent’s control on the portfolio is only the scaling factor, i.e., is one-dimensional as for a single asset.

8For example, in his presentation of risk management, Litterman (1996) states that: “The choice of how
finely to disaggregate the data is a compromise between accuracy of risk management, which comes from
disaggregation, and the clarity that comes from aggregation. In addition, lack of availability of data or
computing resources may limit the degree to which positions can be analyzed on a disaggregated basis.”
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i.e., the factor loadings of the assets j examines, and the factor loadings of the portfolios of

j’s subordinates. Agent j’s controls are

(

{xn(j)}n∈AM (j), {yi(j)}i=1,..,S(j)

)

,

i.e., investments in the assets j examines, and scaling factors for the portfolios of j’s sub-

ordinates.

A given hierarchical structure, assignment of assets to agents, and decision rule for each

agent, implement a decision rule for the organization, i.e., a mapping from factor loadings

to investments by the organization. A decision rule for the organization determines, in turn,

the organization designer’s expected utility, from equation (2). The organization designer’s

optimization problem is to implement a decision rule for the organization that maximizes

expected utility.

2.5 First-Best

To analyze the organization designer’s problem, it is useful to consider the first-best de-

cision rule. This rule selects the investments {x∗
n}n=1,..,N that maximize expected utility

conditional on factor loadings, i.e., the investments that solve

max
{xn}n=1,..,N





N
∑

n=1

xnµ−
a

2





(

N
∑

n=1

xnλn

)2

σ2 +
N
∑

n=1

x2
nσ2







 . (4)

Obviously, the first-best rule maximizes expected utility. Therefore, if it is implementable

(through a choice of hierarchical structure, assignment of assets to agents, and agents’

decision rules) it is the solution to the organization designer’s problem.

To gain intuition on whether the first-best rule is implementable, we consider the simple

case where factor loadings are small. We assume, in particular, that λn = λ`n, where λ goes

to zero and the probability distribution of {`n}n=1,..,N is held constant. For small factor

loadings, x∗
n becomes

x∗
n =

µ

aσ2

[

1− λn

N
∑

n′=1

λn′ + o(λ2)

]

, (5)

where o(λ2)/λ2 goes to zero as λ goes to zero.9 The first-best investment in asset n is

equal to µ/aσ2, minus an adjustment for aggregate risk, obtained by multiplying the factor

9The first-order condition of the problem (4) is

x∗n =
µ

aσ2
− λn

(

N
∑

n′=1

x∗n′λn′

)

.

Plugging x∗n = µ/aσ2 + o(1) in the RHS, we obtain equation (5).
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loading of asset n times the sum of all assets’ factor loadings. Intuitively, asset n is penalized

if it is risky, and the penalty increases with the riskiness of the rest of the asset portfolio.

When factor loadings are deterministic, the first-best rule is easily implementable. The

organization designer can, for example, instruct agents to choose investments equal to x∗
n

for each asset n they examine, and scaling factors equal to 1. This implements the first-best

rule, for any hierarchical structure and assignment of assets to agents.

When factor loadings are stochastic, the first-best rule is generally not implementable.

The organization designer cannot, for example, instruct an agent to choose x∗
n, since x∗

n

depends on the factor loadings of all assets, which are generally not all known by any single

agent. For example, an agent at the bottom of the hierarchy, who examines asset n, knows

λn, but generally not the factor loading of the rest of the asset portfolio. The agent’s

hierarchical superiors have better aggregate information on the portfolio’s factor loading,

but do not have the disaggregated information on λn.

When the first-best rule is not implementable, the organization designer’s problem con-

sists in implementing a second-best rule. This problem is potentially very complicated, since

it involves optimization over a large, discrete set of hierarchical structures and assignments

of assets to agents, and also over an infinite set of agents’ decision rules. In Sections 3 and

4, we solve this problem in a number of special cases.

3 I.I.D. Factor Loadings

In this section, we solve the organization designer’s problem in the special case where

factor loadings are small, and i.i.d. with mean zero. The small factor loadings assumption

(λn = λ`n, where λ goes to zero and the probability distribution of {`n}n=1,..,N is held

constant) greatly simplifies the problem, while preserving many of the economic insights.

The independence assumption also simplifies the problem, and provides a useful benchmark

for the more general analysis in Section 4. Finally, the assumption that factor loadings have

mean zero is only for notational simplicity and does not affect the results.

Since factor loadings are i.i.d., the assets are identical ex-ante. Therefore, the assignment

of assets to agents does not matter, and the organization designer’s only choice variables are

the hierarchical structure and agents’ decision rules. We first determine agents’ optimal de-

cision rules for a general hierarchical structure, and then determine the optimal hierarchical

structure.
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3.1 Agents’ Decision Rules

To simplify the derivation of agents’ optimal decision rules, we assume that these are smooth,

in the sense of having a Taylor expansion of order two around λ = 0. For λ = 0, the first-

best investment in each asset is µ/aσ2, from equation (5). This can be implemented by

decision rules where agents invest µ/aσ2 in each asset they examine, and set scaling factors

equal to 1.

Assumption 1 There exists a selection of optimal decision rules, parametrized by λ, such

that for each agent j,

xn(j) =
µ

aσ2

[

1 + fn(j) + o(λ2)
]

,

for n ∈ AM (j), and

yi(j) = 1 + gi(j) + o(λ2),

for i = 1, .., S(j), where fn(j) and gi(j) contain first- and second-degree terms in γ(j) and

λ.10

In Proposition 1, we determine fn(j) and gi(j). To state the proposition, we set

Λ(j) ≡
∑

n∈AN (j)

λn.

Intuitively, Λ(j) represents the factor loading of agent j’s portfolio for small λ. Indeed, since

for small λ all assets in the portfolio receive approximately the same investment µ/aσ2, the

portfolio’s factor loading is

λ(j) =
µ

aσ2

∑

n∈An(j)

λn + o(1) =
µ

aσ2
Λ(j) + o(1).

Proposition 1 Suppose that factor loadings are i.i.d. with mean zero. Then, there exists

a selection of optimal decision rules such that for each agent j, xn(j) and yi(j) are as in

Assumption 1 with

fn(j) = −λnΛ(j) + o(λ2),

and

gi(j) = −
Λ(j, i)

N(j, i)
[Λ(j)− Λ(j, i)] + o(λ2).

10We consider a selection of optimal decision rules, rather than the optimal rules, because optimal rules
are not unique. The non-uniqueness is in the trivial sense that we can multiply an agent’s investments by a
scalar, and divide the scaling factor of the agent’s superior by the same scalar.
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To illustrate Proposition 1, we consider the hierarchical structure in Figure 1. Equation

(5) implies that the first-best investment in asset 1 is

x∗
1 =

µ

aσ2

[

1− λ1(λ1 + λ2 + λ3 + λ4) + o(λ2)
]

.

Consider now the organization’s investment in asset 1. The investment of agent 1,1, who is

at the bottom of the hierarchy and examines asset 1, is

x1(1, 1) =
µ

aσ2

[

1 + f1(1, 1) + o(λ2)
]

=
µ

aσ2

[

1− λ1(λ1 + λ2) + o(λ2)
]

. (6)

Intuitively, agent 1,1 attempts to replicate the first-best investment, but does not know the

factor loadings λ3 and λ4. He replaces these with his best guess, which is zero since factor

loadings are i.i.d. with mean zero. Agent 1 scales agent 1,1’s investment by

y1(1) = 1 + g1(1) + o(λ2)

= 1−
λ1 + λ2

2
λ3 + o(λ2). (7)

Therefore, the investment of agent 1 is

x1(1) = y1(1)x1(1, 1)

=
µ

aσ2

[

1− λ1(λ1 + λ2)−
λ1 + λ2

2
λ3 + o(λ2)

]

.

Intuitively, agent 1 adjusts agent 1,1’s investment to take into account the factor loading λ3,

that he knows but agent 1,1 does not. Unlike agent 1,1, however, agent 1 does not know λ1,

and replaces it by his best guess, which is (λ1 +λ2)/2. (Agent 1’s only information on λ1 is

the factor loading of agent 1,1’s portfolio, which for small λ is λ1 +λ2. Since factor loadings

are i.i.d., agent 1’s expectation of λ1 conditional on λ1 + λ2 is (λ1 + λ2)/2.) Proceeding as

for agent 1, we find that the investment of the top agent is

x1 =
µ

aσ2

[

1− λ1(λ1 + λ2)−
λ1 + λ2

2
λ3 −

λ1 + λ2 + λ3

3
λ4 + o(λ2)

]

.

The top agent adjusts agent 1’s investment to take into account λ4. He has, however, to

replace λ1 by his best guess, which is (λ1 + λ2 + λ3)/3.

The difference between the organization’s investment in an asset n, xn, and the first-best

investment, x∗
n, reflects the organization’s decision-making error. Defining the error, en, for

asset n as the lowest order term in (xn − x∗
n)/( µ

aσ2 ), we have in our example

e1 =

(

λ1 −
λ1 + λ2

2

)

λ3 +

(

λ1 −
λ1 + λ2 + λ3

3

)

λ4. (8)
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The error for asset 1 is the sum of two errors, one associated with agent 1 and one with

the top agent. Each of these errors takes an intuitive form as the product of two terms, an

interaction term and an aggregation loss term. The interaction term reflects the fact that

an agent adjusts a subordinate’s investment to take into account interactions with assets

whose factor loadings the subordinate does not know. For example, the interaction term

for agent 1 is λ3, because this agent takes into account the interaction with asset 3. The

aggregation loss term reflects the fact that when adjusting a subordinate’s investment, an

agent has only aggregate information, which is imperfect. For example, the aggregation loss

term for agent 1 is

λ1 −
λ1 + λ2

2
.

This is because when adjusting his subordinate’s investment, agent 1 does not know the

factor loading of asset 1, λ1, and replaces it by the average factor loading of assets 1 and 2,

(λ1 + λ2)/2.

It is worth emphasizing that Proposition 1 determines agents’ optimal decision rules

for any given hierarchical structure. Furthermore, these rules are myopic as described in

Sharpe (1985), i.e., agents form their portfolios ignoring interactions with assets outside the

portfolios. Using Proposition 1, we now proceed to evaluate the performance of different

hierarchical structures, and determine the optimal structure.

3.2 Hierarchical Structure

An optimal hierarchical structure must maximize the organization designer’s expected util-

ity. For small factor loadings, expected utility takes a simple form.

Lemma 1 A hierarchical stucture that maximizes expected utility for small λ, must mini-

mize
N
∑

n=1

E(e2
n). (9)

Equation (9) is a sum over assets of the expected squared error for each asset (where

expectation is w.r.t. the factor loadings). This measures the distance between the organiza-

tion’s decision rule and the first-best decision rule. An optimal hierarchical structure must

minimize this distance. We should emphasize that, unlike all other results in Section 3, this

result does not require i.i.d. factor loadings.

In Lemma 2, we compute the sum of expected squared errors for a general hierarchical

structure, and i.i.d. factor loadings.
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Lemma 2 Suppose that factor loadings are i.i.d. with mean zero, and agents follow the

optimal decision rules of Proposition 1. Then,

N
∑

n=1

E(e2
n) = σ4

λ

∑

j∈J

S(j)
∑

i=1

[N(j, i)− 1][N(j)−N(j, i)], (10)

where σ2
λ ≡ E(λ2

n).

The intuition behind equation (10) is as follows. Consider an agent j, and an asset n in

the portfolio of j’s ith subordinate (agent j, i). The component of the error for asset n, that

is associated with agent j, is the product of an interaction and an aggregation loss term.

The interaction term is the sum of the factor loadings of the N(j)−N(j, i) assets that are

under the control of j but not of j, i. Since factor loadings are i.i.d., the expected squared

interaction term is

σ2
λ[N(j)−N(j, i)].

The aggregation loss term is the factor loading of asset n minus the average factor loading

of the N(j, i) assets that are under the control of j, i. Since for i.i.d. random variables

{λn}n=1,..,N , we have

E

(

λ1 −

∑N
n=1 λn

N

)2

= σ2
λ

N − 1

N
,

the expected squared aggregation loss term is

a[N(j, i)] ≡ σ2
λ

N(j, i)− 1

N(j, i)
. (11)

Multiplying the expected squared interaction and aggregation loss terms by the N(j, i)

assets in j, i’s portfolio, and summing over i and j, we obtain equation (10).

In Proposition 2, we characterize optimal hierarchical structures.

Proposition 2 Suppose that factor loadings are i.i.d. with mean zero. In any optimal

hierarchical structure:

i. agents must have one subordinate (except the bottom agent),

ii. agents must handle exactly K assets or portfolios, except at most one agent.

The first, and somewhat surprising, result of Proposition 2 is that in an optimal hierar-

chical structure, agents have only one subordinate. To explain the intuition, we consider the

hierarchical structures H1 and H2 in Figure 2. Both hierarchical structures are for N = 4

and K = 2, and according to Proposition 2, H1 is optimal.
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The main advantage of H1 over H2 is that it selects a better investment in asset 4.

Indeed, in both H1 and H2, it is the top agent who adjusts the investment in asset 4 to

take into account the interaction with assets 1 and 2. In H1, however, the top agent knows

the exact factor loading of asset 4, while in H2 he only knows the average factor loading of

assets 3 and 4. Therefore, the aggregation loss term (associated with asset 4 and the top

agent) is zero in H1, but non-zero in H2. Conversely, the disadvantage of H1 over H2 is

that it selects worse investments in assets 1 and 2. Indeed, in both H1 and H2, it is the top

agent who adjusts the investments in assets 1 and 2 to take into account the interaction

with asset 4. In H2, however, the top agent knows the average factor loading of assets 1

and 2, while in H1 he only knows the average factor loading of assets 1, 2, and 3. Therefore,

the aggregation loss term (associated with assets 1 or 2, and the top agent) is larger in H1

than in H2.

The reason why H1 dominates H2 is that for independent factor loadings, the benefit

of knowing an exact factor loading instead of an average (as is the case for asset 4) exceeds

the cost of knowing an average that is less precise (as is the case for assets 1 and 2). In

other words, the average of two independent factor loadings is not much closer to one factor

loading, than is the average of three or more, i.e., the aggregation loss term is not much

larger for three than for two assets. Indeed, the expected squared aggregation loss term is

a(N) = [(N − 1)/N ]σ2
λ. The function a(N) is maximum for N = ∞, and achieves half of

its maximum value for N = 2.

In Table 1, we compute the expected squared errors for H1 and H2 (omitting σ4
λ, for no-

tational simplicity). Table 1 confirms that H1 dominates H2 because the better investment

in asset 4 outweighs the worse investments in assets 1 and 2.

Asset 1 Asset 2 Asset 3 Asset 4 Sum

H1 7/6 7/6 2/3 0 3

H2 1 1 1 1 4

Table 1: Expected squared errors for H1 and H2.

The second result of Proposition 2 is that in an optimal hierarchical structure, all agents

except perhaps one work at full capacity, handling exactly K assets or portfolios. The

intuition is simply that the decentralization of information processing, which arises from

the processing constraint, reduces decision quality. Therefore, it is optimal to minimize

decentralization, by making the processing constraint binding.
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An agent working below capacity may exist only because of integer constraints. When,

for example, N = 4 and K = 3, the optimal hierarchical structures (Ha and Hb, shown in

Figure 3) consist of two agents, only one of whom works at full capacity. By contrast, when

N = 5 and K = 3, both agents work at full capacity.

The existence of an agent working below capacity offers one way to get at the question

of how returns to ability depend on the hierarchical level. Indeed, an agent working below

capacity can be interpreted as a low ability agent, who can handle fewer than K assets or

portfolios. Such an agent should be at the hierarchical level where returns to ability are the

smallest.

Interestingly, Proposition 2 shows that an agent working below capacity can be at any

hierarchical level. When, for example, N = 4 and K = 3, such an agent can be either

at the bottom of the hierarchy (in Ha) or at the top (in Hb). This means that returns to

ability are independent of the hierarchical level. In other words, the benefit of placing a

high ability agent at the top of the hierarchy (the agent can process more disagreggated

information) is equal to the benefit of placing the agent at the bottom (the agent can form

a better portfolio, taking interactions with more assets into account).

4 Generalizations and Extensions

In this section, we study the organization designer’s problem when factor loadings are not

i.i.d., and we examine how the results of the i.i.d. case can generalize. We first characterize

agents’ optimal decision rules for a general hierarchical structure and probability distribu-

tion of factor loadings. We next solve the organization designer’s problem for two specific

probability distributions, and also in an extension of the model that incorporates returns to

specialization. Finally, we discuss ways to relax the communication and scaling constraints.

4.1 Agents’ Decision Rules

Before presenting the general characterization of agents’ optimal decision rules, we show

that these can be computed explicitly when the hierarchical structure and probability distri-

bution of factor loadings satisfy a “sufficient statistic” condition. To state this condition, we

denote by H(j) agent j’s subordinate hierarchy (consisting of j, and j’s direct and indirect

subordinates), and by J(j) the set of agents in H(j). We also set

Λc(j) ≡
∑

n′∈{1,..,N}\AN (j)

λn′ ,
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to represent the factor loading of the portfolio of assets outside H(j), and

Γ(j) ≡
(

{λn}n∈AM (j), {Λ(j, i)}i=1,..,S(j)

)

,

to represent agent j’s information, both for small λ. Finally, we denote by I(j) the infor-

mation set generated by Γ(j), and by Ī(j) that generated by {Γ(j ′)}j′∈J(j).

Condition 1 For each agent j,

E
[

Λc(j)| Ī(j)
]

= E [Λc(j)| I(j)] . (12)

Condition 1 requires that the agents in j’s subordinate hierarchy have no incremental

information, relative to agent j, on the factor loading of the portfolio of assets outside the

subordinate hierarchy. In other words, agent j knows aggregate information concerning

the rest of organization, at least as well as his subordinates. Condition 1 is satisfied for

independent factor loadings, since the factor loading of an asset outside a subordinate

hierarchy is independent of the information of the agents in that hierarchy. Condition 1 is

also satisfied for two-level hierarchies, since the only agent with a non-trivial subordinate

hierarchy is the top agent. We will show that it is satisfied in other cases of interest as well.

Proposition 3 Suppose that Condition 1 holds. Then, there exists a selection of optimal

decision rules such that for each agent j, xn(j) and yi(j) are as in Assumption 1 with

fn(j) = −λnΛ(j)−

[

λn −
Λ(j)

N(j)

]

E [Λc(j)| I(j)] + o(λ2),

and

gi(j) = −
Λ(j, i)

N(j, i)
[Λ(j)− Λ(j, i)]−

[

Λ(j, i)

N(j, i)
−

Λ(j)

N(j)

]

E [Λc(j)| I(j)] + o(λ2).

To illustrate Proposition 3, we consider again the hierarchical structure in Figure 1. The

investment of agent 1,1 in asset 1 is

x1(1, 1) =
µ

aσ2

[

1− λ1(λ1 + λ2)−

(

λ1 −
λ1 + λ2

2

)

E [λ3 + λ4|I(1, 1)] + o(λ2)

]

.

Compared to the case where factor loadings are i.i.d. with mean zero (equation (6)), there is

a new term, involving agent 1,1’s conditional expectation of λ3 + λ4. This term reflects the

fact that agent 1,1 has information on assets 3 and 4, and can adjust his investment to take

into account the interaction with these assets. The adjustment consists of two components.

The first is simply

−λ1E [λ3 + λ4|I(1, 1)] ,
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agent 1,1’s conditional expectation of the optimal, first-best adjustment, −λ1(λ3 +λ4). The

second is
λ1 + λ2

2
E [λ3 + λ4|I(1, 1)] ,

and can be interpreted as a scaling factor for agent 1,1’s portfolio, since it is the same for

asset 2 as for asset 1. Agent 1,1 chooses this scaling factor so that his portfolio contains no

overall adjustment for the interaction with assets 3 and 4 (i.e., the adjustments in assets

1 and 2 sum to zero). Intuitively, agent 1,1’s portfolio can be better adjusted for the

interaction with assets 3 and 4 by that agent’s superior, agent 1, whose information on

λ3 + λ4 is more accurate.

The scaling factor of agent 1 is

y1(1) = 1−
λ1 + λ2

2
λ3 −

(

λ1 + λ2

2
−

λ1 + λ2 + λ3

3

)

E [λ4|I(1)] + o(λ2).

Compared to the i.i.d. case (equation (7)), there is again a new term, reflecting an adjust-

ment for the interaction with asset 4.

The error for asset 1 is equal to that in the i.i.d. case (equation (8)), plus the new terms

for agents 1,1 and 1. Rearranging these terms, we can write the error as

e1 =

(

λ1 −
λ1 + λ2

2

)

[λ3 + E [λ4|I(1)]− E [λ3 + λ4|I(1, 1)]]

+

(

λ1 −
λ1 + λ2 + λ3

3

)

[λ4 − E [λ4|I(1)]] .

This equation is similar to that in the i.i.d. case, and it generalizes nicely the analysis of

that case. As in the i.i.d. case, the error for asset 1 is the sum of errors associated to agent

1 and the top agent, and each error is the product of an interaction and an aggregation loss

term. The aggregation loss term is exactly as in the i.i.d. case. The interaction term takes

a more general form, and reflects the incremental information that an agent has relative to

a subordinate, on the assets that are not under the subordinate’s control. For example, the

interaction term for agent 1 is

λ3 + E [λ4|I(1)]− E [λ3 + λ4|I(1, 1)] ,

and reflects the incremental information agent 1 has relative to agent 1,1, on assets 3 and

4.

It is worth emphasizing how Condition 1 simplifies the analysis. In our example, Condi-

tion 1 requires that agent 1,1 has no incremental information on asset 4, relative to agent 1.

This ensures that agent 1,1 performs no overall adjustment of his portfolio for the interaction
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with asset 4, but leaves this to agent 1. If, by contrast, agent 1,1 had incremental infor-

mation, he would perform part of the adjustment. In that case, however, each agent would

have to base his adjustment on that of the other agent. This would involve a complicated

analysis of what an agent knows, what he knows the other knows, etc.

While Condition 1 is useful for simplifying the optimal decision rules, it is not needed

for characterizing them. In Theorem 1 (stated in the Appendix) we show that optimal

decision rules can be characterized through a set of first-order conditions for each agent.

The first-order conditions for agent j are

E[en|I(j)] = 0, (13)

for n ∈ AM (j), and

E





∑

n′∈AN (j,i)

en′

∣

∣

∣

∣

∣

∣

I(j)



 = 0, (14)

for i = 1, .., S(j), where en is the error for asset n. The intuition is that agent j must not be

able to reduce the sum of expected squared errors, by changing the investment in an asset

he examines, or the scaling factor of a subordinate’s portfolio. This general characterization

does not require Condition 1. Rather, Condition 1 is useful because it allows us to find a

simple solution to the first-order conditions.

4.2 The Common Component Case

One way to introduce correlation in factor loadings is to assume that they are the sum

of a component which is common to all assets, and an i.i.d. component. This captures

the notion that the determinants of an asset’s factor loading are either economy-wide, or

asset-specific. We set λn = ζ + ξn, where ζ denotes the common component, ξn the i.i.d.

component, and ζ and {ξn}n=1,..,N are independent. For notational simplicity, we assume

that ζ and {ξn}n=1,..,N have mean zero. We also assume that they are normal, so that

Condition 1 holds. Indeed, under normality, the sum of factor loadings over a set A is

a sufficient statistic, relative to all factor loadings in A, for the common component ζ.

Therefore, it is also a sufficient statistic for the sum of factor loadings over the complement

of A.

Since assets are ex-ante identical, the assignment of assets to agents does not matter,

and we only need to determine the optimal hierarchical structure. We first compute the

sum of expected squared errors for a general hierarchical structure.
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Lemma 3 Suppose that λn = ζ + ξn, where ζ ∼ N(0, σ2
ζ ), ξn ∼ N(0, σ2

ξ ), and all variables

are independent. Suppose also that agents follow the optimal decision rules of Proposition

3. Then,
N
∑

n=1

E(e2
n) = σ4

ξ (1 + rN)2
∑

j∈J

S(j)
∑

i=1

[N(j, i)− 1][N(j)−N(j, i)]

[1 + rN(j, i)][1 + rN(j)]
, (15)

where r ≡ σ2
ζ/σ

2
ξ .

Equation (15) generalizes equation (10) of the i.i.d. case. Using equation (15), we can

determine the optimal hierarchical structure.

Proposition 4 Suppose that λn = ζ + ξn, where ζ ∼ N(0, σ2
ζ ), ξn ∼ N(0, σ2

ξ ), and all

variables are independent. In any optimal hierarchical structure:

i. agents must have one subordinate (except the bottom agent),

ii. agents must handle exactly K assets or portfolios, except at most the top agent.

The optimal hierarchical structure is as in in the i.i.d. case: agents have only one subor-

dinate, and work at full capacity except perhaps one. As in the i.i.d. case, the intuition for

the one subordinate result is that aggregation loss is large even for two assets. The com-

mon component does not affect the aggregation loss term, since this term is the difference

between one factor loading and an average of factor loadings.

The only difference with the i.i.d. case concerns the position of an agent working below

capacity. While in the i.i.d. case such an agent can be at any hierarchical level, in the

common component case he can be only at the top. This means that returns to ability

are highest at the bottom of the hierarchy. Intuitively, the benefit of placing a high ability

agent at the top is that he can process more disagreggated information. This benefit is the

same as in the i.i.d. case, since the aggregation loss term is the same. By contrast, the

benefit of placing a high ability agent at the bottom is larger than in the i.i.d. case. Indeed,

a high ability agent can examine more assets, and so obtain more accurate information on

the common component. Therefore, he can better take into account the interactions with

the assets he does not examine, and so form a better portfolio.

4.3 The Group Component Case

An alternative way to introduce correlation in factor loadings is to assume that they are

the sum of a component which is common to all assets in a given group, and an i.i.d.
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component. Groups may, for example, correspond to industries or countries. When assets

are sorted into groups, they are not identical ex-ante (in particular, not in relation to

other assets). Therefore, the assignment of assets to agents matters, and the organization

designer’s problem becomes more complicated. To gain some insights on the solution, we

consider a simple example where there are N = 4 assets, each agent can process K = 2

assets, and there are two groups, one consisting of assets 1 and 2, and the other of assets 3

and 4. We set λn = ζ12 + ξn, for n = 1, 2, and λn = ζ34 + ξn, for n = 3, 4, where the group

components ζ12 and ζ34 are i.i.d., and are independent of the i.i.d. components {ξn}n=1,..,4.

We also assume that all variables are mean zero and normal.

There are four possible combinations of hierarchical structures and assignments of assets

to agents, illustated in Figure 4. First, the one-subordinate homogeneous hierarchy, H1, in

which each agent has one subordinate, and the bottom agent examines assets in the same

group. Second, the one-subordinate heterogeneous hierarchy, Ĥ1, which differs from H1

in that the bottom agent examines one asset in each group. Third, the two-subordinate

homogeneous hierarchy, H2, in which the top agent has two subordinates, each of whom

examines assets in the same group. Finally, the two-subordinate heterogeneous hierarchy,

Ĥ2, which differs from H2 in that subordinates examine one asset in each group.

Proposition 5 Suppose that N = 4, K = 2, λn = ζ12 + ξn for n = 1, 2, and λn = ζ34 + ξn

for n = 3, 4, where ζ12, ζ34 ∼ N(0, σ2
ζ ), ξn ∼ N(0, σ2

ξ ), and all variables are independent.

Then, H2 is equivalent to Ĥ2, and both are dominated by H1.

Proposition 5 implies that an one-subordinate hierarchy is optimal. This result is the

same as in the independent and common component cases, but it is even more surprising

in the group component case. Consider, for example, the hierarchies H1 and H2. In the

absence of a group component, H1 dominates H2 because it is preferable that the top agent

knows an exact factor loading and an aggregate of three, rather than two aggregates of two.

In the presence of a group component, however, one might expect H2 to dominate. This is

because the aggregates in H2 are formed by two assets in the same group, and thus involve

little loss of information, while the aggregate in H1 is formed by three assets, not all in the

same group. The reason why H1 still dominates is that the aggregate of three assets is not

as relevant, because some of the top agent’s tasks are performed by agent 1. Indeed, since

assets 3 and 4 are in the same group, agent 1 has some information on λ4, which he can

use to adjust his investments for the interaction with asset 4.11

11The intuition why H2 and Ĥ2 are equivalent goes along similar lines. The advantage of H2 is that the
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4.4 Returns to Specialization

The result that one-subordinate hierarchies are optimal seems contrary to the way many

actual organizations are structured. In investment firms, for example, many industry sector

analysts report to the same boss, who is in charge of the overall stock portfolio. One

feature of actual organizations which is not captured in our model is that there are returns

to specialization. Sector analysts, for example, have expertise in their sector, enabling

them to analyze the sector stocks better than other analysts. In this section, we show that

our model can be extended to incorporate returns to specialization. Furthermore, in the

presence of such returns, one-subordinate hierarchies are no longer optimal, and returns to

ability can be highest at the top of the hierarchy.

To model returns to specialization, we consider the example of Section 4.3, with one

modification. We assume that when an agent examines an asset, he has only the time to

learn either the group component, or the i.i.d. component, but not both. The reason why

this implies returns to specialization is as follows. Suppose that an agent examines an asset,

and chooses to learn the group component. Then, if this agent examines a second asset in

the same group, he does not need to learn the group component again. Therefore, he can

learn the i.i.d. component, and so be fully informed about the second asset.12

To obtain the returns to specialization, it is important to endogenize agents’ choice of

which information to learn on each asset they examine. Consequently, we treat this choice

as part of the solution to the organization designer’s problem. We solve this problem in

Proposition 6.

Proposition 6 Suppose that N = 4, K = 2, λn = ζ12 + ξn for n = 1, 2, and λn = ζ34 + ξn

for n = 3, 4, where ζ12, ζ34 ∼ N(0, σ2
ζ ), ξn ∼ N(0, σ2

ξ ), and all variables are independent.

Then, if σ2
ζ/σ

2
ξ is sufficiently large, it is optimal that agents know the group components for

the assets they examine. Furthermore, H2 dominates H1, Ĥ1, and Ĥ2.

Proposition 6 implies that if returns to specialization are important (in the sense that

the variance of the group component is sufficiently large), then the top agent should have

two subordinates, each of whom examines two assets in the same group. The intuition

aggregates are formed by assets in the same group, and thus involve little loss of information. The advantage

of Ĥ2, on the other hand, is that the bottom agents can perform some of the top agent’s tasks because they
have some information on the assets not under their control.

12An alternative way to model returns to specialization is to assume that agents can only observe noisy
signals of the factor loadings of the assets they examine. Then, an agent examining two assets in the same
group has more information on the group component, and so can estimate more accurately each asset’s
factor loading. We do not model returns to specialization through noisy signals, however, because this is
less tractable.
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is as follows. Because the group component has a large variance, it represents valuable

information, and thus agents should know the group components for the assets they examine.

Given this, the only way for the organization to obtain some information on the i.i.d.

components is that assets in each group are examined by the same agent.

Since returns to specialization affect the optimal hierarchical structure, it is interesting

to know whether they also affect the returns to ability. To examine this, we modify the

previous example by introducing a third group of two assets (assets 5 and 6), and a high

ability agent who can process four assets, instead of two as the other agents. We can then

show13 that if returns to specialization are important, the high ability agent should be at

the top of the hierarchy, examine two assets in the same group, and have two subordinates

also examining two assets in the same group. (Hierarchy HA, illustrated in figure 5.) The

intuition why the high ability agent should be at the top rather the bottom (as, for example,

in hierarchy HB) is that he can perform the high-level task of adjusting investment in each

group for the interaction with the other groups, leaving to his subordinates (part of) the

low-level task of selecting within-group investments.

4.5 Communication and Scaling Constraints

In our model, portfolio formation is subject to the communication constraint, namely, (i)

agents form their portfolios by combining the portfolios of their hierarchical subordinates

and the assets they examine, and (ii) agents’ information concerns only the above portfolios

and assets. One way to generalize this constraint is to relax (ii), and allow agents to

obtain information on portfolios or assets elsewhere in the hierarchy. If agents can obtain

information only on the portfolios of those at lower hierarchical levels (i.e., their subordinates

or the subordinates of their hierarchical peers), then the organization’s portfolio is still

formed in a single iteration, going from the bottom to the top of the hierarchy. If, by

contrast, agents can also obtain information on the portfolios of their peers or superiors, then

portfolio formation generally involves multiple iterations. For example, the organization can

form a trial portfolio, then the top agent can communicate information on this portfolio to

the bottom agents, so that a second trial portfolio can be formed, etc. We expect the analysis

and the results of the single iteration case to be similar to the ones in this paper. However,

the analysis of the multiple iteration case might be substantially more complicated.

An additional constraint that we impose on portfolio formation is the scaling constraint,

13The proof is available upon request.
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namely, agents cannot change the composition of their subordinates’ portfolios, but can only

scale the portfolios up or down. This constraint follows, in some cases, from agents’ optimal

behavior. Indeed, when the assets in the portfolio of an agent’s subordinate are identical

conditional on the agent’s information (as in the independent and common component

cases), then it is optimal for the agent not to change the composition of the subordinate’s

portfolio.14

5 Conclusion

This paper proposes a model of organizational decision making, in which information pro-

cessing is decentralized. The model’s novel elements are that aggregation entails a loss of

useful information, and agents’ decision problems interact. These elements seem important

in many organizational settings. One such setting, from which our model is motivated, is

portfolio selection in investment firms.

In our model, an organization forms a portfolio of risky assets. Portfolio formation

is hiearchical: agents combine their subordinates’ portfolios and any assets they examine

directly into larger portfolios, and communicate information on these portfolios to their

superiors. Agents’ ability to process information is limited, in that they can combine only

a limited number of inputs into a portfolio.

We determine the hierarchical structure, assignment of assets to agents, and agents’

decision rules that maximize the quality of organizational decisions. In the cases we examine,

the optimal hierarchical structure has a chain form, where all agents have one subordinate.

Furthermore, returns to ability are at least as high at the bottom as at the top of the

hierarchy.

One interesting extension is to introduce returns to specialization. This extension is

quite realistic, and in the example we examine in this paper, it reverses the one-subordinate

result, as well as the result on returns to ability. Other possible extensions are to allow assets

to differ in their expected returns, and to consider alternative probability distributions for

the factor loadings. In particular, it might be interesting to introduce multiple group

components (corresponding, for example, to an asset’s industry sector and country). This

would raise the question of along which criterion assets should be grouped, a question

that has received attention by investment management practitioners. (See, for example,

14Formally, in the absence of the scaling constraint, the first-order condition (13) must hold for all assets
in AN (j), instead of AM (j). When assets in AN (j, i) are identical conditonal on j’s information, E[en|I(j)]
is the same for all n ∈ AN (j, i). Therefore, equation (14) implies (13) for all n ∈ AN (j, i).
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Gunn (2000).) At a more abstract level, studying optimal grouping might be relevant for

understanding whether organizations should be structured according to functions (U-form),

products (M-form), or in a hybrid fashion (matrix form).
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Appendix

Due to space limitations, this Appendix does not contain the proofs of Propositions

4-6. These proofs are in a separate Appendix, available on the Review of Economic Studies

website.

We first state and prove Theorem 1 (referred to at the end of Section 4.1). To state

the theorem, we introduce some notation. For an asset n, we denote by jn the agent who

examines the asset, i.e., who satisfies n ∈ AM (jn), and by Jn the set of agents who can

influence the investment in the asset, i.e., who satisfy n ∈ AN (j). For an agent j ∈ Jn\{jn},

we denote by in(j) the index of j’s subordinate who is in Jn. The organization’s investment

in asset n can be expressed as

xn = xn(jn)
∏

j∈Jn\{jn}

yin(j)(j). (16)

Given functions {Fn(j)}n∈AM (j) and {Gi(j)}i=1,..,S(j), for each agent j, we set

Fn ≡ Fn(jn) +
∑

j∈Jn\{jn}

Gin(j)(j). (17)

Intuitively, Fn(j) and Gi(j) will represent the lowest order terms (after the order zero term)

in xn(j) and yi(j), respectively, and Fn will represent the lowest order term in xn. We denote

by F ∗
n the lowest order term in x∗

n, i.e.,

F ∗
n ≡ −λn

N
∑

n′=1

λn′ .

Finally, we recall the definitions of H(j), J(j), Λc(j), Γ(j), I(j), and Ī(j), given at the

beginning of Section 4.1.

Theorem 1 Suppose that for each agent j, there exist functions {Fn(j)}n∈AM (j) and {Gi(j)}i=1,..,S(j),

which contain second-degree terms in Γ(j) and λ, and satisfy the first-order conditions

E[Fn − F ∗
n |I(j)] = 0 (18)

for n ∈ AM (j), and

E





∑

n′∈AN (j,i)

(Fn′ − F ∗
n′)|I(j)



 = 0 (19)

for i = 1, .., S(j). Then, there exists a selection of optimal decision rules such that for each

agent j,

xn(j) =
µ

aσ2

[

1 + Fn(j) + o(λ2)
]

, (20)

27



for n ∈ AM (j), and

yi(j) = 1 + Gi(j) + o(λ2), (21)

for i = 1, .., S(j).

Proof: From Assumption 1, there exists a selection of optimal decision rules such that for

each agent j,

xn(j) =
µ

aσ2

[

1 + f̂n(j) + o(λ2)
]

, (22)

for n ∈ AM (j), and

yi(j) = 1 + ĝi(j) + o(λ2), (23)

for i = 1, .., S(j), where f̂n(j) and ĝi(j) contain first- and second-degree terms in γ(j) and

λ. We assume initially that f̂n(j) and ĝi(j) contain only second-degree terms, and prove

the theorem in three steps. In a fourth step, we extend the proof to the case where f̂n(j)

and ĝi(j) contain also first-degree terms.

Step 1: Definition of F̂n and first-order conditions. Since in the limit when λ

goes to zero, the organization’s investment in each asset converges to µ/aσ2, we have

λ(j, i) =
µ

aσ2
Λ(j, i) + o(λ). (24)

Therefore,

f̂n(j) = F̂n(j) + o(λ2), (25)

and

ĝi(j) = Ĝi(j) + o(λ2), (26)

where F̂n(j) and Ĝi(j) contain second-degree terms in Γ(j) and λ. Equations (16), (22),

(23), (25), and (26), imply that the organization’s investment in asset n is

xn =
µ

aσ2

[

1 + F̂n + o(λ2)
]

, (27)

where F̂n is defined from F̂n(j) and Ĝi(j), as in equation (17).

We next show that the first-order conditions (18) and (19) hold if we substitute {F̂n}n=1,..,N

for {Fn}n=1,..,N . Consider the organization designer’s objective, given in equation (2):

−E exp [−aQ(x)] ,

where x ≡ {xn}n=1,..,N ,

Q(x) ≡
N
∑

n=1

xnr −
R(x)

a
,
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and

R(x) ≡
a2

2





(

N
∑

n=1

xnλn

)2

σ2 +
N
∑

n=1

x2
nσ2



 .

Since Q is quadratic, and maximum at x∗ ≡ {x∗
n}n=1,..,N , we have

Q(x) = Q(x∗)−
R(x− x∗)

a
.

Therefore, we can write the organization designer’s objective as

−E [exp [−aQ(x∗)] exp [R(x− x∗)]] . (28)

Consider n ∈ AM (j), and suppose that agent j’s investment in asset n is perturbed to

xn(j)(1 + αh),

where α is a scalar, and h a function of γ(j). This changes the organization’s investment

in asset n to

xn(1 + αh).

The derivative of the organization designer’s objective w.r.t. α, for α = 0, is

−E

[

exp [−aQ(x∗)] exp [R(x− x∗)]
∂R

∂xn
(x− x∗)h

]

. (29)

This has to equal zero, by the optimality of agent j’s decision rule. To derive equation

(18), we will determine the lowest order term in equation (29), for small factor loadings.

Equation (5) implies that

exp [−aQ(x∗)] = exp

[

−N
µ2

2σ2
+ o(λ2)

]

. (30)

Equations (5) and (27) imply that

exp [R(x− x∗)] = exp
[

o(λ2)
]

,

and

∂R

∂xn
(x− x∗) = a2σ2

[

λn

(

N
∑

n′=1

(xn′ − x∗
n′)λn′

)

+ (xn − x∗
n)

]

= a2σ2(F̂n − F ∗
n) + o(λ2).

To determine the lowest order term in h, we set

h(γ(j)) ≡ H

(

γ(j)

λ

)

,
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and assume that the function H stays fixed as λ goes to zero. Equation (24) implies that

H

(

γ(j)

λ

)

= K

(

Γ(j)

λ
+ o(1)

)

,

for some function K. Therefore, the lowest order term in h(γ(j)) is K(Γ0(j)), where Γ0(j) ≡

Γ(j)/λ. The lowest order term in equation (29) is

−E

[

exp

[

−N
r2

2σ2

]

a2σ2(F̂n − F ∗
n)K(Γ0(j))

]

.

Since this has to equal zero, we must have

E
[

(F̂n − F ∗
n)K(Γ0(j))

]

= 0,

for all functions K(Γ0(j)), i.e., for all I(j)-measurable functions. This implies equation

(18).

To derive equation (19), we proceed similarly. We suppose that agent j’s scaling factor

for the portfolio of his ith subordinate is perturbed to

yi(j)(1 + αh).

This changes the organization’s investment in any asset n ∈ AN (j, i) to

xn(1 + αh).

The derivative of the organization designer’s objective w.r.t. α, for α = 0, is

−E



exp [−aQ(x∗)] exp [R(x− x∗)]
∑

n∈AN (j,i)

(

∂R

∂xn
(x− x∗)

)

h



 . (31)

Writing that the lowest order term in this equation is zero, we find that

E









∑

n′∈AN (j,i)

(Fn′ − F ∗
n′)



K(Γ0(j))



 = 0,

which implies equation (19).

Step 2: Fn = F̂n, for all n = 1, .., N . This means that investments by the organization

resulting from (i) decision rules of the form (20) and (21), and (ii) the optimal decision rules

(22) and (23), are identical up to second-degree terms.

We have

E
N
∑

n=1

(Fn − F̂n)2 = S − Ŝ,
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where

S = E

N
∑

n=1

[

(Fn − F̂n)(Fn − F ∗
n)
]

,

and

Ŝ = E
N
∑

n=1

[

(Fn − F̂n)(F̂n − F ∗
n)
]

.

To show that Fn = F̂n, we will show that S = Ŝ = 0. Equation (17) implies that

Fn − F̂n =
[

Fn(jn)− F̂n(jn)
]

+
∑

j∈Jn\{jn}

[

Gin(j)(j)− Ĝin(j)(j)
]

≡ ∆F
n (jn) +

∑

j∈Jn\{jn}

∆G
in(j)(j).

Using this equation, and summing across agents instead of across assets, we can write S as

S = E
∑

j∈J





∑

n∈AM (j)

∆F
n (j)(Fn − F ∗

n) +

S(j)
∑

i=1

∆G
i (j)

∑

n′∈AN (j,i)

(Fn′ − F ∗
n′)



 .

Since ∆F
n (j) is I(j)-measurable, we have

E
[

∆F
n (j)(Fn − F ∗

n)
]

= E
[

∆F
n (j)E[Fn − F ∗

n |I(j)]
]

,

which is equal to zero from equation (18). Similarly,

E



∆G
i (j)

∑

n′∈AN (j,i)

(Fn′ − F ∗
n′)



 = 0.

Therefore, S = 0, and by an identical argument, Ŝ = 0.

Step 3: There exist decision rules of the form (20) and (21), which are

optimal. To show this, we will start from the optimal decision rules (22) and (23), and

construct decision rules of the form (20) and (21), without modifying the organization’s

investments. Consider an agent j at the bottom of the hierarchy, and an asset n ∈ AM (j).

Since Fn = F̂n, we have

Fn(j)− F̂n(j) =
∑

j′∈Jn\{j}

[

Ĝin(j′)(j
′)−Gin(j′)(j

′)
]

.

The LHS of this equation is I(j)-measurable, i.e., is a function of Γ(j) = {λn}n∈AM (j). The

RHS is a function of Γ(j ′) for j′ ∈ Jn\{j}, and can thus depend on Γ(j) only through Λ(j).

Therefore, both the LHS and the RHS are equal to a function K of Λ(j) (and λ), which, in
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addition, contains second-degree terms. Equation (24) implies that there exists a function

k, which contains second-degree terms in λ(j) and λ, such that

k = K + o(λ2).

Suppose that the decision rule for agent j is modified from (22) to xn(j)[1 + k] for all

n ∈ AM (j), and the decision rule for j’s superior, jb, is modified to yi(j
b)/[1 + k], only for

the index i corresponding to j. The new decision rules are measurable w.r.t. both agents’

information, since k is a function of λ(j). They also leave the organization’s investments

unchanged, since the change in j’s investment is undone by jb. Finally, j’s decision rule

becomes of the form (20), since

xn(j)[1 + k] =
µ

aσ2

[

1 + f̂n(j) + o(λ2)
]

[1 + k]

=
µ

aσ2

[

1 + F̂n(j) + o(λ2)
]

[1 + K + o(λ2)]

=
µ

aσ2

[

1 + F̂n(j) + K + o(λ2)
]

=
µ

aσ2

[

1 + Fn(j) + o(λ2)
]

.

Proceeding inductively to the top of the hierarchy, we can similarly modify all agents’

decision rules so that they take the form (20) and (21).

Step 4: f̂n(j) and ĝi(j) contain first-degree terms. Suppose that f̂n(j) and ĝi(j)

contain first-degree terms in γ(j) and λ. Then

f̂n(j) = F̂ 1
n(j) + o(λ),

and

ĝi(j) = Ĝ1
i (j) + o(λ),

where F̂ 1
n(j) and Ĝ1

i (j) contain first-degree terms in Γ(j) and λ. Moreover,

xn =
µ

aσ2

[

1 + F̂ 1
n + o(λ)

]

,

where F̂ 1
n is defined from F̂ 1

n(j) and Ĝ1
i (j), as in equation (17). Proceeding as in Step

1, and noting that the first-degree term in x∗
n is zero, we can show that the first-order

conditions (18) and (19) hold if we substitute {F̂ 1
n}n=1,..,N for {Fn}n=1,..,N , and zero for

{F ∗
n}n=1,..,N . Since (18) and (19) obviously hold if we substitute zero for both {Fn}n=1,..,N

and {F ∗
n}n=1,..,N , we can proceed as in Step 2, and show that F̂ 1

n = 0 for all n = 1, .., N . We

can then modify the decision rules (22) and (23), so that they do not contain first-degree
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terms, and yet imply the same investments by the organization. To do this, we proceed as

in Step 3. We start with an agent j at the bottom of the hierarchy and show that F̂ 1
n(j)

must be a function of Λ(j) only. We then adjust j’s decision rule so that the first-degree

terms cancel, and proceed inductively to the top of the hierarchy. ‖

Proof of Proposition 1: The proposition follows from Proposition 3, by noting that since

factor loadings are i.i.d. with mean zero, we have E [Λc(j)| I(j)] = 0. ‖

Proof of Lemma 1: Consider a hierarchical structure H, that maximizes expected utility.

Since expected utility can be expressed as in equation (28), and x∗ does not depend on H,

H must also maximize

−E [exp [−aQ(x∗)] [exp [R(x− x∗)]− 1]] . (32)

Since

xn − x∗
n =

µ

aσ2

[

Fn − F ∗
n + o(λ2)

]

=
µ

aσ2

[

en + o(λ2)
]

,

we have

exp [R(x− x∗)]− 1 =
µ2

2σ2

N
∑

n=1

e2
n + o(λ4).

Using this equation and equation (30), we can write equation (32) as

− exp

[

−N
µ2

2σ2

]

µ2

2σ2

N
∑

n=1

E(e2
n) + o(λ4).

If H maximizes this equation for λ small, then it must also maximize the lowest order term,

i.e., it must minimize
∑N

n=1 E(e2
n). ‖

Proof of Lemma 2: The lemma follows from Lemma 3, by setting r = 0 and σ2
ξ = σ2

λ.

(Lemma 3 requires normality, but when ζ = 0, normality is not required in the proof.) ‖

Proof of Proposition 2: We proceed in two steps.

Step 1: Properties of a hierarchical structure that satisfies conditions (i) and

(ii). Consider such a hierarchical structure, and denote by X the number of agents, by mx,

for x = 1, · · · , X − 1, the number of assets examined by the agent in level x (the top is

level 1), and by mX +1 the number of assets examined by the bottom agent. Condition (ii)

implies that there exists xp ∈ {1, .., X} (corresponding to the level of the agent who may

be working below capacity) such that mx = K − 1 for all x ∈ {1, .., X}\{xp}. We have

X
∑

x=1

mx + 1 = N ⇒ mxp = N − 1− (X − 1)(K − 1),
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and

0 < mxp ≤ K − 1 ⇒ X − 1 <
N − 1

K − 1
≤ X ⇒ X =

⌈

N − 1

K − 1

⌉

,

where dye denotes the smallest integer that is greater or equal than y. Therefore, mxp and

X are the same for any hierarchical structure that satisfies conditions (i) and (ii), and we

denote them by m(N) and X(N), respectively.

Lemma 2 implies that the sum of expected squared errors (which we normalize by σ4
λ,

and refer to as the cost from now on) is

X(N)−1
∑

x=1









X(N)
∑

x′=x+1

mx′



mx



 . (33)

Equation (33) is invariant to a permutation of {mx}x=1,..,X(N), and thus the cost is the

same for any hierarchical structure that satisfies conditions (i) and (ii). We denote the cost

by c(N), and show two properties of c(N). First,

c(N)− c(N − 1) = [X(N)− 1](K − 1). (34)

To show equation (34), we use equation (33), and consider hierarchical structures where

the agent who may be working below capacity is at the top. If, with N − 1 assets, the top

agent does work below capacity, then by adding one asset, m1 increases by 1, and equation

(33) changes by
X(N)
∑

x′=2

mx′ = [X(N)− 1](K − 1).

If, with N − 1 assets, the top agent works at full capacity, then by adding one asset, we

obtain a new top agent with m1 = 1. The term in equation (33) corresponding to this new

agent is
X(N)
∑

x′=2

mx′ = [X(N)− 1](K − 1),

and thus equation (34) holds. A second property of c(N) is that for n1, n2 > 1,

c(n1) + c(n2)− c(n1 + n2 − 1) + 2(n1 − 1)(n2 − 1) > 0. (35)

To show equation (35), we assume without loss of generality that n1 ≥ n2, and denote

the LHS by f(n2). Since c(1) = 0, we have f(1) = 0. Therefore, f(n2) is positive if it is

increasing. Using equation (34), and the definition of m(N), we have

f(n2)− f(n2 − 1) = [X(n2)−X(n1 + n2 − 1)] (K − 1) + 2(n1 − 1)

= n1 − 1 + m(n1 + n2 − 1)−m(n2). (36)
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Since

m(n1 + n2 − 1) = m(n1) + m(n2)− ε(K − 1),

where ε = 0 if m(n1) + m(n2) ≤ K − 1, and ε = 1 if m(n1) + m(n2) > K − 1, we can write

equation (36) as

n1 − 1 + m(n1)− ε(K − 1). (37)

If n1 > K or ε = 0, equation (37) is obviously positive. If n1 ≤ K and ε = 1, equation (37)

is also positive, since

n1 − 1 + m(n1) = 2m(n1) ≥ m(n1) + m(n2) > K − 1.

Step 2: A cost-minimizing hierarchical structure must satisfy conditions (i)

and (ii). The key to the proof is the following dynamic programming observation. If a

hierarchical structure H is cost-minimizing, then for each agent j, the subordinate hierarchy

H(j) must also be cost-minimizing among hierarchies that invest in N(j) assets. Indeed,

using Lemma 2, we can write the cost of H as

∑

j′∈J(j)

S(j′)
∑

i=1

[N(j′, i)− 1][N(j′)−N(j′, i)] +
∑

j′∈J\J(j)

S(j′)
∑

i=1

[N(j′, i)− 1][N(j′)−N(j′, i)],

i.e., as the cost of H(j), plus a term that depends on H(j) only through N(j). Therefore, if

H(j) is not cost-minimizing, we can replace it by a cost-minimizing hierarchical structure,

and reduce the cost of H.

To show that a cost-minimizing hierarchical structure must satisfy conditions (i) and

(ii), we use the dynamic programming observation, and proceed by induction on the number

N of assets. Suppose that the result is true for all N ′ < N (N can be 1), and consider a cost-

minimizing hierarchical structure H, in which the top agent has at least two subordinates,

agents 1 and 2. We will show that H is dominated by a hierarchical structure H ′, in which

H(1) is replaced by a cost-minimizing hierarchical structure H ′(1) for N(1) + N(2) − 1

assets, and H(2) is replaced by one asset. Using Lemma 2, and noting that H(1), H(2),

and H ′(1), must satisfy conditions (i) and (ii) (from the dynamic programming observation

and the induction hypothesis), we can write the cost of H and H ′ as

c(H) = c[N(1)] + c[N(2)] + [N(1)− 1][N −N(1)] + [N(2)− 1][N −N(2)] + ĉ,

and

c(H ′) = c[N(1) + N(2)− 1] + [N(1) + N(2)− 2][N − [N(1) + N(2)− 1]] + ĉ,
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respectively, where

ĉ =

S(·)
∑

i=3

c[H(i)] +

S(·)
∑

i=3

[N(i)− 1][N −N(i)].

Therefore,

c(H)− c(H ′) = c[N(1)] + c[N(2)]− c[N(1) + N(2)− 1] + 2[N(1)− 1][N(2)− 1].

Equation (34) implies that this is positive, contradicting the optimality of H. Therefore,

the top agent in H has only one subordinate, agent 1. Since the hierarchical structure H(1)

satisfies conditions (i) and (ii), H satisfies condition (i). To show that H satisfies condition

(ii), we need to show that the top agent in H and the agent in H(1) who may be working

below capacity (and for whom mxp = m(N −m1)) cannot both be working below capacity.

Without loss of generality (since equation (33) is invariant to a permutation of the mx’s),

we assume that m1 ≤ m(N − m1). We will show that if m(N − m1) < K − 1, then H is

dominated by the hierarchical structure H ′ in which one asset is shifted from the top agent

to the agent working below capacity in H(1). Using equation (33), we can write the cost of

H as

c(H) = c[H(1)] + (N −m1 − 1)m1 = c(N −m1) + (N −m1 − 1)m1,

and the cost of H ′ as

c(H ′) = c(N −m1 + 1) + (N −m1)(m1 − 1).

Using equation (34), and noting that X(N −m1) = X(N −m1 + 1), we have

c(H)− c(H ′) = −[X(N −m1)− 1](K − 1) + (N − 2m1)

= (m(N −m1)−m1 + 1) > 0.

Therefore, H satisfies condition (ii). ‖

Proof of Proposition 3: From Theorem 1, it suffices to show that the functions

Fn(j) ≡ −λnΛ(j)−

[

λn −
Λ(j)

N(j)

]

E [Λc(j)| I(j)] ,

and

Gi(j) ≡ −
Λ(j, i)

N(j, i)
[Λ(j)− Λ(j, i)]−

[

Λ(j, i)

N(j, i)
−

Λ(j)

N(j)

]

E [Λc(j)| I(j)] ,

for j ∈ J , n ∈ AM (j), and i = 1, .., S(j), satisfy the first-order conditions (18) and (19).

Setting E(j) ≡ E [Λc(j)| I(j)], we have

Fn(jn)− F ∗
n = λn

N
∑

n′=1

λn′ − λnΛ(jn)−

[

λn −
Λ(jn)

N(jn)

]

E(jn)
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=
∑

j∈Jn\{jn}

λn [Λ(j)− Λ(j, in(j))]−

[

λn −
Λ(jn)

N(jn)

]

E(jn). (38)

Noting that

Gi(j) = −
Λ(j, i)

N(j, i)
[Λ(j)− Λ(j, i)] +

[

λn −
Λ(j, i)

N(j, i)

]

E(j)−

[

λn −
Λ(j)

N(j)

]

E(j),

we have

∑

j∈Jn\{jn}

Gin(j)(j) = −
∑

j∈Jn\{jn}

Λ(j, in(j))

N(j, in(j))
[Λ(j)− Λ(j, in(j))]

+
∑

j∈Jn\{jn}

[

λn −
Λ(j, in(j))

N(j, in(j))

]

[E(j)− E(j, in(j))]

−

[

λn −
Λ(·)

N(·)

]

E(·) +

[

λn −
Λ(jn)

N(jn)

]

E(jn). (39)

Combining equations (38) and (39), and noting that E(·) = 0, we have

en = Fn − F ∗
n = Fn(jn) +

∑

j∈Jn\{jn}

Gin(j)(j)− F ∗
n =

∑

j∈Jn\{jn}

en(j), (40)

where

en(j) ≡

[

λn −
Λ(j, in(j))

N(j, in(j))

]

[Λ(j)− Λ(j, in(j)) + E(j)− E(j, in(j))] ,

denotes the component of the error en for asset n, that is associated with agent j.

Consider now an agent j, and denote by B(j) the set of j’s direct and indirect superiors.

We will show that for jb ∈ B(j) and n ∈ AN (j), we have E[en(jb)|I(j)] = 0. Since

I(j) ⊂ Ī(jb, in(jb)), it suffices to show that

E
[

en(jb)
∣

∣

∣
Ī(jb, in(jb))

]

= 0, (41)

and apply the law of iterative expectations. Since the aggregation loss term,

λn −
Λ(jb, in(jb))

N(jb, in(jb))
,

is measurable w.r.t. Ī(jb, in(jb)), it suffices to show that the interaction term,

Λ(jb)− Λ(jb, in(jb)) + E(jb)− E(jb, in(jb)),

has zero expectation, conditional on Ī(jb, in(jb)). Using Condition 1, we have

Λ(jb)− Λ(jb, in(jb)) + E(jb) = Λ(jb)− Λ(jb, in(jb)) + E
[

Λc(jb)
∣

∣

∣ I(jb)
]

= Λ(jb)− Λ(jb, in(jb)) + E
[

Λc(jb)
∣

∣

∣ Ī(jb)
]

= E
[

Λ(jb)− Λ(jb, in(jb)) + Λc(jb)
∣

∣

∣ Ī(jb)
]

= E
[

Λc(jb, in(jb))
∣

∣

∣ Ī(jb)
]

, (42)
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and

E(jb, in(jb)) = E
[

Λc(jb, in(jb))
∣

∣

∣
I(jb, in(jb))

]

= E
[

Λc(jb, in(jb))
∣

∣

∣
Ī(jb, in(jb))

]

.

Therefore, the interaction term is

E
[

Λc(jb, in(jb))
∣

∣

∣
Ī(jb)

]

− E
[

Λc(jb, in(jb))
∣

∣

∣
Ī(jb, in(jb))

]

, (43)

and it has zero expectation, conditional on Ī(jb, in(jb)), since Ī(jb, in(jb)) ⊂ Ī(jb).

Equations (40) and E[en(jb)|I(j)] = 0, imply immediately equation (18). They also

imply that to show equation (19), it suffices to show that

∑

n′∈AN (j,i)





∑

j′∈Jn′ (j)\{jn′}

en′(j
′)



 = 0.

Summing across agents instead of across assets, we can write the LHS as

∑

n′∈AN (j,i)

en′(j) +
∑

j′∈J(j,i)

S(j′)
∑

i′=1

∑

n′∈AN (j′,i′)

en′(j
′).

This is equal to zero, since for all j and i, we have
∑

n′∈AN (j,i) en′(j) = 0. ‖

Proof of Lemma 3: Consider j, jb ∈ Jn\{jn}, and suppose that jb ∈ B(j). Noting that

en(j) is measurable w.r.t. Ī(jb, in(jb)), and using equation (41), we have

E[en(j)en(jb)] = E
[

E
[

en(j)en(jb)|Ī(jb, in(jb))
]]

= E
[

en(j)E
[

en(jb)|Ī(jb, in(jb))
]]

= 0.

Equation (40) then implies that

E(e2
n) =

∑

j∈Jn\{jn}

E
[

en(j)2
]

. (44)

Since

E[en(j)] = E [E [en(j)| I(jn)]] = 0,

the aggregation loss and interaction terms are uncorrelated. Normality then implies that

these terms are independent. Therefore, E
[

en(j)2
]

is equal to the expected squared aggre-

gation loss term, times the expected squared interaction term. The former is

E

[

λn −

∑

n′∈AN (j,in(j)) λn′

N(j, in(j))

]2

= E

[

ξn −

∑

n′∈AN (j,in(j)) ξn′

N(j, in(j))

]2

= σ2
ξ

N(j, in(j))− 1

N(j, in(j))
.
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Equation (43) implies that the latter is

E
[

V
[

E
[

Λc(j, in(j))| Ī(j)
]∣

∣ Ī(j, in(j))
]]

. (45)

Reversing the steps of equation (42), and using normality, we have

E
[

Λc(j, in(j))| Ī(j)
]

= Λ(j)− Λ(j, in(j)) + E
[

Λc(j)| Ī(j)
]

= Λ(j)− Λ(j, in(j)) + [N −N(j)]
σ2

ζ

σ2
ζ +

σ2
ξ

N(j)

Λ(j)

N(j)

=
Nσ2

ζ + σ2
ξ

N(j)σ2
ζ + σ2

ξ

[Λ(j)− Λ(j, in(j))] +
[N −N(j)]σ2

ζ

N(j)σ2
ζ + σ2

ξ

Λ(j, in(j)),

and thus,

V
[

E
[

Λc(j, in(j))| Ī(j)
]∣

∣ Ī(j, in(j))
]

=

[

Nσ2
ζ + σ2

ξ

N(j)σ2
ζ + σ2

ξ

]2

V
[

Λ(j)− Λ(j, in(j))| Ī(j, in(j))
]

.

Noting that,

V
[

Λ(j)− Λ(j, in(j))| Ī(j, in(j))
]

= V









∑

n′∈AN (j)\

AN (j,in(j))

ξn′ + [N(j)−N(j, in(j))]ζ

∣

∣

∣

∣

∣

∣

∣

∣

Ī(j, in(j))









= [N(j)−N(j, in(j))]σ2
ξ +

[N(j)−N(j, in(j))]2σ2
ζσ

2
ξ

N(j, in(j))σ2
ζ + σ2

ξ

= [N(j)−N(j, in(j))]σ2
ξ

N(j)σ2
ζ + σ2

ξ

N(j, in(j))σ2
ζ + σ2

ξ

,

we can write the expected squared interaction term as

σ2
ξ

(1 + rN)2[N(j)−N(j, in(j))]

[1 + rN(j)][1 + rN(j, in(j))]
.

Multiplying with the expected squared aggregation loss term, and summing across agents

instead of across assets, we obtain equation (15). ‖
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Figure 1: The notation for a simple hierarchy. There are three agents, agent ·, agent 1, and agent
1,1. For agent 1, for example, we have S(1) = 1, since this agent has one subordinate, agent 1,1. We
also have M(1) = 1 and AM (1) = {3}, since agent 1 examines asset 3. Finally, we have N(1) = 3
and AN (1) = {1, 2, 3}, since the assets under agent 1’s control are 1, 2, and 3.
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Figure 2: Two hierarchical structures for N = 4, K = 2.

Hierarchy Ha

A
A
A

�
�

��
�

�
�

Agent ·

Agent 1 43

21

Hierarchy Hb

A
A
A

�
�

��
A
A
A

�
�
�

Agent ·

Agent 1 4

321

Figure 3: Optimal hierarchical structures for N = 4, K = 3.
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Figure 4: Hierarchical structures and assignments of assets to agents for N = 4, K = 2, and two
groups of assets.
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Figure 5: Two hierarchical structures for N = 6, K = 2, three groups of assets, and a high ability
agent.
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