
Proofs of Propositions 4-6

Proof of Proposition 4: We proceed in two steps, as in Proposition 2.

Step 1: Properties of a hierarchical structure that satisfies conditions (i) and

(ii). Such a hierarchical structure must involve X(N) agents, and must satisfy mx = K −1

for x = 2, .., X(N), and m1 = m(N). Lemma 3 implies that the sum of expected squared

errors (which we normalize by σ4
ξ (1 + rN)2, and refer to as the cost) is

c(N) ≡
X(N)−1∑

x=1

(∑X(N)
x′=x+1 mx′

)
mx[

1 + r
(
1 +

∑X(N)
x′=x+1 mx′

)] [
1 + r

(
1 +

∑X(N)
x′=x mx′

)] . (46)

A first property of c(N) is that

c(N) − c(N − 1) =
[X(N) − 1](K − 1)

[1 + rN ][1 + r(N − 1)]
. (47)

To show equation (47), we assume first that with N − 1 assets, the top agent works below

capacity. Then, by adding one asset, m1 increases by 1, and equation (46) changes by

D

1 + r (1 + D)

[
m(N)
1 + rN

− m(N) − 1
1 + r(N − 1)

]
,

where

D =
X(N)∑
x′=2

mx′ = [X(N) − 1](K − 1) = N − 1 − m(N).

Rearranging this equation, we find equation (47). If, with N −1 assets, the top agent works

at full capacity, then by adding one asset, we obtain a new top agent with m1 = 1. The

term in equation (46) corresponding to this new agent is

D

[1 + rD][1 + rN ]
=

D

[1 + r(N − 1)][1 + rN ]
,

and we find again equation (47). A second property of c(N) is that for n1, n2 > 1,

c(n1) + c(n2) − c(n1 + n2 − 1) + g(n1, n2) > 0, (48)

where

g(n1, n2) =
(n1 − 1)(n2 − 1)[2 + r(n1 + n2)]

[1 + rn1][1 + rn2][1 + r(n1 + n2 − 1)]
.

To show equation (48), we assume that n1 ≥ n2, and denote the LHS by f(n2). We first

show that f(n2) > 0 for n2 ≤ K. Using equation (47), we have

c(n1 + n2 − 1) − c(n1) ≥ [X(n1 + n2 − 1) − 1](K − 1)
n1+n2−1∑

n=n1

1
[1 + rn][1 + r(n − 1)]

= [X(n1 + n2 − 1) − 1](K − 1)
1
r

[
1

1 + rn1
− 1

1 + r(n1 + n2 − 1)

]

=
[X(n1 + n2 − 1) − 1](K − 1)(n2 − 1)

[1 + rn1][1 + r(n1 + n2 − 1)]
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Using this equation, c(n2) = 0, and n1 ≥ n2, we have

f(n2) ≥ n2 − 1
[1 + rn1][1 + r(n1 + n2 − 1)]

{2(n1 − 1) − [X(n1 + n2 − 1) − 1](K − 1)} .

Defining ε as in Proposition 2, we can write the term in curly brackets as

2(n1 − 1) − [X(n1) + ε − 1](K − 1) = n1 − 1 + m(n1) − ε(K − 1),

i.e., as equation (37), which is positive. Therefore, f(n2) > 0 for n2 ≤ K, and to show

equation (48), it suffices to show that f(n2) is increasing for n2 > K. Simple algebra shows

that

g(n1, n2) − g(n1, n2 − 1) =
(n1 − 1)(1 + r)[2 + r(n1 + 2n2 − 2)]

[1 + rn2][1 + r(n2 − 1)][1 + r(n1 + n2 − 1)][1 + r(n1 + n2 − 2)]
.

Using this equation, and equation (47), we find that f(n2)− f(n2 − 1) has the same sign as

[X(n2) − 1](K − 1)[1 + r(n1 + n2 − 1)][1 + r(n1 + n2 − 2)]

−[X(n1 + n2 − 1) − 1](K − 1)[1 + rn2][1 + r(n2 − 1)]

+(n1 − 1)(1 + r)[2 + r(n1 + 2n2 − 2)].

Using the definition of m(N), and some algebra, we can write this as

(n1 − 1)[1 + rn2][1 + r(n1 + n2 − 1)] − m(n2)[1 + r(n1 + n2 − 1)][1 + r(n1 + n2 − 2)]

+ m(n1 + n2 − 1)[1 + rn2][1 + r(n2 − 1)].

The third term in this equation is obviously positive. Since

(n1 − 1)[1 + rn2] − m(n2)[1 + r(n1 + n2 − 2)] ≥ (n1 − 1)[1 + rn2] − m(n2)[1 + 2r(n1 − 1)]

= n1 − 1 − m(n2) + r(n1 − 1)[n2 − 2m(n2)],

and n2 > 2m(n2) for n2 > K, the difference between the first two terms is also positive.

Therefore, equation (48) holds.

Step 2: A cost-minimizing hierarchical structure must satisfy conditions (i)

and (ii). We use the dynamic programming observation of Proposition 2, and proceed by

induction. Consider a cost-minimizing hierarchical structure H, in which the top agent has

at least two subordinates, agents 1 and 2. Then, constructing H ′ as in Proposition 2, we

have

c(H) = c[N(1)] + c[N(2)] +
[N(1) − 1][N − N(1)]
[1 + rN(1)][1 + rN ]

+
[N(2) − 1][N − N(2)]
[1 + rN(2)][1 + rN ]

+ ĉ,
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and

c(H ′) = c[N(1) + N(2) − 1] +
[N(1) + N(2) − 2][N − [N(1) + N(2) − 1]]

[1 + r[N(1) + N(2) − 1]][1 + rN ]
+ ĉ.

Simple algrebra shows that c(H) − c(H ′) is equal to the LHS of equation (48), which is

positive, contradicting the optimality of H. Therefore, the top agent in H has only one

subordinate, agent 1, and H satisfies condition (i). To show that H satisfies condition (ii),

we need to show that the top agent in H(1) works at full capacity, i.e., m2 = K−1. Suppose

that m2 < K − 1. If m2 < m1, then we can decrease the cost of H by inverting m1 and

m2. This is because the sum of the numerators in equation (46) stays constant, while each

denominator stays constant or increases. If m2 ≥ m1, then we can decrease the cost of H

by adding 1 to m2 and subtracting 1 from m1. This is because the sum of the numerators

in equation (46) decreases (as shown in the proof of Proposition 2), while each denominator

stays constant or increases. Therefore, H satisfies condition (ii). ‖

Proof of Proposition 5: We will compute the sum of expected squared errors for H1,

H2, and Ĥ2. Since all three hierarchies satisfy Condition 1, E(e2
n) is given by equation (44).

Since, in addition, all variables are normal, E
[
en(j)2

]
is equal to the expected squared

aggregation loss term, times the expected squared interaction term. Moreover, the latter is

given by equation (45).

Consider first H2. The expected squared aggregation loss term corresponding to e1(·) is

E

(
λ1 − λ1 + λ2

2

)2

= E

(
ξ1 − ξ2

2

)2

=
σ2

ξ

2
,

and the expected squared interaction term is

V (λ3 + λ4|λ1, λ2) = V (λ3 + λ4) = V (2ζ34 + ξ3 + ξ4) = 4σ2
ζ + 2σ2

ξ .

Since assets are symmetric, the sum of expected squared errors is

4∑
n=1

E(e2
n) = 4E(e2

1) = 4E
[
e1(·)2

]
= 4

σ2
ξ

2
(4σ2

ζ + 2σ2
ξ ) = 8σ2

ξσ
2
ζ + 4σ4

ξ .

Consider next Ĥ2. The expected squared aggregation loss term corresponding to e1(·)
is

E

(
λ1 − λ1 + λ3

2

)2

= E

(
ζ12 + ξ1 − ζ34 − ξ3

2

)2

=
σ2

ζ + σ2
ξ

2
,

and the expected squared interaction term is

V (λ2 + λ4|λ1, λ3) = V (λ2|λ1) + V (λ4|λ3) = 2V (λ2|λ1) = 2
σ2

ξ (2σ2
ζ + σ2

ξ )

σ2
ζ + σ2

ξ

.
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Since assets are symmetric, the sum of expected squared errors is

4∑
n=1

E(e2
n) = 4E(e2

1) = 4E
[
e1(·)2

]
= 4

σ2
ζ + σ2

ξ

2

[
2
σ2

ξ (2σ2
ζ + σ2

ξ )

σ2
ζ + σ2

ξ

]
= 8σ2

ξσ
2
ζ + 4σ4

ξ ,

the same as for H2.

Consider finally H1. The expected squared aggregation loss term corresponding to e1(1)

is

E

(
λ1 − λ1 + λ2

2

)2

=
σ2

ξ

2
,

and the expected squared interaction term is

V [λ3 + E(λ4|λ1, λ2, λ3)|λ1, λ2] = V [λ3 + E(λ4|λ3)] = V

[
2σ2

ζ + σ2
ξ

σ2
ζ + σ2

ξ

λ3

]
=

(2σ2
ζ + σ2

ξ )
2

σ2
ζ + σ2

ξ

.

The expected squared aggregation loss term corresponding to e1(·) is

E

(
λ1 − λ1 + λ2 + λ3

3

)2

= E

(
ζ12 + 2ξ1 − ξ2 − ζ34 − ξ3

3

)2

=
2σ2

ζ + 6σ2
ξ

9
,

and the expected squared interaction term is

V (λ4|λ1, λ2, λ3) = V (λ4|λ3) =
σ2

ξ (2σ2
ζ + σ2

ξ )

σ2
ζ + σ2

ξ

.

The expected squared aggregation loss term corresponding to e3(·) is

E

(
λ3 − λ1 + λ2 + λ3

3

)2

= E

(
2ζ34 + 2ξ3 − 2ζ12 − ξ1 − ξ2

3

)2

=
8σ2

ζ + 6σ2
ξ

9
,

and the expected squared interaction term is as for e1(·). Since assets 1 and 2 are symmetric,

and there is no error for asset 4, the sum of expected squared errors is

4∑
n=1

E(e2
n) = 2E(e2

1) + E(e2
3)

= 2

[
σ2

ξ

2
(2σ2

ζ + σ2
ξ )

2

σ2
ζ + σ2

ξ

+
2σ2

ζ + 6σ2
ξ

9
σ2

ξ (2σ2
ζ + σ2

ξ )

σ2
ζ + σ2

ξ

]
+

8σ2
ζ + 6σ2

ξ

9
σ2

ξ (2σ2
ζ + σ2

ξ )

σ2
ζ + σ2

ξ

= σ2
ξ

2σ2
ζ + σ2

ξ

σ2
ζ + σ2

ξ

(
10
3

σ2
ζ + 3σ2

ξ

)
.

Simple algebra shows that this is smaller than for H2 and Ĥ2, for all σ2
ζ and σ2

ξ . ‖

Proof of Proposition 6: For σ2
ζ/σ2

ξ sufficiently large, it is optimal that agents know the

group components for the assets they examine. Indeed, suppose that this is not the case for

one agent. If the agent examines two assets in the same group, then the group component

will not be reflected in the weighting of the agent’s group relative to the other group. If
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the agent examines two assets in different groups, then the group component will not be

reflected in the relative weighting of the two assets. Finally, if the agent examines one asset

and a subordinate’s portfolio (which contains at least one asset in a different group), then

the group component will not be correctly reflected in the relative weighting of the asset

and the portfolio.

Given that agents know the group components, we can assume without loss of generality,

that their information for the assets they examine is as follows:

Agent 1,1 Agent 1 Agent ·
H1 ζ12, ξ2 ζ34 ζ34

Ĥ1 ζ12, ζ34 ζ12 ζ34

and

Agent 1 Agent 2

H2 ζ12, ξ2 ζ34, ξ4

Ĥ2 ζ12, ζ34 ζ12, ζ34

To determine agents’ optimal decision rules, we equations (18) and (19). The only

difference with the case where factor loadings are observed perfectly, is that when defining

Γ(j) and I(j), we replace λn by its expectation conditional on the information of the agent

who examines asset n.

The lowest order term associated to the first-best investment in asset 1 is

F ∗
1 = −(ζ12 + ξ1)(2ζ12 + ξ1 + ξ2 + 2ζ34 + ξ3 + ξ4),

and those for assets 2, 3, and 4, are symmetric. For H2, the lowest order term associated

to the investment in asset 1 is

F1 = −ζ12(2ζ12 + ξ2) − 2ζ12 + ξ2

2
(2ζ34 + ξ4) − σ2

ξ ,

that for asset 2 is

F2 = −(ζ12 + ξ2)(2ζ12 + ξ2) − 2ζ12 + ξ2

2
(2ζ34 + ξ4),

and those for assets 3 and 4 are symmetric. For Ĥ2, we have

F1 = −ζ12(2ζ12 + 2ζ34) − σ2
ξ ,

and symmetrically for assets 2, 3, and 4. For Ĥ1, the lowest order terms are the same as

for Ĥ2, since in both hierarchies an agent examining an asset has the same information on
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all assets as his superiors. Finally, for H1, we have

F1 = −ζ12(2ζ12 + ξ2) − 2ζ12 + ξ2

2
2ζ34 − σ2

ξ ,

F2 = −(ζ12 + ξ2)(2ζ12 + ξ2) − 2ζ12 + ξ2

2
2ζ34,

F3 = F4 = −ζ34(2ζ12 + ξ2 + 2ζ34) − σ2
ξ .

It is easy to check that for σ2
ζ/σ2

ξ sufficiently large, and for each n, E[(Fn−F ∗
n)2] is smallest

for H2. ‖
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