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Abstract

We present a model of the yield curve in which the central bank can provide market par-

ticipants with forward guidance on both future short rates and on future Quantitative Easing

(QE) operations, which affect bond supply. Forward guidance on short rates works through the

expectations hypothesis, while forward guidance on QE works through expected future bond

risk premia. If a QE operation is expected to be undone in the near term, then its announce-

ment will have a hump-shaped effect on the yield and forward-rate curves; otherwise the effect

may be increasing with maturity. Humps associated to QE announcements typically occur at

maturities longer than those associated to short-rate announcements, even when the effects of

the former are expected to last over a shorter horizon. We use our model to re-examine the

empirical evidence on QE announcements in the US.
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1 Introduction

Since late 2008, when short-term interest rates reached their zero lower bound, central banks have

been conducting monetary policy through two primary instruments: quantitative easing (QE), in

which they buy long-term government bonds and other long-term securities, and so-called “forward

guidance,” in which they guide market expectations about the path of future short rates. Because

QE alters the maturity structure of the government debt that is available to the public, it changes

the amount of duration risk that market participants must bear, thereby impacting bond risk

premia and long-term interest rates. Forward guidance may also impact long rates because it

contains information about the central bank’s willingness to keep short rates low in the future.

Although the term “forward guidance” is normally used in reference to central-bank policy on

future short rates, QE operations typically involve some forward guidance as well. This is because

announcements that the central bank will purchase long-term securities are made well in advance

of the actual purchases, which are spread out over a period of months or years. For example, on

March 18, 2009, the Federal Open Market Committee (FOMC) announced that to “help improve

conditions in private credit markets,” the Federal Reserve would increase the scale of its previously

announced asset purchase program from $600 billion to $1.75 trillion and that these purchases

would be carried out over the next six to twelve months. At the same time, the FOMC provided

forward guidance on short rates, stating that it “anticipates that economic conditions are likely to

warrant exceptionally low levels of the Federal Funds rate for an extended period.” The impact

of announcements such as these on the yield curve has been substantial. Following the March 18,

2009 announcement, for example, ten-year zero-coupon Treasury yields fell by 51 basis points over

the course of two days.

How should forward guidance on short rates and forward guidance on QE be reflected in the

yield curve? Policymakers have taken the implicit view that forward guidance on short rates is

easy to interpret. If the expectations hypothesis of the yield curve holds, then the expected future

path of short rates coincides with the curve of instantaneous forward rates. But forward guidance

on QE is inherently more difficult to assess because it depends on how future bond risk premia

change in response to QE and how these changes are incorporated into current bond prices. For

example, suppose that market participants believe the central bank plans to acquire large amounts

of long-term government bonds, but then plans to sell these bonds in five years. How should these

beliefs impact long rates today? What if the market revises its expectations about how long the

central bank will maintain its elevated holdings of long-term bonds?

To make these questions concrete, consider the so-called “Taper Tantrum” of May-June 2013,

a period in which market participants feared that the Fed might reduce the pace of future bond
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purchases. On May 22, 2013, Federal Reserve Chairman Bernanke testified in front of Congress

that the Fed would slow or “taper” its QE program if the economy showed signs of improving.

Within a week, yields of ten-year government bonds had increased by 21 basis points. On June 19,

2013, bond yields increased further following a Federal Reserve press conference, as markets feared

an end to the Fed’s balance-sheet expansion.

Figure 1 shows the evolution of the zero-coupon Treasury yield curve between May 21 and June

28, 2013 (nine days after the Fed press conference). Panel (a) shows yields and Panel (b) shows

changes in yields between the two dates. The peak increase in yields occurred at a maturity of

seven years, where the yield to maturity increased by a total of 60 basis points (bps). Panel (c) and

Panel (d) show the same information for the forward rate curve. The peak increase in forward rates

occurred at five years to maturity: the one-year yield four-year ahead increased by over 100bps

between the two dates. The change in forward rates was large even as far as ten years into the

future.

How should we interpret the yield curve changes in Figure 1? Were they mainly driven by

market participants’ revised expectations about the path of future short rates? If so, then under

the expectations hypothesis of the yield curve, expectations were revised the most about short

rates five years into the future, and revisions were significant even over a ten-year horizon. Were

the changes in the yield curve instead driven by expectations about future purchases of long-term

bonds by the Fed? If so, then over what horizon did expectations have to change to generate the

observed yield curve changes?

In this paper, we build a no-arbitrage model of the yield curve that allows us to characterize

and compare the effects of forward guidance on short rates and forward guidance on QE. Among

other results, we show that forward guidance on QE tends to impact longer maturities than forward

guidance on short rates, even when expectations about bond purchases by the central bank concern

a shorter horizon than expectations about future short rates. Using our model we interpret reactions

of the US yield curve to policy announcements during the QE period.

Our model builds on Vayanos and Vila (2009) and Greenwood and Vayanos (2014). There is a

continuum of default-free, zero-coupon bonds that are available in positive supply. For simplicity,

we consolidate the central bank and the fiscal authority, so that the only relevant quantity is the

supply of bonds that must be held by the public. The marginal holders of the bonds are risk-averse

arbitrageurs with short investment horizons. These arbitrageurs demand a risk premium for holding

bonds, because of the possibility that unexpected shocks will cause the bonds to underperform

relative to the short rate. Following a long line of research on the portfolio-balance channel (Tobin

(1958), Tobin (1969)), declines in bond supply lower the amount of duration risk that is borne by

arbitrageurs, reducing bond risk premia and raising bond prices.
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Figure 1: Changes in US yields and forwards during the 2013 “Taper
Tantrum.” Panels (a) and (c) plot zero-coupon Treasury yields and one-year for-
ward rates prior to and following the Taper Tantrum (May 21 to June 28, 2013).
Panels (b) and (d) plot cumulative changes during the Taper Tantrum. Yields and
forward rates are computed using the continuously compounded yield curve fitted by
Gurkaynak, Sack, and Wright (2007).

Relative to previous work, our key theoretical innovation is that we allow for news about both

the future path of short rates and the future supply of bonds. Specifically, the short rate in our

model evolves stochastically. However, holding fixed the current level of the short rate, we also

allow for shocks to the expected path of future short rates. Similarly, the supply of bonds evolves

stochastically. But, holding fixed current supply, we also allow for shocks to the expected path

of future supply. Shocks to the expected path of future short rates and future supply can be

interpreted as policy announcements that provide forward guidance on these variables.

After deriving the equilibrium yield curve, we describe the impact of forward guidance. Forward

guidance on short rates in our model works through the expectations hypothesis. Suppose, for

example, that arbitrageurs’ expectation of the short rate three years from now declines by 100bps.

This is reflected directly in a 100bps decline in the instantaneous forward rate three years from

now. The expectations hypothesis describes the effects of shocks to expected future short rates

because these shocks do not affect the positions that arbitrageurs hold in equilibrium and hence do

not affect bond risk premia.

Forward guidance on supply works through expected future bond risk premia. Suppose, for
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example, that the central bank announces that it will buy ten-year bonds one year from now.

After the purchase occurs, arbitrageurs will be holding a smaller position in ten-year bonds and

be bearing less duration risk. Hence, the premium associated to that risk will decrease and bond

prices will increase. The anticipation of this happening in one year causes an immediate rise in the

prices of all bonds with maturity longer than one year. Note that the price increase is not confined

to the bonds that the central bank announces it will purchase; in fact, other bonds may be more

heavily affected. This is because—as in Vayanos and Vila (2009) and Greenwood and Vayanos

(2014)—supply effects do not operate locally, but globally through changes in the prices of risk.

Announcements about expected future short rates have a hump-shaped effect on the yield and

forward-rate curves. This is because current short rates are not affected, nor are expected short

rates far in the future. The location of the hump on the forward-rate curve coincides with that in

expected future short rates because of the expectation hypothesis.

Announcements about future supply can also have a hump-shaped effect on the yield and

forward-rate curves. The intuition can be seen by noting that the impact of a supply shock on

a bond’s yield is the average on the shock’s effect on the bond’s instantaneous expected return

over the bond’s lifetime. When comparing the effect across bonds of different maturities, there are

two opposing forces. On one hand, the supply shock has a larger impact on the current expected

return that arbitrageurs require to hold the longer-term bond. On the other hand, if the shock is

expected to revert quickly, required returns are expected to remain elevated over a larger portion

of the shorter-term bond’s life. The combination of these effects means that a supply shock that

is expected to revert quickly has a hump-shaped effect on the yield curve. Moreover, the more

quickly the shock is expected to revert, the shorter is the maturity where the hump is located.

If the shock is expected to revert slowly, its effect is increasing with maturity (i.e., the hump is

located at infinity).

A key difference between shocks to future supply and shocks to future short rates is that the

former can impact yields and forward rates at maturities much longer than the time by which the

shocks are expected to die out. And likewise, the humps on the yield and forward-rate curves

associated to supply shocks typically occur at maturities longer than those associated to short-rate

shocks, even when the former are expected to revert more quickly. Consider, for example, the

impact of a supply shock on the one-year forward rate in nine years. We show that it can be

written as the sum of the shock’s impact on the difference between expected returns on ten- and

nine-year bonds over the next year, plus the impact on the difference between expected returns

on nine- and eight-year bonds over the year after, and so on. Even a temporary shock can have

a significantly larger effect on the current expected return on ten-year bonds relative to nine-year,

and hence impact the one-year rate forward rate in nine years.
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After developing the theoretical results, we re-examine the empirical evidence on QE announce-

ments in the US. Existing studies of QE have computed changes in bond yields around major policy

announcements in the US and elsewhere. We add to these studies by computing changes in forward

rates along the entire curve and considering a large set of announcement dates. We show that the

cumulative effect of all expansionary announcements up to 2013 was hump-shaped with a maximum

effect at the ten-year maturity for the yield curve and the seven-year maturity for the forward-rate

curve. Explaining this evidence through changing expectations about short rates would mean that

expectations were revised the most drastically for short rates seven years into the future, while

revisions one to four years out were much more modest. This seems unlikely. On the other hand,

the evidence is more consistent with changing expectations about supply: according to our model,

the maximum revision in supply expectations would have to be only one year into the future.

Our findings accord nicely with those of Swanson (2015), who decomposes the effect of FOMC

announcements from 2009-2015 into a component that reflects news about the future path of short

rates (forward guidance) and a component that reflects news about future asset purchases (QE).

Consistent with our model, Swanson (2015) finds that both QE-related and forward-guidance-

related announcements have hump-shaped effects on the yield curve. Moreover, the hump for the

former announcements occurs at a longer maturity than for the latter: QE announcements have

their largest impact at around the ten-year maturity, while forward-guidance announcements have

their largest impact at two to five years.

Our paper builds on a recent literature that seeks to characterize how shocks to supply and

demand affect the yield curve (Vayanos and Vila (2009); Greenwood and Vayanos (2014); Hanson

(2014); Malkhozov, Mueller, Vedolin, and Venter (forthcoming)). It is also related to a number

of event studies that analyze the behavior of the yield curve and prices of other securities around

QE-related events. Modigliani and Sutch (1966), Ross (1966), Wallace (1967), and Swanson (2011)

study the impact of the 1962-1964 Operation Twist program. More recent event studies of QE in the

wake of the Great Recession include Gagnon, Raskin, Remache, and Sack (2011), Krishnamurthy

and Vissing-Jorgensen (2011), D’Amico, English, Lopez-Salido, and Nelson (2012), D’Amico and

King (2013), Mamaysky (2014), and Swanson (2015) for the US, and Joyce, Lasaosa, Stevens, and

Tong (2011) for the UK.1

The paper proceeds as follows. Section 2 presents the model. Section 3 derives the equilibrium

yield curve. Section 4 describes the impact of announcements on the yield and forward-rate curves.

Section 5 re-examines the empirical evidence on QE in light of our model. Section 6 concludes.

1See also Bernanke, Reinhart, and Sack (2004) for a broader analysis of QE programs, and Joyce, Myles, Scott,
and Vayanos (2012) for a survey of the theoretical and empirical literature on QE.
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2 Model

The model is set in continuous time. The yield curve at time t consists of a continuum of default-

free zero-coupon bonds with maturities in the interval (0, T ] and face value one. We denote by P
(τ)
t

the price of the bond with maturity τ at time t, and by y
(τ)
t the bond’s yield. The yield y

(τ)
t is the

spot rate for maturity τ . We denote by f
(τ−∆τ,τ)
t the forward rate between maturities τ −∆τ and

τ at time t. The spot rate and the forward rate are related to bond prices through

y
(τ)
t = −

log P
(τ)
t

τ
, (1)

f
(τ−∆τ,τ)
t = −

log

(

P
(τ)
t

P
(τ−∆τ)
t

)

∆τ
, (2)

respectively. The short rate is the limit of y
(τ)
t when τ goes to zero, and we denote it by rt. The

instantaneous forward rate for maturity τ is the limit of f
(τ−∆τ,τ)
t when ∆τ goes to zero, and we

denote it by f
(τ)
t . We sometimes refer to f

(τ)
t simply as the forward rate for maturity τ .

We treat the short rate rt as exogenous, and assume that it follows the process

drt = κr(r̄t − rt)dt+ σrdBr,t, (3)

where

dr̄t = κr̄(r̄ − r̄t)dt+ σr̄dBr̄,t, (4)

(κr, σr, r̄, κr̄, σr̄) are positive constants, and (Br,t, Br̄,t) are Brownian motions that are independent

of each other. The short rate rt reverts to a target r̄t, which is itself mean-reverting. The assumption

that the diffusion coefficients (σr, σr̄) are positive is without loss of generality since we can switch

the signs of (Br,t, Br̄,t). We refer to r̄t as the “target short rate.” To emphasize the distinction with

rt, we sometimes refer to the latter as the “current short rate.” Shocks to r̄t can be interpreted as

policy announcements by the central bank that provide forward guidance on the future path of the

short rate. The process (3) and (4) for the short rate has been used in the term-structure literature

(e.g., Chen (1996), Balduzzi, Das, and Foresi (1998)) and is known as a stochastic-mean process.2

2Although we refer to r̄t as the “target short rate,” this should be interpreted as the central banks intermediate-
term policy target (e.g., at a 1- to 2-year horizon) and not as the current operating target for the short rate (e.g.,
the current target for the federal funds rate set by the FOMC).

6



Bonds are issued by the government and are traded by arbitrageurs and other investors. We

consolidate the central bank and the fiscal authority, so that only the net supply coming out of

the two institutions matters. This means, for example, that a QE policy in which the central bank

expands the size of its balance sheet, issuing interest-bearing reserves (i.e., overnight government

debt) to purchase long-term government bonds, is equivalent to direct reduction in the average

maturity of government debt issued by the fiscal authority. For simplicity, we treat the net supply

coming out of the government as exogenous and price-inelastic. We do the same for the demand of

investors other than arbitrageurs, and model explicitly only the arbitrageurs. Hence, the relevant

supply in our model is that held by arbitrageurs, and reflects the combined effects of central bank

purchases, issuance by the fiscal authority, and demand by other investors in the economy.

We assume that arbitrageurs choose a bond portfolio to trade off the instantaneous mean and

variance of changes in wealth. Denoting their time-t wealth by Wt and their dollar investment in

the bond with maturity τ by x
(τ)
t , their budget constraint is

dWt =

∫ T

0
x
(τ)
t

dP
(τ)
t

P
(τ)
t

dτ +

(

Wt −

∫ T

0
x
(τ)
t dτ

)

rtdt. (5)

The first term in (5) is the arbitrageurs’ return from investing in bonds, and the second term is

their return from investing their remaining wealth in the short rate. The arbitrageurs’ optimization

problem is

max
{x

(τ)
t }τ∈(0,T ]

[

Et(dWt)−
a

2
V art(dWt)

]

, (6)

where a is a risk-aversion coefficient.

We model the supply of bonds in a symmetric fashion to the short rate, so to be able to capture

forward guidance on bond supply. Specifically, we assume that the net supply coming out of the

central bank, the fiscal authority, and the other investors is described by a one-factor model: the

dollar value of the bond with maturity τ supplied to arbitrageurs at time t is

s
(τ)
t = ζ(τ) + θ(τ)βt, (7)

where ζ(τ) and θ(τ) are deterministic functions of τ , and βt is a stochastic supply factor. Intuitively,

it may be useful to think of βt as proportional to the amount of ten-year bond equivalents, meaning

duration-adjusted dollars of long-term debt. See Greenwood, Hanson, Rudolph, and Summers

(2015) for a calculation along these lines for US government debt.
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The factor βt follows the process

dβt = κβ(β̄t − βt)dt+ σβdBβ,t, (8)

where

dβ̄t = −κβ̄β̄tdt+ σβ̄dBβ̄,t, (9)

(κβ , σβ, κβ̄ , σβ̄) are positive constants, and (Bβ,t, Bβ̄,t) are Brownian motions that are independent

of each other and of (Br,t, Br̄,t). The process (8) and (9) is a stochastic-mean process, analogous

to that followed by the short rate rt. The assumption that the diffusion coefficients (σβ , σβ̄) are

positive is without loss of generality since we can switch the signs of (Bβ,t, Bβ̄,t). We refer to β̄t

as the target supply. To emphasize the distinction with βt, we sometimes refer to the latter as the

current supply. Shocks to β̄t can be interpreted as policy announcements by the central bank that

provide forward guidance on future purchases or sales of bonds, which in our model affect bond

yields.

Since the supply factor βt has mean zero, the function ζ(τ) measures the average supply for

maturity τ . The function θ(τ) measures the sensitivity of that supply to βt. We assume that θ(τ)

has the following properties.

Assumption 1. The function θ(τ) satisfies:

(i)
∫ T
0 θ(τ)dτ ≥ 0.

(ii) There exists τ∗ ∈ [0, T ) such that θ(τ) < 0 for τ < τ∗ and θ(τ) > 0 for τ > τ∗.

Part (i) of Assumption 1 requires that an increase in βt does not decrease the total dollar value

of bonds supplied to arbitrageurs. This is without loss of generality since we can switch the sign

of βt. Part (ii) of Assumption 1 allows for the possibility that the supply for some maturities

decreases when βt increases, even though the total supply does not decrease. The maturities for

which supply can decrease are restricted to be at the short end of the yield curve. As we show in

Section 3 below, Parts (i) and (ii) together ensure that an increase in βt makes the overall portfolio

that arbitrageurs hold in equilibrium more sensitive to movements in the short rate.

3 Equilibrium Yield Curve

Our model has four risk factors: the current short rate rt, the target short rate r̄t, the current

supply βt, and the target supply β̄t. We next examine how shocks to these factors influence the
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bond prices P
(τ)
t that are endogenously determined in equilibrium. We solve for equilibrium in two

steps: first solve the arbitrageurs’ optimization problem for equilibrium bond prices of a conjectured

form, and second use market clearing to verify the conjectured form of prices. We conjecture that

equilibrium spot rates are affine functions of the risk factors. Bond prices thus take the form

P
(τ)
t = e−[Ar(τ)rt+Ar̄(τ)r̄t+Aβ(τ)βt+Aβ̄(τ)β̄t+C(τ)] (10)

for five functions Ar(τ), Ar̄(τ), Aβ(τ), Aβ̄(τ), and C(τ) that depend on maturity τ . The functions

Ar(τ), Ar̄(τ), Aβ(τ), and Aβ̄(τ) characterize the sensitivity of bond prices to the current short rate

rt, the target short rate r̄t, the current supply βt, and the target supply β̄t, respectively. Sensitivity

to factor i = r, r̄, β, β̄ is defined as the percentage price drop per unit of factor increase.

Substituting (10) into (1) and (2), we can write spot rates and instantaneous forward rates as

y
(τ)
t =

Ar(τ)rt +Ar̄(τ)r̄t +Aβ(τ)βt +Aβ̄(τ)β̄t + C(τ)

τ
, (11)

f
(τ)
t = A′

r(τ)rt +A′
r̄(τ)r̄t +A′

β(τ)βt +A′
β̄(τ)β̄t + C ′(τ), (12)

respectively. Thus, the sensitivity of spot rates to factor i = r, r̄, β, β̄ is characterized by the

function Ai(τ)
τ , and that of instantaneous forward rates by the function A′

i(τ).

Applying Ito’s Lemma to (10) and using the dynamics of rt in (3), r̄t in (4), βt in (8), and β̄t

in (9), we find that the instantaneous return of the bond with maturity τ is

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt−Ar(τ)σrdBr,t −Ar̄(τ)σr̄dBr̄,t −Aβ(τ)σβdBβ,t −Aβ̄(τ)σβ̄dBβ̄,t, (13)

where

µ
(τ)
t ≡A′

r(τ)rt +A′
r̄(τ)r̄t +A′

β(τ)βt +A′
β̄(τ)β̄t + C ′(τ)

+Ar(τ)κr(rt − r̄t) +Ar̄(τ)κr̄(r̄t − r̄) +Aβ(τ)κβ(βt − β̄t) +Aβ̄(τ)κβ̄ β̄t

+
1

2
Ar(τ)

2σ2
r +

1

2
Ar̄(τ)

2σ2
r̄ +

1

2
Aβ(τ)

2σ2
β +

1

2
Aβ̄(τ)

2σ2
β̄ (14)

denotes the instantaneous expected return. Substituting bond returns (13) into the arbitrageurs’

budget constraint (5), we can solve the arbitrageurs’ optimization problem (6).
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Lemma 1. The arbitrageurs’ first-order condition is

µ
(τ)
t − rt = Ar(τ)λr,t +Ar̄(τ)λr̄,t +Aβ(τ)λβ,t +Aβ̄(τ)λβ̄,t, (15)

where for i = r, r̄, β, β̄,

λi,t ≡ aσ2
i

∫ T

0
x
(τ)
t Ai(τ)dτ. (16)

According to (15), a bond’s instantaneous expected return in excess of the short rate, µ
(τ)
t −rt, is

a linear function of the bond’s sensitivities Ai(τ) to the factors i = r, r̄, β, β̄. The coefficients λi,t of

the linear function are the prices of risk associated to the factors: they measure the expected excess

return per unit of sensitivity to each factor. Although we derive (15) from the optimization problem

of arbitrageurs with mean-variance preferences, this equation is a more general consequence of the

absence of arbitrage: the expected excess return per unit of factor sensitivity must be the same for

all bonds (i.e., independent of τ), otherwise it would be possible to construct arbitrage portfolios.

Absence of arbitrage imposes essentially no restrictions on the prices of risk, and in particular

on how they vary over time t and how they depend on bond supply. We determine these prices

from market clearing. Equation (16) shows that the price of risk λi,t for factor i = r, r̄, β, β̄ at

time t depends on the overall sensitivity
∫ T
0 x

(τ)
t Ai(τ)dτ of arbitrageurs’ portfolio to that factor.

Intuitively, if arbitrageurs are highly exposed to a factor, they require that any asset they hold

yields high expected return per unit of factor sensitivity. The portfolio that arbitrageurs hold in

equilibrium is determined from the market-clearing condition

x
(τ)
t = s

(τ)
t , (17)

which equates the arbitrageurs’ dollar investment x
(τ)
t in the bond with maturity τ to the bond’s

dollar supply s
(τ)
t . Substituting µ

(τ)
t and x

(τ)
t from (7), (14) and (17) into (15), we find an affine

equation in rt, r̄t, βt, and β̄t. Setting linear terms in rt, r̄t, βt, and β̄t to zero yields four ordinary

differential equations (ODEs) in Ar(τ), Ar̄(τ), Aβ(τ), and Aβ̄(τ) respectively. Setting constant

terms to zero yields an additional ODE in C(τ). We solve the five ODEs in Theorem 1.
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Theorem 1. The functions Ar(τ), Ar̄(τ), Aβ(τ), and Aβ̄(τ) are given by

Ar(τ) =
1− e−κrτ

κr
, (18)

Ar̄(τ) =κr

∫ τ

0
Ar(τ

′)e−κr̄(τ−τ ′)dτ ′ =
κr̄(1− e−κrτ )− κr(1− e−κr̄τ )

κr̄(κr̄ − κr)
, (19)

Aβ(τ) =Z1

(

γ2
γ1 − γ2

e−γ1τ −
γ1

γ1 − γ2
e−γ2τ + 1

)

+ Z2

(

γ2 − κr
γ1 − γ2

e−γ1τ −
γ1 − κr
γ1 − γ2

e−γ2τ + e−κrτ

)

+ Z3

(

γ2 − κr̄
γ1 − γ2

e−γ1τ −
γ1 − κr̄
γ1 − γ2

e−γ2τ + e−κr̄τ

)

, (20)

Aβ̄(τ) =κβ

∫ τ

0
Aβ(τ

′)e−κβ̄(τ−τ ′)dτ ′, (21)

respectively, where

Z1 ≡
κβ̄a

(

σ2
rIr
κr

+
σ2
r̄Ir̄
κr̄

)

κβ̄κβ − κβ̄aσ
2
βIβ − κβaσ

2
β̄
Iβ̄

, (22)

Z2 ≡
(κr − κβ̄)a

(

σ2
rIr
κr

+ σ2
r̄Ir̄

κr̄−κr

)

κ2r − κr(κβ̄ + κβ − aσ2
βIβ) + κβ̄κβ − κβ̄aσ

2
βIβ − κβaσ

2
β̄
Iβ̄

, (23)

Z3 ≡

κr(κβ̄−κr̄)

κr̄(κr̄−κr)
aσ2

r̄Ir̄

κ2r̄ − κr̄(κβ̄ + κβ − aσ2
βIβ) + κβ̄κβ − κβ̄aσ

2
βIβ − κβaσ

2
β̄
Iβ̄

, (24)

Ir ≡

∫ T

0
Ar(τ)θ(τ)dτ, (25)

Ir̄ ≡

∫ T

0
Ar̄(τ)θ(τ)dτ, (26)

(γ1, γ2) are the solutions of the quadratic equation

γ2 − γ(κβ̄ + κβ − aσ2
βIβ) + κβ̄κβ − κβ̄aσ

2
βIβ − κβaσ

2
β̄Iβ̄ = 0, (27)
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and (Iβ, Iβ̄) solve the system of equations

Iβ =

∫ T

0
Aβ(τ)θ(τ)dτ, (28)

Iβ̄ =

∫ T

0
Aβ̄(τ)θ(τ)dτ, (29)

in which the right-hand side is a function of (Iβ, Iβ̄) through (20)-(27). A solution to the system

of (28) and (29) exists if a is below a threshold ā > 0. The function C(τ) is given by (A.16) in

Appendix A.

As in Greenwood and Vayanos (2014), an equilibrium with affine spot rates may fail to exist,

and when it exists there can be multiplicity. Equilibrium exists if the arbitrageurs’ risk-aversion

coefficient a is below a threshold ā > 0. We focus on that case, and select the equilibrium that

corresponds to the smallest value of Iβ . When a converges to zero, that equilibrium converges to

the unique equilibrium that exists for a = 0.

4 Shocks to the Yield Curve

In this section we examine how shocks to the four risk factors r, r̄, β, β̄ affect the equilibrium yield

curve. We start with a numerical example that illustrates the main results. We next return to the

analysis of the general model, and provide more complete characterizations and intuition.

4.1 Numerical Example

Table 1 summarizes the parameters used in our baseline numerical example. While we attempt

to choose realistic values for the parameters, the example’s main purpose is to illustrate general

properties of the effects of the shocks rather than to provide exact quantitative estimates.

12



Table 1: Parameters for baseline numerical example

Parameter Value

κr: Rate at which short rate rt reverts to target short rate r̄t 1.3

σr: Volatility of shocks to short rate rt 1.65%

κr̄: Rate at which target short rate r̄t reverts to long-run mean 0.2

σr̄: Volatility of shocks to target short rate r̄t 2.15%

κβ : Rate at which supply factor βt reverts to target supply β̄t 2.5

σβ: Volatility of shocks to supply factor βt 0.18

κβ̄ : Rate at which target supply β̄t reverts to long-run mean 0.25

σβ̄: Volatility of shocks to target supply β̄t 0.18

T : Maximum bond maturity 20

a: Arbitrageur risk aversion 1.65

We choose values for κr, σr, κr̄, and σr̄ to match four time-series moments of the short rate.

For the purposes of this exercise we identify the short rate with the one-year nominal yield,

and use monthly Gurkaynak, Sack, and Wright (2007) data from June 1961 to September 2015.

We match the variance (
√

Var(rt) = 3.33%), the one-month autocorrelation (Corr(rt, rt−1/12) =

0.99), the one-year autocorrelation (Corr(rt, rt−1) = 0.86), and the three-year autocorrelation

(Corr(rt, rt−3) = 0.59). This yields κr = 1.3, σr = 1.65%, κr̄ = 0.2, and σr̄ = 2.15%. Under

these values, 90% of the total variance of the short rate is driven by persistent shocks to the target

short rate.3 The half-life of the shocks to the target short rate is 3.46 years (=log(2)/κr̄) whereas

the half-life of the shocks to the current short rate is only 0.53 years (=log(2)/κr).

We choose the values of the remaining parameters to capture aspects of the Fed’s QE program.

We assume that the θ(τ) function (which characterizes the sensitivity of the dollar supply of the

bond with maturity τ to the supply factor βt) satisfies
∫ T
0 θ(τ)dτ = 0. Under this assumption,

changes in βt do not alter the total value of bonds that arbitrageurs hold in equilibrium, but affect

only the duration of their portfolio. For simplicity, we assume that θ(τ) depends linearly on τ .

This yields the specification

θ(τ) = θ0

(

1−
2τ

T

)

.

We normalize θ0 to one, which is without loss of generality because only the product θ(τ)βt matters

in the definition of bond supply.

We choose values for κβ and κβ̄ to match plausible market expectations about the persistence

of the Fed’s balance-sheet operations. We assume that the Fed’s initial announcement of large scale

3The variance of the short rate is Var(rt) =
σ2

r

2κr
+

κrσ
2

r̄

2κr̄(κr+κr̄)
. The second term in this expression corresponds to

the part of the variance that is driven by shocks to the target short rate.
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asset purchases (LSAP) in 2008 and 2009 led market participants to expect a large reduction in

bond supply over the next twelve months and a gradual increase in supply thereafter. Accordingly,

we choose κβ and κβ̄ so that the change in the expected supply factor Et(βt+τ ) at time t + τ

following a shock to target supply β̄t at time t is maximum after one year (τ = 1) and decays to

50% of the maximum after the next three years (τ = 4). This yields κβ = 2.5 and κβ̄ = 0.25. In

Section 4.5 we examine the sensitivity of our results to a smaller value of κβ̄ , under which the effect

of a β̄t-shock on expected supply is maximum after a period longer than one year.

We assume that a unit shock to β̄t corresponds to the announcement of a QE program that will

reduce bond supply by $3 trillion of ten-year bond equivalents. This is without loss of generality

because it amounts to a re-normalization of the monetary units in which supply is measured. Figure

2 plots the change in the expected supply factor Et(βt+τ ) at time t + τ following a unit shock to

β̄t at time t. This change, which we denote by ∆β̄Et(βt+τ ), is a hump-shaped function of τ under

any parameter values. Indeed, the effect of the β̄t-shock on Et(βt+τ ) is small for small τ because

the shock does not affect βt, increases with τ as Et(βt+τ ) catches up with the new value of β̄t, and

decreases again to zero because β̄t mean-reverts. Under our chosen values for κβ and κβ̄ , the hump

occurs after one year, and the function reaches half of its maximum value after the next three years.

The change ∆r̄Et(rt+τ ) in the expected short rate Et(rt+τ ) following a unit shock to r̄t is

similarly hump-shaped. Under our chosen values for κr and κr̄, the hump occurs after 1.7 years.

This is because we assume that supply shocks are less persistent than shocks to the short rate.

The mean-reversion parameter for supply shocks is larger than for short-rate shocks both when

comparing shocks to current supply βt and the current short rate rt (κβ > κr), and when comparing

shocks to target supply β̄t and the target short rate r̄t (κβ̄ > κr̄).

We set σβ = σβ̄ = 0.18. Under these values, the volatility
√

Var(βt) of the supply factor is 0.25.

We can compare this quantity to the change ∆β̄Et(βt+τ ) in the expected supply factor following

a unit shock to β̄t. This change is 0.75 after one year (∆β̄Et(βt+1) = 0.75), which is three times

the standard deviation of βt. Thus, a unit shock to β̄t is a rare and large shock to expected future

supply, consistent with it being a QE program undertaken in a crisis.

Our final parameter is the arbitrageurs’ risk-aversion coefficient a, and we choose its value to

match the price effects of supply shocks. As noted by Greenwood, Hanson, Rudolph, and Summers

(2015), the Fed’s combined QE policies from late 2008 to mid-2014 cumulatively reduced the ten-

year bond equivalents available to investors by roughly $3 trillion. Following the meta-analysis

of studies examining the impact of QE announcements in Wiliams (2014), we assume that an
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Figure 2: Model-implied path of QE in ten-year bond equivalents

announced purchase of $500 billion ten-year bond equivalents reduces ten-year yields by 25 bps.

This suggests a total price impact for all QE announcements of 1.50%. Therefore, the value of a

must be such that Aβ̄(10)/10 = 1.50%. This yields a = 1.65.4

Figure 3 plots the effects of shocks to the four risk factors r, r̄, β, β̄ on the equilibrium yield

curve and forward-rate curve. There are four plots, each describing the effect that a unit shock to

one of the factors has on the yield and forward-rate curves, holding the remaining factors constant.

Recall from (11) and (12) that the effect of a unit shock to factor i = r, r̄, β, β̄ on the yield for

maturity τ is Ai(τ)
τ , and on the forward rate for that maturity is A′

i(τ). Plotting these functions

reveals the “footprint” that shocks to factor i leave on the yield and forward-rate curves.

4In principle, one could use the simulated method of moments to estimate the parameters of our model. The
parameters that govern the short rate process (κr, σr, κr̄, σr̄) could be identified as above by matching time-series
moments of short rates. The parameters that govern the bond supply process (κβ , σβ, κβ̄, σβ̄) and arbitrageur risk
aversion (a) could be identified by matching time-series moments of long-term bond yields of various maturities and
the excess returns on long-term bonds. We do not pursue this approach because the supply and demand shocks
that have driven bond risk premia over the past decades may have been of a different nature from the supply shocks
generated by the Fed’s QE policies since 2008.
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Figure 3: The effects of a unit shock to each of the four risk factors r, r̄, β, β̄
on the equilibrium yield curve and forward-rate curve. Panel (a) plots a shock
to the current short rate rt, Panel (b) a shock to the target short rate r̄t, Panel (c) a
shock to current supply βt, and Panel (d) a shock to target supply β̄t. For each factor

i = r, r̄, β, β̄, the blue solid line represents the effect Ai(τ)
τ

on the yield curve and the
green dashed line represents the effect A′

i(τ) on the forward-rate curve.

We make three observations regarding Figure 3. First, an increase in any of the factors raises

all yields and forward rates. Thus, yields and forward rates for any maturity move up in response

to increases in the current and in the target short rate. They also move up in response to increases

in current and in target supply.

The second observation is that the effect of shocks to factors other than the current short rate

is hump-shaped with maturity. Figure 3 thus suggests that policy announcements by the central

bank that provide forward guidance on the short rate or on balance-sheet operations should have

hump-shaped effects on the yield and forward-rate curves. This is consistent with the evidence on

the Taper Tantrum, presented in the Introduction.
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The third observation suggests a way to differentiate between the two types of forward guidance.

The hump for shocks to target supply β̄t occurs at a much longer maturity than for shocks to the

target short rate r̄t: 11.5 years compared to 3.3 years for the yield curve, and 6.4 years compared to

1.7 years for the forward-rate curve. This result cannot be attributed to supply shocks being more

persistent than shocks to the short rate: in our baseline numerical example they are actually less

persistent. Figure 3 thus suggests that hump-shaped effects of forward guidance are more likely

to concern guidance on supply rather than on the short rate when the hump is located at longer

maturities.

Figure 3 accords nicely with the empirical findings of Swanson (2015), who decomposes the

effect of FOMC announcements from 2009-2015 into a component that reflects news about the

future path of short rates (forward guidance) and a component that reflects news about future

asset purchases (QE). Swanson (2015) finds that both QE-related and forward-guidance-related

announcements have hump-shaped effects on the yield curve. Moreover, QE announcements (β̄t-

shocks in our model) have their largest impact at around the ten-year maturity, while forward-

guidance announcements (r̄t-shocks) have their largest impact at two to five years.

In the remainder of this section we show that the these three observations hold more generally,

and we explain the intuition behind them. Section 4.2 analyzes shocks to the current and the

target short rate. Section 4.2 analyzes shocks to current and target supply. Section 4.4 compares

the footprints left by shocks to target supply and shocks to the target short rate. Section 4.5

examines how the effects of the shocks depend on various parameters of the model.

4.2 Shocks to the Current and the Target Short Rate

Shocks to the current and the target short rate do not affect bond risk premia in our model. This

is because premia depend only on the positions that arbitrageurs hold in equilibrium, and these

depend only on the supply factor βt. Since these shocks do not affect risk premia, their effects on

yields and forward rates are only through expected future short rates, and are fully consistent with

the expectations hypothesis. That is, the changes in forward rates caused by these shocks are equal

to the changes in expected future short rates.

Proposition 1. The expectations hypothesis holds for shocks to the current and the target short

rate.

• Consider a unit shock to the current short rate rt at time t, holding constant the remaining

risk factors (r̄t, βt, β̄t). The change A′
r(τ) in the forward rate for maturity τ is equal to the

change ∆rEt(rt+τ ) in the expected short rate at time t+ τ .
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• Consider a unit shock to the target short rate r̄t at time t, holding constant the remaining

risk factors (rt, βt, β̄t). The change A′
r̄(τ) in the forward rate for maturity τ is equal to the

change ∆r̄Et(rt+τ ) in the expected short rate at time t+ τ .

Using Proposition 1, we next determine how the effects of shocks to the current and the target

short rate depend on maturity. The effect of shocks to the current short rate rt decreases with

maturity, and is hence strongest for short maturities. Indeed, because rt mean-reverts, the effect

of shocks to rt on the expected future short rate Et(rt+τ ) is largest in the near future, i.e., for

small τ . The same applies to the forward rate because of Proposition 1. On the other hand, the

effect of shocks to the target short rate r̄t is hump-shaped with maturity, and is hence strongest

for intermediate maturities. Indeed, the effect of shocks to r̄t on the expected future short rate

Et(rt+τ ) is small for short maturities because the shocks do not affect rt, increases with maturity as

Et(rt+τ ) catches up with the new value of r̄t, and decreases again to zero because r̄t mean-reverts.

These results hold both for the yield curve and the forward-rate curve, and are consistent with our

baseline numerical example.

Proposition 2. The following results hold for both the yield curve and the forward-rate curve:

• An increase in the short rate rt moves the curve upwards. The effect is decreasing with

maturity, is equal to one for τ = 0, and to zero for τ → ∞.

• An increase in the target short rate rt moves the curve upwards. The effect is hump-shaped

with maturity, and is equal to zero for τ = 0 and t → ∞.

4.3 Shocks to Current and Target Supply

Shocks to current and target supply affect yields and forward rates only through bond risk premia.

Proposition 3 expresses the effects of the shocks on a bond’s price as an integral of risk premia over

the life of the bond.

Proposition 3. The effects of supply shocks can be expressed as follows:

• Consider a unit shock to current supply βt at time t, holding constant the remaining risk

factors (rt, r̄t, β̄t). The time-t instantaneous expected return of the bond with maturity τ

changes by

URP (τ) ≡ aσ2
rAr(τ)Ir + aσ2

r̄Ar̄(τ)Ir̄ + aσ2
βAβ(τ)Iβ + aσ2

β̄Aβ̄(τ)Iβ̄ . (30)
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The bond’s price change in percentage terms is

Aβ(τ) =

∫ τ

0
URP (τ − τ ′)∆βEt(βt+τ ′)dτ

′, (31)

where ∆βEt(βt+τ ′) is the change in the expected supply factor Et(βt+τ ′) at time t+ τ ′.

• Consider a unit shock to target supply β̄t at time t, holding constant the remaining risk factors

(rt, r̄t, βt). The percentage price change of the bond with maturity τ is

Aβ̄(τ) =

∫ τ

0
URP (τ − τ ′)∆β̄Et(βt+τ ′)dτ

′, (32)

where ∆β̄Et(βt+τ ′) is the change in the expected supply factor Et(βt+τ ′) at time t+ τ ′.

A unit shock in current supply changes the instantaneous expected return of the bond with

maturity τ by a quantity that we denote URP (τ). This acronym stands for “Unit Risk Premium,”

as it is a required compensation for risk resulting from a unit increase in supply. The unit risk

premium for the bond with maturity τ is the product of the arbitrageurs’ risk-aversion coefficient

a times the change in the bond’s instantaneous covariance with the arbitrageurs’ portfolio. The

covariance changes in response to the supply shock because arbitrageurs change their portfolio in

equilibrium. The unit risk premium URP (τ) is small for bonds with short maturity τ because

these bonds have small price sensitivity to the risk factors. As maturity increases, price sensitivity

increases and so does URP (τ).

The impact of a shock to current or target supply on a bond’s price derives from its effect on risk

premia over the life of a bond. If, for example, the risk premia increase, then the price decreases.

Equations (31) and (32) make this relationship precise by expressing the effect of a unit supply

shock on the percentage price of a bond with maturity τ as a integral of unit risk premia over the

bond’s life, i.e., from t to t + τ . The risk premium corresponding to time t + τ ′, when the bond

reaches maturity τ − τ ′, is proportional to the unit risk premium URP (τ − τ ′). Since URP (τ − τ ′)

corresponds to a unit increase in the supply factor at t + τ ′, we need to multiply it by the actual

increase in the expected supply factor. This is ∆βEt(βt+τ ′) in the case of a shock to current supply

and ∆β̄Et(βt+τ ′) in the case of a shock to target supply.

Using Proposition 3, we next characterize more fully the effects of shocks to current and target

supply: the sign of the effects and how they depend on maturity. As for our analysis on short

rates, the results are the same whether we are looking at the yield curve or the forward-rate curve.

For the formal propositions that we show in the rest of this section, we assume σβ̄ = 0, hence
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interpreting shocks to β̄t as unanticipated and one-off. However, these formal results are consistent

with our baseline numerical example as well as other examples that we have explored, all of which

assume σβ̄ > 0.

As in Greenwood and Vayanos (2014), an increase in current supply βt moves the yield curve

upwards. Moreover, this occurs even though Assumption 1 allows for the possibility that the supply

of short-term bonds can decrease. Yields and supply for a given maturity can move in opposite

directions because—as in Vayanos and Vila (2009) and Greenwood and Vayanos (2014)—supply

effects do not operate locally, but globally through changes in the prices of risk. Equations (16)

and (17) show that the prices of risk, λi,t for i = r, r̄, β, β̄, depend on the supply of debt adjusted

by measures of duration (the price sensitivities to the factors). An increase in the supply factor

raises duration-adjusted supply and hence the prices of risk. Risk premia also increase, and bond

prices decrease from Proposition 3. As with βt, an increase in target supply β̄t in our model moves

the yield curve upwards.

We next examine how supply effects depend on maturity. Equation (31) implies that the effect

of a unit shock to current supply βt on the yield of a τ -year bond is

Aβ(τ)

τ
=

∫ τ
0 URP (τ − τ ′)×∆βEt(βt+τ ′)dτ

′

τ
. (33)

This is an average of risk premia over the bond’s life. The premium corresponding to time t+ τ ′,

when the bond reaches maturity τ − τ ′, is the product of the unit risk premium URP (τ − τ ′)

corresponding to that maturity, times the increase ∆βEt(βt+τ ′) in the expected supply factor at

time t+ τ ′.

Supply shocks have small effects on short-maturity bonds because these bonds carry small

risk premia. This can be seen formally from (33): for small maturity τ the unit risk premia

URP (τ − τ ′) are small, and so is the average in (33). As maturity τ increases, the average in

(33) increases because unit risk premia increase. A countervailing effect, however, is that because

shocks to βt mean-revert, unit risk premia corresponding to distant times t+ τ ′ are multiplied by

the increasingly smaller quantity ∆βEt(βt+τ ′). This pushes the average down. The countervailing

effect is not present in the extreme case where there is no mean-reversion (κβ = 0). In that case,

the effect of shocks to βt is increasing with τ , i.e., is strongest at the long end of the term structure.

In the other extreme case where mean-reversion is high, only the terms for times t+ τ ′ close to t

matter in the average. Because unit risk premia increase less than linearly with τ (in particular,

changes to rt or r̄t have a vanishing effect on spot rates for long maturities) dividing by τ makes the
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average converge to zero. The overall effect is hump-shaped and hence strongest for intermediate

maturities. The same result holds for shocks to β̄t. The hump-shaped effects are consistent with

our baseline numerical example.

Proposition 4. Suppose that σβ̄ = 0. An increase in current supply βt or target supply β̄t moves

both the term structure of spot rates and that of instantaneous forward rates upwards. The effect

is equal to zero for τ = 0. For large enough values of κβ, the effect is hump-shaped with maturity

and is equal to zero for τ → ∞. Otherwise, the effect is increasing with maturity.

To illustrate the effects of supply, we plot in Figure 4 the functions inside the integrals (31)

and (32) in the context of our baseline numerical example. Panel (a) confirms that the unit risk

premium URP (τ) is equal to zero for τ = 0 and increases with τ . Panels (b)-(d) plot URP (τ − τ ′),

∆βEt(βt+τ ′), and ∆β̄Et(βt+τ ′) as a function of τ ′ ∈ [0, τ ] for three different bonds: a two-year bond

(τ = 2) in Panel (b), a ten-year bond (τ = 10) in Panel (c), and a twenty-year bond (τ = 20) in

Panel (d). The function ∆βEt(βt+τ ′) is decreasing with τ ′: because βt mean-reverts, the effect of

shocks to βt on the expected future supply factor Et(βt+τ ′) is largest in the near future, i.e., for

small τ ′. The function ∆β̄Et(βt+τ ′) is hump-shaped, as explained in Section 4.1.

In the case of the two-year bond, unit risk premia are small, and so are the average values of

URP (τ − τ ′)×∆βEt(βt+τ ′) and URP (τ − τ ′)×∆β̄Et(βt+τ ′) over the interval [0, 2]. Hence, supply

effects are small. In the case of the ten-year bond, unit risk premia are larger and so are supply

effects. In the case of the twenty-year bond, unit risk premia are even larger, but the average values

of URP (τ − τ ′)×∆βEt(βt+τ ′) and URP (τ − τ ′)×∆β̄Et(βt+τ ′) over the interval [0, 20] are smaller

because of the declines in ∆βEt(βt+τ ′), and ∆β̄Et(βt+τ ′). Hence supply effects are smaller, yielding

the hump shape. Note that the smaller supply effect on the yield of the twenty-year bond masks a

strong time-variation in expected return. The bond’s instantaneous expected return is high (and

higher than for the other bonds) in the short term, but the effect dies out in the longer term,

resulting in a smaller average.

4.4 Forward Guidance on Supply vs. the Short Rate

We next compare the effects of shocks to target supply β̄t and shocks to the target short rate r̄t.

Interpreting these shocks as forward guidance by the central bank, we are effectively examining

whether different types of forward guidance leave a different “footprint” on the yield and forward-

rate curves. For simplicity, we focus on the forward-rate curve for the rest of this section.

In our baseline numerical example, shocks to target supply β̄t have their maximum effect at a
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Figure 4: Decomposition of the effect of supply shocks. Panel (a) plots
the unit risk premium URP (τ). Panels (b)-(d) plot URP (τ − τ ′) (blue solid line),
∆βEt(βt+τ ′)dτ ′ (green dashed line), and ∆β̄Et(βt+τ ′)dτ ′ (red dotted line) as a func-
tion of τ ′ ∈ [0, τ ] for three different bonds: Panel (b) for a two-year bond (τ = 2),
Panel (c) for a ten-year bond (τ = 10), and Panel (d) for a twenty-year bond (τ = 20).

longer maturity than shocks to the target short rate r̄t. While this is the “typical” outcome in our

model, the result is not completely general: if the shocks to current and target supply mean-revert

very rapidly, the comparison can reverse. Proposition 5 derives sufficient conditions for β̄t-shocks

to have their maximum effect at a longer maturity than r̄t-shocks. The proposition compares the

location of the humps associated to two types of shocks, with the convention if the effect of a shock

is monotonically increasing with maturity then the hump is located at infinity.

Proposition 5. Suppose that σβ̄ = 0. If κr̄ ≥ κβ or κr̄ ≥ κβ̄ , then the hump on the forward rate

curve associated to shocks to β̄t is located at a strictly longer maturity than the hump associated to

shocks to r̄t.

Shocks to β̄t have their largest impact at longer maturities compared to shocks to r̄t under the

sufficient condition that the latter shocks do not mean-revert more slowly than the former shocks

(κr̄ ≥ κβ̄). Alternatively, r̄t-shocks can revert more slowly than β̄t-shocks, but then they must not
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mean-revert more slowly than βt-shocks (κr̄ ≥ κβ). Note that under either sufficient condition, the

hump associated to β̄t-shocks occurs at a strictly longer maturity than that associated to r̄t-shocks,

even though the sufficient conditions are weak inequalities. Our baseline numerical example shows

that the comparison between the two humps remains the same even when κβ and κβ̄ are both

significantly larger than κr̄. (For very large values, however, the comparison can reverse.) Thus,

the sufficient conditions in Proposition 5 are not tight, and the “typical” result is that shocks to

target supply have their maximum impact at longer maturities than shocks to the target short rate.

The intuition why shocks to future supply tend to have their largest impact at longer maturities

compared to shocks to the future short rate can be seen from (32). The impact of a β̄t-shock on

the forward rate for maturity τ is

A′
β̄(τ) =

∫ τ

0

∂URP (τ − τ ′)

∂τ
∆β̄Et(βt+τ ′)dτ

′, (34)

where (34) follows from (32) by differentiating with respect to τ and noting that URP (0) = 0. The

impact on the forward rate can be thought of as the impact on the percentage price of the bond

with maturity τ relative to the same effect for the bond with maturity τ − ∆τ . The bond with

maturity τ is impacted more heavily because for any given future time t+τ ′, the unit risk premium

URP (τ − τ ′) associated to that bond is larger than the corresponding premium URP (τ −∆τ − τ ′)

associated to the bond with maturity τ −∆τ . The impact on the forward rate hence involves the

derivative ∂URP (τ−τ ′)
∂τ , as (34) confirms. This derivative is multiplied by the increase ∆β̄Et(βt+τ ′)

in the expected supply factor at time t+ τ ′, and the product is integrated from zero to τ .

Compare next the shock’s impact on the forward rate for maturity τ and for maturity τ̂ > τ .

The derivative ∂URP (τ−τ ′)
∂τ that is present in the integral (34) for maturity τ is also present in

the integral for maturity τ̂ . But while in the former integral it corresponds to time t + τ ′ and is

multiplied by ∆β̄Et(βt+τ ′), in the latter integral it corresponds to the more distant time t+ τ̂−τ+τ ′

and is multiplied by ∆β̄Et(βt+τ̂−τ+τ ′). If τ̂ ≤ τβ̄, where t+ τβ̄ denotes the location of the hump of

∆β̄Et(βt+τ ′), then ∆β̄Et(βt+τ̂−τ+τ ′) > ∆β̄Et(βt+τ ′) for all τ
′ ∈ [0, τ ]. Therefore, the impact of a βt-

shock on the forward rate for maturity τ̂ is larger than for maturity τ , which means that the shock’s

maximum impact occurs at a maturity strictly longer than τβ̄. On the other hand, Proposition

1 implies that the maximum impact of a r̄t-shock occurs exactly at τr̄, where t + τr̄ denotes the

location of the hump of ∆r̄Et(rt+τ ′). Therefore, if the shocks to r̄t and β̄t are symmetric in their

persistence, then β̄t-shocks have their largest impact at longer maturities compared to r̄t-shocks.

We can also compare r̄t- and β̄t-shocks by focusing on the long end of the term structure rather
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than on the hump. Proposition 6 derives sufficient conditions for the effect of β̄t-shocks to decay

more slowly with maturity than that of r̄t-shocks. Under these conditions, β̄t-shocks impact the

long end of the term structure more than r̄t-shocks do.

Proposition 6. Suppose that σβ̄ = 0. If min{κr, κr̄} ≥ κβ̄, then the effect of shocks to β̄t on

the forward rate curve decays with maturity at a slower rate than the effect of shocks to r̄t. If

min{κr, κr̄} ≥ κβ, then the same comparison holds and is strict.

The sufficient conditions in Proposition 6 have a similar flavor to those in Proposition 5. As

with Proposition 5, the conditions are not tight. Our baseline numerical example illustrates this.

4.5 Comparative statics

Figure 5 examines how the effect of supply shocks depends on arbitrageur risk aversion. The figure

plots the effect of shocks to current supply βt and future supply β̄t on the forward-rate curve in

two numerical examples: our baseline one where the risk-aversion coefficient a is set to 1.65, and an

example where a is set to 2.25 (and all other parameters remain the same). When arbitrageurs are

more risk averse, they require a larger risk premium to accommodate supply shocks, and hence the

shocks have a larger impact on yields and forward rates. Furthermore, the hump for both βt- and β̄t-

shocks occurs at longer maturities. For example, the location of the hump that β̄t-shocks generate

on the forward-rate curve increases from 6.4 years in the baseline example where a = 1.65 to 9

years when a = 2.25. The hump occurs at a longer maturity because when arbitrageurs are more

risk averse the unit risk premium URP (τ) increases proportionately more for long-term bonds, i.e.,

becomes a more convex function of τ . This is because with more risk-averse arbitrageurs, supply

shocks have larger price effects, and the impact of these shocks on long-term bonds relative to

short-term bonds is larger than that of short-rate shocks. For example, the impact of rt-shocks is

characterized by the increasing function Ar(τ), while the impact of βt-shocks involves an integral

of that function.

Figure 6 examines how the effect of supply shocks depends on the shocks’ persistence. The

figure plots the effect of shocks to current and future supply on the forward-rate curve in two

numerical examples: our baseline one where the mean-reversion coefficient κβ̄ of β̄t-shocks is set

to 0.25, and one where κβ̄ is set to 0.2 and hence shocks are more persistent. When κβ̄ = 0.2, the

effect of a β̄t-shock on the expected supply factor Et(βt+τ ) at time t+ τ is maximum after 1.1 year

(τ = 1.1) and decays to 50% of the maximum after the next 3.9 years (τ = 5). When shocks are

more persistent, they have a larger impact on the yield and forward-rate curves. Furthermore, the

hump for both βt- and β̄t-shocks occurs at longer maturities. For example, the location of the hump
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Figure 5: Impact of supply shocks on the forward-rate curve under different
values of arbitrageur risk aversion a. The blue solid lines correspond to
our baseline numerical example where a = 1.65 and the green dashed lines
to an example where a = 2.25 and all other parameters remain the same.

that β̄t-shocks generate on the forward-rate curve increases from 6.4 years in the baseline example

where κβ̄ = 0.25 to 7.6 years when κβ̄ = 0.2. While the shift of the hump to longer maturities may

not be surprising in the case of β̄t-shocks, whose persistence increases, it may be more surprising

in the case of βt shocks, whose persistence does not change. The intuition for βt-shocks is that

higher persistence means that supply shocks have larger price effects, and this makes the unit risk

premium URP (τ) a more convex function of τ .

5 Reassessing QE and the Taper Tantrum

Table 2 summarizes the reaction of the US Treasury yield and forward-rate curves to major QE

announcements. The table shows the two-day change in zero-coupon Treasury yields and one-year
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Figure 6: Impact of supply shocks on the forward-rate curve under different
values of the shocks’ persistence. The blue solid lines correspond to our
baseline numerical example where the mean-reversion coefficient of shocks
to future supply is κβ̄ = 0.25 and the green dashed lines to an example

where κβ̄ = 0.2 and all other parameters remain the same.

forward rates around major policy announcements about the Fed’s QE operations. We use two-

day changes to allow for the possibility that market participants need time to digest news about

LSAP programs. However, we obtain qualitatively similar results if we restrict attention to one-day

changes. We obtain US Treasury yields and forward rates using the fitted nominal Treasury curve

estimated by Gurkaynak, Sack, and Wright (2007). We use GSW’s zero-coupon yields, and compute

one-year forward rates from those yields: f
(τ−1,τ)
t = τy

(τ)
t − (τ − 1)y

(τ−1)
t . The one-year forward

rates are close to the instantaneous forward rates estimated by GSW. We measure all variables in

percentage points.

Our set of QE-related announcement dates is drawn from Fawley and Neely (2013), who provide

a comprehensive list of FOMC policy announcements and speeches that contained major news
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about QE. We classify these events based on whether the announcement contained significant news

indicating that the Fed would be expanding or contracting its asset purchases. Many of these events

contain a mixture of news about future QE operations as well as the path of the short rate. For

example, the list includes the March 18, 2009 FOMC announcement discussed in the Introduction,

in which the Fed announced that it was expanding the scale of its long-term asset purchase program

from $600 billion to $1.75 trillion and that it intended to hold rates at the zero lower bound for

“an extended period.”

Table 2 shows the change in yields and forward rates around each announcement date. It also

shows yield and forward-rate changes aggregated across all expansionary and all contractionary

announcements. Figure 7 plots the latter aggregates. As the table and the figure show, both

expansionary and contractionary announcements had hump-shaped effects on both the yield and

the forward-rate curve. In the case of expansionary announcements, the hump in yields occurred

at the ten-year maturity. One-year yields dropped by 33 basis points (bps) on aggregate, two-year

yields by 52bps, three-year yields by 86bps, four-year yields by 121bps, five-year yields by 153bps,

seven-year yields by 195bps, ten-year yields by 211bps, fifteen-year yields by 179bps, and twenty-

year yields by 144bps. The hump in forward rates occurred at the seven-year maturity, with the

one-year forward rate seven years into the future dropping by 301bps. In the case of contractionary

announcements, the hump in yields occurred at the seven-year maturity and that in forward rates

at the five-year maturity.

What is the most natural interpretation of these changes? According to our model, the hump-

shaped impact on yields and forward rates can be explained either by forward guidance on the path

of future short rates or forward guidance on the path of future bond supply.

Forward guidance on short rates works through the expectations hypothesis. This means, in

particular, that following expansionary announcements, yields and forward rates dropped because

market participants revised downwards their expectations about future short rates. Moreover,

expectations dropped the most for short rates seven years into the future, with the aggregate

effect over all announcements being 301bps. That market participants revised so drastically their

expectations about the short rate seven years into the future, while expectations one to four years

out were revised much more modestly, seems unlikely.

Forward guidance on supply works through expected future risk premia. In contrast to forward

guidance on short rates, humps in the yield and forward-rate curves that are consistent with the

data could have been the results of changes in supply expectations concerning the near future.

Indeed, in our baseline numerical example, shocks to target supply have their largest effect at the

11.5-year maturity in the yield curve and the 6.4-year maturity in the forward-rate curve. Yet, these

shocks have their maximum effect on expectations about supply only one year into the future, with
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Figure 7: Changes in Yields and Forward Rates Surrounding QE Announce-
ment Dates.

the effect four years out being only half of the maximum.

Corroborating evidence on the relative role of supply and short-rate expectations in driving the

effects of QE comes from the work by Adrian, Crump, and Moench (2013). These authors construct

a methodology for decomposing yields and forward rates into an expectations and a term-premium
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component. Drawing on their data for the same announcement dates, Figure 8 plots the changes

in expected future short rates and in the term premia.5 As with the previous figures, we show the

results for both yields and forward rates. ACM’s estimates attribute almost all of the impact of

QE announcements to changes in term premia and almost none to changes in expected future short

rates.

6 Conclusion

In this paper, we build a model to analyze the impact of forward guidance on the yield curve.

Our model recognizes that in recent years forward guidance pertains not only to the future path of

short-term interest rates, but also to the future size of the central bank’s balance sheet.

We show that forward guidance on short-term interest rates is easy to interpret because it

works through the expectations hypothesis. If, for example, the market expectation of the short

rate three years from now declines by 100bps, this is reflected directly in a 100bps decline in the

instantaneous forward rate three years from now. However, when the central bank provides forward

guidance on supply, the effects are more subtle. In particular, yields and forward rates are impacted

at maturities much longer than the time by which supply shocks are expected to die out. Moreover,

while the effects of either type of forward guidance on the yield and forward-rate curves can be

hump-shaped, the humps associated to supply shocks typically occur at maturities longer than

those associated to short-rate shocks.

Using our model we re-examine the empirical evidence on QE announcements in the US. We

show that the cumulative effect of all expansionary announcements up to 2013 was hump-shaped

with a maximum effect at the ten-year maturity for the yield curve and the seven-year maturity

for the forward-rate curve. This evidence is hard to square with changing expectations about short

rates as the maximum change would have to concern short rates seven years into the future. On

the other hand, the evidence is more consistent with changing expectations about supply, as the

maximum change would have to be only one year into the future.

5The ACM model does not fit the GSW yields exactly. Thus, the two parts of the ACM curve do not perfectly
sum to the GSW curve.
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Figure 8: Changes in expected future short rates and in the term premia
surrounding QE announcement dates. EH refers to the expectations component
and TP to the term-premium component. The decomposition into EH and TP draws
on data from Adrian, Crump, and Moench (2013).
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Appendix

A Proofs of Theoretical Results

Proof of Lemma 1: Using (13), we can write (5) as

dWt =

(

Wtrt +

∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ

)

dt−

(
∫ T

0
x
(τ)
t Ar(τ)dτ

)

σrdBr,t

−

(
∫ T

0
x
(τ)
t Ar̄(τ)dτ

)

σr̄dBr̄,t −

(
∫ T

0
x
(τ)
t Aβ(τ)dτ

)

σβdBβ,t −

(
∫ T

0
x
(τ)
t Aβ̄(τ)dτ

)

σβ̄dBβ̄,t,

and (6) as

max
{x

(τ)
t }τ∈(0,T ]

[
∫ T

0
x
(τ)
t (µ

(τ)
t − rt)dτ −

aσ2
r

2

(
∫ T

0
x
(τ)
t Ar(τ)dτ

)2

−
aσ2

r̄

2

(
∫ T

0
x
(τ)
t Ar̄(τ)dτ

)2

−
aσ2

β

2

(
∫ T

0
x
(τ)
t Aβ(τ)dτ

)2

−
aσ2

β̄

2

(
∫ T

0
x
(τ)
t Aβ̄(τ)dτ

)2
]

.

(A.1)

Point-wise maximization of (A.1) yields (15).

Proof of Theorem 1: Substituting x
(τ)
t from (7) and (17) into (16), we find

λi,t = aσ2
i

∫ T

0
[ζ(τ) + θ(τ)βt]Ai(τ)dτ. (A.2)

Substituting µ
(τ)
t and λi,t from (14) and (A.2) into (15), we find an affine equation in (rt, r̄t, βt, β̄t).

Identifying terms in rt yields

κrAr(τ) +A′
r(τ)− 1 = 0, (A.3)

identifying terms in r̄t yields

−κrAr(τ) + κr̄Ar̄(τ) +A′
r̄(τ) = 0, (A.4)
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identifying terms in βt yields

κβAβ(τ) +A′
β(τ) = aσ2

rAr(τ)

∫ T

0
Ar(τ)θ(τ)dτ

+ aσ2
r̄Ar̄(τ)

∫ T

0
Ar̄(τ)θ(τ)dτ + aσ2

βAβ(τ)

∫ T

0
Aβ(τ)θ(τ)dτ + aσ2

β̄Aβ̄(τ)

∫ T

0
Aβ̄(τ)θ(τ)dτ,

(A.5)

identifying terms in β̄t yields

−κβAβ(τ) + κβ̄Aβ̄(τ) +A′
β̄(τ) = 0, (A.6)

and identifying constant terms yields

C ′(τ)− κr̄ r̄Ar̄(τ) +
σ2
r

2
Ar(τ)

2 +
σ2
r̄

2
Ar̄(τ)

2 +
σ2
β

2
Aβ(τ)

2 +
σ2
β̄

2
Aβ̄(τ)

2

= aσ2
rAr(τ)

∫ T

0
Ar(τ)ζ(τ)dτ + aσ2

r̄Ar̄(τ)

∫ T

0
Ar̄(τ)ζ(τ)dτ

+ aσ2
βAβ(τ)

∫ T

0
Aβ(τ)ζ(τ)dτ + aσ2

β̄Aβ̄(τ)

∫ T

0
Aβ̄(τ)ζ(τ)dτ. (A.7)

The ordinary differential equations (ODEs) (A.3)-(A.7) must be solved with the initial conditions

Ar(0) = Ar̄(0) = Aβ(0) = Aβ̄(0) = C(0) = 0. The solution to (A.3) with the initial condition

Ar(0) = 0 is (18). The solution to (A.4) with the initial condition Ar̄(0) = 0 is (19). The solution

to (A.6) with the initial condition Aβ̄(0) = 0 is (21). To solve (A.5), we write it as

κβAβ(τ) +A′
β(τ) = aσ2

rIrAr(τ) + aσ2
r̄Ir̄Ar̄(τ) + aσ2

βIβAβ(τ) + aσ2
β̄Iβ̄Aβ̄(τ), (A.8)

using (25), (26), (28), and (29). Differentiating with respect to τ , we find

κβA
′
β(τ) +A′′

β(τ) = aσ2
rIrA

′
r(τ) + aσ2

r̄Ir̄A
′
r̄(τ) + aσ2

βIβA
′
β(τ) + aσ2

β̄Iβ̄A
′
β̄(τ). (A.9)
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Multiplying (A.8) by κβ̄ , adding to (A.9), and using (18), (19), and (A.6), we find

(

κβ̄κβ − κβ̄aσ
2
βIβ − κβaσ

2
β̄Iβ̄

)

Aβ(τ) + (κβ̄ + κβ − aσ2
βIβ)A

′
β(τ) +A′′

β(τ)

= aσ2
rIr

(

κβ̄
κr

+
κr − κβ̄

κr
e−κrτ

)

+ aσ2
r̄Ir̄

(

κβ̄
κr̄

+
κr − κβ̄
κr̄ − κr

e−κrτ +
κr(κβ̄ − κr̄)

κr̄(κr̄ − κr)
e−κr̄τ

)

. (A.10)

Equation (A.10) is a second-order linear ODE with constant coefficients. Its solution has the form

Aβ(τ) = Γ1e
−γ1τ + Γ2e

−γ2τ + Âβ(τ), (A.11)

where (γ1, γ2) are the solutions of the quadratic equation (27), and Âβ(τ) is one solution to (A.10).

We look for Âβ(τ) of the form

Âβ(τ) = Z1 + Z2e
−κrτ + Z3e

−κr̄τ .

Substituting into (A.10), we find that (Z1, Z2, Z3) are given by (22)-(24), respectively. To determine

(Γ1,Γ2) we use the initial conditions. The initial condition Aβ(0) = 0 implies

Γ1 + Γ2 + Z1 + Z2 + Z3 = 0. (A.12)

The initial condition A′
β(0) = 0, which follows from (A.5) and Ar(0) = Aβ(0) = Aβ̄(0), implies

γ1Γ1 + γ2Γ2 + κrZ2 + κr̄Z3 = 0. (A.13)

Solving the linear system of (A.12) and (A.13) yields

Γ1 =
γ2Z1 + (γ2 − κr)Z2 + (γ2 − κr̄)Z3

γ1 − γ2
, (A.14)

Γ2 = −
γ1Z1 + (γ1 − κr)Z2 + (γ1 − κr̄)Z3

γ1 − γ2
. (A.15)

Substituting (Γ1,Γ2) from (A.14) and (A.15) into (A.11), we find (20).
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The solution to (A.7) is

C(τ) = Zr

∫ τ

0
Ar(τ

′)dτ ′ + Zr̄

∫ τ

0
Ar̄(τ

′)dτ ′ + Zβ

∫ τ

0
Aβ(τ

′)dτ ′ + Zβ̄

∫ τ

0
Aβ̄(τ

′)dτ ′

−
σ2
r

2

∫ τ

0
Ar(τ

′)2dτ ′ −
σ2
r̄

2

∫ τ

0
Ar̄(τ

′)2dτ ′ −
σ2
β

2

∫ τ

0
Aβ(τ

′)2dτ ′ −
σ2
β̄

2

∫ τ

0
Aβ̄(τ

′)2dτ ′,

(A.16)

where

Zr ≡ aσ2
r

∫ T

0
Ar(τ)ζ(τ)dτ,

Zr ≡ κr̄ r̄ + aσ2
r̄

∫ T

0
Ar̄(τ)ζ(τ)dτ,

Zβ ≡ aσ2
β

∫ T

0
Aβ(τ)ζ(τ)dτ,

Zβ̄ ≡ aσ2
β̄

∫ T

0
Aβ̄(τ)ζ(τ)dτ.

For a = 0, the solutions of (27) are (γ1, γ2) = (κβ , κβ̄), and the solution to the system of (28)

and (29) is (Iβ , Iβ̄) = (0, 0). The existence of a solution to (28) and (29) for a close to zero follows

from the implicit function theorem.

Proof of Proposition 1: Consider first the unit shock to rt. Taking expectations in (3), we find

that the change ∆rEt(rt+τ ) in the expected short rate at time t+ τ follows the dynamics

d[∆rEt(rt+τ )] = −κr∆rEt(rt+τ )dτ.

With the initial condition ∆rEt(rt) = 1, these dynamics integrate to

∆rEt(rt+τ ) = e−κrτ = A′
r(τ),

where the second step in the first equation follows from (18).

Consider next the unit shock to r̄t. Taking expectations in (3) and (4), we find that the change

∆r̄Et(rt+τ ) in the expected short rate and ∆r̄Et(r̄t+τ ) in the target short rate at time t+ τ follow
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the dynamics

d[∆r̄Et(rt+τ )] = κr[∆r̄Et(r̄t+τ )−∆r̄Et(rt+τ )]dτ,

d[∆r̄Et(r̄t+τ )] = −κr̄∆r̄Et(r̄t+τ )dτ.

With the initial condition (∆r̄Et(rt),∆r̄Et(r̄t)) = (0, 1), these dynamics integrate to

∆r̄Et(rt+τ ) = κr
e−κrτ − e−κr̄τ

κr̄ − κr
= A′

r̄(τ),

∆r̄Et(r̄t+τ ) = e−κr̄τ ,

where the second step in the first equation follows from (19).

We next show a useful lemma.

Lemma A.1. If a function f(τ) is positive and increasing, then
∫ T
0 f(τ)θ(τ)dτ > 0.

Proof: We can write the integral
∫ T
0 f(τ)θ(τ)dτ as

∫ T

0
f(τ)θ(τ)dτ =

∫ τ∗

0
f(τ)θ(τ)dτ +

∫ T

τ∗
f(τ)θ(τ)dτ

> f(τ∗)

∫ τ∗

0
θ(τ)dτ + f(τ∗)

∫ T

τ∗
θ(τ)dτ

= f(τ∗)

∫ T

0
θ(τ)dτ ≥ 0,

where the second step follows from Part (ii) of Assumption 1 and because f(τ) is increasing, and

the last step follows from Part (i) of Assumption 1 and because f(τ) is positive.

Proof of Proposition 2: The effect of an increase in rt on the term structure of spot rates is

described by the function Ar(τ)
τ , and the effect on the term structure of instantaneous forward rates

by the function A′
r(τ). We will show that these functions have the following properties:

• Ar(τ)
τ > 0 and A′

r(τ) > 0 for τ > 0.

• limτ→0
Ar(τ)

τ = 1 and A′
r(0) = 1.

• limτ→∞
Ar(τ)

τ = 0 and limτ→0A
′
r(τ) = 0.
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• Ar(τ)
τ and A′

r(τ) are decreasing in τ .

Equation (18) implies that the function Ar(τ) is positive and increasing. Therefore, the functions

Ar(τ)
τ and A′

r(τ) are positive, which means that an increase in rt shifts the term structure upwards.

Moreover, both Ar(τ)
τ = 1−e−κrτ

κrτ
and A′

r(τ) = e−κrτ are equal to one for τ = 0 and to zero for

τ → ∞. Finally, A′
r(τ) is decreasing in τ , and the same is true for Ar(τ)

τ because for a general

function g(τ)

d

dτ

g(τ)

τ
=

τg′(τ)− g(τ)

τ2
=

∫ τ
0 τ ′g′′(τ ′)dτ ′

τ2
. (A.17)

The effect of an increase in r̄t on the term structure of spot rates is described by the function

Ar̄(τ)
τ and that on the term structure of instantaneous forward rates by the function A′

r̄(τ). We will

show that these functions have the following properties:

• Ar̄(τ)
τ > 0 and A′

r̄(τ) > 0 for τ > 0.

• limτ→0
Ar̄(τ)

τ = 0 and A′
r̄(0) = 0.

• limτ→∞
Ar̄(τ)

τ = 0 and limτ→0A
′
r̄(τ) = 0.

• Ar̄(τ)
τ and A′

r̄(τ) are hump-shaped in τ .

Since the function Ar(τ) is positive, (19) implies that the function Ar̄(τ) is also positive. More-

over, Ar̄(τ) is increasing because

A′
r̄(τ) = κr

(

Ar(τ)− κr̄

∫ τ

0
Ar(τ

′)e−κr̄(τ−τ ′)dτ ′
)

(A.18)

≥ κrAr(τ)

(

1− κr̄

∫ τ

0
e−κr̄(τ−τ ′)dτ ′

)

= κrAr(τ)e
−κr̄τ > 0,

where the first step follows by differentiating (19) and the second because Ar(τ) is increasing. Since

Ar̄(τ) is positive and increasing, the functions Ar̄(τ)
τ and A′

r̄(τ) are positive, which means that an

increase in r̄t shifts the term structure upwards. Since Ar(0) = 0, (19) implies that Ar̄(τ)
τ is equal

to zero for τ = 0, and (A.18) implies the same property for A′
r̄(τ). Since Ar(τ) converges to the
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finite limit 1
κr

for τ → ∞, (19) implies that Ar̄(τ)
τ converges to zero for τ → ∞, and (A.18) implies

the same property for A′
r̄(τ).

To show that Ar̄(τ)
τ and A′

r̄(τ) are hump-shaped, it suffices to show this property for A′
r̄(τ).

Indeed, (A.17) would then imply that Ar̄(τ)
τ can either be increasing or increasing and then decreas-

ing, and the first pattern is ruled out because Ar̄(τ)
τ is equal to zero for both τ = 0 and τ → ∞.

Differentiating (A.18), we find

A′′
r̄ (τ) = κr

(

A′
r(τ)− κr̄Ar(τ) + κ2r̄

∫ τ

0
Ar(τ

′)e−κr̄(τ−τ ′)dτ ′
)

. (A.19)

The term in brackets has the same sign as

Hr̄(τ) ≡
[

A′
r(τ)− κr̄Ar(τ)

]

eκr̄τ + κ2r̄

∫ τ

0
Ar(τ

′)eκr̄τ ′dτ ′.

The function Hr̄(τ) is equal to A′
r(0) = 1 for τ = 0, and its derivative is

H ′
r̄(τ) = A′′

r(τ)e
κr̄τ < 0.

Therefore, Hr̄(τ) is either positive or positive and then negative. This means that A′
r̄(τ) is either

increasing or increasing and then decreasing. The first pattern is ruled out because A′
r̄(τ) is equal

to zero for both τ = 0 and τ → ∞.

Proof of Proposition 3: Consider first the unit shock to βt. Using the definition (30) of URP (τ),

we can write (A.5) as

κβAβ(τ) +A′
β(τ) = URP (τ). (A.20)

Integrating (A.20) with the initial condition Aβ(τ) = 0, we find

Aβ(τ) =

∫ τ

0
URP (τ ′)e−κβ(τ−τ ′)dτ ′ (A.21)

=

∫ τ

0
URP (τ − τ ′)e−κβτ

′

dτ ′. (A.22)

Taking expectations in (8), we find that the change ∆βEt(βt+τ ) in the expected future supply factor

37



at time t+ τ follows the dynamics

d[∆βEt(βt+τ )] = −κβ∆βEt(βt+τ )dτ.

With the initial condition ∆βEt(βt) = 1, these dynamics integrate to

∆βEt(βt+τ ) = e−κβτ . (A.23)

Using (A.23), we can write (A.22) as (31).

Consider next the unit shock to β̄t. Taking expectations in (8) and (9), we find that the

changes ∆β̄Et(βt+τ ) in the expected future supply factor and ∆β̄Et(β̄t+τ ) in the expected future

target supply follow the dynamics

d[∆β̄Et(βt+τ )] = κβ[∆β̄Et(β̄t+τ )−∆β̄Et(βt+τ )]dτ,

d[∆β̄Et(β̄t+τ )] = −κβ̄∆β̄Et(β̄t+τ )dτ.

With the initial condition (∆β̄Et(βt),∆β̄Et(β̄t)) = (0, 1), these dynamics integrate to

∆β̄Et(βt+τ ) = κβ
e−κβτ − e−κβ̄τ

κβ̄ − κb
, (A.24)

∆β̄Et(β̄t+τ ) = e−κβ̄τ .

Substituting (A.21) into (21), we find

Aβ̄(τ) = κβ

∫ τ

0

(

∫ τ ′

0
URP (τ ′′)e−κβ(τ

′−τ ′′)dτ ′′

)

e−κβ̄(τ−τ ′)dτ ′

= κβ

∫ τ

0

(
∫ τ

τ ′′
e−κβ(τ

′−τ ′′)e−κβ̄(τ−τ ′)dτ ′
)

URP (τ ′′)dτ ′′

=

∫ τ

0
URP (τ ′)κβ

e−κβ(τ−τ ′) − e−κβ̄(τ−τ ′)

κβ̄ − κβ
dτ ′

=

∫ τ

0
URP (τ − τ ′)κβ

e−κβτ
′

− e−κβ̄τ
′

κβ̄ − κβ
dτ ′. (A.25)

Using (A.24), we can write (A.25) as (32).

Proof of Proposition 4: The effect of an increase in βt on the term structure of spot rates is
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described by the function
Aβ(τ)

τ and that on the term structure of instantaneous forward rates by

the function A′
β(τ). For σβ̄ = 0, (A.8) becomes

κβAβ(τ) +A′
β(τ) = aσ2

rIrAr(τ) + aσ2
r̄Ir̄Ar̄(τ) + aσ2

βIβAβ(τ),

and integrates to

Aβ(τ) = aσ2
rIr

∫ τ

0
Ar(τ

′)e−κ̂β(τ−τ ′)dτ ′ + aσ2
r̄Ir̄

∫ τ

0
Ar̄(τ

′)e−κ̂β(τ−τ ′)dτ ′, (A.26)

where

κ̂β ≡ κβ − aσ2
βIβ.

We will show that the functions
Aβ(τ)

τ and A′
β(τ) have the following properties:

•
Aβ(τ)

τ > 0 and A′
β(τ) > 0 for τ > 0.

• limτ→0
Aβ(τ)

τ = 0 and A′
β(0) = 0.

• For κ̂β > 0, limτ→∞
Aβ(τ)

τ = 0 and limτ→0A
′
β(τ) = 0.

• For κ̂β > 0,
Aβ(τ)

τ and A′
β(τ) are hump-shaped in τ . For κ̂β < 0,

Aβ(τ)
τ and A′

β(τ) are

increasing in τ .

Since the functions Ar(τ) and Ar̄(τ) are positive and increasing, Lemma A.1 implies that

(Ir, Ir̄) are positive. Hence, (A.26) implies that the function Aβ(τ) is positive. To show that Aβ(τ)

is increasing, we differentiate (A.26):

A′
β(τ) = aσ2

rIr

(

Ar(τ)− κ̂β

∫ τ

0
Ar(τ

′)e−κ̂β(τ−τ ′)dτ ′
)

+aσ2
r̄Ir̄

(

Ar̄(τ)− κ̂β

∫ τ

0
Ar̄(τ

′)e−κ̂β(τ−τ ′)dτ ′
)

.

(A.27)

If κ̂β ≤ 0, then (A.27) and the positivity of (Ar(τ), Ar̄(τ)) imply that A′
β(τ) is positive. If κ̂β > 0,

then the same conclusion follows by proceeding as in the proof of the result in Proposition 2 that

Ar̄(τ) is increasing. Since Aβ(τ) is positive and increasing, the functions
Aβ(τ)

τ and A′
β(τ) are posi-
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tive, which means that an increase in βt shifts the term structure upwards. Since (Ar(0), Ar̄(0)) = 0,

(A.26) implies that
Aβ(τ)

τ is equal to zero for τ = 0, and (A.27) implies the same property for A′
β(τ).

Since (Ar(τ), Ar̄(τ)) converge to the finite limit ( 1
κr
, 1
κr̄
) for τ → ∞, (19) implies that when κ̂β > 0,

Aβ(τ) converges to a finite limit for τ → ∞. Therefore, when κ̂β > 0,
Aβ(τ)

τ converges to zero for

τ → ∞, and (A.18) implies the same property for A′
β(τ).

We next study the monotonicity of
Aβ(τ)

τ and A′
β(τ). Differentiating (A.27), we find

A′′
β(τ) =aσ2

rIr

(

A′
r(τ)− κ̂βAr(τ) + κ̂2β

∫ τ

0
Ar(τ

′)e−κ̂β(τ−τ ′)dτ ′
)

+ aσ2
r̄Ir̄

(

A′
r̄(τ)− κ̂βAr̄(τ) + κ̂2β

∫ τ

0
Ar̄(τ

′)e−κ̂β(τ−τ ′)dτ ′
)

. (A.28)

If κ̂β ≤ 0, then (A.28) and the positivity of (Ar(τ), Ar̄(τ)) imply that A′′
β(τ) is positive. Therefore,

A′
β(τ) is increasing, and (A.17) implies that

Aβ(τ)
τ is increasing. If κ̂β > 0, then we will show that

A′′
β(τ) is positive and then negative, and hence A′

β(τ) is hump-shaped. The hump-shape of
Aβ(τ)

τ

will follow by using (A.17) and noting that
Aβ(τ)

τ is equal to zero for both τ = 0 and τ → ∞.

The right-hand side of (A.28) has the same sign as

Hβ(τ) =aσ2
rIr

{

[

A′
r(τ)− κ̂βAr(τ)

]

eκ̂βτ + κ̂2β

∫ τ

0
Ar(τ

′)eκ̂βτ
′

dτ ′
}

+ aσ2
r̄Ir̄

{

[

A′
r̄(τ)− κ̂βAr̄(τ)

]

eκ̂βτ + κ̂2β

∫ τ

0
Ar̄(τ

′)eκ̂βτ
′

dτ ′
}

.
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The function Hβ(τ) is equal to aσ2
rIrA

′
r(0) = aσ2

rIr > 0 for τ = 0. Its derivative is

H ′
β(τ) = aσ2

rIrA
′′
r(τ)e

κ̂βτ + aσ2
r̄Ir̄A

′′
r̄ (τ)e

κ̂βτ .

= aσ2
rIr

[

A′′
r(τ) +

σ2
r̄Ir̄

σ2
rIr

κrHr̄(τ)e
−κr̄τ

]

eκ̂βτ

= aσ2
rIr

[

A′′
r(τ) +

σ2
r̄Ir̄

σ2
rIr

κr

(

1 +

∫ τ

0
A′′

r(τ
′)eκr̄τ ′dτ ′

)

e−κr̄τ

]

eκ̂βτ

= aσ2
rIr

[

−κre
−κrτ +

σ2
r̄Ir̄

σ2
rIr

κr

(

1− κr

∫ τ

0
e(κr̄−κr)τ ′dτ ′

)

e−κr̄τ

]

eκ̂βτ

= aσ2
rIrκr

[

−1 +
σ2
r̄Ir̄

σ2
rIr

(

1−
κr
(

e(κr̄−κr)τ − 1
)

κr̄ − κr

)

e(κr−κr̄)τ

]

e(κ̂β−κr)τ

= aσ2
rIrκr

[

−1 +
σ2
r̄Ir̄

σ2
rIr

(

e(κr−κr̄)τ −
κr
(

1− e(κr−κr̄)τ
)

κr̄ − κr

)]

e(κ̂β−κr)τ .

The term in square brackets is an affine function of e(κr−κr̄)τ and can hence change sign at most

once. Since A′
r(τ) is decreasing and A′

r̄(τ) is hump-shaped, H ′
β(τ) is negative for large τ . Since it

can change sign at most once, it is either negative or positive and then negative. Therefore, Hβ(τ)

is either decreasing or increasing and then decreasing. Since Hβ(τ) is positive for τ = 0, it is either

positive or positive and then negative. The first pattern is ruled out because when κ̂β > 0, A′
β(τ)

is equal to zero for both τ = 0 and τ → ∞.

The effect of an increase in β̄t on the term structure of spot rates is described by the function

Aβ̄(τ)

τ and that on the term structure of instantaneous forward rates by the function A′
β̄
(τ). We

will show that these functions have the following properties:

•
Aβ̄(τ)

τ > 0 and A′
β̄
(τ) > 0 for τ > 0.

• limτ→0
Aβ̄(τ)

τ = 0 and A′
β̄
(0) = 0.

• For κ̂β > 0, limτ→∞
Aβ̄(τ)

τ = 0 and limτ→0A
′
β̄
(τ) = 0.

• For κ̂β > 0,
Aβ̄(τ)

τ and A′
β̄
(τ) are hump-shaped in τ . For κ̂β < 0,

Aβ̄(τ)

τ and A′
β̄
(τ) are

increasing in τ .

The above properties can be derived from those of Aβ(τ) in the same way that the properties
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of Ar̄(τ)
τ and A′

r̄(τ) are derived from those of Ar(τ) in the proof of Proposition 2. In particular,

because Aβ(τ) is positive, increasing, equal to zero for τ = 0, and converging to a finite limit for

τ → ∞ when κ̂β > 0, we can show that
Aβ̄(τ)

τ and A′
β̄
(τ) are positive, equal to zero for τ = 0, and

converging to zero for τ → ∞ when κ̂β > 0. The function A′′
β̄
(τ) has the same sign as

Hβ̄(τ) ≡
[

A′
β(τ)− κβ̄Aβ(τ)

]

eκβ̄τ + κ2β̄

∫ τ

0
Aβ(τ

′)eκβ̄τ
′

dτ ′.

The function Hβ̄(τ) is equal to A′
β(0) = 0 for τ = 0, and its derivative is

H ′
β̄(τ) = A′′

β(τ)e
κβ̄τ .

When κ̂β ≤ 0, A′′
β(τ) is positive. Therefore, A′′

β̄
(τ) is also positive and the functions

Aβ̄(τ)

τ and

A′
β̄
(τ) are increasing. When κ̂β > 0, A′′

β(τ) is positive and then negative. Therefore, Hβ̄(τ) is

increasing and then decreasing. Since Hβ̄(τ) is equal to zero for τ = 0, it is either positive or

positive and then negative. The first pattern is ruled out when κ̂β > 0 because A′
β̄
(τ) is equal to

zero for both τ = 0 and τ → ∞.

The final step in the proof is to show that κ̂β is a monotone function of κβ . This will ensure

that κ̂β > 0 corresponds to larger values of κβ than κ̂β ≤ 0 does. Since the function Aβ(τ) is

positive and increasing, Lemma A.1 implies that Iβ is positive. Since the function

G(κ̂β) ≡ κ̂β − κβ + aσ2
βIβ

is positive for κ̂β ≥ κβ , any solution κ̂β to G(κ̂β) = 0 satisfies κ̂β < κβ. Moreover, at the largest

solution, which corresponds to our equilibrium selection, the function G(κ̂β) crosses the x-axis from

below. Since G(κ̂β) is decreasing in κβ, the largest solution is increasing in κβ.

Proof of Proposition 5: The humps on the instantaneous-forward-rate term structure associated

to shocks to r̄t and β̄t are located at the solutions to

Hr̄(τ) = 1 +

∫ τ

0
A′′

r(τ
′)eκr̄τ ′dτ ′ = 0, (A.29)

Hβ̄(τ) =

∫ τ

0
A′′

β(τ
′)eκβ̄τ

′

dτ ′ = 0, (A.30)
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respectively. We denote these solutions by (τr̄, τβ̄). Since

A′′
β(τ) = Hβ(τ)e

−κ̂βτ

=

{

aσ2
rIr +

∫ τ

0

[

aσ2
rIrA

′′
r (τ

′)eκ̂βτ
′

+ aσ2
r̄Ir̄A

′′
r̄(τ

′)eκ̂βτ
′
]

dτ ′
}

e−κ̂βτ ,

we can write (A.30) as

∫ τ

0
A′′

β(τ
′)eκβ̄τ

′

dτ ′ = 0

⇔

∫ τ

0

{

aσ2
rIr +

∫ τ ′

0

[

aσ2
rIrA

′′
r (τ

′′)eκ̂βτ
′′

+ aσ2
r̄Ir̄A

′′
r̄(τ

′′)eκ̂βτ
′′
]

dτ ′′

}

e−κ̂βτ
′

eκβ̄τ
′

dτ ′ = 0

⇔

∫ τ

0
e(κβ̄−κ̂β)τ

′

dτ ′ +

∫ τ

0

(
∫ τ

τ ′′
e(κβ̄−κ̂β)τ

′

dτ ′
)(

A′′
r(τ

′′) +
σ2
r̄Ir̄

σ2
rIr

A′′
r̄ (τ

′′)

)

eκ̂βτ
′′

dτ ′′ = 0

⇔ 1 +

∫ τ

0

(

A′′
r (τ

′) +
σ2
r̄Ir̄

σ2
rIr

A′′
r̄(τ

′)

)

e(κβ̄−κ̂β)τ+κ̂βτ
′

− eκβ̄τ
′

e(κβ̄−κ̂β)τ − 1
dτ ′ = 0. (A.31)

A sufficient condition for τβ̄ > τr̄ is that

e(κβ̄−κ̂β)τr̄+κ̂βτ
′

− eκβ̄τ
′

e(κβ̄−κ̂β)τr̄ − 1
< eκr̄τ ′ for 0 < τ ′ < τr̄. (A.32)

This is because

Hr̄(τr̄) = 1 +

∫ τr̄

0
A′′

r (τ
′)eκr̄τ ′dτ ′ = 0

⇒ 1 +

∫ τr̄

0
A′′

r (τ
′)
e(κβ̄−κ̂β)τr̄+κ̂βτ

′

− eκβ̄τ
′

e(κβ̄−κ̂β)τr̄ − 1
> 0

⇒ 1 +

∫ τr̄

0

(

A′′
r (τ

′) +
σ2
r̄Ir̄

σ2
rIr

A′′
r̄(τ

′)

)

e(κβ̄−κ̂β)τr̄+κ̂βτ
′

− eκβ̄τ
′

e(κβ̄−κ̂β)τr̄ − 1
> 0

⇒ Hβ̄(τr̄) > 0, (A.33)

where the second step follows from (A.32) and A′′
r(τ

′) < 0, and the third step follows because

A′′
r̄ (τ

′) > 0 for τ ′ < τr̄. Since Hβ̄(τ) has the same sign of Aβ̄(τ), and the latter is positive if and

only if τ < τβ̄, (A.33) implies that τr̄ < τβ̄.
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Equation (A.32) is equivalent to

h(τ ′) ≡
e(κβ̄−κ̂β)τr̄+(κ̂β−κr̄)τ ′ − e(κβ̄−κr̄)τ ′

e(κβ̄−κ̂β)τr̄ − 1
< 1 for 0 < τ ′ < τr̄.

The function h(τ ′) is equal to one for τ ′ = 0 and to zero for τ ′ = τr̄. Its derivative is

h′(τ ′) =
(κ̂β − κr̄)e

(κβ̄−κ̂β)τr̄+(κ̂β−κr̄)τ ′ − (κβ̄ − κr̄)e
(κβ̄−κr̄)τ ′

e(κβ̄−κ̂β)τr̄ − 1

and has the same sign as

h1(τ
′) ≡

(κ̂β − κr̄)e
(κβ̄−κ̂β)(τr̄−τ ′) − (κβ̄ − κr̄)

κβ̄ − κ̂β
.

If κβ ≤ κr̄, then κ̂β < κr̄. The function h1(τ
′) is negative, as can be seen by writing it as

h1(τ
′) = (κ̂β − κr̄)

e(κβ̄−κ̂β)(τr̄−τ ′) − 1

κβ̄ − κ̂β
− 1.

Suppose next that κβ̄ ≤ κr̄. If κ̂β ≤ κr̄, then h1(τ
′) is negative because of the previous argument.

If κ̂β > κr̄, then h1(τ
′) is negative, as can be seen by writing it as

h1(τ
′) =

κβ̄ − κr̄ − (κ̂β − κr̄)e
(κβ̄−κ̂β)(τr̄−τ ′)

κ̂β − κβ̄
.

Since h1(τ
′) is negative, h(τ ′) < 1 for 0 < τ ′ < τr̄, and hence (A.32) is satisfied.

Proof of Proposition 6: Equation (19) implies that the function A′
r̄(τ) decays at rate e

−min{κr ,κr̄}τ

for large τ . Equations (20) and (21) imply that the function A′
β̄
(τ) decays at rate e−min{κr ,κr̄,γ1,γ2}τ

for large τ . Therefore, the effect of β̄t-shocks on the instantaneous-forward-rate term structure de-

cays with maturity at a slower rate than the effect of r̄t-shocks if

min{γ1, γ2} ≤ min{κr, κr̄}, (A.34)

and at a strictly slower rate if (A.34) is strict. For σβ̄ = 0, (27) implies that (γ1, γ2) = (κ̂β, κβ̄).

The proposition follows from this observation, (A.34), and κ̂β < κβ .
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Table 2: Reaction of U.S. Treasury yields and forwards to major QE announcements. This table shows the 2-day change in zero coupon Treasury yields and 1-

year forward rates surrounding policy announcements about the Fed’s Large Scale Asset Purchase Programs. Yields and forwards are based on the fitted 

nominal Treasury curve estimated by Gürkaynak, Sack, and Wright (2007). All variables are all measured in percentage points. We classify events based on 

whether the announcement indicated that the Fed would be expanding or contracting its asset purchases. We compute the totals across all expansionary and 

contractionary events. 

 

    Individual announcement events 

    Change in zero coupon yields (%)  Change in forward rates (%) 

Date Type Event Description  1-yr 2-yr 3-yr 4-yr 5-yr 7-yr 10-yr 15-yr 20-yr  1-yr 2-yr 3-yr 4-yr 5-yr 7-yr 10-yr 15-yr 20-yr 

11/25/08 Expand QE1: Initial announcement: $100B 

of GSE and $500B MBS 

 -0.12 -0.17 -0.22 -0.26 -0.29 -0.32 -0.31 -0.26 -0.22  -0.12 -0.23 -0.33 -0.38 -0.41 -0.38 -0.25 -0.11 -0.10 

12/1/08 Expand QE1: Bernanke QE1 speech 

mentions extending to USTs 

 -0.06 -0.12 -0.18 -0.22 -0.25 -0.27 -0.25 -0.22 -0.23  -0.06 -0.19 -0.29 -0.34 -0.36 -0.30 -0.18 -0.16 -0.32 

12/16/08 Expand QE1: FOMC alludes to possibility 
of UST purchases 

 -0.01 0.00 -0.04 -0.10 -0.17 -0.29 -0.39 -0.37 -0.29  -0.01 0.01 -0.12 -0.30 -0.45 -0.62 -0.56 -0.21 0.01 

3/18/09 Expand QE1: Increased size of QE1 from 

$600B to $1.75T. 

 -0.12 -0.20 -0.28 -0.35 -0.40 -0.48 -0.51 -0.43 -0.30  -0.12 -0.28 -0.43 -0.55 -0.63 -0.67 -0.53 -0.11 0.21 

8/10/10 Expand QE2: Will reinvest 

coupon/principal from QE1. 

 -0.01 -0.03 -0.05 -0.08 -0.10 -0.14 -0.15 -0.13 -0.10  -0.01 -0.05 -0.11 -0.16 -0.20 -0.21 -0.16 -0.05 -0.01 

9/21/10 Expand QE2: Will continue to reinvest 

coupon/principal 

 -0.01 -0.03 -0.06 -0.09 -0.11 -0.15 -0.17 -0.16 -0.14  -0.01 -0.05 -0.12 -0.18 -0.22 -0.24 -0.19 -0.10 -0.07 

11/3/10 Expand QE2: Will purchase additional 

$600B of USTs. 

 -0.01 -0.02 -0.06 -0.10 -0.13 -0.16 -0.12 0.01 0.12  -0.01 -0.03 -0.13 -0.22 -0.26 -0.21 0.06 0.40 0.42 

9/21/11 Expand MEP: $400 billion Maturity 

Extension Program 

 0.02 0.05 0.03 -0.01 -0.07 -0.17 -0.26 -0.33 -0.39  0.02 0.09 -0.01 -0.15 -0.28 -0.45 -0.49 -0.47 -0.62 

6/20/12 Expand MEP: Continuing MEP through 

2012 

 0.02 0.02 0.02 0.02 0.02 0.01 -0.01 -0.03 -0.05  0.02 0.02 0.02 0.01 0.00 -0.02 -0.05 -0.08 -0.11 

8/22/12 Expand QE3: "Additional accommodation 
may be required fairly soon." 

 -0.02 -0.04 -0.06 -0.08 -0.10 -0.13 -0.14 -0.13 -0.11  -0.02 -0.05 -0.10 -0.14 -0.17 -0.20 -0.16 -0.07 -0.07 

9/13/12 Expand QE3: Purchase $40B of MBS  

per month 

 0.00 0.01 0.02 0.03 0.04 0.07 0.12 0.18 0.20  0.00 0.01 0.03 0.06 0.09 0.16 0.25 0.31 0.23 

12/12/12 Expand QE3: Purchase $40B of MBS and 

$45B of USTs  per month 

 0.00 0.01 0.03 0.04 0.06 0.08 0.09 0.08 0.07  0.00 0.03 0.06 0.09 0.11 0.13 0.11 0.05 0.04 

11/4/09 Contract QE1: Slowing pace of purchases to 
complete in 2010Q1 

 -0.03 -0.04 -0.03 -0.02 0.00 0.03 0.07 0.09 0.08  -0.03 -0.05 -0.02 0.02 0.07 0.13 0.16 0.10 0.05 

5/22/13 Contract QE3: Taper tantrum,  

may slow pace 

 -0.01 0.02 0.04 0.06 0.07 0.09 0.10 0.07 0.05  -0.01 0.04 0.08 0.11 0.13 0.14 0.08 0.00 0.00 

6/19/13 Contract QE3: Taper tantrum,  

may slow pace 

 0.00 0.07 0.14 0.20 0.24 0.25 0.23 0.19 0.18  0.00 0.13 0.30 0.38 0.38 0.26 0.12 0.14 0.16 

12/18/13 Contract QE3: Announces tapering of  

QE3 

 -0.01 0.02 0.05 0.09 0.11 0.12 0.09 0.04 0.02  -0.01 0.04 0.13 0.18 0.19 0.12 -0.01 -0.06 -0.02 

    Total across all announcements 

    Change in zero coupon yields (%)  Change in forward rates (%) 

    1-yr 2-yr 3-yr 4-yr 5-yr 7-yr 10-yr 15-yr 20-yr 
 

1-yr 2-yr 3-yr 4-yr 5-yr 7-yr 10-yr 15-yr 20-yr 

  Expand  -0.33 -0.53 -0.86 -1.21 -1.53 -1.95 -2.11 -1.79 -1.44  -0.33 -0.73 -1.52 -2.27 -2.78 -3.01 -2.14 -0.62 -0.40 

  Contract  -0.05 0.06 0.20 0.33 0.42 0.50 0.48 0.40 0.34  -0.05 0.17 0.49 0.70 0.77 0.65 0.35 0.19 0.19 

 


