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Abstract
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rational prices under-react to expected future flows. Reversal arises because flows push prices

away from fundamental values. Besides momentum and reversal, flows generate comovement,
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1 Introduction

Two of the most prominent financial-market anomalies are momentum and reversal. Momentum

is the tendency of assets with good (bad) recent performance to continue overperforming (under-

performing) in the near future. Reversal concerns predictability based on a longer performance

history: assets that performed well (poorly) over a long period tend to subsequently underperform

(overperform). Closely related to reversal is the value effect, whereby the ratio of an asset’s price

relative to book value is negatively related to subsequent performance. Momentum and reversal

have been documented extensively and for a wide variety of assets.1

Momentum and reversal are viewed as anomalies because they are hard to explain within the

standard asset-pricing paradigm with a rational representative agent. The prevalent explanations

of these phenomena are behavioral.2 In this paper we show that momentum and reversal can

result from flows between investment funds in markets where fund investors and managers are

rational. Besides momentum and reversal, fund flows generate comovement, lead-lag effects, and

amplification, with all these being larger for assets with high idiosyncratic risk. A calibration of

our model using evidence on mutual-fund returns and flows generates sizeable Sharpe ratios for

momentum and value strategies.

Our explanation of momentum and reversal is as follows. Suppose that a negative shock hits

the fundamental value of some assets. Investment funds holding these assets realize low returns,

triggering outflows by investors who update negatively about the efficiency of the managers running

these funds. As a consequence of the outflows, funds sell assets they own, and this depresses further

the prices of the assets hit by the original shock. Momentum arises if the outflows are gradual,

and if they trigger a gradual price decline and a drop in expected returns. Reversal arises because

outflows push prices below fundamental values, and so expected returns eventually rise. Gradual

outflows can be the consequence of investor inertia or institutional constraints, and we simply

assume them. We explain, however, why gradual outflows can trigger a gradual decline in rational

prices and a drop in expected returns. This result, key to momentum, is surprising. Indeed, why

do rational investors absorb the outflows, buying assets whose expected returns have decreased?

1Jegadeesh and Titman (1993) document momentum for individual US stocks, predicting returns over horizons
of 3-12 months by returns over the past 3-12 months. DeBondt and Thaler (1985) document reversal, predicting
returns over horizons of up to 5 years by returns over the past 3-5 years. Fama and French (1992) document the value
effect. This evidence has been extended to stocks in other countries (Fama and French 1998, Rouwenhorst 1998),
industry-level portfolios (Grinblatt and Moskowitz 1999), country indices (Asness, Liew, and Stevens 1997, Bhojraj
and Swaminathan 2006), bonds (Asness, Moskowitz and Pedersen 2011), currencies (Bhojraj and Swaminathan 2006)
and commodities (Gorton, Hayashi and Rouwenhorst 2012).

2See, for example, Barberis, Shleifer and Vishny (1998), Daniel, Hirshleifer and Subrahmanyam (1998), Hong and
Stein (1999), and Barberis and Shleifer (2003).
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Rational investors in our model buy assets whose expected returns have decreased because of

what we term the “bird-in-the-hand” effect. Assets that experience a price drop and are expected

to continue underperforming in the short run are those held by investment funds expected to

experience outflows. The anticipation of outflows causes these assets to be underpriced and to

guarantee investors an attractive return (bird in the hand) over a long horizon. Investors could

earn an even more attractive return on average (two birds in the bush), by buying these assets after

the outflows occur. This, however, exposes them to the risk that the outflows might not occur, in

which case the assets would cease to be underpriced.3

The bird-in-the-hand effect, and its implication that rational prices under-react to expected

future flows, extend beyond institutional flows; all that is needed is that flows are gradual, uncer-

tain, and can push prices away from fundamental values. Provided that flows have these properties,

momentum and reversal can arise even in a model with one risky asset and no delegated fund man-

agement.4 Our theory has thus two distinct parts: first show the bird-in-the-hand effect and rational

momentum, and second do this in a model with multiple risky assets and delegation. Multiple as-

sets allow us to derive additional phenomena such as comovement and lead-lag effects. Delegation

provides us with a driver of flows: investor response to changes in fund manager efficiency. It also

allows us to tie the pricing phenomena that we derive to a growing empirical literature on insti-

tutional flows, summarized later in the Introduction. At the same time, delegation gives rise to a

“career-concern” effect, which works against the bird-in-the-hand effect and eliminates momentum

for some parameter values: because fund managers care about fund flows in addition to investment

performance, they hedge against the risk that outflows might occur and that mispricings increase.

Section 2 presents our model. We consider an infinite-horizon economy with multiple risky

assets, which we refer to as stocks, and one riskless asset. A competitive investor can access the

stocks only through two investment funds. We assume that one of the funds tracks mechanically

a market index, so portfolio optimization concerns only the other fund, which we refer to as the

active fund. To ensure that the active fund can add value over the index fund, we assume that the

market index differs from the true market portfolio characterizing equilibrium asset returns. Our

assumptions on the index and the active fund are meant to capture in a stylized and parsimonious

3The bird-in-the-hand effect can be illustrated in the following simple example. An asset is expected to pay off
100 in Period 2. If outflows do not occur in Period 1 the price will be 100, but if they occur the price will drop
to 80. Each scenario is equally likely. Buying the asset in Period 0 at 92 earns an investor a two-period expected
capital gain of 8. Buying in Period 1 earns an expected capital gain of 20 if outflows occur and 0 if they do not. A
risk-averse investor might prefer earning 8 rather than 20 or 0 with equal probabilities, even though the expected
capital gain between Periods 0 and 1 is negative. The bird-in-the-hand effect can be reinterpreted in the formal
language of Merton’s ICAPM: the investor buys an underpriced asset even though the price is expected to drop even
further in the short run, to hedge against a reduction in the mispricing.

4See Vayanos and Woolley (2013).
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manner a setting in which investors have access to multiple funds with different portfolios. Flows

between the active and the index fund could be interpreted more generally as between active funds

pursuing different strategies.

The active fund is run by a competitive manager, who can also invest his personal wealth

through the fund. The latter assumption is for parsimony: in addition to generating a simple

objective that the manager maximizes when choosing the fund’s portfolio, it ensures that the

manager acts as trading counterparty to the investor’s flows. The manager can be interpreted

more generally as an aggregate of all agents absorbing the flows, and this eliminates the need to

introduce additional agents into the model. Both investor and manager are risk-averse. To ensure

that the investor has a motive to move across funds, and so generate flows, we assume that she

suffers a time-varying cost from holding the active fund. The interpretation of the cost that best

fits our model is as a managerial perk, although other interpretations such as managerial ability

are possible within more complicated versions of the model.

Section 3 solves for equilibrium in the case of symmetric information, where the cost of holding

the active fund is observable by both the investor and the manager. Section 4 considers the more

complicated case of asymmetric information, where the investor does not observe the cost and must

infer it from fund returns. Asymmetric information is more realistic, since investors typically do

not observe managerial perks or ability, and yields a richer set of results.

Momentum and reversal arise even under symmetric information. For example, following an

increase in the cost, the investor flows out of the active and into the index fund, effectively selling

stocks that the active fund overweights relative to the index. Because flows are gradual, the bird-in-

the-hand effect implies that the price of these stocks declines gradually, yielding momentum. Flows

also generate comovement and lead-lag effects, i.e., cross-asset predictability. Since, for example,

outflows from the active fund lower the prices of stocks that it overweights and raise those that

it underweights, they increase comovement within each group while reducing comovement across

groups. Moreover, since a price drop of an overweighted stock is correlated with outflows, it forecasts

low expected returns of other overweighted stocks in the short run and high returns in the long

run.

The key new feature of asymmetric information is that fund flows not only cause stock returns,

as under symmetric information, but are also caused by them. For example, a negative cashflow

shock to a stock that the active fund overweights lowers the active fund’s performance relative

to the index fund. The investor then infers that the cost has increased and flows out of the

active and into the index fund. This lowers the stock’s price, amplifying the effect of the original
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shock. Amplification generates new channels of momentum, reversal and comovement. For example,

momentum and reversal arise conditional not only on past returns, as under symmetric information,

but also on past cashflow shocks. Moreover, a new channel of comovement is that a cashflow shock

to one stock induces fund flows which affect the prices of other stocks.

Momentum, reversal, lead-lag effects and comovement are larger for stocks with high idiosyn-

cratic risk. This result holds under both symmetric and asymmetric information, with the intuition

being different in the two cases. For example, in the case of asymmetric information, a cashflow

shock to a stock with high idiosyncratic risk generates a large discrepancy between the performance

of the active and of the index fund. This causes large fund flows and price effects.

Our model’s implications for return predictability map naturally into implications for active

portfolio management. We sketch some of them in Section 5, where we calibrate our model using

evidence on mutual-fund returns and flows. Assuming a Sharpe ratio of 30% for the market index,

we find Sharpe ratios of 40% for a cross-sectional momentum strategy and 26% for a cross-sectional

value strategy. Thus, a significant fraction of these strategies’ actual Sharpe ratios can perhaps be

explained based only on institutional flows and rational behavior.

Empirical support for our theory comes from Lou (2012), who examines more generally the

implications of predictable fund flows. Lou forecasts flows in or out of mutual funds based on the

funds’ past performance, and imputes these fund-level flows into flows in or out of individual stocks

held by the funds. Consistent with our theory, the stock-level flows explain a significant part of

stock-level momentum, especially for large stocks and in recent data where mutual funds are more

prevalent. Other predictions of our theory are also supported in the data. For example, Coval and

Stafford (2007) find that mutual funds experiencing large outflows engage in distressed selling of

their stock portfolios, and this generates significant price pressure and return predictability. An-

ton and Polk (2012) and Greenwood and Thesmar (2011) find that comovement between stocks

is larger when these are held by many mutual funds in common, controlling for style character-

istics. Jotikasthira, Lundblad and Ramadorai (2012) find price pressure and comovement in an

international context.

Behavioral models of momentum and reversal include Barberis, Shleifer and Vishny (1998),

Daniel, Hirshleifer and Subrahmanyam (1998), Hong and Stein (1999), and Barberis and Shleifer

(BS 2003). BS is the closest to our work. They assume that stocks belong to styles and are traded

between switchers and fundamental investors. Following a stock’s bad performance, switchers

assume that the corresponding style will perform poorly in the future, and switch to other styles.

4



Switching is assumed to be gradual, and leads to momentum because fundamental investors are

assumed not to anticipate the switchers’ predictable flows. Switching also generates comovement of

stocks within a style, lead-lag effects, and amplification. We show that these effects can be consistent

with rational behavior. We also study the effects of idiosyncratic risk and career concerns, neither

of which is examined in BS. Rational models of momentum include Berk, Green and Naik (1999),

Johnson (2002) and Shin (2006), which assume symmetric information, and Albuquerque and Miao

(2012) and Cespa and Vives (2012), which assume asymmetric information. In these papers a risky

asset’s expected return decreases following a low return typically because volatility or asset supply

decreases.

The equilibrium implications of delegated portfolio management are the subject of a growing

literature. In Shleifer and Vishny (1997), fund flows are an exogenous function of the funds’ past

performance, and amplify the effects of cashflow shocks. In He and Krishnamurthy (2012ab) and

Brunnermeier and Sannikov (2012) the equity stake of fund managers must exceed a lower bound

because of optimal contracting under moral hazard, and amplification effects can again arise.5 In

Dasgupta, Prat and Verardo (2011), reputation concerns cause managers to herd, and this generates

momentum under the additional assumption that the market makers trading with the managers

are either monopolistic or myopic. In Basak and Pavlova (2012), flows by investors benchmarked

against an index cause stocks in the index to comove.6 We contribute a number of new results to

this literature, e.g., momentum with competitive and rational agents, and larger effects for high-

idiosyncratic-risk assets. We also bring the analysis of delegation and fund flows within a flexible

normal-linear framework that yields closed-form solutions.

2 Model

2.1 Assets

Time t is continuous and goes from zero to infinity. There are N risky assets and a riskless asset.

We refer to the risky assets as stocks, but they could also be interpreted as industry-level portfolios

or asset classes. The riskless asset has an exogenous, continuously compounded return r. The

5Amplification effects can also arise when agents face margin constraints or have wealth-dependent risk aversion.
See the survey by Gromb and Vayanos (2010) and the references therein.

6Other models exploring equilibrium implications of delegated portfolio management include Brennan (1993),
Vayanos (2004), Dasgupta and Prat (2008), Petajisto (2009), Cuoco and Kaniel (2011), Malliaris and Yan (2011),
Guerreri and Kondor (2012), and Kaniel and Kondor (2012). See also Berk and Green (2004), in which fund flows are
driven by fund performance because investors learn about managers’ ability, and feed back into performance because
of decreasing returns to managing a large fund.
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stocks pay dividends over time, and their prices are determined endogenously in equilibrium. We

denote by Dnt the cumulative dividend per share of stock n = 1, .., N , by Snt the stock’s price,

and by πn the stock’s supply in terms of number of shares. The exact specification of the dividend

process has little bearing on our results, so we consider a simple i.i.d. specification. We assume

that the vector Dt ≡ (D1t, .., DNt)
′ follows the process

dDt = F̄ dt+ σdBD
t , (2.1)

where F̄ is a constant vector, σ is a constant matrix of diffusion coefficients, BD
t is a d-dimensional

Brownian motion, and v′ is the transpose of the vector v. Thus, the instantaneous dividends dDt

paid between t and t+ dt are independent over time and identically distributed, with expectation

F̄ dt and covariance matrix Σdt ≡ σσ′dt.

2.2 Investment Funds

A competitive investor can invest in the riskless asset and in the stocks. The investor, however, faces

the friction that she can access the stocks only through two investment funds. This could reflect the

cost of learning about individual stocks and trading them. We assume that one investment fund is

passively managed and tracks mechanically a market index. This is for simplicity, so that portfolio

optimization concerns only the other fund, which we term the active fund. We assume that the

market index includes a fixed number ηn of shares of stock n. Thus, if the vectors π ≡ (π1, .., πN )

and η ≡ (η1, .., ηN ) are collinear, the market index is capitalization-weighted and coincides with

the market portfolio.

To ensure that the active fund can add value over the index fund, we assume that the market

index differs from the true market portfolio characterizing equilibrium asset returns. This can be

because the market index does not include some stocks, and so the vectors π and η are not collinear.

Alternatively, the market index can coincide with the market portfolio, but unmodelled buy-and-

hold investors, such as firms’ managers or founding families, can hold a portfolio different from

the market portfolio. That is, buy-and-hold investors hold π̂n shares of stock n, and the vectors π

and π̂ ≡ (π̂1, .., π̂N ) are not collinear. To nest the two cases, we define a vector θ ≡ (θ1, .., θN ) to

coincide with π in the first case and π− π̂ in the second. The vector θ represents the residual supply

left over from buy-and-hold investors, and is the true market portfolio characterizing equilibrium

asset returns. We assume that θ is not collinear with the market index η, and set

∆ ≡ θΣθ′ηΣη′ − (ηΣθ′)2 > 0.
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Our assumptions on the index and the active fund are meant to capture in a stylized and

parsimonious manner a setting in which investors have access to multiple funds with different

portfolios. The main intuitions coming out of our model are likely to carry over to alternative

settings, e.g., no index fund but two active funds that specialize in different segments of the market.

2.3 Agents

The investor determines how to allocate her wealth between the riskless asset, the index fund,

and the active fund. She maximizes expected utility of intertemporal consumption. Utility is

exponential, i.e.,

−E
∫ ∞

0
exp(−αct − βt)dt, (2.2)

where α is the coefficient of absolute risk aversion, ct is consumption, and β is the discount rate.

The investor’s control variables are consumption ct and the number of shares xt and yt of the index

and active fund, respectively.

The active fund is run by a competitive manager, who can also invest his personal wealth in

the fund. The manager determines the active portfolio and the allocation of his wealth between the

riskless asset and the fund. He maximizes expected utility of intertemporal consumption. Utility

is exponential, i.e.,

−E
∫ ∞

0
exp(−ᾱc̄t − β̄t)dt, (2.3)

where ᾱ is the coefficient of absolute risk aversion, c̄t is consumption, and β̄ is the discount rate.

The manager’s control variables are consumption c̄t, the number of shares ȳt of the active fund, and

the active portfolio zt ≡ (z1t, .., zNt), where znt denotes the number of shares of stock n included

in one share of the active fund.

The assumption that the manager can invest his personal wealth in the active fund is for

parsimony: it generates a simple objective that the manager maximizes when choosing the fund’s

portfolio, and ensures that the manager acts as trading counterparty to the investor’s flows.7 Under

7Restricting the manager not to invest his personal wealth in the index fund is also in the spirit of generating a
simple objective. Indeed, in the absence of this restriction, the active portfolio would be indeterminate: the manager
could mix a given active portfolio with the index, and make that the new active portfolio, while achieving the same
personal portfolio through an offsetting short position in the index. Note that restricting the manager not to invest
in the index only weakly constrains his personal portfolio since he can always modify the portfolio of the active fund
and his stake in that fund.

7



the alternative assumption that the manager must invest his wealth in the riskless asset, we would

need to introduce two new elements into the model: a performance fee to provide the manager with

incentives for portfolio choice, and an additional set of “smart-money” agents with the expertise

to invest in individual stocks, identify the investor’s flows and act as counterparty to them. This

would complicate the model without changing the main intuitions. The manager in our model can

be interpreted as an aggregate of all smart-money agents.

2.4 Cost of Active Fund

Under the assumptions introduced so far, and in the absence of other frictions, the equilibrium

takes a simple form. As we show in Section 3, the investor holds stocks only through the active

fund since its portfolio dominates the index portfolio. As a consequence, the active fund holds the

true market portfolio θ, and there are no flows between the two funds.

To generate fund flows, we assume that the investor suffers a time-varying cost from investing

in the active fund. Empirical evidence on the existence of such a cost is provided in a number

of papers. For example, Grinblatt and Titman (1989), Wermers (2000), and Kacperczyk, Sialm

and Zheng (KSZ 2008) study the return gap, defined as the difference between a mutual fund’s

return over a given quarter and the return of a hypothetical portfolio invested in the stocks that

the fund holds at the beginning of the quarter. The return gap varies significantly across funds

and over time. It is also persistent, with a half-life of about 2.5 years according to KSZ. The high

persistence indicates that the return gap is linked to underlying fund characteristics, and indeed

such a correlation exists in the data.

We model the return gap in a simple manner: we assume that the investor’s return from the

active fund is equal to the gross return, made of the dividends and capital gains of the stocks held

by the fund, net of a time-varying cost. Empirical studies typically attribute the return gap to

agency costs, operational costs, and managerial stock-picking ability. The interpretation that best

fits our model is agency costs: the cost is a perk that the manager can extract from the investor.8

Operational costs and stock-picking ability fit better the more complicated version of our model

where the manager must invest his wealth in the riskless asset and other smart-money agents absorb

the investor’s flows. Indeed, when the manager also invests in the active fund, it would be natural

8Examples of perks in a delegated portfolio management context are late trading and soft-dollar commissions.
Managers engaging in late trading use their privileged access to the fund to buy or sell fund shares at stale prices.
Late trading was common in many funds and led to the 2003 mutual-fund scandal. Soft-dollar commissions is the
practice of inflating funds’ brokerage commissions to pay for services that mainly benefit managers, e.g., promote the
fund to new investors.
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to assume that his investment is affected by changes in operational costs or stock-picking ability.

We are assuming, however, that the manager does not incur the cost on his investment.

We assume that the index fund entails no cost, so its gross and net returns coincide. This

is for simplicity, but also fits the interpretations of the return gap. Indeed, managing an index

fund involves no stock-picking ability, and operational and agency costs are smaller than for active

funds.

We model the cost as a flow (i.e., the cost between t and t+ dt is of order dt), and assume that

the flow cost is proportional to the number of shares yt that the investor holds in the active fund.

We denote the coefficient of proportionality by Ct and assume that it follows the process

dCt = κ(C̄ − Ct)dt+ sdBC
t , (2.4)

where κ is a mean-reversion parameter, C̄ is a long-run mean, s is a positive scalar, and BC
t is a

Brownian motion independent of BD
t . The mean-reversion of Ct is not essential for momentum and

reversal, which occur even when κ = 0.

To remain consistent with the managerial-perk interpretation of the cost, we allow the manager

to derive a benefit from the investor’s participation in the active fund. We model the benefit in

the same manner as the cost, i.e., a flow which is proportional to the number of shares yt that the

investor holds in the active fund. If the cost is a perk that the manager can extract efficiently,

then the coefficient of proportionality for the benefit is Ct. We allow more generally the coefficient

of proportionality to be λCt, where λ ≥ 0 is a constant that can be interpreted as the efficiency

of perk extraction. Varying λ generates a rich specification of the manager’s objective. When

λ = 0, the manager cares about fund performance only through his personal investment in the

fund, and his objective is similar to the fund investor’s. When instead λ > 0, the manager has

career concerns, i.e., cares about the risk that the investor might reduce her participation in the

fund. As we show in Section 3.3, momentum arises when λ is not too large, i.e., perk extraction

is inefficient. Momentum would also arise under non-perk interpretations of the cost (operational

costs or stock-picking ability) since λ would then be zero.

The cost and benefit are assumed proportional to yt for analytical convenience. At the same

time, these variables are sensitive to how shares of the active fund are defined (e.g., they change

with a stock split). We define one share of the fund by the requirement that its market value equals

the equilibrium market value of the entire fund. Under this definition, the number of fund shares
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held by the investor and the manager in equilibrium sum to one, i.e.,

yt + ȳt = 1. (2.5)

We define one share of the index fund to coincide with the market index η.

We assume that the investor can adjust her active-fund holdings yt to new information only

gradually. Gradual adjustment can result from contractual restrictions or institutional decision

lags. For simplicity we model these frictions as a flow cost ψ(dyt/dt)
2/2 that the investor must

incur when changing yt.
9

The manager observes all the variables in the model. The investor observes the returns and

share prices of the index and active funds, but not the same variables for the individual stocks. We

study both the case of symmetric information, where the investor observes the cost Ct, and that of

asymmetric information, where Ct is observable only by the manager.

3 Symmetric Information

In this section we study the case of symmetric information, where the investor observes the cost

Ct. We look for an equilibrium in which stock prices St ≡ (S1t, .., SNt)
′ take the form

St =
F̄

r
− (a0 + a1Ct + a2yt), (3.1)

where (a0, a1, a2) are constant vectors. The first term is the present value of expected dividends,

discounted at the riskless rate r, and the second term is a risk discount linear in (Ct, yt). The risk

discount moves in response to fund flows, as we show later in this section. The rate vt ≡ dyt/dt at

which the investor changes her active-fund holdings in our conjectured equilibrium is

vt = b0 − b1Ct − b2yt, (3.2)

where (b0, b1, b2) are constants. We expect (b1, b2) to be positive, i.e., the investor disinvests faster

from the active fund when Ct and yt are large. We refer to an equilibrium satisfying (3.1) and (3.2)

as linear.

9An example of contractual restrictions is lock-up periods, often imposed by hedge funds, which require investors
not to withdraw capital for a pre-specified time period. Institutional decision lags can arise for investors such as
pension funds, foundations or endowments, where decisions are made by boards of trustees that meet infrequently.
We employ the quadratic specification ψ(dyt/dt)

2/2 to model these frictions because it preserves the linearity of the
model.
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3.1 Manager’s Optimization

The manager chooses the active fund’s portfolio zt, the number ȳt of fund shares that he owns, and

consumption c̄t. The manager’s budget constraint is

dWt = rWtdt+ ȳtzt(dDt + dSt − rStdt) + λCtytdt− c̄tdt. (3.3)

The first term is the return from the riskless asset, the second term is the return from the active

fund in excess of the riskless asset, the third term is the manager’s benefit from the investor’s

participation in the fund, and the fourth term is consumption. To compute the return from the

active fund, we note that since one share of the fund corresponds to zt shares of the stocks,

the manager’s effective stock holdings are ȳtzt shares. These holdings are multiplied by the vector

dRt ≡ dDt+dSt−rStdt of the stocks’ excess returns per share (referred to as returns, for simplicity).

The manager’s optimization problem is to choose controls (c̄t, ȳt, zt) to maximize the expected

utility (2.3) subject to the budget constraint (3.3) and the investor’s holding policy (3.2). The

active fund’s portfolio zt satisfies, in addition, the normalization

ztSt = (θ − xtη)St. (3.4)

This is because one share of the active fund is defined so that its market value equals the equilibrium

market value of the entire fund. Moreover, the latter is (θ−xtη)St because in equilibrium the active

fund holds the true market portfolio θ minus the investor’s holdings xtη of the index fund. We

conjecture that the manager’s value function is

V̄ (Wt, X̄t) ≡ − exp

[
−
(
rᾱWt + q̄0 + (q̄1, q̄2)X̄t +

1

2
X̄ ′
tQ̄X̄t

)]
, (3.5)

where X̄t ≡ (Ct, yt)
′, (q̄0, q̄1, q̄2) are constants, and Q̄ is a constant symmetric 2 × 2 matrix. The

Bellman equation is

max
c̄t,ȳt,zt

[
− exp(−ᾱc̄t) +DV̄ − β̄V̄

]
= 0, (3.6)

where DV̄ is the drift of the process V̄ under the controls (c̄t, ȳt, zt).

Proposition 3.1 The value function (3.5) satisfies the Bellman equation (3.6) if (q̄0, q̄1, q̄2, Q̄)

satisfy a system of six scalar equations.
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In the proof of Proposition 3.1 we show that the optimization over (c̄t, ȳt, zt) can be reduced

to optimization over the manager’s consumption c̄t and effective stock holdings ẑt ≡ ȳtzt. Given

ẑt, the decomposition between ȳt and zt is determined by the normalization (3.4). The first-order

condition with respect to ẑt is

Et(dRt) = rᾱCovt(dRt, ẑtdRt) + (q̄1 + q̄11Ct + q̄12yt)Covt(dRt, dCt). (3.7)

Eq. (3.7) links expected stock returns to the risk faced by the manager. The expected return that

the manager requires from a stock depends on the stock’s covariance with the manager’s portfolio

ẑt (first term in the right-hand side), and on the covariance with changes to the cost Ct (second

term). The latter effect reflects a hedging demand by the manager. We derive the implications of

(3.7) for the cross section of expected returns later in this section.

3.2 Investor’s Optimization

The investor chooses a number of shares xt in the index fund and yt in the active fund, and

consumption ct. The investor’s budget constraint is

dWt = rWtdt+ xtηdRt + yt (ztdRt − Ctdt)−
1

2
ψv2t dt− ctdt. (3.8)

The first three terms are the returns from the riskless asset, the index fund, and the active fund

(net of the cost Ct), respectively. The fourth term is the cost of adjustment and the fifth term is

consumption. The investor’s optimization problem is to choose controls (ct, xt, yt) to maximize the

expected utility (2.2) subject to the budget constraint (3.8). The investor takes the active fund’s

portfolio zt as given and equal to its equilibrium value θ−xtη. We study this optimization problem

in two steps. In a first step, we optimize over (ct, xt), assuming that vt is given by (3.2). We solve

this problem using dynamic programming, and conjecture the value function

V (Wt, Xt) ≡ − exp

[
−
(
rαWt + q0 + (q1, q2)Xt +

1

2
X ′
tQXt

)]
, (3.9)

where Xt ≡ (Ct, yt)
′, (q0, q1, q2) are constants, and Q is a constant symmetric 2 × 2 matrix. The

Bellman equation is

max
ct,xt

[− exp(−αct) +DV − βV ] = 0, (3.10)

where DV is the drift of the process V under the controls (ct, xt). In a second step, we derive

conditions under which the control vt given by (3.2) is optimal.
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Proposition 3.2 The value function (3.9) satisfies the Bellman equation (3.10) if (q0, q1, q2, Q)

satisfy a system of six scalar equations. The control vt given by (3.2) is optimal if (b0, b1, b2) satisfy

a system of three scalar equations.

3.3 Equilibrium

In equilibrium, the active fund’s portfolio zt is equal to θ−xtη, and the shares held by the manager

and the investor sum to one. Combining these equations with the first-order conditions and value-

function equations (Propositions 3.1 and 3.2), yields a system of equations characterizing a linear

equilibrium. Proposition 3.3 shows that a unique linear equilibrium exists when the diffusion

coefficient s of Ct is small. This is done by computing explicitly the linear equilibrium for s = 0

and applying the implicit function theorem. Our numerical solutions for general values of s in

Section 5 seem to also generate a unique linear equilibrium. Moreover, the properties that we

derive analytically for small s in the rest of this section seem to hold for general values of s.10

Proposition 3.3 For small s, there exists a unique linear equilibrium. The constants (b1, b2) are

positive, and the vectors (a1, a2) are given by

ai = γiΣp
′
f , (3.11)

where γ1 is a positive and γ2 a negative constant, and

pf ≡ θ − ηΣθ′

ηΣη′
η (3.12)

is the “flow portfolio.” Eq. (3.11) holds in any linear equilibrium for general values of s.

Proposition 3.3 can be specialized to the benchmark case of costless delegation, where the

investor’s cost Ct of investing in the active fund is constant over time and equal to zero. This case

can be derived by setting Ct, as well as its long-run mean C̄ and diffusion coefficient s, to zero.

Corollary 3.1 (Costless Delegation) When Ct = C̄ = s = 0, the investor adjusts her holdings

of the active fund to the steady-state value limt→∞ yt = ᾱ/(α + ᾱ) and those of the index fund to

10This applies to b1 > 0, b2 > 0, γ1 > 0, γ2 < 0, and to Corollaries 3.2, 3.5 and 3.6 (with a different threshold λR),
and (3.7).
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limt→∞ xt = 0. Stocks’ expected returns in the steady state are given by the one-factor model

lim
t→∞

Et(dRt) =
rαᾱ

α+ ᾱ
Σθ′dt =

rαᾱ

α+ ᾱ
Covt(dRt, θdRt), (3.13)

with the factor being the true market portfolio θ.

Corollary 3.1 concerns a steady state reached for t→ ∞ because the adjustment cost prevents

the investor from adjusting instantaneously to her optimal holdings. In the steady state, the

investor holds only the active fund because that fund offers a superior portfolio than the index fund

at no cost. The relative shares of the investor and the manager in the active fund are determined

by their risk-aversion coefficients, according to optimal risk-sharing. Stocks’ expected returns are

determined by the covariance with the true market portfolio. The intuition for the latter result

is that since the index fund receives zero investment, the true market portfolio coincides with the

active portfolio zt, which is also the portfolio held by the manager. Since the manager determines

the cross section of expected returns through the first-order condition (3.7), and there is no hedging

demand because Ct is constant, the true market portfolio is the only pricing factor.

When the cost Ct is stochastic, the investor’s fund holdings and the stocks’ expected returns

are stochastic in the steady state. We next determine how shocks to Ct affect fund flows, stock

prices and expected returns.

Following an increase in Ct, the investor flows out of the active and into the index fund. Because

of the adjustment cost, this flow does not occur instantaneously at time t, but only gradually for

t′ > t. Corollary 3.2 computes the implied change in the number of shares of each stock that the

investor holds through the aggregate of the two funds. We consider the expectation as of time t

of stock holdings at time t′ > t, to isolate the effect of the time-t shock from those of subsequent

shocks. Because of the linearity of our model, this amounts to setting the realized values of the

subsequent shocks to zero.

Corollary 3.2 (Fund Flows) The change in the investor’s expected stock holdings at time t′ > t,

caused by a change in Ct at time t, is proportional to the flow portfolio pf :

∂Et(xt′η + yt′zt′)

∂Ct
= −

b1

[
e−κ(t

′−t) − e−b2(t
′−t)
]

b2 − κ
pf . (3.14)

For small s, the coefficient of pf is negative.
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The change in the investor’s stock holdings is proportional to the flow portfolio pf , defined in

(3.12). This portfolio consists of the true market portfolio θ, plus a position in the market index

η that renders the covariance with the index equal to zero. Long positions in pf correspond to

large components of the vector θ relative to η, and hence to stocks that the active fund overweights

relative to the index fund. Conversely, short positions correspond to stocks that the active fund

underweights. In flowing out of the active and into the index fund, the investor is selling a slice

of the flow portfolio, thus selling stocks that the active fund overweights and buying stocks that it

underweights.

The effect of Ct on stock prices derives from that on fund flows, and is computed in Corollary

3.3. Following an increase in Ct, the investor gradually sells a slice of the flow portfolio. Since

the manager takes the other side of this transaction, he becomes increasingly averse to holding

the flow portfolio and stocks covarying positively with it. Therefore, the expected returns of these

stocks increase and their price decreases. Moreover, the price decreases not only when the manager

acquires the flow portfolio, after time t, but also in anticipation of this happening, at time t.

Conversely, the time-t price of stocks covarying negatively with the flow portfolio increases.

Corollary 3.3 (Prices) The change in stock prices at time t, caused by a contemporaneous change

in Ct, is proportional to stocks’ covariance with the flow portfolio pf :

∂St
∂Ct

= −γ1Σp′f = − γ1

1 +
s2γ21∆
ηΣη′

Covt(dRt, pfdRt) = − γ1

1 +
s2γ21∆
ηΣη′

Covt(dϵt, pfdϵt). (3.15)

where dϵt ≡ (dϵ1t, .., dϵNt)
′ denotes the residual from a regression of stock returns dRt on the

market-index return ηdRt.

What characteristics of a stock determine its covariance with the flow portfolio, and hence its

sensitivity to fund flows? A stock’s relative weight in the active and index fund influences the sign

of the covariance. Indeed, stocks that the active fund overweights are likely to covary positively

with the flow portfolio because they receive positive weight in that portfolio, while stocks that the

active fund underweights are likely to covary negatively.

A stock’s idiosyncratic risk influences the magnitude of the covariance: stocks with high id-

iosyncratic risk have higher covariance with the flow portfolio in absolute value, and are thus more

sensitive to fund flows. The intuition is that changes in the cost Ct of investing in the active fund

cause the investor to rebalance between the active and the index fund, but do not affect her overall
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exposure to the index. Indeed, since investing in the index fund is costless, the investor’s willingness

to bear risk that correlates perfectly with the index remains constant, and only her willingness to

bear orthogonal risk changes. Therefore, changes in Ct, and the fund flows they trigger, do not

affect the expected return and price of the index, and of stocks that correlate perfectly with the

index.11 They affect stocks that carry orthogonal, i.e., idiosyncratic, risk.

Since changes in Ct, and the fund flows they trigger, affect prices, they contribute to comove-

ment between stocks. Corollary 3.4 decomposes the covariance matrix of stock returns into a

fundamental covariance, driven purely by cashflows, and a non-fundamental covariance, introduced

by fund flows.

Corollary 3.4 (Comovement) The covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(
Σ+ s2γ21Σp

′
fpfΣ

)
dt, (3.16)

the sum of a fundamental covariance Σdt, driven purely by cashflows, and a non-fundamental

covariance s2γ21Σp
′
fpfΣdt, introduced by fund flows. The non-fundamental covariance is positive

for stock pairs whose covariance with the flow portfolio has the same sign, and is negative otherwise.

The non-fundamental covariance between a pair of stocks is proportional to the product of

the covariances between each stock in the pair and the flow portfolio. It is thus large in absolute

value when the stocks have high idiosyncratic risk, because they are more affected by changes in

Ct. Moreover, it can be positive or negative: positive for stock pairs whose covariance with the

flow portfolio has the same sign, and negative otherwise. Intuitively, two stocks move in the same

direction in response to fund flows if they are both overweighted or both underweighted by the

active fund, but move in opposite directions if one is overweighted and the other underweighted.

Corollary 3.5 derives the cross section of stocks’ expected returns. A stock’s expected return is

determined by the stock’s covariance with two risk factors: the market index and the flow portfolio.

The covariance with the index is driven purely by cashflows. The covariance with the flow portfolio

is instead influenced by the stock’s relative weight in the active and index fund, and by the stock’s

idiosyncratic risk. It determines both the stock’s sensitivity to fund flows (Corollary 3.3) and the

stock’s expected return (Corollary 3.5). Our model implies that stock characteristics such as relative

weight across investment funds and idiosyncratic risk should be considered alongside cashflow risk

in empirical studies of expected returns.

11Stocks that correlate perfectly with the index, and hence have no idiosyncratic risk, have zero covariance with
the flow portfolio, as the last equality in Corollary 3.3 confirms.
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Corollary 3.5 (Expected Returns) Stocks’ expected returns are given by the two-factor model

Et(dRt) =
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Covt(dRt, ηdRt) + ΛtCovt(dRt, pfdRt), (3.17)

with the factors being the market index and the flow portfolio. The factor risk premium Λt associated

to the flow portfolio is

Λt = rᾱ+
1

1 +
s2γ21∆
ηΣη′

(
γR1 Ct + γR2 yt − γ1s

2q̄1
)
, (3.18)

where (γR1 , γ
R
2 ) are constants. For small s, the constant γR1 is negative if

λ < λR ≡ ᾱ

2(α+ ᾱ) + ψηΣη′

2∆

[
r + (r + 2κ)

√
1 + 4(α+ᾱ)∆

rψηΣη′

] , (3.19)

and is positive otherwise, and the constant γR2 is negative.

The factor risk premium of the index is constant over time. The factor risk premium Λt of the

flow portfolio, however, is time-varying and depends on fund flows. For example, outflows from the

active fund raise Λt, hence raising the expected returns of stocks that covary positively with the

flow portfolio. The time-variation of Λt is closely related to momentum and reversal.

Consider an increase in the cost Ct of investing in the active fund. Corollary 3.3 shows that

the prices of stocks that covary positively with the flow portfolio decrease at time t, in anticipation

of the future outflows from the active fund. Corollary 3.5 implies that when γR1 < 0, the expected

returns of these stocks also decrease at time t. The simultaneous decrease in prices and expected

returns can appear puzzling since a decrease in expected returns is typically accompanied by a price

increase. The explanation is that while expected returns decrease in the short run, they increase

in the long run, in response to the gradual outflows triggered by the increase in Ct. It is the latter

increase that causes the price decrease at time t.

The short-run decrease in expected returns is puzzling. Indeed, in absorbing the investor’s

outflows, the manager (who as we point out in Section 2.3 can be viewed as an aggregate of all

smart-money agents) buys stocks that the active fund overweights. Why is he willing to buy

these stocks, even though their expected return has decreased? The intuition is that the manager

prefers to guarantee a “bird in the hand.” Indeed, the anticipation of future outflows causes active
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overweights to become underpriced and offer an attractive return over a long horizon. The manager

could earn an even more attractive return, on average, by buying these stocks after the outflows

occur. This, however, exposes him to the risk that the outflows might not occur, in which case the

stocks would cease to be underpriced. Thus, the manager might prefer to guarantee an attractive

long-horizon return (bird in the hand), and pass up on the opportunity to exploit an uncertain

short-run price drop (two birds in the bush). Note that in seeking to guarantee the long-horizon

return, the manager is, in effect, causing the short-run drop. This is because his buying pressure

prevents the price in the short run from dropping to a level that fully reflects the future outflows,

i.e., from which a short-run drop is not expected.

The bird-in-the-hand effect can be seen formally in the manager’s first-order condition (3.7).

Following an increase in Ct, the expected return of a stock that covaries positively with the flow

portfolio decreases, lowering the left-hand side of (3.7). Therefore, the manager remains willing

to hold the stock only if its risk, described by the right-hand side of (3.7), also decreases. The

decrease in risk is not caused by a lower covariance between the stock and the manager’s portfolio

ẑt (first term in the right-hand side). Indeed, because the adjustment cost prevents the investor

from adjusting instantaneously, ẑt remains constant immediately following the increase in Ct. The

decrease in risk is instead driven by the manager’s hedging demand (second term in the right-hand

side), which means that a stock covarying positively with the flow portfolio becomes a better hedge

for the manager when Ct increases. The intuition is that when Ct increases, mispricing becomes

severe, and the manager has attractive investment opportunities. Hedging against a reduction in

these opportunities requires holding stocks that perform well when Ct decreases, and these are the

stocks covarying positively with the flow portfolio. Holding such stocks guarantees the manager an

attractive long-horizon return—the bird-in-the-hand effect.

The response of expected returns to changes in Ct causes returns to be predictable based on

past returns. We characterize this predictability in Corollary 3.6. As in the rest of our analysis,

we evaluate returns over an infinitesimal time period dt. We compute the covariance between the

vector of returns at time t, i.e., between t and t + dt, and the same vector at time t′ > t, i.e.,

between t′ and t′ + dt.

Corollary 3.6 (Return Predictability) The covariance between stock returns at time t and

those at time t′ > t is

Covt(dRt, dR
′
t′) =

[
χ1e

−κ(t′−t) + χ2e
−b2(t′−t)

]
Σp′fpfΣdtdt

′, (3.20)
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where (χ1, χ2) are constants. For small s, the term in the square bracket of (3.20) is positive if

t′ − t < û and negative if t′ − t > û, for a threshold û which is positive if λ < λR and zero if

λ > λR. A stock’s return predicts positively the stock’s subsequent return for t′ − t < û (short-run

momentum) and negatively for t′ − t > û (long-run reversal). It predicts in the same manner the

subsequent return of another stock when the covariance between each stock in the pair and the flow

portfolio has the same sign, and in the opposite manner otherwise.

This autocovariance matrix of stock returns is equal to the non-fundamental (contemporaneous)

covariance matrix times a scalar, which is negative for long lags but can be positive for short lags.

Thus, stocks can exhibit positive autocovariance for short lags and negative for long lags, i.e.,

short-run momentum and long-run reversal. This is because changes in Ct can move prices and

short-run expected returns in the same direction, but long-run expected returns in the opposite

direction.

The non-diagonal elements of the autocovariance matrix characterize lead-lag effects, i.e.,

whether the past return of one stock predicts the future return of another. Lead-lag effects have

the same sign as autocovariance for stock pairs whose covariance with the flow portfolio has the

same sign. This is because changes in Ct influence both stocks in the same manner.

Momentum arises when the parameter λ that characterizes the manager’s career concerns is

not too large (λ < λR). Corollary 3.7 derives more generally the effects of career concerns on stock

prices.

Corollary 3.7 (Career Concerns) For small s, an increase in the parameter λ that character-

izes the manager’s career concerns

• Raises γ1, and thus increases the non-fundamental volatility and covariance of stock returns.

• Lowers χ1 + χ2 and û, and thus reduces the size of momentum and the horizon over which it

occurs.

A career-concerned manager seeks to hedge against outflows. Hedging requires holding a port-

folio close to the market index since outflows do not affect the index price. Moreover, the manager’s

demand to hedge against outflows becomes stronger following outflows. This is because outflows

are triggered by increases in the cost Ct, which raise the manager’s perk and hence his marginal

benefit from investor participation.
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The increase in the manager’s hedging demand following outflows exacerbates stocks’ non-

fundamental volatility and covariance, and reduces momentum. For example, an increase in Ct

causes stocks that the active fund overweights to drop because of the anticipation of future outflows

(Corollary 3.3). The drop is exacerbated because the increase in Ct makes the manager more willing

to hedge against outflows, and hence less willing to deviate from the market index and overweight

some stocks. This “career-concern” effect also works against the bird-in-the-hand effect, which

causes momentum, because the latter makes it attractive for the manager to increase his holdings

of active overweights following increases in Ct. When λ exceeds the threshold λR, the career-concern

effect dominates and momentum does not arise.

4 Asymmetric Information

In this section we study the case of asymmetric information, where the investor does not observe

the cost Ct and seeks to infer it from the returns and share prices of the active and index funds. To

prevent share prices from fully revealing Ct, as they would under (3.1), we introduce time-variation

in stocks’ expected dividends. We replace (2.1) by

dDt = Ftdt+ σdBD
t , (4.1)

and assume that Ft follows the process

dFt = κ(F̄ − Ft)dt+ ϕσdBF
t , (4.2)

where the mean-reversion parameter κ is the same as for Ct for simplicity, F̄ is a long-run mean,

ϕ is a positive scalar, and BF
t is a d-dimensional Brownian motion independent of (BD

t , B
C
t ). The

diffusion matrices σ of Dt and ϕσ of Ft are proportional for simplicity. We assume that only the

manager observes Ft, so Ft is reflected in prices and prevents the investor from inferring Ct. We

set f ≡ 1 + ϕ2/(r + κ)2.

We look for an equilibrium with the following characteristics. The investor’s conditional dis-

tribution of Ct is normal with mean Ĉt. The variance of the conditional distribution is, in general,

a deterministic function of time, but we focus on the steady state reached for t → ∞, where it is

constant. Stock prices take the form

St =
F̄

r
+
Ft − F̄

r + κ
− (a0 + a1Ĉt + a2Ct + a3yt), (4.3)
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where (a0, a1, a2, a3) are constant vectors. The first two terms are the present value of expected

dividends discounted at the riskless rate r, and the third term is a risk discount linear in (Ĉt, Ct, yt).

We conjecture that the effects of (Ĉt, Ct, yt) depend on the covariance with the flow portfolio, as is

the case for (Ct, yt) under symmetric information. That is, there exist constants (γ1, γ2, γ3) such

that for i = 1, 2, 3,

ai = γiΣp
′
f . (4.4)

The rate vt ≡ dyt/dt at which the investor changes her active-fund holdings in our conjectured

equilibrium is

vt = b0 − b1Ĉt − b2yt, (4.5)

where (b0, b1, b2) are constants. We refer to an equilibrium satisfying (4.3)-(4.5) as linear.

4.1 Investor’s Inference

The investor seeks to infer the cost Ct from fund returns and share prices. She observes the net-

of-cost return ztdRt − Ctdt of the active fund, the return ηdRt of the index fund, the price ztSt of

the active fund, and the price ηSt of the index fund. Because she observes prices, she also observes

capital gains, and therefore can deduce net dividends (i.e., dividends minus Ct).

In equilibrium, the active fund’s portfolio zt is equal to θ − xtη. Since the investor knows xt,

observing the price and net dividends of the active and index funds is informationally equivalent

to observing the price and net dividends of the index fund and of a hypothetical fund holding the

true market portfolio θ. Therefore, we can take the investor’s information to be the net dividends

of the true market portfolio θdDt − Ctdt, the dividends of the index fund ηdDt, the price of the

true market portfolio θSt, and the price of the index fund ηSt.
12 We solve the investor’s inference

problem using recursive (Kalman) filtering.

Proposition 4.1 The mean Ĉt of the investor’s conditional distribution of Ct evolves according to

12We are assuming that the investor’s information is the same in and out of equilibrium, i.e., the manager cannot
manipulate the investor’s beliefs by deviating from his equilibrium strategy and choosing a portfolio zt ̸= θ − xtη.
This is consistent with the assumption of a competitive manager. Indeed, one interpretation of this assumption is
that there exists a continuum of managers, each with the same Ct. A deviation by one manager would then not affect
the investors’ beliefs about Ct because these would depend on averages across managers.

21



the process

dĈt =κ(C̄ − Ĉt)dt− β1

{
pf [dDt − Et(dDt)]− (Ct − Ĉt)dt

}
− β2pf

[
dSt + a1dĈt + a3dyt − Et(dSt + a1dĈt + a3dyt)

]
, (4.6)

where

β1 ≡ T

[
1− (r + k)

γ2∆

ηΣη′

]
ηΣη′

∆
, (4.7)

β2 ≡
s2γ2

ϕ2

(r+κ)2
+

s2γ22∆
ηΣη′

, (4.8)

and T denotes the distribution’s steady-state variance. The variance T is the unique positive solution

of the quadratic equation

T 2

[
1− (r + κ)

γ2∆

ηΣη′

]2 ηΣη′
∆

+ 2κT −
s2ϕ2

(r+κ)2

ϕ2

(r+κ)2
+

s2γ22∆
ηΣη′

= 0. (4.9)

The term in β1 in (4.6) represents the investor’s learning from net dividends. Recalling the

definition (3.12) of the flow portfolio, we can write this term as

−β1
{
θdDt − Ctdt− Et (θdDt − Ctdt)−

ηΣθ′

ηΣη′
[ηdDt −Et(ηdDt)]

}
. (4.10)

The investor lowers her estimate of the cost Ct if the net dividends of the true market portfolio

θdDt − Ctdt are above expectations. Of course, net dividends can be high not only because Ct is

low, but also because gross dividends are high. The investor adjusts for this by comparing with the

dividends ηDt of the index fund. The adjustment is made by computing the regression residual of

θdDt − Ctdt on ηDt, which is the term in curly brackets in (4.10).

The term in β2 in (4.6) represents the investor’s learning from prices. The investor lowers her

estimate of Ct if the price of the true market portfolio is above expectations. Indeed, the price can

be high because the manager knows privately that Ct is low, and anticipates that the investor will

increase her participation in the fund, causing the price to rise, as she learns about Ct. As with

dividends, the investor needs to account for the fact that the price of the true market portfolio can

be high not only because Ct is low, but also because the manager expects future dividends to be

high (Ft small). She adjusts for this by comparing with the price of the index fund. Note that if
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Ft is constant (ϕ = 0), learning from prices is perfect: (4.9) implies that the conditional variance

T is zero.

Because the investor compares the performance of the true market portfolio, and hence of the

active fund, to that of the index fund, she is effectively using the index as a benchmark. Note that

benchmarking is not part of an explicit contract tying the manager’s compensation to the index.

Compensation is tied to the index only implicitly: if the active fund outperforms the index, the

investor infers that Ct is low and increases her participation in the fund.

4.2 Optimization

The manager chooses controls (c̄t, ȳt, zt) to maximize the expected utility (2.3) subject to the budget

constraint (3.3), the normalization (3.4), and the investor’s holding policy (4.5). Since stock prices

depend on (Ĉt, Ct, yt), the same is true for the manager’s value function. We conjecture that the

value function is

V̄ (Wt, X̄t) ≡ − exp

[
−
(
rᾱWt + q̄0 + (q̄1, q̄2, q̄3)X̄t +

1

2
X̄ ′
tQ̄X̄t

)]
, (4.11)

where X̄t ≡ (Ĉt, Ct, yt)
′, (q̄0, q̄1, q̄2, q̄3) are constants, and Q̄ is a constant symmetric 3× 3 matrix.

Proposition 4.2 The value function (4.11) satisfies the Bellman equation (3.6) if (q̄0, q̄1, q̄2, q̄3, Q̄)

satisfy a system of ten scalar equations.

The investor chooses controls (ct, xt, vt) to maximize the expected utility (2.2) subject to the

budget constraint (3.8) and the manager’s portfolio policy zt = θ−xtη. We study this optimization

problem in two steps: first optimize over (ct, xt), assuming that vt is given by (4.5), and then derive

conditions under which (4.5) is optimal. We solve the first problem using dynamic programming,

and conjecture the value function (3.9), where Xt ≡ (Ĉt, yt)
′, (q0, q1, q2) are constants, and Q is a

constant symmetric 2× 2 matrix.

Proposition 4.3 The value function (3.9) satisfies the Bellman equation (3.10) if (q0, q1, q2, Q)

satisfy a system of six scalar equations. The control vt given by (4.5) is optimal if (b0, b1, b2) satisfy

a system of three scalar equations.
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4.3 Equilibrium

Proposition 4.4 shows that a unique linear equilibrium exists when the diffusion coefficient s of Ct

is small. Our numerical solutions for general values of s in Section 5 seem to also generate a unique

linear equilibrium, with properties similar to those derived in the rest of this section for small s.13

Proposition 4.4 For small s, there exists a unique linear equilibrium. The constants (b1, b2, γ1, γ2)

are positive and the constant γ3 is negative.

Asymmetric information gives rise to amplification: cashflow shocks trigger fund flows, which

amplify the effects of cashflow shocks on stock returns. Suppose, for example, that a stock expe-

riences a negative cashflow shock. If the stock is overweighted by the active fund, then the shock

lowers the return of the active fund more than of the index fund. As a consequence, the investor

infers that Ct has increased, and flows out of the active and into the index fund. Since the ac-

tive fund overweights the stock, the investor’s flows cause the stock to be sold and push its price

down. Conversely, if the stock is underweighted, then the investor infers that Ct has decreased,

and flows out of the index and into the active fund. Since the active fund underweights the stock,

the investor’s flows cause again the stock to be sold and push its price down.

Amplification is related to comovement. Recall that under symmetric information fund flows

generate comovement between a pair of stocks because they affect the expected return of each

stock in the pair. This channel of comovement, to which we refer as ER/ER (where ER stands for

expected return) is also present under asymmetric information. Asymmetric information introduces

an additional channel involving fund flows, to which we refer as CF/ER (where CF stands for

cashflow). This is that cashflow news of one stock in a pair trigger fund flows which affect the

expected return of the other stock. The CF/ER channel is the one related to amplification.

While the ER/ER and CF/ER channels are conceptually distinct, they have similar effects:

the covariance matrix generated by CF/ER is equal to that generated by ER/ER times a positive

scalar. Thus, if ER/ER generates positive covariance between a pair of stocks, so does CF/ER, and

if the former covariance is large, so is the latter. Consider, for example, two stocks that the active

fund overweights. Since outflows from the active fund (triggered by, e.g., a cashflow shock to a third

stock) push down the prices of both stocks, ER/ER generates positive covariance. Moreover, since

13This applies to b1 > 0, b2 > 0, γ1 > 0, γ2 > 0, γ3 < 0, and to Corollaries 4.1-4.4. The only exception is that for
large values of s, the short-run momentum derived in Corollary 4.4 for all values of λ arises only when λ is not too
large.
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a negative cashflow shock to one stock triggers outflows from the active fund, which push down

the price of the other stock, CF/ER also generates positive covariance. The former covariance is

large if the two stocks have high idiosyncratic risk since this makes them more sensitive to fund

flows. But high idiosyncratic risk also renders the latter covariance large: cashflow shocks to stocks

having low correlation with the index generate a large discrepancy between the active and the index

return, hence triggering large fund flows.

The proportionality of the covariance matrices generated by ER/ER and CF/ER implies also

proportionality of the non-fundamental covariance matrix under asymmetric information (ER/ER

and CF/ER) to that under symmetric information (ER/ER). The proportionality coefficient in

the latter relationship is larger than one for small s. Thus, the non-fundamental volatility of each

stock is larger under asymmetric information, and so is the absolute value of the non-fundamental

covariance between any pair of stocks. This is because of the amplification channel CF/ER, which

is present only under asymmetric information.

Corollary 4.1 (Comovement and Amplification) The covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(
fΣ+ kΣp′fpfΣ

)
dt, (4.12)

where k is a positive constant. The fundamental covariance fΣdt is driven by purely cashflows and

is equal to its symmetric-information counterpart.14 The non-fundamental covariance kΣp′fpfΣdt

is introduced by fund flows and is equal to its symmetric-information counterpart times a positive

scalar, which is larger than one for small s.

Stocks’ expected returns are determined by the covariance with the market index and the flow

portfolio, as under symmetric information. Moreover, the risk premium Λt of the flow portfolio is

time-varying, and its variation is closely related to momentum and reversal. Consider, for example,

a cashflow shock that is negative and hits a stock that the active fund overweights. The shock

raises Ĉt, the investor’s estimate of Ct. This lowers the time-t prices and expected returns of stocks

covarying positively with the flow portfolio (γ1 > 0 and γR1 < 0), and raises their expected returns

in the long run.

Corollary 4.2 (Expected Returns) Stocks’ expected returns are given by the two-factor model

(3.17), with the factors being the market index and the flow portfolio. The factor risk premium Λt

14The fundamental covariance Σdt in Corollary 3.4 needs to be multiplied by f to account for the effects of Ft. See
the proof of the corollary.
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associated to the flow portfolio is

Λt = rᾱ+
1

f + k∆
ηΣη′

(
γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)
, (4.13)

where (γR1 , γ
R
2 , γ

R
3 , k1, k2) are constants. For small s, the constants (γR1 , γ

R
3 ) are negative and the

constant γR2 is positive.

The response of expected returns to cashflow shocks causes returns to be predictable based on

these shocks. We characterize this predictability in Corollary 4.3, where we compute the covariance

between the vectors (dDt, dFt) of cashflow shocks at time t and the vector of returns at time t′ > t.

Both covariance matrices are equal to the non-fundamental covariance matrix times a scalar which

is positive for short lags and negative for long lags. Thus, cashflow shocks generate short-run

momentum and long-run reversal in returns. Note that predictability based on cashflows arises

only under asymmetric information because only then cashflow shocks trigger fund flows.

Corollary 4.3 (Return Predictability Based on Cashflows) The covariance between cash-

flow shocks (dDt, dFt) at time t and stock returns at time t′ > t is given by

Covt(dDt, dR
′
t′) =

β1(r + κ)Covt(dFt, dR
′
t′)

β2ϕ2
=
[
χD1 e

−(κ+ρ)(t′−t) + χD2 e
−b2(t′−t)

]
Σp′fpfΣdtdt

′,

(4.14)

where (χD1 , χ
D
2 , ρ) are constants. For small s, the term in the square bracket of (4.14) is positive if

t′ − t < ûD and negative if t′ − t > ûD, for a threshold ûD > 0. A stock’s cashflow shocks predict

positively the stock’s subsequent return for t′ − t < ûD (short-run momentum) and negatively for

t′ − t > ûD (long-run reversal). They predict in the same manner the subsequent return of another

stock when the covariance between each stock in the pair and the flow portfolio has the same sign,

and in the opposite manner otherwise.

We finally examine predictability based on past returns rather than cashflows. This predictabil-

ity is driven both by cashflow shocks and by shocks to Ct, and has the same form as under symmetric

information.15

15The only difference is that short-run momentum arises for all values of λ. This result, however, relies on the
assumption that s is small; for large values of s, short-run momentum arises only when λ is not too large, as under
symmetric information.
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Corollary 4.4 (Return Predictability) The covariance between stock returns at time t and

those at time t′ > t is

Covt(dRt, dR
′
t′) =

[
χ1e

−(κ+ρ)(t′−t) + χ2e
−κ(t′−t) + χ3e

−b2(t′−t)
]
Σp′fpfΣdtdt

′, (4.15)

where (χ1, χ2, χ3) are constants. For small s, the term in the square bracket of (4.15) is positive if

t′− t < û and negative if t′− t > û, for a threshold û > 0. Given û, predictability is as in Corollary

3.6.

5 Momentum and Value Strategies

In this section we compute the magnitude of momentum and value effects that our model generates.

The magnitude of these effects is typically measured through the performance of trading strategies.

We first construct a measure of performance and then compute it in a calibration of our model.

5.1 Performance Measure

Consider a trading strategy consisting of a vector of weights wt ≡ (w1t, .., wNt), where wnt is

the number of shares invested in stock n at time t. Part of the strategy’s expected return is

compensation for bearing risk that correlates with the market index. We focus on the remainder by

index-adjusting the strategy, i.e., combining it with a position in the index such that the covariance

between the overall position and the index is zero. The index-adjusted strategy is

ŵt ≡ wt −
Covt(wtdRt, ηdRt)

V art(ηdRt)
η. (5.1)

Note that the position in the index can be time-varying, reflecting possible time-variation in the

covariance between the strategy and the index. We measure the performance of the strategy wt by

the Sharpe ratio of its index-adjusted version ŵt.
16 The Sharpe ratio is the ratio of expected return

to standard deviation. We also divide by
√
dt to express the Sharpe ratio in annualized terms,

given that returns are evaluated over an infinitesimal period dt. The Sharpe ratio corresponding

16Empirical studies that compute Sharpe ratios of momentum and value strategies typically consider long-short
portfolios with zero initial investment, i.e., require the dollar weights to sum to zero. Our index-adjustment is in a
similar spirit: the weights that sum to zero are the number of shares times the covariance between one share and the
index rather than times the dollar value of one share. We define weights differently because this preserves linearity
and simplifies the algebra.
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to the strategy wt thus is

SRw ≡ E(ŵtdRt)√
V ar(ŵtdRt)dt

. (5.2)

Proposition 5.1 computes the Sharpe ratio under the prices in the asymmetric-information equi-

librium of Section 4 and in the steady state reached for t → ∞. It also determines the strategy

maximizing the Sharpe ratio.

Proposition 5.1 The Sharpe ratio corresponding to the strategy wt is

SRw =

(
f + k∆

ηΣη′

)
E
(
ΛtwtΣp

′
f

)
√
f
[
E(wtΣw′

t)−
E[(wtΣη′)2]

ηΣη′

]
+ kE[(wtΣp′f )

2]

, (5.3)

and is maximized for wt = Λtpf .

The intuition for the optimal strategy can be derived from the two-factor model of Corollary

4.2. A strategy’s expected return consists of a compensation for bearing risk that correlates with

the index, and a compensation for bearing risk that correlates with the flow portfolio. Index

adjustment isolates the latter component. Maximizing that component per unit of risk requires

holding the flow portfolio since this eliminates uncompensated risk. Moreover, investment in the

flow portfolio should be larger when the premium Λt associated to that risk factor is high. Since

time-variation in Λt is caused by fund flows, past and anticipated, the optimal strategy effectively

exploits mispricing generated by flows.

Momentum and value strategies exploit aspects of the flow-generated mispricing, and are im-

perfect approximations of the optimal strategy. We consider the following simple implementation

of cross-sectional momentum and value strategies:(
wMt

)′ ≡∫ t

t−τ
dRu, (5.4)

(
wVt
)′ ≡ F̄

r
+
Ft − F̄

r + κ
− St, (5.5)

respectively. A stock’s momentum weight increases linearly in the stock’s cumulative past return

over the window [t− τ, t] for some τ > 0. A stock’s value weight increases linearly in the difference

between the present value of the stock’s expected dividends discounted at the riskless rate, and the

stock’s price.
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Substituting (5.4) and (5.5) into (5.3) yields closed-form solutions for the Sharpe ratios of

momentum and value strategies. We omit these calculations because of space constraints. The

calculations are in Vayanos and Woolley (VW 2012), who also compute closed-form Sharpe ratios

achieved by alternative implementations of momentum and value strategies; by optimal combina-

tions of these strategies; and for general investment horizons.

5.2 Calibration of Model Parameters

We set the riskless rate r to 4%. We assume that there are N = 10 stocks, which we interpret as

industry sectors. We assume that the market index η includes one share of each stock, i.e., η = 1,

where 1 ≡ (1, .., 1), and that the true market portfolio includes one share of each stock on average,

i.e., θ̄ ≡
∑N

n=1 θn/N = 1. These are normalizations because we can redefine one share of each

stock and of the index, leaving Sharpe ratios unchanged. We assume that stocks are symmetric

in the sense that they all have the same standard deviation of dividends and the same pairwise

correlations. (Our closed-form solutions for Sharpe ratios, however, do not require any symmetry.)

Hence, the covariance matrix of dividends is Σ = σ̂2(I + ω1′1), where I is the identity matrix and

(σ̂, ω) are scalars. We calibrate σ̂ using the Sharpe ratio SRη of the market index η. Closed-form

solutions for SRη and for all other quantities used in the calibration are in VW. We express SRη

in annualized terms, and set it to 30%. This is equal to the Sharpe ratio of the S&P500 index,

assuming an annual expected excess return of 4.5% and a standard deviation of 15%. The implied

value of σ̂ is 0.22.17 We calibrate ω using the correlation between industry sectors and the market.

Ang and Chen (2002) find that the average correlation between the returns of an industry sector

and of a broad market index is 87% across the 13 sectors that they consider. The implied value of

ω is seven. We set ϕ to 0.3. This parameter determines the size of shocks to the expected dividend

rate Ft relative to dividends Dt, and has small effects on our calibration results.

VW show that the only characteristic of the true market portfolio θ that affects Sharpe ratios

when stocks are symmetric is σ(θ) ≡
√∑N

n=1(θn − θ̄)2. This is the standard deviation across

stocks of the number of shares included in θ, and must be strictly positive so that θ differs from the

market index η. We calibrate σ(θ) using the average deviation between the weight that an active

fund gives to an industry sector and the sector’s weight in a broad market index. Kacperczyk, Sialm

and Zheng (KSZ1 2005) find that the sum of squared deviations across the ten sectors that they

17Note that σ̂ is a volatility per share rather than per dollar because this is how returns are expressed in our model.
We calibrate using Sharpe ratios because these are comparable for per-share and per-dollar returns.
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consider is 4.36% for the median fund, implying an average deviation of 6.6% (10×6.6%2 = 4.36%).

To map this into a value for σ(θ), we adjust for the fact that θ is the sum of active- and index-fund

holdings. The holdings of active funds are about ten times those of index funds in KSZ1’s sample

period, so the average deviation for a combined active and index fund (which is what θ represents)

is 6%. The implied value of σ(θ) is 0.6.

To calibrate the diffusion coefficient s of the cost Ct, we recall the cost’s interpretation as minus

the return gap. Kacperczyk, Sialm and Zheng (KSZ 2008) find that the top decile of mutual funds

in terms of lagged one-year return gap earn a monthly CAPM alpha of 0.273%, while the bottom

decile earn -0.431%.18 Since in our model there is only one active fund, we interpret the differential

between deciles in a time-series rather than a cross-sectional sense. The implied value of s is 1.6.

We set the persistence parameter κ of the cost to 0.3. This is consistent with KSZ’s finding that

shocks to the return gap shrink to about one-third of their size within four years (log(3)/0.3 = 3.7).

We set the long-run mean C̄ of the cost to zero, consistent with KSZ’s finding that the average

return gap in the cross-section is zero. With C̄ = 0, negative values of the cost are equally likely as

positive values, which means that the cost cannot be interpreted solely as a managerial perk. Hence,

we emphasize again the managerial-ability interpretation, and for consistency set the parameter λ

to zero.

We calibrate the adjustment-cost parameter ψ using the empirical response of fund flows to

performance. Coval and Stafford (2007) find that a positive shock to a fund’s return generates

flows into the fund in each of the next four quarters, with the effect dying off in the fifth. We set

ψ = 1.2, which ensures that following a positive shock to the active fund’s return, the investor’s

holdings yt in the fund increase in the next four quarters and start decreasing afterwards.

We set the investor’s coefficient of absolute risk aversion α to one. This is a normalization

because we can redefine the units of the consumption good, leaving Sharpe ratios unchanged. To

calibrate the risk aversion of the manager, we recall that he can be interpreted as an aggregate of

all smart-money agents with the expertise to exploit mispricings. We are interested in the capital

that these experts own, rather than in the capital they might manage on behalf of outsiders, since

only the former can be used to exploit mispricings generated by outsiders’ flows. Since most of the

financial expertise lies within the financial industry, the capital of experts can be linked to that

industry’s GDP share. Philippon (2008) reports that the GDP share of the Finance and Insurance

industry was 5.5% on average during 1960-2007 in the US. We view this as an upper bound since

18KSZ derive two different sets of estimates; we focus on those derived using a back-testing procedure that reduces
estimation noise.
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only part of that industry concerns asset markets, and set the manager’s coefficient of absolute risk

aversion ᾱ to 30. This means that the manager accounts for 3.2% (=1/(30+1)) of aggregate risk

tolerance.19

As an independent check for our choices of s and ᾱ, we compute two additional quantities:

the turnover and the return variance generated by fund flows. Lou (2012) finds that the standard

deviation of a stock’s quarterly turnover generated by fund flows is 0.7%. Since the funds in Lou’s

sample account for about 10% of market capitalization, the standard deviation of flow-generated

volume is 7% of assets managed by these funds; we find 7.8%. Greenwood and Thesmar (GT 2011)

find that fund flows explain 8% of stock-return variance; we find 16%. GT’s sample, however,

includes less than half of all professionally-managed wealth. Accounting for that, and for possible

measurement noise, could well produce a number even larger than 16%. Raising s and ᾱ to match

such a larger number would raise the Sharpe ratios of momentum and value strategies that we find

in the next section.

5.3 Calibration Results

The maximum Sharpe ratio across all strategies (Proposition 5.1) is 61%. The value strategy (5.5)

achieves a Sharpe ratio of 26%. Figure 1 plots the Sharpe ratio of the momentum strategy (5.4) as

a function of the length τ of the window over which past returns are calculated. This Sharpe ratio

is positive for windows of less than three years, and then turns negative. Thus, a strategy based on

short-run momentum is profitable, and so is one based on long-run reversal. The highest Sharpe

ratio of momentum is achieved using a window of four months, and is 40%. Moreover, windows

from one to 11 months yield Sharpe ratios larger than 30%, the ratio of the market index. The

Sharpe ratio of momentum converges to zero as the window length goes to zero because very recent

performance is a very noisy signal of future fund flows.

VW decompose momentum profits into three sources. The first is the positive short-run re-

sponse of expected returns to shocks (Corollaries 3.6 and 4.4): shocks hit by positive shocks receive

high weight in the momentum strategy, and are expected to do well in the short run. The sec-

ond is the time-series variation of expected returns (regardless of how these respond to shocks):

stocks whose conditional expected returns are higher than their unconditional averages receive

high expected weight in the momentum strategy, and are expected do well in the short run because

19Risk tolerance in our model is independent of capital because of exponential utility. Our choice of ᾱ is based on
the notion that risk tolerance is proportional to capital, which is true under power utility.
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Figure 1: Sharpe ratio of the momentum strategy (5.4) as a function of the length τ
of the window over which past returns are calculated. The window length is measured
in years. The parameters for which the figure is drawn are described in Section 5.2.

conditional expected returns are persistent. The third, emphasized by Conrad and Kaul (1998),

is the cross-sectional variation of unconditional expected returns: stocks with high unconditional

expected returns receive high expected weight in the momentum strategy, and are expected to do

well going forward. The first source of profits is dominant in our calibration: for example, 62% of

the maximum Sharpe ratio in Figure 1 is generated by the first source, 36% by the second, and 2%

by the third.

Asness, Moskowitz and Pedersen (AMP 2012) present evidence on Sharpe ratios of momentum

and value strategies across a variety of markets and asset classes. Strategies exploiting momentum

of individual stocks within a market yield an average Sharpe ratio of 70% across the four markets

that AMP consider (US, UK, Continental Europe, Japan), and strategies exploiting value yield

36%. Strategies exploiting momentum of country-level stock indices yield 34%, and so do strategies

exploiting value. Our Sharpe ratios are somewhat smaller on average. This is not surprising since we

focus only on flows between investment funds and ignore other types of flows, e.g., those generated

by individuals holding stocks directly. Such flows would likely increase the Sharpe ratios relative to

our calibration. Our calibration shows, however, that even by focusing only on institutional flows

and restricting parameters based on evidence from the mutual-fund literature, we can generate

sizeable Sharpe ratios.
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6 Conclusion

We propose a theory of momentum and reversal based on delegated portfolio management. Flows

between investment funds are triggered by changes in fund managers’ efficiency, which investors

either observe directly or infer from past performance. Momentum arises if fund flows exhibit

inertia, and because rational prices do not fully adjust to reflect future flows. Reversal arises because

flows push prices away from fundamental values. Besides momentum and reversal, flows generate

comovement, lead-lag effects and amplification, with these being larger for high-idiosyncratic-risk

assets. While our model focuses on institutional flows, the mechanisms that we uncover are broader

and can apply to other types of flows, e.g., those generated by individuals holding stocks directly.

Our model’s implications for return predictability map naturally into implications for active

portfolio management. We sketch some of these implications in Section 5, where we compute the

Sharpe ratios of momentum and value strategies. Much more can be done, however, and in a

tractable closed-form manner. For example, while we evaluate momentum and value strategies

in isolation, these can be combined. Asness, Moskowitz and Pedersen (2012) find empirically a

negative correlation between these strategies, and hence large gains in combining them. Our model

also yields a negative correlation, as shown in Vayanos and Woolley (VW 2012). Perhaps more

intriguingly, the Sharpe ratio of the optimal momentum-value combination is significantly smaller

than the maximum possible Sharpe ratio. Thus, momentum and value strategies can be improved,

possibly by using information on fund flows. Finally, while momentum delivers a higher Sharpe

ratio than value over a short horizon, VW show that the comparison reverses over a long horizon.

Hence, the portfolio allocation of a long-horizon investor between momentum and value can be very

different than of a short-horizon investor.
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Appendix

A Symmetric Information

Proof of Proposition 3.1: Eqs. (2.1), (2.4), (3.1) and (3.2) imply that the vector of returns is

dRt =dDt + dSt − rStdt

=
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
dt+ σdBD

t − sa1dB
C
t , (A.1)

where

aR1 ≡ (r + κ)a1 + b1a2,

aR2 ≡ (r + b2)a2.

Eqs. (2.4), (3.2), (3.3) and (A.1) imply that

d

(
rᾱWt + q̄0 + (q̄1, q̄2)X̄t +

1

2
X̄ ′
tQ̄X̄t

)
= Ḡdt+ rᾱẑtσdB

D
t − s

[
rᾱẑta1 − f̄1(X̄t)

]
dBC

t , (A.2)

where

Ḡ ≡rᾱ
[
rWt + ẑt

(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
+ λCtyt − c̄t

]
+ f̄1(X̄t)κ(C̄ − Ct) + f̄2(X̄t)vt +

1

2
s2q̄11,

f̄1(X̄t) ≡ q̄1 + q̄11Ct + q̄12yt,

f̄2(X̄t) ≡ q̄2 + q̄12Ct + q̄22yt,

and q̄ij denotes the (i, j)’th element of Q̄. Eqs. (3.5) and (A.2) imply that

DV̄ = −V̄
{
Ḡ− 1

2
(rᾱ)2ẑtΣẑ

′
t −

1

2
s2
[
rᾱẑta1 − f̄1(X̄t)

]2}
. (A.3)

Substituting (A.3) into (3.6), we can write the first-order conditions with respect to c̄t and ẑt as

ᾱ exp(−ᾱc̄t) + rᾱV̄ = 0, (A.4)

h̄(X̄t) = rᾱ(Σ + s2a1a
′
1)ẑ

′
t, (A.5)

respectively, where

h̄(X̄t) ≡ ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2 + s2a1f̄1(X̄t). (A.6)
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Eq. (A.5) is equivalent to (3.7) because of (2.4), (A.1) and

Covt(dRt, dR
′
t) =

(
Σ+ s2a1a

′
1

)
dt (A.7)

which follows from (A.1). Using (A.3) and (A.4), we can simplify (3.6) to

Ḡ− 1

2
(rᾱ)2ẑt(Σ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(X̄t)−

1

2
s2f̄1(X̄t)

2 + β̄ − r = 0. (A.8)

Eqs. (3.5) and (A.4) imply that

c̄t = rWt +
1

ᾱ

[
q̄0 + (q̄1, q̄2)X̄t +

1

2
X̄ ′
tQ̄X̄t − log(r)

]
. (A.9)

Substituting (A.9) into (A.8) the terms in Wt cancel, and we are left with

rᾱẑt
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
+ rᾱλCtyt − r

[
q̄0 + (q̄1, q̄2)X̄t +

1

2
X̄ ′
tQ̄X̄t

]

+ f̄1(X̄t)κ(C̄ − Ct) + f̄2(X̄t)vt +
1

2
s2q̄11 + β̄ − r + r log(r)

− 1

2
(rᾱ)2ẑt(Σ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(X̄t)−

1

2
s2f̄1(X̄t)

2 = 0. (A.10)

The terms in (A.10) that involve ẑt can be written as

rᾱẑt
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
− 1

2
(rᾱ)2ẑt(Σ + s2a1a

′
1)ẑ

′
t + rᾱs2ẑta1f̄1(X̄t)

= rᾱẑth̄(X̄t)−
1

2
(rᾱ)2ẑt(Σ + s2a1a

′
1)ẑ

′
t

=
1

2
rᾱẑth̄(X̄t)

=
1

2
h̄(X̄t)

′(Σ + s2a1a
′
1)

−1h̄(X̄t), (A.11)

where the first step follows from (A.6) and the last two from (A.5). Substituting (A.11) into (A.10),

we find

1

2
h̄(X̄t)

′(Σ + s2a1a
′
1)

−1h̄(X̄t) + rᾱλCtyt − r

[
q̄0 + (q̄1, q̄2)X̄t +

1

2
X̄ ′
tQ̄X̄t

]

+ f̄1(X̄t)κ(C̄ − Ct) + f̄2(X̄t)vt +
1

2
s2
[
q̄11 − f̄1(X̄t)

2
]
+ β̄ − r + r log(r) = 0. (A.12)

Eq. (A.12) is quadratic in X̄t. Identifying quadratic, linear and constant terms yields six scalar

equations in (q̄0, q̄1, q̄2, Q̄). We defer the derivation of these equations until the proof of Proposition

3.3 (see (A.48)-(A.50)).
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Proof of Proposition 3.2: Suppose that the investor optimizes over (ct, xt) but follows the control

vt given by (3.2). Eqs. (2.4), (3.2), (3.8), (3.9) and (A.1) imply that

d

(
rαWt + q0 + q1Ct +

1

2
q11C

2
t

)
= Gdt+rα(xtη+ytzt)σdB

D
t −s [rα(xtη + ytzt)a1 − f1(Xt)] dB

C
t ,

(A.13)

where

G ≡rα
[
rWt + (xtη + ytzt)

(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
− ytCt −

1

2
ψv2t − ct

]

+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2q11,

f1(Xt) ≡ q1 + q11Ct + q12yt,

f2(Xt) ≡ q2 + q12Ct + q22yt,

and qij denotes the (i, j)’th element of Q. Eqs. (3.9) and (A.13) imply that

DV = −V
{
G− 1

2
(rα)2(xtη + ytzt)Σ(xtη + ytzt)

′ − 1

2
s2 [rα(xtη + ytzt)a1 − f1(Xt)]

2

}
. (A.14)

Substituting (A.14) into (3.10), we can write the first-order conditions with respect to ct and xt as

α exp(−αct) + rαV = 0, (A.15)

ηh(Xt) = rαη(Σ + s2a1a
′
1)(xtη + ytzt)

′, (A.16)

respectively, where

h(Xt) ≡ ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2 + s2a1f1(Xt). (A.17)

Solving for ct, and proceeding as in the proof of Proposition 3.1, we can simplify (3.10) to

rα(xtη + ytzt)
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
− rαytCt −

1

2
rαψv2t

− r

[
q0 + (q1, q2)Xt +

1

2
X ′
tQXt

]
+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +

1

2
s2q11 + β − r + r log(r)

− 1

2
(rα)2(xtη + ytzt)(Σ + s2a1a

′
1)(xtη + ytzt)

′ + rαs2(xtη + ytzt)a1f1(Xt)−
1

2
s2f1(Xt)

2 = 0.

(A.18)
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The terms in (A.18) that involve xtη + ytzt can be written as

rα(xtη + ytzt)
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
− 1

2
(rα)2(xtη + ytzt)(Σ + s2a1a

′
1)(xtη + ytzt)

′ + rαs2(xtη + ytzt)a1f1(Xt)

= rα(xtη + ytzt)h(Xt)−
1

2
(rα)2(xtη + ytzt)(Σ + s2a1a

′
1)(xtη + ytzt)

′

= rαytθh(Xt)−
1

2
(rα)2y2t θ(Σ + s2a1a

′
1)θ

′

+ rαxt(1− yt)

{
ηh(Xt)−

1

2
rαη(Σ + s2a1a

′
1) [xt(1− yt)η + 2ytθ]

′
}′
, (A.19)

where the first step follows from (A.17) and the second from the equilibrium condition zt = θ−xtη.

Using zt = θ − xtη, we can write (A.16) as

ηh(Xt) = rαη(Σ + s2a1a
′
1) [xt(1− yt)η + ytθ]

′

⇒xt(1− yt) =
ηh(Xt)− rαytη(Σ + s2a1a

′
1)θ

′

rαη(Σ + s2a1a′1)η
′ . (A.20)

Eqs. (A.20) implies that

rαxt(1− yt)

{
ηh(Xt)−

1

2
rαη(Σ + s2a1a

′
1) [xt(1− yt)η + 2ytθ]

′
}′

=
1

2
[rαxt(1− yt)]

2η(Σ + s2a1a
′
1)η

′

=
1

2

[
ηh(Xt)− rαytη(Σ + s2a1a

′
1)θ

′]2
η(Σ + s2a1a′1)η

′ . (A.21)

Substituting (A.19) and (A.21) into (A.18), we find

rαytθh(Xt)−
1

2
(rα)2y2t θ(Σ + s2a1a

′
1)θ

′ +
1

2

[
ηh(Xt)− rαytη(Σ + s2a1a

′
1)θ

′]2
η(Σ + s2a1a′1)η

′ − rαytCt −
1

2
rαψv2t

− r

[
q0 + (q1, q2)Xt +

1

2
X ′
tQXt

]
+ f1(Xt)κ(C̄ − Ct) + f2(Xt)vt +

1

2
s2
[
q11 − f1(Xt)

2
]

+ β − r + r log(r) = 0. (A.22)

Since vt in (3.2) is linear in Xt, (A.22) is quadratic in Xt. Identifying quadratic, linear and constant

terms yields six scalar equations in (q0, q1, q2, Q). We defer the derivation of these equations until

the proof of Proposition 3.3 (see (A.52)-(A.54)).
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We next study optimization over vt, and derive a first-order condition under which the control

(3.2) is optimal. We use a perturbation argument, which consists in assuming that the investor fol-

lows the control (3.2) except for an infinitesimal deviation over an infinitesimal internal.20 Suppose

that the investor adds ωdϵ to the control (3.2) over the interval [t, t+dϵ] and subtracts ωdϵ over the

interval [t+ dt− dϵ, t+ dt], where the infinitesimal dϵ > 0 is o(dt). The increase in adjustment cost

over the first interval is ψvtω(dϵ)
2 and over the second interval is −ψvt+dtω(dϵ)2. These changes

reduce the investor’s wealth at time t+ dt by

ψvtω(dϵ)
2(1 + rdt)− ψvt+dtω(dϵ)

2

= ψω(dϵ)2(rvtdt− dvt)

= ψω(dϵ)2(rvtdt+ b1dCt + b2dyt)

= ψω(dϵ)2
{
(r + b2)vtdt+ b1

[
κ(C̄ − Ct)dt+ sdBC

t

]}
, (A.23)

where the second step follows from (3.2) and the third from (2.4). The change in the investor’s

wealth between t and t + dt is derived from (3.8) and (A.1), by subtracting (A.23) and replacing

yt by yt + ω(dϵ)2:

dWt = Gωdt−ψω(dϵ)2b1
[
κ(C̄ − Ct)dt+ sdBC

t

]
+
{
xtη +

[
yt + ω(dϵ)2

]
zt
} [
σdBD

t − sa1dB
C
t

]
,

(A.24)

where

Gω ≡rWt +
{
xtη +

[
yt + ω(dϵ)2

]
zt
} (
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
−
[
yt + ω(dϵ)2

]
Ct

− ψv2t
2

− ct − ψω(dϵ)2(r + b2)vt.

The investor’s position in the active fund at t + dt is the same under the deviation as under no

deviation. Therefore, the investor’s expected utility at t + dt is given by the value function (3.9)

with the wealth Wt+dt determined by (A.24). The drift DV corresponding to the change in the

value function between t and t+ dt is given by the following counterpart of (A.14):

DV =− V

{
G− 1

2
(rα)2

{
xtη +

[
yt + ω(dϵ)2

]
zt
}
Σ
{
xtη +

[
yt + ω(dϵ)2

]
zt
}′

−1

2
s2
[
rα
{
xtη +

[
yt + ω(dϵ)2

]
zt
}
a1 − f1ω(Xt)

]2}
, (A.25)

20The perturbation argument is simpler than the dynamic programming approach, which assumes that the investor
can follow any control vt over the entire history. Indeed, under the dynamic programming approach, the state variable
yt which describes the investor’s holdings in the active fund must be replaced by two state variables: the holdings
out of equilibrium, and the holdings in equilibrium. This is because the latter affect the equilibrium price, which the
investor takes as given.
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where

G ≡ rαGω + f1ω(Xt)κ(C̄ − Ct) + f2(Xt)vt +
1

2
s2q11,

f1ω(Xt) ≡ f1(Xt)− rαψω(dϵ)2b1.

The drift is maximum for ω = 0, and this yields the first-order condition

zth(Xt)− rαψb1s
2(xtη + ytzt)a1 − Ct = rαzt(Σ + s2a1a

′
1)(xtη + ytzt)

′ + ψhψ(Xt), (A.26)

where

hψ(Xt) ≡ (r + b2)vt + b1κ(C̄ − Ct)− b1s
2f1(Xt).

Using (A.16) and the equilibrium condition zt = θ − xtη, we can write (A.26) as

θh(Xt)−rαψb1s2 [xt(1− yt)η + ytθ] a1−Ct = rαθ(Σ+s2a1a
′
1) [xt(1− yt)η + ytθ]

′+ψhψ(Xt). (A.27)

Using (A.20), we can write (A.27) as

θ
[
h(Xt)− rαψb1s

2yta1
]
− rαψb1s

2 ηh(Xt)− rαytη(Σ + s2a1a
′
1)θ

′

rαη(Σ + s2a1a′1)η
′ ηa1 − Ct

= rαθ(Σ + s2a1a
′
1)

[
ytθ +

ηh(Xt)− rαytη(Σ + s2a1a
′
1)θ

′

rαη(Σ + s2a1a′1)η
′ η

]′
+ ψhψ(Xt). (A.28)

Eq. (A.28) is linear in Xt. Identifying linear and constant terms, yields three scalar equations

in (b0, b1, b2). We defer the derivation of these equations until the proof of Proposition 3.3 (see

(A.43)-(A.45)).

Proof of Proposition 3.3: We first impose market clearing and derive the constants (a0, a1, a2, b0, b1, b2)

as functions of (q̄1, q̄2, Q̄, q1, q2, Q). For these derivations, as well as for many later proofs, we use

the following important properties of the flow portfolio:

ηΣp′f = 0,

θΣp′f = pfΣp
′
f =

∆

ηΣη′
.

Setting zt = θ − xtη and ȳt = 1− yt, we can write (A.5) as

h̄(X̄t) = rᾱ(Σ + s2a1a
′
1)(1− yt)(θ − xtη)

′. (A.29)
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Premultiplying (A.29) by η, dividing by rᾱ, and adding to (A.20) divided by rα, we find

η

[
h(Xt)

rα
+
h̄(X̄t)

rᾱ

]
= η(Σ + s2a1a

′
1)θ

′. (A.30)

Eq. (A.30) is linear in (Ct, yt). Identifying terms in Ct and yt, we find(
r + κ+ s2q11

rα
+
r + κ+ s2q̄11

rᾱ

)
ηa1 +

b1(α+ ᾱ)

rαᾱ
ηa2 = 0, (A.31)

(
s2q12
rα

+
s2q̄12
rᾱ

)
ηa1 +

(r + b2)(α+ ᾱ)

rαᾱ
ηa2 = 0, (A.32)

respectively. Eqs. (A.31) and (A.32) imply that

ηa1 = ηa2 = 0. (A.33)

Identifying constant terms in (A.30), and using (A.33), we find

ηa0 =
αᾱ

α+ ᾱ
ηΣθ′. (A.34)

Substituting (A.34) and (A.33) into (A.20), we find

rαᾱ

α+ ᾱ
ηΣθ′ = rαηΣ [xt(1− yt)η + ytθ]

′ ⇒ xt =
ᾱ

α+ᾱ − yt

1− yt

ηΣθ′

ηΣη′
. (A.35)

Substituting (A.35) into (A.29), we find

h̄(X̄t) = rᾱ(Σ + s2a1a
′
1)

[
α

α+ ᾱ

ηΣθ′

ηΣη′
η + (1− yt)pf

]′
. (A.36)

Eq. (A.36) is linear in X̄t. Identifying terms in Ct and yt, we find

(r + κ+ s2q̄11)a1 + b1a2 = 0, (A.37)

s2q̄12a1 + (r + b2)a2 = −rᾱ
(
Σp′f + s2a′1p

′
fa1
)
, (A.38)

respectively. Therefore, (a1, a2) are collinear to the vector Σp′f , as in (3.11). Substituting (3.11)

into (A.37) and (A.38), we find

(r + κ+ s2q̄11)γ1 + b1γ2 = 0, (A.39)

s2q̄12γ1 + (r + b2)γ2 = −rᾱ
(
1 +

s2γ21∆

ηΣη′

)
, (A.40)
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respectively. Identifying constant terms in (A.36), and using (3.11), we find

a0 =
αᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

[
γ1(κC̄ − s2q̄1) + b0γ2

r
+ ᾱ

(
1 +

s2γ21∆

ηΣη′

)]
Σp′f . (A.41)

Using (A.35), we can write (A.27) as

θh(Xt)− rαψb1s
2

(
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
η + ytpf

)
a1 − Ct

= rαθ(Σ + s2a1a
′
1)

(
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
η + ytpf

)′
+ ψhψ(Xt)

⇒ θh(Xt)− rαψb1s
2γ1

∆

ηΣη′
yt − Ct =

rαᾱ

α+ ᾱ

(ηΣθ′)2

ηΣη′
+ rα

(
1 +

s2γ21∆

ηΣη′

)
∆

ηΣη′
yt + ψhψ(Xt),

(A.42)

where the second step follows from (3.11). Eq. (A.42) is linear in (Ct, yt). Identifying terms in Ct

and yt, and using (3.2) and (3.11), we find

[
(r + κ+ s2q11)γ1 + b1γ2

] ∆

ηΣη′
− 1 = −ψb1(r + κ+ b2 + s2q11), (A.43)

[
(r + b2)γ2 + (q12 − rαψb1)s

2γ1
] ∆

ηΣη′
= rα

(
1 +

s2γ21∆

ηΣη′

)
∆

ηΣη′
− ψ

[
(r + b2)b2 + b1s

2q12
]
,

(A.44)

respectively. Identifying constant terms, and using (3.2), (3.11) and (A.41), we find

[
s2γ1(q1 − q̄1) + rᾱ

(
1 +

s2γ21∆

ηΣη′

)]
∆

ηΣη′
= ψ

[
(r + b2)b0 + b1(κC̄ − s2q1)

]
. (A.45)

The system of equations characterizing equilibrium is as follows. The endogenous variables are

(a0, a1, a2, b0, b1, b2, γ1, γ2, q̄0, q̄1, q̄2, Q̄, q0, q1, q2, Q). The equations linking them are (3.11), (A.39)-

(A.41), (A.43)-(A.45), the six equations derived from (A.12) by identifying quadratic, linear and

constant terms, and the six equations derived from (A.22) through the same procedure. To simplify

the system, we note that the variables (q̄0, q0) enter only in the equations derived from (A.12) and

(A.22) by identifying constants. Therefore they can be determined separately, and we need to

consider only the equations derived from (A.12) and (A.22) by identifying linear and quadratic

terms. We next simplify these equations, using implications of market clearing.
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Using (A.36), we find

1

2
h̄(X̄t)

′(Σ + s2a1a
′
1)

−1h̄(X̄t) =
r2α2ᾱ2(ηΣθ′)2

2(α+ ᾱ)2ηΣη′
+

1

2
r2ᾱ2(1− yt)

2

(
1 +

s2γ21∆

ηΣη′

)
∆

ηΣη′
. (A.46)

We next substitute (A.46) into (A.8), and identify terms. Identifying terms in C2
t , Ctyt and y

2
t , we

find

1

2
X̄ ′
t

(
Q̄R̄2Q̄+ Q̄R̄1 + R̄′

1Q̄− R̄0

)
X̄t = 0, (A.47)

where

R̄2 ≡
(
s2 0
0 0

)
,

R̄1 ≡
(

r
2 + κ 0
b1

r
2 + b2

)
,

R̄0 ≡

(
0 rᾱλ

rᾱλ r2ᾱ2
(
1 +

s2γ21∆
ηΣη′

)
∆
ηΣη′

)
.

Eq. (A.47) must hold for all X̄t. Since the square matrix in (A.47) is symmetric, it must equal

zero, and this yields the algebraic Riccati equation

Q̄R̄2Q̄+ Q̄R̄1 + R̄′
1Q̄− R̄0 = 0. (A.48)

We next identify terms in Ct and yt, which yield

(r + κ+ s2q̄11)q̄1 + b1q̄2 − κC̄q̄11 − b0q̄12 = 0, (A.49)

(r + b2)q̄2 + s2q̄1q̄12 + r2ᾱ2

(
1 +

s2γ21∆

ηΣη′

)
∆

ηΣη′
− κC̄q̄12 − b0q̄22 = 0, (A.50)

respectively. Using (3.11) and (A.35), we can write (A.20) as

ηh(Xt) =
rαᾱ

α+ ᾱ
ηΣθ′. (A.51)

Using (3.2), (3.11), (A.42) and (A.51), we find that the equation derived from (A.22) by identifying

terms in C2
t , Ctyt and y

2
t is

QR2Q+QR1 +R′
1Q−R0 = 0, (A.52)
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where

R2 ≡
(
s2 0
0 0

)
,

R1 ≡
(

r
2 + κ rαψb1s

2

b1
r
2 + b2

)
,

R0 ≡

(
−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2
(
1 +

s2γ21∆
ηΣη′

)
∆
ηΣη′ + 2r2α2ψb1s

2γ1
∆
ηΣη′ − rαψb2(2r + 3b2)

)
,

and the equations derived by identifying terms in Ct and yt are

(r + κ+ s2q11)q1 + b1q2 − rαψb0b1 − κC̄q11 − b0q12 = 0, (A.53)

(r + b2)q2 + s2(q12 + rαψb1)q1 − rαψ
[
(r + 2b2)b0 + b1κC̄

]
− κC̄q12 − b0q22 = 0, (A.54)

respectively.

Solving for equilibrium amounts to solving the system of (3.11), (A.39)-(A.41), (A.43)-(A.45),

(A.48)-(A.50) and (A.52)-(A.54) in the unknowns (a0, a1, a2, b0, b1, b2, γ1, γ2, q̄1, q̄2, Q̄, q1, q2, Q). This

reduces to solving the system of (A.39), (A.40), (A.43), (A.44), (A.48) and (A.52) in the un-

knowns (b1, b2, γ1, γ2, Q̄, Q): given (b1, b2, γ1, γ2, Q̄, Q), (a1, a2) can be determined from (3.11),

(b0, q̄1, q̄2, q1, q2) from the linear system of (A.45), (A.49), (A.50), (A.53) and (A.54), and a0 from

(A.41). We replace the system of (A.39), (A.40), (A.43), (A.44), (A.48) and (A.52) by the equivalent

system of (A.39), (A.40), (A.48), (A.52),

ψb1(r + κ+ b2 + s2q11) = 1 + s2γ1(q̄11 − q11)
∆

ηΣη′
, (A.55)

ψ
[
(r + b2)b2 + b1s

2q12
]
− rαψb1s

2γ1
∆

ηΣη′
= r(α+ ᾱ)

(
1 +

s2γ21∆

ηΣη′

)
∆

ηΣη′
+ s2γ1(q̄12 − q12)

∆

ηΣη′
.

(A.56)

Eqs. (A.55) and (A.56) follow by substituting (A.39) and (A.40) into (A.43) and (A.44).
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For s = 0, (A.39), (A.40), (A.48), (A.52), (A.55) and (A.56) become

(r + κ)γ1 + b1γ2 = 0, (A.57)

(r + b2)γ2 = −rᾱ, (A.58)

Q̄R̄0
1 + R̄0′

1 Q̄− R̄0
0 = 0, (A.59)

QR0
1 +R0′

1 Q−R0
0 = 0, (A.60)

ψb1(r + κ+ b2) = 1, (A.61)

ψ(r + b2)b2 = r(α+ ᾱ)
∆

ηΣη′
, (A.62)

respectively, where

R̄0
1 = R0

1 ≡
(

r
2 + κ 0
b1

r
2 + b2

)
,

R̄0
0 ≡

(
0 rᾱλ

rᾱλ r2ᾱ2 ∆
ηΣη′

)
,

R0
0 ≡

(
−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2 ∆
ηΣη′ − rαψb2(2r + 3b2)

)
.

Eq. (A.62) is quadratic and has a unique positive solution b2.
21 Given b2, b1 is determined uniquely

from (A.61), γ2 from (A.58), γ1 from (A.57), Q̄ from (A.59) (which is linear in Q̄), and Q from

(A.60) (which is linear in Q). We denote this solution by (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0).

To show that the system of (A.39), (A.40), (A.48), (A.52), (A.55) and (A.56) has a solution for

small s, we apply the implicit function theorem. We move all terms in each equation to the left-

hand side, and stack all left-hand sides into a vector F , in the order (A.56), (A.55), (A.40), (A.39),

(A.48), (A.52). Treated as a function of (b1, b2, γ1, γ2, Q̄, Q, s), F is continuously differentiable

around the point A ≡ (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0, 0) and is equal to zero at A. To show that the Jacobian

matrix of F with respect to (b1, b2, γ1, γ2, Q̄, Q) has non-zero determinant at A, we note that F has

a triangular structure for s = 0: F1 depends only on b2, F2 only on (b1, b2), F3 only on (b2, γ2),

F4 only on (b1, γ1, γ2), F5 only on (b1, b2, Q̄), and F6 only on (b1, b2, Q). Therefore, the Jacobian

21The positive solution is the relevant one. Indeed, since the negative solution satisfies r + 2b2 < 0, (A.59) implies
that q̄22 < 0. Therefore, the manager’s certainty equivalent would converge to −∞ at the rate y2t when |yt| goes to
∞ and Ct is held constant. The manager can, however, achieve higher certainty equivalent by not investing in the
active fund.
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matrix of F has non-zero determinant at A if the derivatives of F1 with respect to b2, F2 with

respect to b1, F3 with respect to γ2, and F4 with respect to γ1 are non-zero, and the Jacobian

matrices of F5 with respect to Q̄ and F6 with respect to Q have non-zero determinants. These

results follow from (A.57)-(A.62) and the positivity of (b01, b
0
2). Therefore, the implicit function

theorem applies, and the system of (A.39), (A.40), (A.48), (A.52), (A.55) and (A.56) has a solution

for small s. This solution is unique in a neighborhood of (b01, b
0
2, γ

0
1 , γ

0
2 , Q̄

0, Q0), which corresponds

to the unique equilibrium for s = 0. Since b01 > 0, b02 > 0, γ01 > 0, γ02 < 0, continuity implies that

b1 > 0, b2 > 0, γ1 > 0, γ2 < 0 for small s.

Proof of Corollary 3.1: Eq. (3.2) implies that when Ct = 0 for all t, limt→∞ yt = b0/b2. Moreover,

when C̄ = s = 0,

b0
b2

=
rᾱ ∆

ηΣη′

ψ(r + b2)b2
=

ᾱ

(α+ ᾱ)
,

where the first step follows from (A.45) and the second from (A.62). Eqs. (A.35) and limt→∞ yt =

ᾱ/(α + ᾱ) imply that limt→∞ xt = 0. The first equality in (3.13) follows from (A.1), (A.5), (A.6)

and

lim
t→∞

ẑt = lim
t→∞

ȳt lim
t→∞

zt = (1− lim
t→∞

yt)(θ − lim
t→∞

xtη) =
α

α+ ᾱ
θ,

and the second equality follows from (A.7).

Proof of Corollary 3.2: The investor’s stock holdings are

xtη + ytzt = xtη + yt(θ − xtη)

= ytpf +
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
,

where the second step follows from (A.35). Therefore,

∂Et(xt′η + yt′zt′)

∂Ct
=
∂Et(yt′)

∂Ct
pf . (A.63)

To determine how a shock to Ct affects (Et(Ct′), Et(yt′)), we use the linearity of (2.4) and (3.2),

and solve the “impulse-response” dynamics

dCt = −κCtdt, (A.64)

dyt = −(b1Ct + b2yt)dt, (A.65)
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with the initial conditions

Ct = 1,

yt = 0.

The solution is

Ct′ = e−κ(t
′−t), (A.66)

yt′ = −
b1

[
e−κ(t

′−t) − e−b2(t
′−t)
]

b2 − κ
. (A.67)

The derivative ∂Et(yt′)/∂Ct is equal to (A.67). Substituting into (A.63), we find (3.14). Since

b1 > 0 for small s, the coefficient of pf in (3.14) is negative.

Proof of Corollary 3.3: The first equality in (3.15) follows from (3.1) and (3.11). The second

equality follows from (3.11) and (A.7). To derive the third equality, we note from (A.7) that

Covt(ηdRt, pfdRt) = 0.

Therefore, if β denotes the regression coefficient of dRt on ηdRt, then

Covt(dRt, pfdRt) = Covt (dRt − βηdRt, pfdRt)

= Covt (dϵt, pfdRt)

= Covt [dϵt, pf (dRt − βηdRt)]

= Covt (dϵt, pfdϵt) ,

where the second and fourth steps follow from the definition of dϵt, and the third step follows

because dϵt is independent of ηdRt.

Proof of Corollary 3.4: The corollary follows by substituting (3.11) into (A.7).

Proof of Corollary 3.5: Stocks’ expected returns are

Et(dRt) =
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
dt

=

{
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

[
γR1 Ct + γR2 yt + rᾱ

(
1 +

s2γ21∆

ηΣη′

)
− γ1s

2q̄1

]
Σp′f

}
dt

=

[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
(Σ + s2a1a

′
1)η

′ + Λt(Σ + s2a1a
′
1)p

′
f

]
dt, (A.68)
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where

γR1 ≡ (r + κ)γ1 + b1γ2,

γR2 ≡ (r + b2)γ2.

The first step in (A.68) follows from (A.1), the second from (3.11) and (A.41), and the third from

(3.11) and (3.18). Eq. (A.68) is equivalent to (3.17) because of (A.7).

Eq. (A.39) implies that γR1 has the opposite sign of γ1q̄11. For small s, γ1 > 0 and q̄11 has the

same sign as its value q̄011 for s = 0. Eq. (A.59) implies that

q̄011 = − 2b01q̄
0
12

r + 2κ

= − 2b01
(r + 2κ)(r + κ+ b02)

(
rᾱλ− b01q̄

0
22

)
,

= − 2rᾱb01
(r + 2κ)(r + κ+ b02)

[
λ− rᾱb01∆

(r + 2b02)ηΣη
′

]
,

= − 2rᾱb01
(r + 2κ)(r + κ+ b02)

[
λ− rᾱ∆

ψ(r + κ+ b02)(r + 2b02)ηΣη
′

]
, (A.69)

where the last step follows from (A.61). Using (A.62), we find

ψ(r + κ+ b02)(r + 2b02) = 2r(α+ ᾱ)
∆

ηΣη′
+ ψ

[
(r + 2κ)b02 + r(r + κ)

]
= 2r(α+ ᾱ)

∆

ηΣη′
+
ψr

2

[
r + (r + 2κ)

√
1 +

4(α+ ᾱ)f∆

rψηΣη′

]
. (A.70)

Eqs. (A.69) and (A.70) imply that q̄011 is positive if (3.19) holds, and is negative otherwise. There-

fore, for small s, γR1 is negative if (3.19) holds, and is positive otherwise. Moreover, γR2 < 0 since

b2 > 0 and γ2 < 0.

Proof of Corollary 3.6: The autocovariance matrix is

Covt(dRt, dR
′
t′)

= Covt

{
σdBD

t − sa1dB
C
t ,
[(
aR1 Ct′ + aR2 yt′

)
dt′ + σdBD

t′ − sa1dB
C
t′
]′}

= Covt

[
σdBD

t − sa1dB
C
t ,
(
aR1 Ct′ + aR2 yt′

)′
dt′
]

= Covt

[
−sa1dBC

t ,
(
aR1 Ct′ + aR2 yt′

)′
dt′
]

= −sγ1Covt
(
dBC

t , γ
R
1 Ct′ + γR2 yt′

)
Σp′fpfΣdt

′, (A.71)
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where the first step follows by using (A.1) and omitting quantities known at time t, the second step

follows because the increments (dBD
t′ , dB

C
t′ ) are independent of information up to time t′, the third

step follows because of (2.4), (3.2) and the independence of (BD
t , B

C
t ), and the fourth step follows

from (3.11). Using (2.4) and (3.2), we can express (Ct′ , yt′) as a function of their time t values and

the Brownian shocks dBC
u for u ∈ [t, t′]. The covariance (A.71) depends only on how the Brownian

shock dBC
t impacts (Ct′ , yt′). To compute this impact, we solve the impulse-response dynamics

(A.64) and (A.65) with the initial conditions

Ct = sdBC
t ,

yt = 0.

The solution is

Ct′ = e−κ(t
′−t)sdBC

t , (A.72)

yt′ = −
b1

[
e−κ(t

′−t) − e−b2(t
′−t)
]

b2 − κ
sdBC

t . (A.73)

Substituting into (A.71), we find (3.20) with

χ1 ≡ s2γ1

(
b1γ

R
2

b2 − κ
− γR1

)
= s2(r + κ)γ1

(
b1γ2
b2 − κ

− γ1

)
, (A.74)

χ2 ≡ −s
2b1γ1γ

R
2

b2 − κ
= −s

2(r + b2)b1γ1γ2
b2 − κ

. (A.75)

The function χ(u) ≡ χ1e
−κu+χ2e

−b2u can change sign only once, is equal to −s2γ1γR1 when u = 0,

and has the sign of χ1 if b2 > κ and of χ2 if b2 < κ when u goes to ∞. For small s, γR1 is negative

if (3.19) holds, and is positive otherwise. The opposite is true for χ(0) since γ1 > 0. Since, in

addition, b1 > 0, b2 > 0 and γ2 < 0, (A.74) and (A.75) imply that χ1 < 0 if b2 > κ and χ2 < 0

if b2 < κ. Therefore, there exists a threshold û ≥ 0, which is positive if (3.19) holds and is zero

otherwise, such that χ(u) > 0 for 0 < u < û and χ(u) < 0 for u > û.

Proof of Corollary 3.7: Eqs. (A.57), (A.58), (A.61) and (A.62) imply that (b01, b
0
2, γ

0
1 , γ

0
2), the

terms in (b1, b2, γ1, γ2) of order zero in s2, are independent of λ. Hence, to determine how λ affects
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(b1, b2, γ1, γ2), we must consider the terms of order one. We set

b1 =b
0
1 + s2b11 + o(s2), (A.76)

b2 =b
0
2 + s2b12 + o(s2), (A.77)

γ1 =γ
0
1 + s2γ11 + o(s2), (A.78)

γ2 =γ
0
2 + s2γ12 + o(s2). (A.79)

Substituting (A.76)-(A.79) into (A.39), (A.40), (A.55) and (A.56), and using (A.57), (A.58), (A.61)

and (A.62) to eliminate terms of order zero, we find

(r + κ)γ11 + γ02b
1
1 + b01γ

1
2 = −γ01 q̄011, (A.80)

(r + b02)γ
1
2 + γ02b

1
2 = −γ01 q̄012 − rᾱ(γ01)

2 ∆

ηΣη′
, (A.81)

ψ
[
b01b

1
2 + (r + κ+ b02)b

1
1

]
= γ01(q̄

0
11 − q011)

∆

ηΣη′
− ψb01q

0
11, (A.82)

ψ(r + 2b02)b
1
2 = r(α+ ᾱ)

(
γ01∆

ηΣη′

)2

+ γ01(q̄
0
12 − q012)

∆

ηΣη′
− ψb01q

0
12 + rαψb01γ

0
1

∆

ηΣη′
. (A.83)

Differentiating (A.80)-(A.83) with respect to λ, and noting that (b01, b
0
2, γ

0
1 , γ

0
2 , q

0
11, q

0
12) are indepen-

dent of λ, we find

∂γ11
∂λ

=γ01

{
b01

r + b02

[
1 +

(2r + 2κ+ b02)γ
0
2

∆
ηΣη′

ψ(r + κ+ b02)(r + 2b02)

]
∂q̄012
∂λ

−

[
1 + γ02

∆
ηΣη′

ψ(r + κ+ b02)

]
∂q̄011
∂λ

}
,

(A.84)

∂γ12
∂λ

=− γ01
r + b02

[
1 +

γ02
∆
ηΣη′

ψ(r + 2b02)

]
∂q̄012
∂λ

, (A.85)

∂b11
∂λ

=

γ01∆
ηΣη′

(
∂q̄011
∂λ − b01

r+2b02

∂q̄012
∂λ

)
ψ(r + κ+ b02)

, (A.86)

∂b12
∂λ

=

γ01∆
ηΣη′

∂q̄012
∂λ

ψ(r + 2b02)
. (A.87)

Substituting γ02 from (A.58), and using (A.62), we find that the terms in square brackets in (A.84)

are positive. Moreover, (b01, b
0
2, γ

0
1) are positive, and (A.69) implies that ∂q̄011/∂λ < 0 and ∂q̄012/∂λ >

0. Therefore, ∂γ11/∂λ > 0, and so ∂γ1/∂λ > 0. Eqs. (A.74) and (A.75) imply that

χ1 + χ2 = −s2γ1γR1 = s4γ21 q̄11 = s4(γ01)
2q̄011 + o(s4),
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where the second step follows from (A.39). Since ∂q̄011/∂λ < 0, ∂(χ1+χ2)/∂λ < 0. The value û for

the function χ(u) is equal to zero is

û = − 1

b2 − κ
log

[
1− (b2 − κ)γR1

b1γR2

]
= − 1

b2 − κ
log

[
1 +

s2(b2 − κ)γ1q̄11
b1(r + b2)γ2

]
= − s2γ01 q̄

0
11

b01(r + b02)γ
0
2

+o(s2),

where the second step follows from (A.39). Since γ02 < 0 and ∂q̄011/∂λ < 0, ∂û/∂λ < 0.

B Asymmetric Information

Proof of Proposition 4.1: We use Theorem 10.3 of Liptser and Shiryaev (LS 2000). The investor

learns about Ct, which follows the process (2.4). She observes the following information:

• The net dividends of the true market portfolio θDt − Ctdt. This corresponds to the process

ξ1t ≡ θDt −
∫ t
0 Csds.

• The dividends of the index fund ηdDt. This corresponds to the process ξ2t ≡ ηDt.

• The price of the true market portfolio θSt. Given the conjecture (4.3) for stock prices, this is

equivalent to observing the process ξ3t ≡ θ(St + a1Ĉt + a3yt).

• The price of the index portfolio ηSt. This is equivalent to observing the process ξ4t ≡

η(St + a1Ĉt + a3yt).

The dynamics of ξ1t are

dξ1t = θ(Ftdt+ σdBD
t )− Ctdt

=

[
(r + κ)θa0 −

κθF̄

r
+ (r + κ)ξ3t + (r + κ)θa2Ct − Ct

]
dt+ θσdBD

t

=

[
(r + κ)θa0 −

κθF̄

r
+ (r + κ)ξ3t −

(
1− (r + κ)γ2∆

ηΣη′

)
Ct

]
dt+ θσdBD

t , (B.1)

where the first step follows from (4.1), the second from (4.3), and the third from (4.4). Likewise,

the dynamics of ξ2t are

dξ2t =

[
(r + κ)ηa0 −

κηF̄

r
+ (r + κ)ξ4t

]
dt+ ησdBD

t . (B.2)
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The dynamics of ξ3t are

dξ3t = d

{
θ

[
F̄

r
+
Ft − F̄

r + κ
− (a0 + a2Ct)

]}

= θ

[
κ(F̄ − Ft)dt+ ϕσdBF

t

r + κ
− a2

[
κ(C̄ − Ct)dt+ sdBC

t

]]

= κ

[
θ

(
F̄

r
− a0 − a2C̄

)
− ξ3t

]
dt+

ϕθσdBF
t

r + κ
− sθa2dB

C
t

= κ

(
θF̄

r
− θa0 −

γ2∆C̄

ηΣη′
− ξ3t

)
dt+

ϕθσdBF
t

r + κ
− sγ2∆dB

C
t

ηΣη′
, (B.3)

where the first step follows from (4.3), the second from (2.4) and (4.2), and the fourth from (4.4).

Likewise, the dynamics of ξ4t are

dξ4t = κ

(
ηF̄

r
− ηa0 − ξ4t

)
dt+

ϕησdBF
t

r + κ
. (B.4)

The dynamics (2.4) and (B.1)-(B.4) map into the dynamics (10.62) and (10.63) of LS by setting

θt ≡ Ct, ξt ≡ (ξ1t, ξ2t, ξ3t, ξ4t)
′, W1t ≡

(
BD
t

BF
t

)
, W2t ≡ BC

t , a0(t) ≡ κC̄, a1(t) ≡ −κ, a2(t) ≡ 0,

b1(t) ≡ 0, b2(t) ≡ s, γt ≡ T ,

A0(t) ≡


(r + κ)θa0 − κθF̄

r

(r + κ)ηa0 − κηF̄
r

κ
(
θF̄
r − θa0 − γ2∆C̄

ηΣη′

)
κ
(
ηF̄
r − ηa0

)
 ,

A1(t) ≡ −


1− (r+κ)γ2∆

ηΣη′

0
0
0

 ,

A2(t) ≡


0 0 r + κ 0
0 0 0 r + κ
0 0 −κ 0
0 0 0 −κ

 ,

B1(t) ≡


θσ 0
ησ 0

0 ϕθσ
r+κ

0 ϕησ
r+κ

 ,
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B2(t) ≡ −


0
0

sγ2∆
ηΣη′

0

 .

The quantities (b ◦ b)(t), (b ◦B)(t), and (B ◦B)(t), defined in LS (10.80) are

(b ◦ b)(t) = s2,

(b ◦B)(t) = −
(

0 0 s2γ2∆
ηΣη′ 0

)
,

(B ◦B)(t) =


θΣθ′ ηΣθ′ 0 0
ηΣθ′ ηΣη′ 0 0

0 0 ϕ2θΣθ′

(r+κ)2
+

s2γ22∆
2

(ηΣη′)2
ϕ2ηΣθ′

(r+κ)2

0 0 ϕ2ηΣθ′

(r+κ)2
ϕ2ηΣη′

(r+κ)2

 .

Theorem 10.3 of LS (first subequation of (10.81)) implies that

dĈt =κ(C̄ − Ĉt)dt− β1

{
dξ1t −

[
(r + κ)θa0 −

κθF̄

r
+ (r + κ)ξ3t −

(
1− (r + κ)γ2∆

ηΣη′

)
Ĉt

]
dt

−ηΣθ
′

ηΣη′

[
dξ2t −

[
(r + κ)ηa0 −

κηF̄

r
+ (r + κ)ξ4t

]
dt

]}

− β2

{
dξ3t − κ

(
θF̄

r
− θa0 −

γ2∆C̄

ηΣη′
− ξ3t

)
dt

−ηΣθ
′

ηΣη′

[
dξ4t − κ

(
ηF̄

r
− ηa0 − ξ4t

)
dt

]}
. (B.5)

Eq. (4.6) follows from (B.5) by noting that the term in dt after each dξit, i = 1, 2, 3, 4, is Et(dξit).

In subsequent proofs we use a different form of (4.6), where we replace each dξit, i = 1, 2, 3, 4, by

its value in (B.1)-(B.4):

dĈt = κ(C̄−Ĉt)dt−β1
[
pfσdB

D
t −

(
1− (r + κ)γ2∆

ηΣη′

)
(Ct − Ĉt)dt

]
−β2

(
ϕpfσdB

F
t

r + κ
− sγ2∆dB

C
t

ηΣη′

)
.

(B.6)

Eq. (4.9) follows from Theorem 10.3 of LS (second subequation of (10.81)).

Proof of Proposition 4.2: Eqs. (2.4), (4.1)-(4.5) and (B.6) imply that the vector of returns is

dRt =
{
ra0 +

[
γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
dt+

(
σ + β1γ1Σp

′
fpfσ

)
dBD

t

+
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t − sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′fdB

C
t , (B.7)
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where

γR1 ≡ (r + κ+ ρ)γ1 + b1γ3,

γR2 ≡ (r + κ)γ2 − ργ1,

γR3 ≡ (r + b2)γ3,

and

ρ ≡ β1

(
1− (r + κ)γ2∆

ηΣη′

)
. (B.8)

Eqs. (2.4), (3.3), (4.5), (B.6) and (B.7) imply that

d

(
rᾱWt + q̄0 + (q̄1, q̄2, q̄3)X̄t +

1

2
X̄ ′
tQ̄X̄t

)
= Ḡdt+

[
rᾱẑt

(
σ + β1γ1Σp

′
fpfσ

)
− β1f̄1(X̄t)pfσ

]
dBD

t

+
ϕ

r + κ

[
rᾱẑt

(
σ + β2γ1Σp

′
fpfσ

)
− β2f̄1(X̄t)pfσ

]
dBF

t

− s

[
rᾱγ2

(
1 +

β2γ1∆

ηΣη′

)
ẑtΣp

′
f −

β2γ2∆f̄1(X̄t)

ηΣη′
− f̄2(X̄t)

]
dBC

t , (B.9)

where

Ḡ ≡rᾱ
(
rWt + ẑt

{
ra0 +

[
γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
+ λCtyt − c̄t

)
+ f̄1(X̄t)

[
κ(C̄ − Ĉt) + ρ(Ct − Ĉt)

]
+ f̄2(X̄t)κ(C̄ − Ct) + f̄3(X̄t)vt

+
1

2

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q̄11
ηΣη′

+
s2β2γ2∆q̄12

ηΣη′
+

1

2
s2q̄22,

f̄1(X̄t) ≡ q̄1 + q̄11Ĉt + q̄12Ct + q̄13yt,

f̄2(X̄t) ≡ q̄2 + q̄12Ĉt + q̄22Ct + q̄23yt,

f̄3(X̄t) ≡ q̄3 + q̄13Ĉt + q̄23Ct + q̄33yt.
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Eqs. (4.11) and (B.9) imply that

DV̄ =− V̄

{
Ḡ− 1

2
(rᾱ)2fẑtΣẑ

′
t

− 1

2
β1
[
rᾱγ1ẑtΣp

′
f − f̄1(X̄t)

] [
rᾱ

(
2 +

β1γ1∆

ηΣη′

)
ẑtΣp

′
f −

β1∆f̄1(X̄t)

ηΣη′

]

− 1

2

ϕ2β2
(r + κ)2

[
rᾱγ1ẑtΣp

′
f − f̄1(X̄t)

] [
rᾱ

(
2 +

β2γ1∆

ηΣη′

)
ẑtΣp

′
f −

β2∆f̄1(X̄t)

ηΣη′

]

−1

2
s2
[
rᾱγ2

(
1 +

β2γ1∆

ηΣη′

)
ẑtΣp

′
f −

β2γ2∆f̄1(X̄t)

ηΣη′
− f̄2(X̄t)

]2}
. (B.10)

Substituting (B.10) into (3.6), we can write the first-order conditions with respect to c̄t and ẑt as

(A.4) and

h̄(X̄t) = rᾱ(fΣ+ kΣp′fpfΣ)ẑ
′
t, (B.11)

respectively, where

h̄(X̄t) ≡ ra0 +
[
γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3 + k1f̄1(X̄t) + k2f̄2(X̄t)

]
Σp′f ,

(B.12)

k ≡ β1γ1

(
2 +

β1γ1∆

ηΣη′

)
+

ϕ2β2γ1
(r + κ)2

(
2 +

β2γ1∆

ηΣη′

)
+ s2γ22

(
1 +

β2γ1∆

ηΣη′

)2

, (B.13)

k1 ≡ β1

(
1 +

β1γ1∆

ηΣη′

)
+

ϕ2β2
(r + κ)2

(
1 +

β2γ1∆

ηΣη′

)
+
s2β2γ

2
2∆

ηΣη′

(
1 +

β2γ1∆

ηΣη′

)
, (B.14)

k2 ≡ s2γ2

(
1 +

β2γ1∆

ηΣη′

)
. (B.15)

Proceeding as in the proof of Proposition 3.1, we find the following counterpart of (A.12):

1

2
h̄(X̄t)

′(fΣ+ kΣp′fpfΣ)
−1h̄(X̄t) + rᾱλCtyt − r

[
q̄0 + (q̄1, q̄2, q̄3)X̄t +

1

2
X̄ ′
tQ̄X̄t

]
+ f̄1(X̄t)

[
κ(C̄ − Ĉt) + ρ(Ct − Ĉt)

]
+ f̄2(X̄t)κ(C̄ − Ct) + f̄3(X̄t)vt

+
1

2

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q̄11
ηΣη′

+
s2β2γ2∆q̄12

ηΣη′
+

1

2
s2q̄22 + β̄ − r + r log(r)

− 1

2

[
β21 +

ϕ2β22
(r + κ)2

]
∆f̄1(X̄t)

2

ηΣη′
− 1

2
s2
[
β2γ2∆f̄1(X̄t)

ηΣη′
+ f̄2(X̄t)

]2
= 0. (B.16)
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Eq. (B.16) is quadratic in X̄t. Identifying quadratic, linear and constant terms yields ten scalar

equations in (q̄0, q̄1, q̄2, q̄3, Q̄). We defer the derivation of these equations until the proof of Propo-

sition 4.4 (see (B.40)-(B.43)).

Proof of Proposition 4.3: Dynamics under the investor’s filtration can be deduced from those

under the manager’s by replacing Ct by the investor’s expectation Ĉt. Eq. (B.6) implies that the

dynamics of Ĉt are

dĈt = κ(C̄ − Ĉt)dt− β1pfσdB̂
D
t − β2

(
ϕpfσdB

F
t

r + κ
− sγ2∆dB

C
t

ηΣη′

)
, (B.17)

where B̂D
t is a Brownian motion under the investor’s filtration. Eq. (B.7) implies that the net-of-cost

return of the active fund is

ztdRt − Ctdt = zt

{
ra0 +

[
(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
dt− Ĉtdt

+zt
(
σ + β1γ1Σp

′
fpfσ

)
dB̂D

t +zt
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t −sγ2
(
1 +

β2γ1∆

ηΣη′

)
ztΣp

′
fdB

C
t ,

(B.18)

and the return of the index fund is

ηdRt = η
{
ra0 +

[
(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
dt

+η
(
σ + β1γ1Σp

′
fpfσ

)
dB̂D

t +η
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t −sγ2
(
1 +

β2γ1∆

ηΣη′

)
ηΣp′fdB

C
t .

(B.19)

Suppose that the investor optimizes over (ct, xt) but follows the control vt given by (4.5). Eqs.

(3.8), (4.5), (B.17), (B.18) and (B.19) imply that

d

(
rαWt + q0 + (q1, q2)Xt +

1

2
X ′
tQXt

)
= Gdt+

[
rα(xtη + ytzt)

(
σ + β1γ1Σp

′
fpfσ

)
− β1f1(Xt)pfσ

]
dB̂D

t

+
ϕ

r + κ

[
rα(xtη + ytzt)

(
σ + β2γ1Σp

′
fpfσ

)
− β2f1(Xt)pfσ

]
dBF

t

− s

[
rᾱγ2

(
1 +

β2γ1∆

ηΣη′

)
(xtη + ytzt)Σp

′
f −

β2γ2∆f1(Xt)

ηΣη′

]
dBC

t , (B.20)
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where

G ≡rα
[
rWt + (xtη + ytzt)

{
ra0 +

[
(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
− ytĈt

−ψv
2
t

2
− ct

]
+ f1(Xt)κ(C̄ − Ĉt) + f2(Xt)vt +

1

2

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q11
ηΣη′

,

f1(Xt) ≡ q1 + q11Ĉt + q12yt,

f2(Xt) ≡ q2 + q12Ĉt + q22yt.

Eqs. (3.9) and (B.20) imply that

DV =− V

{
G− 1

2
(rα)2f(xtη + ytzt)Σ(xtη + ytzt)

′

− 1

2
β1
[
rαγ1(xtη + ytzt)Σp

′
f − f1(Xt)

] [
rα

(
2 +

β1γ1∆

ηΣη′

)
(xtη + ytzt)Σp

′
f −

β1∆f1(Xt)

ηΣη′

]

− 1

2

ϕ2β2
(r + κ)2

[
rαγ1(xtη + ytzt)Σp

′
f − f1(Xt)

] [
rα

(
2 +

β2γ1∆

ηΣη′

)
(xtη + ytzt)Σp

′
f −

β2∆f1(Xt)

ηΣη′

]

−1

2
s2
[
rαγ2

(
1 +

β2γ1∆

ηΣη′

)
(xtη + ytzt)Σp

′
f −

β2γ2∆f1(Xt)

ηΣη′

]2}
. (B.21)

Substituting (B.21) into (3.10), we can write the first-order conditions with respect to ct and xt as

(A.15) and

ηh(Xt) = rαη(fΣ+ kΣp′fpfΣ)(xtη + ytzt)
′, (B.22)

respectively, where

h(Xt) ≡ ra0 +
[
(gR1 + gR2 )Ĉt + gR3 yt − κ(γ1 + γ2)C̄ − b0γ3 + k1f1(Xt)

]
Σp′f . (B.23)

Proceeding as in the proof of Proposition 3.2, we find the following counterpart of (A.22):

rαytθh(Xt)−
1

2
(rα)2y2t θ(fΣ+ kΣp′fpfΣ)θ

′ +
[ηh(Xt)− rαfytηΣθ

′]2

2fηΣη′
− rαytĈt −

1

2
rαψv2t

− r

[
q0 + (q1, q2)Xt +

1

2
X ′
tQXt

]
+ f1(Xt)κ(C̄ − Ĉt) + f2(Xt)vt

+
1

2

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆[q11 − f1(Xt)

2]

ηΣη′
+ β − r + r log(r) = 0. (B.24)
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Since vt in (3.2) is linear in Xt, (B.24) is quadratic in Xt. Identifying quadratic, linear and constant

terms yields six scalar equations in (q0, q1, q2, Q). We defer the derivation of these equations until

the proof of Proposition 4.4 (see (B.44)-(B.46)).

We next study optimization over vt, using the same perturbation argument as in the proof of

Proposition 3.2. The counterparts of (A.27) and (A.28) are

θ
[
h(Xt)− rαψb1k1ytΣp

′
f

]
− Ĉt = rαθ(fΣ+ kΣp′fpfΣ) [xt(1− yt)η + ytθ]

′ + ψhψ(Xt),

(B.25)

θ
[
h(Xt)− rαψb1k1ytΣp

′
f

]
− Ĉt = rαθ(fΣ+ kΣp′fpfΣ)

[
ytθ +

ηh(Xt)− rαytfηΣθ
′

rαfηΣη′
η

]′
+ ψhψ(Xt),

(B.26)

respectively, where

hψ(Xt) ≡ (r + b2)vt + b1κ(C̄ − Ĉt)− b1

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆f1(Xt)

ηΣη′
.

Eq. (B.26) is linear in Xt. Identifying linear and constant terms, yields three scalar equations

in (b0, b1, b2). We defer the derivation of these equations until the proof of Proposition 4.4 (see

(B.36)-(B.38)).

Proof of Proposition 4.4: We first impose market clearing and derive the constants (a0, b0, b1, b2, γ1, γ2, γ3)

as functions of (q̄1, q̄2, q̄3, Q̄, q1, q2, Q). Setting zt = θ − xtη and ȳt = 1 − yt, we can write (B.11)

and (B.22) as

h̄(X̄t) = rᾱ(fΣ+ kΣp′fpfΣ)(1− yt)(θ − xtη)
′, (B.27)

ηh(Xt) = rαη(fΣ+ kΣp′fpfΣ) [xt(1− yt)η + ytθ]
′ , (B.28)

respectively. Premultiplying (B.27) by η, dividing by rᾱ, and adding to (B.28) divided by rα, we

find

η

[
h(Xt)

rα
+
h̄(X̄t)

rᾱ

]
= η(fΣ+ kΣp′fpfΣ)θ

′. (B.29)

Eq. (B.29) is linear in (Ĉt, Ct, yt). The terms in Ĉt, Ct and yt are zero because ηΣp
′
f = 0. Identifying

constant terms, we find (A.34). Substituting (A.34) into (B.28), we find (A.35).

Substituting (A.35) into (B.27), we find

h̄(X̄t) = rᾱ(fΣ+ kΣp′fpfΣ)

[
α

α+ ᾱ

ηΣθ′

ηΣη′
η + (1− yt)pf

]′
. (B.30)
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Eq. (B.30) is linear in X̄t. Identifying terms in Ĉt, Ct and yt, we find

(r + κ+ ρ)γ1 + b1γ3 + k1q̄11 + k2q̄12 = 0, (B.31)

(r + κ)γ2 − ργ1 + k1q̄12 + k2q̄22 = 0, (B.32)

(r + b2)γ3 + k1q̄13 + k2q̄23 = −rᾱ
(
f +

k∆

ηΣη′

)
, (B.33)

respectively. Identifying constant terms, we find

a0 =
αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

[
κ(γ1 + γ2)C̄ + b0γ3 − k1q̄1 − k2q̄2

r
+ ᾱ

(
f +

k∆

ηΣη′

)]
Σp′f . (B.34)

Using (A.35), we can write (B.26) as

θh(Xt)− rαψb1k1
∆

ηΣη′
yt − Ĉt = rαθ(fΣ+ kΣp′fpfΣ)

(
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
η + ytpf

)′
+ ψhψ(Xt)

⇒ θh(Xt)− rαψb1k1
∆

ηΣη′
yt − Ĉt =

rαᾱf

α+ ᾱ

(ηΣθ′)2

ηΣη′
+ rα

(
f +

k∆

ηΣη′

)
∆

ηΣη′
yt + ψhψ(Xt).

(B.35)

Eq. (B.35) is linear in (Ĉt, yt). Identifying terms in Ĉt and yt, and using (4.5), we find

[(r + κ)(γ1 + γ2) + b1γ3 + k1q11]
∆

ηΣη′
− 1

= −ψb1
{
r + κ+ b2 +

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q11
ηΣη′

}
, (B.36)

[(r + b2)γ3 + (q12 − rαψb1)k1]
∆

ηΣη′

= rα

(
f +

k∆

ηΣη′

)
∆

ηΣη′
− ψ

{
(r + b2)b2 + b1

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q12
ηΣη′

}
, (B.37)

respectively. Identifying constant terms, and using (4.5) and (B.34), we find[
k1(q1 − q̄1)− k2q̄2 + rᾱ

(
f +

k∆

ηΣη′

)]
∆

ηΣη′

= ψ

{
(r + b2)b0 + b1κC̄ − b1

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q1
ηΣη′

}
. (B.38)

The system of equations characterizing equilibrium is as follows. The endogenous variables are

(a0, b0, b1, b2, γ1, γ2, γ3, β1, β2, T, q̄1, q̄2, q̄3, Q̄, q1, q2, Q). (As in Proposition 3.3, we can drop (q̄0, q0).)
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The equations linking them are (4.7)-(4.9), (B.31)-(B.34), (B.36)-(B.38), the nine equations derived

from (B.16) by identifying linear and quadratic terms, and the five equations derived from (B.24)

by identifying linear and quadratic terms. We next simplify the latter two sets of equations, using

implications of market clearing.

Using (B.30), we find

1

2
h̄(X̄t)

′(fΣ+kΣpfp
′
fΣ)

−1h̄(X̄t) =
r2α2ᾱ2f(ηΣθ′)2

2(α+ ᾱ)2ηΣη′
+

1

2
r2ᾱ2(1−yt)2

(
f +

k∆

ηΣη′

)
∆

ηΣη′
. (B.39)

We next substitute (B.39) into (B.16), and identify terms. Quadratic terms yield the algebraic

Riccati equation

Q̄R̄2Q̄+ Q̄R̄1 + R̄′
1Q̄− R̄0 = 0, (B.40)

where

R̄2 ≡


[
β21 +

ϕ2β2
2

(r+κ)2
+

s2β2
2γ

2
2∆

ηΣη′

]
∆
ηΣη′

s2β2γ2∆
ηΣη′ 0

s2β2γ2∆
ηΣη′ s2 0

0 0 0

 ,

R̄1 ≡

 r
2 + κ+ ρ −ρ 0

0 r
2 + κ 0

b1 0 r
2 + b2

 ,

R̄0 ≡

 0 0 0
0 0 rᾱλ

0 rᾱλ r2ᾱ2
(
f + k∆

ηΣη′

)
∆
ηΣη′

 .

Terms in Ĉt, Ct and yt yield

(r + κ+ ρ) q̄1 + b1q̄3 +

[
β21 +

ϕ2β22
(r + κ)2

]
∆q̄1q̄11
ηΣη′

+ s2
(
β2γ2∆q̄1
ηΣη′

+ q̄2

)(
β2γ2∆q̄11
ηΣη′

+ q̄12

)
− κC̄(q̄11 + q̄12)− b0q̄13 = 0, (B.41)

(r + κ)q̄2 − ρq̄1 +

[
β21 +

ϕ2β22
(r + κ)2

]
∆q̄1q̄12
ηΣη′

+ s2
(
β2γ2∆q̄1
ηΣη′

+ q̄2

)(
β2γ2∆q̄12
ηΣη′

+ q̄22

)
− κC̄(q̄12 + q̄22)− b0q̄23 = 0, (B.42)

(r + b2)q̄3 +

[
β21 +

ϕ2β22
(r + κ)2

]
∆q̄1q̄13
ηΣη′

+ s2
(
β2γ2∆q̄1
ηΣη′

+ q̄2

)(
β2γ2∆q̄13
ηΣη′

+ q̄23

)

+ r2ᾱ2

(
f +

k∆

ηΣη′

)
∆

ηΣη′
− κC̄(q̄13 + q̄23)− b0q̄33 = 0, (B.43)

63



respectively. Using (A.35), we can write (B.28) as (A.51). Using (4.5), (A.51) and (B.35), we find

that the equation derived from (B.24) by identifying quadratic terms is

QR2Q+QR1 +R′
1Q−R0 = 0, (B.44)

where

R2 ≡

( [
β21 +

ϕ2β2
2

(r+κ)2
+

s2β2
2γ

2
2∆

ηΣη′

]
∆
ηΣη′ 0

0 0

)
,

R1 ≡

(
r
2 + κ rαψb1

[
β21 +

ϕ2β2
2

(r+κ)2
+

s2β2
2γ

2
2∆

ηΣη′

]
∆
ηΣη′

b1
r
2 + b2

)
,

R0 ≡

(
−rαψb21 −rαψb1(r + κ+ 2b2)

−rαψb1(r + κ+ 2b2) r2α2
(
f + k∆

ηΣη′

)
∆
ηΣη′ + 2r2α2ψb1k1

∆
ηΣη′ − rαψb2(2r + 3b2)

)
,

and the equations derived by identifying terms Ĉt and yt are

(r + κ)q1 + b1q2 +

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q1q11
ηΣη′

− κC̄q11 − b0q12 − rαψb0b1 = 0,

(B.45)

(r + b2)q2 +

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆(q12 + rαψb1)q1

ηΣη′
− κC̄q12 − b0q22

− rαψ
[
b0(r + 2b2) + b1κC̄

]
= 0, (B.46)

respectively.

Solving for equilibrium amounts to solving the system of (4.7)-(4.9), (B.31)-(B.34), (B.36)-

(B.38), (B.40)-(B.43), (B.44)-(B.46) in the unknowns (a0, b0, b1, b2, γ1, γ2, γ3, β1, β2, T, q̄1, q̄2, q̄3, Q̄, q1, q2, Q).

This reduces to solving the system of (4.7)-(4.9), (B.31)-(B.33), (B.36), (B.37), (B.40), (B.44) in the

unknowns (b1, b2, γ1, γ2, γ3, β1, β2, T, Q̄,Q): given (b1, b2, γ1, γ2, γ3, β1, β2, T, Q̄,Q), (b0, q̄1, q̄2, q̄3, q1, q2)

can be determined from the linear system of (B.38), (B.41)-(B.43), (B.45), (B.46), and a0 from

(B.34). We replace the system of (4.7)-(4.9), (B.31)-(B.33), (B.36), (B.37), (B.40), (B.44) by the
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equivalent system of (4.7)-(4.9), (B.31)-(B.33), (B.40), (B.44),

ψb1

{
r + κ+ b2 +

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q11
ηΣη′

}

= 1 + [k1(q̄11 + q̄12) + k2(q̄12 + q̄22)− k1q11]
∆

ηΣη′
, (B.47)

ψ

{
(r + b2)b2 + b1

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆q12
ηΣη′

}
− rαψb1k1

∆

ηΣη′

= r(α+ ᾱ)

(
f +

k∆

ηΣη′

)
∆

ηΣη′
+ (k1q̄13 + k2q̄23 − k1q12)

∆

ηΣη′
. (B.48)

For s = 0, the unique non-negative solution of (4.9) is T = 0. Eqs. (4.7), (4.8), (B.8) and (B.13)-

(B.15) imply that β1 = β2 = ρ = k = k1 = k2 = 0. Eqs. (B.31)-(B.33), (B.40), (B.44), (B.47) and

(B.48) become

(r + κ)γ1 + b1γ3 = 0, (B.49)

(r + κ)γ2 = 0, (B.50)

(r + b2)γ3 = −rᾱf, (B.51)

(A.59), (A.60), (A.61) and (A.62), respectively, where

R̄0
1 ≡

 r
2 + κ 0 0
0 r

2 + κ 0
b1 0 r

2 + b2

 ,

R̄0 ≡

 0 0 0
0 0 rᾱλ

0 rᾱλ r2ᾱ2f ∆
ηΣη′

 ,

and (R0
1,R0

0) are as under symmetric information (Proposition 3.3). Given the unique positive

solution b2 of (A.62), (b1, γ3, γ1, Q̄, Q) are determined uniquely from (A.61), (B.51), (B.49), (A.59)

and (A.60), respectively, and (B.50) implies that γ2 = 0. We denote the solution for s = 0 by

(b01, b
0
2, γ

0
1 , γ

0
2 , γ

0
3 , β

0
1 , β

0
2 , T

0, Q̄0, Q0). The variables (b01, b
0
2, γ

0
1 , γ

0
3 , Q

0) coincide with (b01, b
0
2, γ

0
1 , γ

0
2 , Q

0)

under symmetric information. Proceeding as in the proof of Proposition 3.3, we can apply the im-

plicit function theorem and show that the system of (4.7)-(4.9), (B.31)-(B.33), (B.40), (B.44),

(B.47), (B.48) has a solution for small s. Moreover, this solution is unique in a neighborhood of

(b01, b
0
2, γ

0
1 , γ

0
2 , γ

0
3 , β

0
1 , β

0
2 , T

0, Q̄0, Q0), which corresponds to the unique equilibrium for s = 0. Since

b01 > 0, b02 > 0, γ01 > 0, γ03 < 0, continuity implies that b1 > 0, b2 > 0, γ1 > 0, γ3 < 0 for small
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s. Since γ02 = 0, continuity does not establish the sign of γ2 for small s, so we need to study the

asymptotic behavior of the solution. Eqs. (4.9), (4.7) and (4.8) imply that

T =
s2

2κ
+ o(s2), (B.52)

β1 =
ηΣη′

2κ∆
s2 + o(s2) ≡ β̂01s

2 + o(s2), (B.53)

β2 = o(s2), (B.54)

respectively, where o(s2)
s2

converges to zero when s goes to zero. Eqs. (B.8) and (B.13)-(B.15) imply

that

ρ = β̂01s
2 + o(s2), (B.55)

k = 2β̂01γ
0
1s

2 + o(s2), (B.56)

k1 = β̂01s
2 + o(s2), (B.57)

k2 = o(s2), (B.58)

respectively, and (B.40) implies that

Q̄0 =


2r2ᾱ2(b01)

2f∆

(r+2κ)(r+κ+b02)(r+2b02)ηΣη
′ − rᾱb01λ

(r+2κ)(r+κ+b02)
− r2ᾱ2b01f∆

(r+κ+b02)(r+2b02)ηΣη
′

− rᾱb01λ

(r+2κ)(r+κ+b02)
0 rᾱλ

r+κ+b02

− r2ᾱ2b01f∆

(r+κ+b02)(r+2b02)ηΣη
′

rᾱλ
r+κ+b02

r2ᾱ2f∆
(r+2b02)ηΣη

′

 . (B.59)

Eqs. (B.32), (B.55), (B.57), (B.58) and (B.59) imply that

γ2 =
β̂01
r + κ

[
γ01 +

rᾱb01λ

(r + 2κ)(r + κ+ b02)

]
s2 + o(s2).

Therefore, γ2 > 0.

Proof of Corollary 4.1: Eq. (B.7) implies that the covariance matrix of stock returns is

Covt(dRt, dR
′
t) =

(
σ + β1γ1Σp

′
fpfσ

) (
σ + β1γ1Σp

′
fpfσ

)′
+

ϕ2

(r + κ)2
(
σ + β2γ1Σp

′
fpfσ

) (
σ + β2γ1Σp

′
fpfσ

)′
+ s2γ22

(
1 +

β2γ1∆

ηΣη′

)2

Σp′fpfΣ,
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which is equal to (4.12) because of (B.13). To compare with symmetric information, we need to

also introduce Ft in that case. Replacing (2.1) by (4.1) and (4.2), we find that the vector of returns

under symmetric information changes from (A.1) to

dRt =
(
ra0 + aR1 Ct + aR2 yt − κa1C̄ − b0a2

)
dt+ σ

(
dBD

t +
ϕdBF

t

r + κ

)
− sa1dB

C
t . (B.60)

Hence, the covariance matrix under symmetric information changes from (3.16) to

Covt(dRt, dR
′
t) = (fΣ+ s2γ21Σp

′
fpfΣ)dt. (B.61)

Eqs. (4.12) and (B.61) imply that the fundamental covariance under asymmetric information is

equal to that under symmetric information, and the non-fundamental covariance is proportional.

Moreover, the proportionality coefficient is larger than one if k > s2γ21sym, where γ1sym denotes the

value of γ1 under symmetric information. Rearranging (B.13), we find

k = 2

{
β1 + β2

[
ϕ2

(r + κ)2
+
s2γ22∆

ηΣη′

]}
γ1 + s2γ22 +

[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
γ21∆

ηΣη′
. (B.62)

Rearranging (4.8), we find

β2

[
ϕ2

(r + κ)2
+
s2γ22∆

ηΣη′

]
= s2γ2, (B.63)

and rearranging (4.9), we find

T 2

[
1− (r + k)

γ2∆

ηΣη′

]2 ηΣη′
∆

+

s4γ22∆
ηΣη′

ϕ2

(r+κ)2
+

s2γ22∆
ηΣη′

= s2 − 2κT

⇒
[
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆

ηΣη′
= s2 − 2κT, (B.64)

where the second step follows from (4.7) and (4.8). Substituting (B.63) and (B.64) into (B.62), we

find

k = 2β1γ1 + s2(γ1 + γ2)
2 − 2κTγ21

= s2(γ1 + γ2)
2 + 2Tγ1

[
ηΣη′

∆
− κγ1 − (r + κ)γ2

]
, (B.65)

where the second step follows from (4.7).
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Eqs. (B.52), (B.65) and γ02 = 0 imply that for small s,

k = s2(γ01)
2 +

s2γ01
κ

(
ηΣη′

∆
− κγ01

)
+ o(s2). (B.66)

The variables (b01, b
0
2) are identical under symmetric and asymmetric information. Moreover, (A.57),

(A.58), (B.49) and (B.51) imply that the same is true for γ01 . Therefore, k > s2γ21sym for small s if

ηΣη′

∆
− κγ01 > 0

⇔ ηΣη′

∆
− κrᾱfb01

(r + κ)(r + b02)
> 0

⇔ ηΣη′

∆

[
1− κᾱb02

(r + κ)(α+ ᾱ)(r + κ+ b02)

]
> 0, (B.67)

where the second step follows from (B.49) and (B.51), and the third from (A.61) and (A.62). Since

b02 > 0, (B.67) holds.

Proof of Corollary 4.2: Stocks’ expected returns are

Et(dRt) =
{
ra0 +

[
γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

]
Σp′f

}
dt

=

{
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

[
γR1 Ĉt + γR2 Ct + γR3 yt + rᾱ

(
f +

k∆

ηΣη′

)
− k1q̄1 − k2q̄2

]
Σp′f

}
dt

=

[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
(
fΣ+ kΣp′fpfΣ

)
η′ + Λt

(
fΣ+ kΣp′fpfΣ

)
p′f

]
dt, (B.68)

where the first step follows from (B.7), the second from (B.34), and the third from (4.13). Eq.

(B.68) is equivalent to (3.17) because of (4.12).

Eqs. (B.31) and (B.32) imply that γR1 and γR2 have the opposite sign of k1q̄11 + k2q̄12 and

k1q̄12 + k2q̄22, respectively. Eqs. (B.57) and (B.58) imply that for small s, the latter variables have

the same sign as q̄011 and q̄012, respectively. Since b
0
1 > 0 and b02 > 0, (B.59) implies that q̄011 > 0 and

q̄012 < 0. Therefore, for small s, γR1 < 0 and γR2 > 0. Moreover, γR3 < 0 since b2 > 0 and γ3 < 0.

Proof of Corollary 4.3: Using (B.7) and proceeding as in the derivation of (A.71), we find

Covt(dDt, dR
′
t′) = σCovt

(
dBD

t , γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)
pfΣdt

′, (B.69)

Covt(dFt, dR
′
t′) = ϕσCovt

(
dBF

t , γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)
pfΣdt

′. (B.70)
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The covariances (B.69) and (B.70) depend only on how the Brownian shocks dBD
t and dBF

t , re-

spectively, impact (Ĉt′ , Ct′ , yt′). To compute the impact of these shocks, as well as of dBC
t for the

next corollary, we solve the impulse-response dynamics

dCt = −κCtdt, (B.71)

dĈt =
[
−κĈt + ρ(Ct − Ĉt)

]
dt, (B.72)

dyt = −
(
b1Ĉt + b2yt

)
dt, (B.73)

with the initial conditions

Ct = sdBC
t ,

Ĉt = −β1pfσdBD
t − β2

(
ϕpfσdB

F
t

r + κ
− sγ2∆dB

C
t

ηΣη′

)
,

yt = 0.

The solution is (A.72),

Ĉt′ = e−κ(t
′−t)sdBC

t − e−(κ+ρ)(t′−t)
[
β1pfσdB

D
t +

ϕβ2pfσdB
F
t

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

t

]
,

(B.74)

yt′ = − b1
b2 − κ

[
e−κ(t

′−t) − e−b2(t
′−t)
]
sdBC

t

+
b1

b2 − κ− ρ

[
e−(κ+ρ)(t′−t) − e−b2(t

′−t)
] [
β1pfσdB

D
t +

ϕβ2pfσdB
F
t

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

t

]
.

(B.75)

Substituting (A.72), (B.74) and (B.75) into (B.69) and (B.70), and using the mutual independence

of (dBD
t , dB

F
t , dB

C
t ), we find (4.14) with

χD1 ≡ β1

(
b1γ

R
3

b2 − κ− ρ
− γR1

)
= (r + κ+ ρ)β1

(
b1γ3

b2 − κ− ρ
− γ1

)
, (B.76)

χD2 ≡ − b1β1γ
R
3

b2 − κ− ρ
= −(r + b2)b1β1γ3

b2 − κ− ρ
. (B.77)

The function χD(u) ≡ χD1 e
−(κ+ρ)u + χD2 e

−b2u can change sign only once, is equal to −β1γR1 when

u = 0, and has the sign of χ1 if b2 > κ+ ρ and of χ2 if b2 < κ+ ρ when u goes to ∞. For small s,

χ(0) > 0 since γR1 < 0. Since, in addition, b1 > 0, b2 > 0, γ1 > 0, γ3 < 0 and ρ > 0, (B.76) and
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(B.77) imply that χ1 < 0 if b2 > κ+ ρ and χ2 < 0 if b2 < κ+ ρ. Therefore, there exists a threshold

ûD > 0 such that χ(u) > 0 for 0 < u < ûD and χ(u) < 0 for u > ûD.

Proof of Corollary 4.4: Using (B.7) and proceeding as in the derivation of (A.71), we find

Covt(dRt, dR
′
t′) =

(
σ + β1γ1Σp

′
fpfσ

)
Covt

(
dBD

t , γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)
pfΣdt

′

+
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
Covt

(
dBF

t , γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)
pfΣdt

′

− sγ2

(
1 +

β2γ1∆

ηΣη′

)
Covt

(
dBC

t , γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′

)
Σp′fpfΣdt

′.

(B.78)

Substituting (A.72), (B.74) and (B.75) into (B.78), and using (4.8) and the mutual independence

of (dBD
t , dB

F
t , dB

C
t ), we find (4.15) with

χ1 ≡ χD1

(
1 +

β1γ1∆

ηΣη′

)
, (B.79)

χ2 ≡ s2γ2

(
b1γ

R
3

b2 − κ
− γR1 − γR2

)(
1 +

β2γ1∆

ηΣη′

)

= s2(r + κ)γ2

(
b1γ3
b2 − κ

− γ1 − γ2

)(
1 +

β2γ1∆

ηΣη′

)
, (B.80)

χ3 ≡ −b1γR3
[

β1
b2 − κ− ρ

(
1 +

β1γ1∆

ηΣη′

)
+

s2γ2
b2 − κ

(
1 +

β2γ1∆

ηΣη′

)]

= −(r + b2)b1γ3

[
β1

b2 − κ− ρ

(
1 +

β1γ1∆

ηΣη′

)
+

s2γ2
b2 − κ

(
1 +

β2γ1∆

ηΣη′

)]
. (B.81)

The function χ(u) ≡ χ1e
−(κ+ρ)u + χ2e

−κu + χ3e
−b2u has the same sign as χ̂(u) ≡ χ1e

−ρu + χ2 +

χ3e
−(b2−κ)u. The latter function is equal to

−β1γR1
(
1 +

β1γ1∆

ηΣη′

)
− s2γ2(γ

R
1 + γR2 )

(
1 +

β2γ1∆

ηΣη′

)
when u = 0, and has the sign of χ2 if b2 > κ and ρ > 0 and of χ3 if b2 < κ and ρ > 0 when u goes

to ∞. Moreover, its derivative χ̂′(u) = −χ1ρe
−ρu − χ3(b2 − κ)e−(b2−κ)u is equal to

−χ1ρ− χ3(b2 − κ) = β1(ργ
R
1 + b1γ

R
3 )

(
1 +

β1γ1∆

ηΣη′

)
+ s2b1γ2γ

R
3

(
1 +

β2γ1∆

ηΣη′

)
(B.82)

when u = 0. For small s, χ(0) > 0 since γR1 < 0 and s2γ2/β1 = o(1). Since, in addition, b1 > 0,

b2 > 0, γ1 > 0, γ2 > 0, γ3 < 0, γR3 < 0 and ρ > 0, (B.80) and (B.81) imply that χ2 < 0 if b2 > κ
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and χ3 < 0 if b2 < κ, and (B.82) implies that χ̂′(0) < 0. Since χ̂′(u) can change sign only once,

it is either negative or negative and then positive. Therefore, χ̂(u) is positive and then negative.

The same is true for χ(u), which means that there exists a threshold û > 0 such that χ(u) > 0 for

0 < u < û and χ(u) < 0 for u > û.

C Momentum and Value Strategies

Proof of Proposition 5.1: Using (4.12), we can write (5.1) as

ŵt ≡ wt −
wtΣη

′

ηΣη′
η. (C.1)

The expected return of the index-adjusted strategy is

E(ŵtdRt) =E [Et(ŵtdRt)]

=E [ŵtEt(dRt)]

=E

{(
wt −

wtΣη
′

ηΣη′
η

)[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
(
fΣ+ kΣp′fpfΣ

)
η′ + Λt

(
fΣ+ kΣp′fpfΣ

)
p′f

]
dt

}

=E

{(
wt −

wtΣη
′

ηΣη′
η

)[
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
fΣη′ + Λt

(
f +

k∆

ηΣη′

)
Σp′f

]
dt

}

=

(
f +

k∆

ηΣη′

)
E
(
ΛtwtΣp

′
f

)
dt, (C.2)

where the third step follows from (B.68) and (C.1). The variance of the index-adjusted strategy is

V ar(ŵtdRt) =E[V art(ŵtdRt)] + V ar[Et(ŵtdRt)]

=E[V art(ŵtdRt)]

=E

[(
wt −

wtΣη
′

ηΣη′
η

)(
fΣ+ kΣp′fpfΣ

)(
wt −

wtΣη
′

ηΣη′
η

)′]
dt

=

{
f

[
E(wtΣw

′
t)−

E
[
(wtΣη

′)2
]

ηΣη′

]
+ kE[(wtΣp

′
f )

2]

}
dt, (C.3)

where the second step follows because E[V art(wtdRt)] is of order dt and V ar[Et(wtdRt)] of order

(dt)2, and the third step follows from (4.12) and (C.1). Eq. (5.3) follows from (5.2), (C.2) and

(C.3).
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To show that the Sharpe ratio is maximized for wt = Λtpf , we write, for any given t, the

strategy wt as a linear combination of the market index, the flow portfolio, and an orthogonal

component, i.e.,

wt = λ1tη + λ2tpf + w̌t, (C.4)

where ηΣw̌t = pfΣw̌t = 0. Substituting wt from (C.4), we can write (5.3) as

SRw =

(
f + k∆

ηΣη′

)
∆
ηΣη′E(Λtλ2t)√(

f + k∆
ηΣη′

)
∆
ηΣη′E(λ22t) + fE(w̌tΣw̌′

t)

. (C.5)

The Sharpe ratio is maximized for w̌t = 0. Substituting into (C.5), we find

SRw =
E(Λtλ2t)√
E(λ22t)

√(
f +

k∆

ηΣη′

)
∆

ηΣη′
. (C.6)

The Cauchy-Schwarz inequality implies that the term

E(Λtλ2t)√
E(λ22t)

is maximized when λ2t is proportional to Λt. Therefore, the Sharpe ratio is maximized by the

strategy Λtpf .
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