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A PREFERRED-HABITAT MODEL OF THE TERM STRUCTURE OF INTEREST RATES1

Dimitri Vayanos and Jean-Luc Vila

We model the term structure of interest rates that results from the interaction

between investors with preferences for specific maturities and risk-averse arbitrageurs.

Shocks to the short rate are transmitted to long rates through arbitrageurs’ carry

trades. Arbitrageurs earn rents from transmitting the shocks, through bond risk

premia that relate positively to the slope of the term structure. When the short

rate is the only risk factor, changes in investor demand have the same relative effect

on interest rates across maturities regardless of the maturities where they originate.

When investor demand is also stochastic, demand effects become more localized. A

calibration indicates that long rates under-react to forward-guidance announcements

about short rates. Large-scale asset purchases can be more effective in moving long

rates, especially if they are concentrated at long maturities.

Keywords: Interest rates, bond risk premia, limited arbitrage, government debt,

monetary policy.

1. INTRODUCTION

What determines the term structure of interest rates? In most macro-finance models, the interest rate for

a given maturity depends on the willingness of a representative agent to substitute consumption from today

towards that maturity. The consumption-based view of the term structure contrasts with a more informal

preferred-habitat view, which has been proposed by Culbertson (1957) and Modigliani and Sutch (1966), and

is popular within central banks and the financial industry. According to that view, there are investor clienteles

for specific maturity segments, and the interest rate for a given maturity is mainly driven by shocks affecting
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the demand of the corresponding clientele. The term structure thus exhibits a degree of segmentation.

The preferred-habitat view has been used to interpret numerous market episodes. The 2004 U.K. pension

reform is one example. The reform required pension funds to evaluate their pension liabilities using the yields

of long-maturity bonds. To hedge against drops in long rates, which would raise the value of pension liabilities

and trigger regulatory scrutiny, pension funds bought long-maturity bonds in large quantities. This drove long

rates to record low levels. A flat term structure in early 2004 became downward-sloping in subsequent years,

with the 30-year bond yielding as much as 0.80% (80 basis points, bps) below its 10-year counterpart.1 More

recently, the preferred-habitat view informed decisions by major central banks to engage in Quantitative

Easing (QE). A stated goal of QE programmes was that large-scale purchases of long-maturity bonds would

drive long rates down, stimulating corporate investment.2

The preferred-habitat view cannot be correct in its most extreme form, namely, the interest rate for a given

maturity cannot be driven only by shocks affecting the demand of the corresponding clientele. Indeed, if that

were the case, interest rates for nearby maturities could be very different, generating large profits for term-

structure arbitrageurs. At the same time, shocks to clientele demands can affect interest rates. Indeed, because

absorbing the shocks exposes arbitrageurs to interest-rate risk, bond prices must change to compensate them

for the risk.

How do shocks to clientele demands affect the term structure? What are the effects of large-scale bond

purchases by central banks? What are the implications of the preferred-habitat view for the dynamics of

interest rates, for bond risk premia, and for the transmission of monetary policy from short to long rates?

In this paper we develop a model to answer these questions both qualitatively as well as quantitatively

through a calibration exercise. Our model formalizes the preferred-habitat view and embeds it into a modern

no-arbitrage term-structure framework.

We describe our model in Section 2. The short rate follows an exogenous mean-reverting process. An

exogenous short rate can be interpreted as the return of a linear and instantaneously riskless production

technology, or as the instantaneous rate that a (non-modelled) central bank pays on reserves. Bond yields are

determined endogenously through trading between preferred-habitat investors and arbitrageurs. Preferred-

habitat investors demand zero-coupon bonds with specific maturities, and their demand can be price-elastic.

1For accounts of the 2004 U.K. pension reform and other related episodes, see Tzucker and Islam (2005), Garbade and
Rutherford (2007), Islam (2007), and Greenwood and Vayanos (2010).

2See, for example, the 2011 speeches on large-scale asset purchases by Janet Yellen, the then Vice-Chair of the U.S. Federal
Reserve (Yellen (2011)), and John Williams, the then President of the San Francisco Fed (Wiliams (2011)).
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We provide an optimizing foundation for that demand in a setting where investors form overlapping gener-

ations consuming at the end of their life, are infinitely risk averse, and can invest in bonds and in a private

opportunity with exogenous return (e.g., real estate). Arbitrageurs are competitive and maximize a mean-

variance objective over instantaneous changes in wealth. We fix their aggregate risk aversion and do not study

entry into the arbitrage business.

In Section 3 we solve for equilibrium when the demand of preferred-habitat investors is constant over time

and the only risk factor is the short rate. We address three main questions: how shocks to the short rate are

transmitted to long rates, how bond risk premia depend on the shape of the term structure, and how changes

in preferred-habitat demand affect the term structure. Since demand is constant over time, we take demand

changes to be unanticipated and permanent.

Shocks to the short rate are transmitted to bond yields through the trades of arbitrageurs. Suppose that

the short rate drops. Since investing in bonds becomes more attractive than investing in the short rate,

arbitrageurs buy bonds by borrowing short-term. That trade causes bond prices to rise and yields to drop.

Because, however, arbitrageurs become exposed to the risk that the short rate will increase, they do not

scale up their trade to the point where it earns zero expected profit. Hence, the drop in bond yields does not

fully reflect the drop in the short rate, which means that forward rates under-react to expected future short

rates. The under-reaction disappears when arbitrageurs are risk-neutral, or when preferred-habitat demand

is price-inelastic since in that case arbitrageurs cause bond prices to rise without actually buying the bonds.

Bond risk premia (expected returns in excess of the short rate) are positively related to the slope of the

term structure, consistent with the empirical findings of Fama and Bliss (FB 1987) and Campbell and Shiller

(CS 1991). When the short rate is low, the term structure slopes up, and bonds earn positive risk premia so

that arbitrageurs are induced to buy them. The risk premia accrue to arbitrageurs as a rent for transmitting

short-rate shocks to long rates. Monetary-policy actions by central banks affecting the short rate can hence

be viewed as a source of arbitrageur rent.3 That rent is higher when arbitrageurs are more risk-averse and

when preferred-habitat demand is more price-elastic.

When the short rate is the only risk factor, changes in preferred-habitat demand have global effects: the

effects depend on how the arbitrageurs’ overall exposure to the short rate (“duration risk”) changes, and

not on the specific maturities where the demand changes originate. To illustrate this result’s surprising

implications, suppose that the demand for short-maturity bonds increases and the demand for long-maturity

3We thank John Cochrane for suggesting this idea (Cochrane (2008)).
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bonds decreases by the same amount in present-value terms. Since arbitrageurs buy long-maturity bonds,

and these are more sensitive to short-rate changes than short-maturity bonds, all yields rise—including those

of short-maturity bonds for which demand increases. The same logic implies that all demand changes have

the same relative effect across maturities regardless of where they originate. Moreover, the effect is largest at

the longest maturity. Indeed, since the longest-maturity bonds are the most sensitive to short-rate changes,

their risk premia are also the most sensitive to changes in the arbitrageurs’ exposure to the short rate.

In Section 4 we allow the demand of preferred-habitat investors to vary over time. We maintain a stochastic

short rate; with a constant short rate, arbitrageur activity would render all yields equal to the short rate.

We mainly focus on the case where demand has a one-factor structure and that factor is independent of the

short rate, but we also consider multiple demand factors and correlation. Within the two-factor model, we

revisit the same three questions as in Section 3.

Demand risk weakens and can even reverse the transmission of short-rate shocks to long rates. Suppose

that the short rate drops, in which case arbitrageurs buy bonds. Arbitrageurs become exposed to the risk that

the short rate will increase and that preferred-habitat demand will decrease. Because demand risk becomes

dominant for long-maturity bonds, arbitrageurs buy them in small quantities and may even sell them short

to hedge the demand risk of their long positions in intermediate maturities. Long-maturity yields may thus

rise in response to a short-rate drop.

Demand risk strengthens the positive relationship between bond risk premia and term-structure slope.

Indeed, when preferred-habitat demand is low, risk premia are high so that arbitrageurs are induced to buy

bonds to make up for the low demand. Because of the high premia, bond yields are high and the term

structure slopes up. As a result of the stronger premia-slope relationship, the model-generated coefficients

in the FB and CS regressions have properties closer to their empirical counterparts. For example, the FB

coefficient can be larger than one and increasing with maturity, rather than only positive and constant as in

the one-factor model.

With multiple risk factors, demand effects become more localized. Changes in the demand for short- (long-)

maturity bonds have more pronounced effects on short- (long-) maturity yields. As in the one-factor model,

the effects arise through the arbitrageurs’ exposure to the risk factors. They become more localized because

demand changes originating at different maturities affect the exposure to each factor differently, and because

changes in each factor exposure have a different relative effect across maturities.

In Section 5 we calibrate the two-factor model and analyze central-bank policies such as forward guidance
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and QE. We choose the model parameters to match the volatility of U.S. government bond yields and yield

changes, the correlation between yield changes at the short and the long end of the term structure, and the

composition of bond trading volume across maturities. Since the model can be given both a nominal and a

real interpretation, we calibrate it using nominal yields and then again using real yields. The nominal and

real calibrations generate remarkably similar results.

Forward guidance about short rates is effective in moving yields of short-maturity bonds, but becomes less

effective for long maturities. Lowering the average expected short rate over the next ten years by 100 bps (and

holding preferred-habitat demand constant) causes the ten-year yield to drop by 35-50 bps. The same change

to the expected short rate over thirty years has almost no effect on the thirty-year yield. QE can be more

effective in changing long rates, provided that bond purchases are concentrated at long maturities. Purchases

amounting to 12% of GDP and conforming to the maturity distribution used by the Fed during QE1 lower the

ten-year yield by 25-30bps and the thirty-year yield by 30-35bps. Tilting purchases towards long maturities,

while keeping the fraction of available supply purchased in each maturity bucket within observed ceilings,

increases the effects by 10 and 30bps, respectively.

Our model formalizes the preferred-habitat theory of the term structure, proposed by Culbertson (1957)

and Modigliani and Sutch (1966). Related to preferred habitat is Tobin’s (1958,1969) portfolio-balance theory,

in which financial assets are imperfect substitutes, and investors require a rise in interest rates to absorb an

increased supply of government bonds. The portfolio-balance channel is present in our model, with Tobin’s

investors being our arbitrageurs. It is the only channel present in the special case of our model where preferred-

habitat demand is price-inelastic.

Andres, Lopez-Salido, and Nelson (2004) study demand effects and the portfolio-balance channel in a cali-

brated macroeconomic model with trading frictions. Greenwood and Vayanos (2014) use our model’s special

case with a price-inelastic demand to test for a positive relationship between the maturity of government debt

and future bond returns. Other empirical studies of demand effects in the bond market that build on our

model include Hamilton and Wu (2012) and Li and Wei (2013) on QE purchases and the zero lower bound

(ZLB);4 Hanson (2014) and Malkhozov, Mueller, Vedolin, and Venter (2016) on mortgage-backed securities;

Gorodnichenko and Ray (2018) on Treasury auctions; Kaminska and Zinna (2019) on purchases by foreign

4For empirical estimates of the effects of QE, see also Gagnon, Raskin, Remache, and Sack (2011), Joyce, Lasaosa, Stevens, and
Tong (2011), Krishnamurthy and Vissing-Jorgensen (2011), Swanson (2011), Christensen and Rudebusch (2012), D’Amico and
King (2013), Swanson and Williams (2014), and the survey by Wiliams (2014). Some of these papers emphasize the duration-risk
channel. That channel describes demand effects in the one-factor version of our model but not with multiple factors.
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central banks; and King (2019) on non-linearities induced by the ZLB. Hayashi (2018) develops numerical

algorithms to solve our model with a general number of risk factors.

The notion that demand shocks can drive asset prices away from fundamental values is emphasized in

the literature on the limits of arbitrage, surveyed in Gromb and Vayanos (2010). Closest to our paper is the

strand of the literature on price distortions across an asset class. See, for example, Barberis and Shleifer (2003)

and Vayanos and Woolley (2013) on style investing, momentum and reversal; Greenwood (2005) and Hau

(2011) on index redefinitions; Gabaix, Krishnamurthy, and Vigneron (2007) on mortgage-backed securities;

Garleanu, Pedersen, and Poteshman (2009) on options; and Gabaix and Maggiori (2015) on foreign exchange.

Preferred habitats in our model concern maturities. They could alternatively concern bonds that differ

in liquidity or in the type of issuer, e.g., government versus corporate. Preferences for liquidity have been

used to explain the on-the-run phenomenon, whereby just-issued government bonds are more expensive than

previously-issued bonds maturing on nearby dates.5 Preferences for government bonds over corporate bonds

could be arising because the former are safer and more widely acceptable as collateral. Krishnamurthy and

Vissing-Jorgensen (2012) provide evidence consistent with the existence of an investor clientele pricing those

attributes.

Our model belongs to the class of affine no-arbitrage term-structure models (Duffie and Kan (1996)) because

yields are affine in the risk factors. Dai and Singleton (2002) and Duffee (2002) develop models within that

class that embody the positive relationship between bond risk premia and term-structure slope. We derive

such a relationship in an equilibrium model.6 Our model can address questions that reduced-form models

cannot such as how demand shocks affect the term structure and how the effects depend on arbitrageur risk

aversion and investor price-elasticity.

2. MODEL

Time is continuous and goes from zero to infinity. The term structure at time t consists of a continuum

of zero-coupon government bonds. The maturities of the bonds lie in the interval (0,∞). Assuming that the

interval of bond maturities is infinite is without loss of generality because we can specify preferred-habitat

5For evidence on the on-the-run phenomenon, see Amihud and Mendelson (1991), Warga (1992) and Krishnamurthy (2002).
For theoretical explanations, see Duffie (1996), Vayanos and Weill (2008) and Banerjee and Graveline (2013).

6Other equilibrium models that generate a positive premia-slope relationship include Wachter (2006), Buraschi and Jiltsov
(2007) and Lettau and Wachter (2011) who assume habit formation; Xiong and Yan (2010) who assume heterogeneous beliefs;
and Gabaix (2012) who assumes rare disasters with time-varying severity.
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demand to be zero for bonds with sufficiently long maturities. The bond with maturity τ has face value one,

hence paying one unit of the numeraire at time t + τ . We denote by P
(τ)
t and y

(τ)
t , respectively the time-t

price and yield of the bond with maturity τ . The yield is the spot rate for maturity τ , and is related to the

price through

(1) y
(τ)
t = − log(P

(τ)
t )

τ
.

We denote by f
(τ−∆τ,τ)
t the time-t forward rate between maturities τ −∆τ and τ . The forward rate is related

to the price through

(2) f
(τ−∆τ,τ)
t = −

log

(
P

(τ)
t

P
(τ−∆τ)
t

)
∆τ

.

The short rate rt is the limit of the yield y
(τ)
t when τ goes to zero. We take rt as exogenous, and describe

its dynamics later in this section (Equation (7)). An exogenous rt can be interpreted as the return of a linear

and instantaneously riskless production technology. Alternatively, rt can be determined by the central bank

in response to exogenous shocks. We sketch the central-bank interpretation in Section 3.3, where we derive

some of our model’s implications for monetary policy.

Agents are of two types: arbitrageurs and preferred-habitat investors. Arbitrageurs can invest in the bonds

and in the short rate. We denote their time-t wealth by Wt and their time-t position, expressed in present-

value terms, in the bonds with maturities in [τ, τ + dτ ] by X
(τ)
t dτ . The arbitrageurs’ budget constraint is

(3) dWt =

(
Wt −

∫ ∞

0

X
(τ)
t dτ

)
rtdt+

∫ ∞

0

X
(τ)
t

dP
(τ)
t

P
(τ)
t

dτ,

where the instantaneous change dP
(τ)
t is computed by changing the time subscript t to t+dt and the maturity

superscript τ to τ − dt.7 Arbitrageurs maximize a mean-variance objective over instantaneous changes in

7Implicit in our notation is that the arbitrageurs’ position in the bonds with maturities in [τ, τ+dτ ] is of order dτ . Arbitrageurs
hold such a position in equilibrium because preferred-habitat demand for the bonds with maturities in [τ, τ + dτ ] is assumed to
be of order dτ .
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wealth. Their optimization problem is

(4) max
{X(τ)

t }τ∈(0,∞)

[
Et(dWt)−

a

2
Vart(dWt)

]
,

where a ≥ 0 is a risk-aversion coefficient that characterizes the trade-off between mean and variance. Arbi-

trageurs with the objective (4) can be interpreted as overlapping generations living over infinitesimal periods.

The generation born at time t is endowed with wealth W , invests from t to t + dt, consumes at t + dt and

then dies. If preferences over consumption are described by the Von Neumann-Morgenstern (VNM) utility

function U , and if all uncertainty is Brownian as is the case in equilibrium, utility maximization yields the

objective (4) with the risk-aversion coefficient a = −U ′′(W )
U ′(W ) .

Preferred-habitat investors have preferences for specific maturities. For example, pension funds prefer long-

maturity bonds because their duration matches that of pension liabilities. Insurance companies likewise

prefer long- and intermediate-maturity bonds because their duration matches that of liabilities associated to

retirement and insurance products that they offer. At the other end of the maturity spectrum, money-market

funds are required by their mandates to hold short-maturity bonds. We model the demand of preferred-habitat

investors in reduced form and provide an optimizing foundation in Appendix B.

Investors’ maturity habitats cover the interval (0,∞), and investors with habitats in [τ, τ + dτ ] are in

measure dτ . Investors with habitat τ at time t hold a position

(5) Z
(τ)
t = −α(τ) log(P

(τ)
t )− β

(τ)
t ,

expressed in present-value terms, in the bond with maturity τ and hold no other bonds. Equation (5) is a

demand function linear and decreasing in the logarithm of the bond price. The slope coefficient α(τ) ≥ 0 is

constant over time but can depend on maturity τ . The intercept coefficient β
(τ)
t can depend on both t and

τ . For simplicity, we refer to α(τ) and β
(τ)
t as demand slope and demand intercept, respectively. The actual

intercept is −β
(τ)
t . By setting α(τ) = β

(τ)
t = 0 for τ larger than a finite threshold T , we can take the interval

of bond maturities to be finite and equal to (0, T ).

The demand intercept β
(τ)
t takes the form

(6) β
(τ)
t = θ0(τ) +

K∑
k=1

θk(τ)βk,t,
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where {θk(τ)}k=0,..,K are constant over time but can depend on maturity τ , and {βk,t}k=1,..,K are time-

varying but independent of τ . We refer to {βk,t}k=1,..,K as demand risk factors. The functions {θk(τ)}k=1,..,K

characterize the maturities where demand changes originate. If, for example, θk(τ) is independent of τ , then a

change in βk,t impacts demand for all maturities equally, and can be interpreted as a global demand shock. If

instead θk(τ) peaks at a specific maturity, then a change in βk,t impacts demand for that maturity the most,

and can be interpreted as a local demand shock. To ensure that integrals involving (α(τ), {θk(τ)}k=1,..,K) are

well-defined, we assume that either (i) (α(τ), {θk(τ)}k=1,..,K) become zero for τ larger than a finite threshold

T , are are continuous in (0, T ], or (ii) (α(τ), {θk(τ)}k=1,..,K) converge to zero at exponential rates when τ

goes to infinity, with the rate for α(τ) not exceeding those for {θk(τ)}k=1,..,K , and are continuous in (0,∞).

The (K + 1)× 1 vector qt ≡ (rt, β1,t, .., βK,t)
⊤ follows the process

(7) dqt = −Γ(qt − rE)dt+ΣdBt,

where r is a constant, E is the (K+1)× 1 vector (1, 0, .., 0)⊤, (Γ,Σ) are constant (K+1)× (K+1) matrices,

dBt is a (K + 1) × 1 vector (dBr,t, dBβ,1,t, .., dBβ,K,t)
⊤ of independent Brownian motions, and ⊤ denotes

transpose. Equation (7) nests the case where the short rate rt and the K demand factors {βk,t}k=1,..,K are

mutually independent, and the case where they are correlated. Independence arises when the matrices (Γ,Σ)

are diagonal. When instead Σ is non-diagonal, shocks to the factors rt and {βk,t}k=1,..,K are correlated, and

when Γ is non-diagonal, the drift (instantaneous expected change) of each factor depends on all other factors.

We assume that the eigenvalues of Γ have positive real parts. Hence, qt is stationary, and (7) implies that the

long-run means of rt and {βk,t}k=1,..,K are r and zero, respectively. Setting the long-run mean of {βk,t}k=1,..,K

to zero is without loss of generality since we can redefine the function θ0(τ) to include a non-zero long-run

mean.

We assume that government bonds are in zero supply. This is without loss of generality because we can

redefine the demand function (5) as a net demand: the demand by preferred-habitat investors for the bond

with maturity τ , net of the government supply of that bond.

Under the assumed demand function (5), the demand by preferred-habitat investors for the bond with

maturity τ depends only on that bond’s price and not on the prices of other bonds. This begs the question

why rational investors buy the bond with maturity τ if a bond with maturity close to τ is much cheaper.

Appendix B shows that the demand function (5), together with the specification (6) and (7) for the demand
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intercept β
(τ)
t , can be given an optimizing foundation when bond maturities belong to a finite interval (0, T )

and the matrix Σ has full rank. The optimizing foundation requires that the term structure satisfies no-

arbitrage, which is the case for the equilibrium derived in Sections 3 and 4.

The preferred-habitat investors in Appendix B form overlapping generations living over a period equal

to the maximum bond maturity T . The generation born at time t consumes only at t + T and then dies.

Investors are infinitely risk-averse over consumption. They derive consumption by investing in bonds and

in a private opportunity whose return at time t′ ≥ t is exogenous and increasing in β
(T+t−t′)
t . Infinite risk

aversion ensures that investors’ optimal bond portfolio yields a riskless payoff at the time t + T when they

consume. That portfolio consists only of the bond maturing at t + T . No-arbitrage ensures that investors

cannot achieve a higher payoff with certainty by investing in bonds with maturities other than t+ T : if the

payoff is higher with positive probability, then it must also be lower with positive probability.

The elasticity of preferred-habitat demand in Appendix B arises because investors substitute between the

bond that matures at the time t + T when they consume, and the private opportunity. When the bond’s

price decreases, the bond’s return from t to t + T increases. Hence, the bond becomes more attractive

relative to the private opportunity, and bond demand increases.8 Conversely, when the return on the private

opportunity increases, it becomes more attractive relative to the bond, and bond demand decreases. The

private opportunity could represent, for example, an investment in real estate.9

Stepping outside of the optimizing foundation in Appendix B, β
(τ)
t could vary because of shocks to the

supply of bonds issued by the government and shocks to the composition of the preferred-habitat investor

pool. The demand specification (5)-(7) can capture these shocks if the maturities affected by the shocks

remain fixed as time passes. Suppose, for example, that there is a sudden increase at time t in the demand

for the bond with maturity τ . The specification (5)-(7) requires that this increase translates to an increase

at time t′ > t in the demand for the bond with maturity τ rather than τ + t− t′. That is, the shock does not

“roll down” over time in the maturity space.

Some shocks roll down in the maturity space. For example, an increase at time t in the government supply

of the bond with maturity τ translates to an increase at time t′ > t in the supply of the bond with maturity

8Since investors in Appendix B choose their portfolio based on its return at the time t+T when they consume, their demand
for the bond that matures at t+ T depends on the bond’s return to maturity rather than on the return over the next instant.

9An example of preferred-habitat investors substituting from government bonds into real estate comes from the UK’s pension
reform of 2004, mentioned in the Introduction. The drop in long rates induced pension funds to substitute towards non-bond
investments, including real estate. For example, Marks & Spencer arranged for their pension fund to receive payments based on
the leases of their property portfolio (Islam (2007), p.61).
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τ+t−t′ rather than τ . For such shocks, the specification (5)-(7) can be viewed as an approximation. Modifying

that specification to allow roll down would render the analysis more complicated because bond demand at

time t would depend on the entire history of shocks up to time t−T . (The shocks up to time t−T + τ would

affect demand for bonds with maturities up to τ .)

Our model makes a stark distinction between arbitrageurs, who can substitute across maturities, and

preferred-habitat investors, who invest only in their maturity habitat. Suppressing this distinction (by making

the risk aversion of preferred-habitat investors finite in Appendix B), would complicate the model without

changing the basic mechanisms. Preferred-habitat investors would substitute across maturities, acting partly

as arbitrageurs, and arbitrage capacity would increase. The analysis would become more complicated because

it would involve a continuum of portfolios rather than only the portfolio of arbitrageurs.

An additional distinction between arbitrageurs and preferred-habitat investors, which is implicit in the

demand specification (5) and explicit in the optimizing foundation in Appendix B, is that the latter can

access investment opportunities outside of the bond market while the former cannot. If arbitrageurs could

access investment opportunities outside the government bond market, then shocks to the returns of their

opportunities would affect bond prices as well. We suppress that effect by assuming that arbitrageurs specialize

in trading only government bonds.

Our model can be given both a nominal and a real interpretation. Under the nominal interpretation, the

numeraire is money, arbitrageurs’ preferences concern their wealth evaluated in nominal terms, and prefer-

ences of preferred-habitat investors (in the optimizing foundation in Appendix B) concern their consumption

in nominal terms. Under the real interpretation, the numeraire consists of goods, and preferences concern

wealth and consumption in real terms. A short rate determined by the central bank fits better the nominal

interpretation, while a short rate determined by a production technology fits better the real interpretation.

The arbitrageurs’ optimization problem yields the same solution regardless of whether preferences concern

nominal or real wealth. This is because the arbitrageurs’ objective involves changes in wealth over an infinites-

imal interval, during which inflation is constant.10 Hence, the assumption under the nominal interpretation

that arbitrageurs’ preferences concern nominal wealth is innocuous.

Whether preferences concern nominal or real consumption matters for preferred-habitat investors, who have

10Denoting by dWt = Wt+dt − Wt the instantaneous change in arbitrageur nominal wealth, the change in real wealth is

dWR
t =

Wt+dt

1+πtdt
−Wt = dWt −Wtπtdt, where πt is inflation between t and t+ dt. Since Et(dWR

t )− a
2
Vart(dWR

t ) = Et(dWt)−
a
2
Vart(dWt)− πtdt, maximizing Et(dWR

t )− a
2
Vart(dWR

t ) yields the same solution as maximizing Et(dWt)− a
2
Vart(dWt).
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a longer horizon. Preferences over nominal consumption describe, for example, life-insurance companies that

offer insurance or retirement products with guaranteed minimum returns typically not indexed to inflation.11

Preferences over real consumption describe, for example, pension funds that offer pensions rising with, or

explicitly indexed to, inflation.12 Payouts from property and casualty insurance rise with inflation as well.

Hence, both nominal and real preferred habitats arise in practice.

Under the nominal interpretation, inflation could affect both the short rate and the intercept β
(τ)
t of

preferred-habitat demand. Indeed, high inflation could be associated with high nominal returns throughout

the economy, and hence with both a high nominal short rate and a high nominal return β
(τ)
t on investment

opportunities other than government bonds. Inflation could thus generate a positive correlation between the

short rate and the demand factors. Because of that correlation, inflation could have only a weak effect on

bond demand by preferred-habitat investors: high bond yields raise demand, and high β
(τ)
t lowers it.

3. NO DEMAND RISK

In this section we study the case where there are no demand risk factors (K = 0). Time-variation in yields

arises because of the short rate rt, which is the only risk factor. For K = 0, (7) reduces to

(8) drt = κr(r − rt)dt+ σrdBr,t,

where κr ≡ Γ1,1 > 0 and σr ≡ Σ1,1.

3.1. Equilibrium without Arbitrageurs

We first derive, as a benchmark, the equilibrium that would prevail in the arbitrageurs’ absence. We refer

to it as the segmentation equilibrium because the yield for each maturity is determined solely by the demand

of the investors with that maturity habitat. The yield y
(τ)
t for maturity τ is determined by setting the net

demand (5) by preferred-habitat investors to zero. Since (1) implies log(P
(τ)
t ) = −τy

(τ)
t , y

(τ)
t is given by

(9) y
(τ)
t =

β
(τ)
t

α(τ)τ
=

θ0(τ)

α(τ)τ
,

11For a description of the products offered by life-insurance companies see, for example, Berends, McMenamin, Plestis, and
Rosen (2013) and Sen (2019). Table 1 of Berends, McMenamin, Plestis, and Rosen (2013) indicates that guaranteed minimum
returns not indexed to inflation are a common feature of life-insurance products.

12Indexation of pensions to inflation was accounted for in the 2004 U.K. pension reform, which required pension funds to
evaluate their pension liabilities using the yields of long-maturity inflation-indexed bonds.
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where the second equality follows by setting K = 0 in (6). The yield y
(τ)
t for maturity τ is constant over time

and is disconnected from the time-varying short rate rt. It depends only on the demand intercept β
(τ)
t = θ0(τ)

and demand slope α(τ) for maturity τ . An increase in θ0(τ) lowers the demand by preferred-habitat investors

for the bond with maturity τ , and hence raises y
(τ)
t . The effect is weaker the larger α(τ) is because the

demand by preferred-habitat investors is more price-elastic. The segmentation equilibrium corresponds to an

extreme form of the preferred-habitat view (Culbertson (1957), Modigliani and Sutch (1966)).

3.2. Equilibrium with Arbitrageurs

We next derive the equilibrium when arbitrageurs are present. We proceed in three steps: (i) conjecture a

functional form for equilibrium yields, (ii) derive the arbitrageurs’ first-order condition given the conjectured

yields, and (iii) combine the arbitrageurs’ first-order condition with market clearing, and confirm that yields

are as conjectured.

We conjecture that equilibrium yields are affine in the single risk factor rt. That is, there exist two functions

(Ar(τ), C(τ)) that depend only on τ such that the time-t price of the bond with maturity τ is

(10) P
(τ)
t = e−[Ar(τ)rt+C(τ)].

Applying Ito’s Lemma to (10), recalling that dP
(τ)
t is computed by changing the time subscript t to t+dt and

the maturity superscript τ to τ − dt, and using the dynamics (8) of rt, we find that the time-t instantaneous

return on the bond with maturity τ is

(11)
dP

(τ)
t

P
(τ)
t

= µ
(τ)
t dt−Ar(τ)σrdBr,t,

where

(12) µ
(τ)
t ≡ A′

r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +
1

2
Ar(τ)

2σ2
r

is the instantaneous expected return.

To derive the arbitrageurs’ first-order condition, we substitute the bond return (11) into the the arbi-
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trageurs’ budget constraint (3) and optimization problem (4). This yields

dWt =

[
Wtrt +

∫ ∞

0

X
(τ)
t (µ

(τ)
t − rt)dτ

]
dt−

[∫ ∞

0

X
(τ)
t Ar(τ)dτ

]
σrdBr,t

and

(13) max
{X(τ)

t }τ∈(0,∞)

{∫ ∞

0

X
(τ)
t (µ

(τ)
t − rt)dτ − aσ2

r

2

[∫ ∞

0

X
(τ)
t Ar(τ)dτ

]2}
,

respectively. Point-wise maximization of (13) yields the arbitrageurs’ first-order condition.

Lemma 1 The arbitrageurs’ first-order condition is

(14) µ
(τ)
t − rt = −Ar(τ)λr,t,

where

(15) λr,t ≡ −aσ2
r

∫ ∞

0

X
(τ)
t Ar(τ)dτ.

The arbitrageurs’ first-order condition (14) balances risk and return. The left-hand side is the increase in

the expected return on the arbitrageurs’ portfolio if they shift one unit of the numeraire from the short rate

rt to the bond with maturity τ . Portfolio expected return increases by the difference between the bond’s

expected return µ
(τ)
t and the short rate rt. The right-hand side is the increase in the risk of the arbitrageurs’

portfolio, times the arbitrageurs’ risk-aversion coefficient a. Portfolio risk increases by the covariance between

the return on the additional investment in the bond and the return on the portfolio. With one risk factor, the

covariance is the product of the sensitivities of the two returns to the factor, times the factor’s variance. The

risk factor is the short rate, and its variance is σ2
r . Moreover, (11) implies that the sensitivity of the bond’s

return to the short rate is −Ar(τ), and the sensitivity of the portfolio’s return is −
∫∞
0

X
(τ)
t Ar(τ)dτ .

The first-order condition (14) can alternatively be interpreted in the context of no-arbitrage models of

the term structure.13 No-arbitrage in continuous time requires that there exist prices specific to each risk

13See, for example, Vasicek (1977) and Cox, Ingersoll, and Ross (1985) for early contributions, and Veronesi (2010) for a
textbook treatment.
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factor and common across assets, such that the expected return of any asset in excess of the short rate is

equal to the sum across factors of the asset’s sensitivity to each factor times the factor’s price. With one

factor, the no-arbitrage condition boils down to requiring that the factor’s price is equal to the ratio of any

asset’s expected excess return to the asset’s factor sensitivity. The no-arbitrage condition in our model is the

arbitrageurs’ first-order condition (14), and the price of the short-rate factor is λr,t.

Absence of arbitrage is mute on what the prices of the risk factors are. These prices are instead deter-

mined by equilibrium arguments. Equation (15) shows that λr,t is proportional to the factor sensitivity

−
∫∞
0

X
(τ)
t Ar(τ)dτ of the arbitrageurs’ portfolio. To determine that portfolio, we use market clearing.

Market clearing requires that the time-t positions of arbitrageurs and preferred-habitat investors in the

bond with maturity τ sum to zero:

(16) X
(τ)
t + Z

(τ)
t = 0.

Substituting X
(τ)
t from (16) into (15), we find

λr,t = aσ2
r

∫ ∞

0

Z
(τ)
t Ar(τ)dτ

= aσ2
r

∫ ∞

0

[
−α(τ) log(P

(τ)
t )− β

(τ)
t

]
Ar(τ)dτ

= aσ2
r

∫ ∞

0

[α(τ) [Ar(τ)rt + C(τ)]− θ0(τ)]Ar(τ)dτ,(17)

where the second equality follows by substituting Z
(τ)
t from (5), and the third equality follows by substituting

P
(τ)
t from (10) and using β

(τ)
t = θ0(τ) (which follows by setting K = 0 in (6)). Equation (17) shows that the

price λr,t of the short-rate risk factor depends on the short rate rt and on the demand intercept θ0(τ) and

demand slope α(τ) of preferred-habitat investors. We return to these effects and their economic implications

in Sections 3.3-3.5.

Substituting λr,t and µ
(τ)
t from (17) and (12), respectively, into (14), we find

A′
r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +

1

2
Ar(τ)

2σ2
r − rt

= aσ2
rAr(τ)

∫ ∞

0

[θ0(τ)− α(τ) [Ar(τ)rt + C(τ)]]Ar(τ)dτ.(18)
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Equation (18) must hold for all values of rt. Hence, the linear terms in rt on both sides must be equal, and

the same is true for the terms that are independent of rt. This yields the two first-order linear ordinary

differential equations (ODEs)

A′
r(τ) + κrAr(τ)− 1 = −aσ2

rAr(τ)

∫ ∞

0

α(τ)Ar(τ)
2dτ,(19)

C ′(τ)− κrrAr(τ) +
1

2
σ2
rAr(τ)

2 = aσ2
rAr(τ)

∫ ∞

0

[θ0(τ)− α(τ)C(τ)]Ar(τ)dτ,(20)

in the functions (Ar(τ), C(τ)). Equations (19) and (20) must be solved with the initial conditions Ar(0) =

C(0) = 0, which follow from (10) because a bond with zero maturity trades at its face value of one. A

complicating feature of (19) and (20) is that the coefficient of Ar(τ) in each equation depends on an integral

involving the functions (Ar(τ), C(τ)). To solve (19) and (20), we proceed in two steps. First, we take the

integrals as given and solve (19) and (20) as linear ODEs with constant coefficients. Second, we require that

the solution is consistent with the value of the integrals.

The first step yields

Ar(τ) =
1− e−κ∗

rτ

κ∗
r

,(21)

C(τ) = κ∗
rr

∗
∫ τ

0

Ar(u)du− σ2
r

2

∫ τ

0

Ar(u)
2du,(22)

where the scalars (κ∗
r , r

∗) are defined by

κ∗
r ≡ κr + aσ2

r

∫ ∞

0

α(τ)Ar(τ)
2dτ,(23)

κ∗
rr

∗ ≡ κrr + aσ2
r

∫ ∞

0

[θ0(τ)− α(τ)C(τ)]Ar(τ)dτ.(24)

We use the star subscript because (κ∗
r , r

∗) are the counterparts of (κr, r) under the risk-neutral measure. The

second step requires that (κ∗
r , r

∗) solve (23) and (24) when (Ar(τ), C(τ)) are substituted in from (21) and

(22). Proposition 1 shows that this requirement determines (κ∗
r , r

∗) uniquely.

Proposition 1 The functions (Ar(τ), C(τ)) are given by (21) and (22), respectively, where κ∗
r is the unique
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solution to

(25) κ∗
r = κr + aσ2

r

∫ ∞

0

α(τ)

(
1− e−κ∗

rτ

κ∗
r

)2

dτ,

and r∗ is given by

(26) r∗ = r + aσ2
r

∫∞
0

[θ0(τ)− rα(τ)τ ] 1−e−κ∗
rτ

κ∗
r

dτ +
σ2
r

2

∫∞
0

α(τ)

[∫ τ

0

(
1−e−κ∗

ru

κ∗
r

)2
du

]
1−e−κ∗

rτ

κ∗
r

dτ

κ∗
r

[
1 + aσ2

r

∫∞
0

α(τ)
[∫ τ

0
1−e−κ∗

ru

κ∗
r

du
]

1−e−κ∗
rτ

κ∗
r

dτ
] .

We next explore the economic implications of the equilibrium derived in Proposition 1. Section 3.3 examines

how shocks to the short rate are transmitted to longer maturities. Section 3.4 examines how bond expected

excess returns depend on the short rate and on the shape of the term structure. Section 3.5 examines how

changes in bond demand affect the term structure.

3.3. Monetary Policy Transmission and Carry Trades

In the segmentation equilibrium, in which there are no arbitrageurs, bond yields y
(τ)
t are disconnected from

the short rate rt. By contrast, when arbitrageurs are present, they transmit short-rate shocks to bond yields,

ensuring that yields are informative about the current and expected future short rates.

Arbitrageurs transmit short-rate shocks to bond yields through their carry trades. Suppose that a shock

causes the short rate to drop below the value that bond yields would take in the segmentation equilibrium.

To benefit from the discrepancy between bond yields and the short rate, arbitrageurs buy bonds and finance

their position by borrowing short-term. Their activity causes bond prices to rise and yields to drop, thus

reflecting the drop in the short rate. Conversely, following a shock that causes the short rate to exceed the

value that bond yields would take under segmentation, arbitrageurs short-sell bonds and invest short-term.

Their activity causes bond prices to drop and yields to rise, thus reflecting the rise in the short rate. In both

cases, arbitrageurs engage in carry trades—trades that are profitable when prices do not move. For example,

buying a bond and financing that position by short-term borrowing is profitable when the short rate remains

below the bond’s yield until the bond’s maturity.

The extent to which arbitrageurs transmit short-rate shocks to bond yields depends on three main pa-

rameters of our model: the arbitrageurs’ risk-aversion coefficient a, the volatility σr of the short rate, and
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the slope α(τ) of the demand by preferred-habitat investors. When a = 0, arbitrageurs are not averse to

the risk that carry trades entail, namely, that the short rate can rise when they borrow short-term to buy

bonds, and that the short rate can drop when they short-sell bonds and invest short-term. Hence, arbitrageurs

engage in carry trades that are sufficiently large to transmit short-rate shocks fully to bond yields. When

α(τ) = 0 for all τ ∈ (0, T ), shocks are again transmitted fully, but for a different reason. Since the demand

of preferred-habitat investors is independent of bond prices, short-rate shocks do not trigger carry trades by

arbitrageurs in equilibrium, even though bond yields change. Hence, arbitrageurs impact bond yields without

bearing carry-trade risk, in effect having infinite price impact. The transmission of shocks becomes weaker

when a, σ2
r and α(τ) increase.

We measure the extent to which arbitrageurs transmit short-rate shocks to bond yields by comparing the

reaction of forward rates to that of expected future short rates. We evaluate how a time-t shock to the short

rate rt affects the expected short rate Et(rt+τ ) at time t + τ and the instantaneous forward rate f
(τ)
t for

maturity τ . The latter rate is defined as the limit of the forward rate f
(τ−∆τ,τ)
t between maturities τ −∆τ

and τ when ∆τ goes to zero:

(27) f
(τ)
t ≡ lim

∆τ→0
f
(τ−∆τ,τ)
t = −∂ log(P

(τ)
t )

∂τ
= A′

r(τ)rt + C ′(τ),

where the second step follows from (2), and the third from (10). When the expectations hypothesis (EH)

of the term structure holds, forward rates move one-to-one with expected future short rates. Proposition 2

shows that when a > 0 and α(τ) > 0, forward rates under-react and hence arbitrageurs transmit short-rate

shocks to bond yields only partially.

Formally, a unit shock to rt raises Et(rt+τ ) by e−κrτ because the short rate mean-reverts at rate κr.

Equation (27) implies that f
(τ)
t rises by A′

r(τ) = e−κ∗
rτ , where the equality follows from (21). Under-reaction

occurs because the short rate’s mean-reversion parameter κ∗
r under the risk-neutral measure exceeds its

counterpart κr under the physical measure. Equation (25) implies that the difference κ∗
r − κr, and hence the

extent of under-reaction, increases in a, σ2
r and α(τ).

Proposition 2 (Under-Reaction of Forward Rates) A unit shock to the short rate rt:

� Raises the expected short rate Et(rt+τ ) at time t+ τ by ∂Et(rt+τ )
∂rt

= e−κrτ .
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� Raises the instantaneous forward rate f
(τ)
t for maturity τ by

∂f
(τ)
t

∂rt
= e−κ∗

rτ .

The forward rate under-reacts (κ∗
r > κr) if arbitrageurs are risk-averse (a > 0) and the demand by preferred-

habitat investors is price-elastic (α(τ) > 0 in a positive-measure subset of (0,∞)). The extent of under-

reaction κ∗
r − κr increases in a, σ2

r and α(τ).

Our results have implications for the transmission of monetary policy. Suppose that the central bank

conducts monetary policy by changing the rate that it pays on bank reserves. Suppose also that arbitrageurs

are banks, in which case the short rate rt that they earn on their wealth is the rate paid on reserves. Our

model implies that the transmission of monetary-policy shocks to the yields of long-maturity bonds is done

by arbitrageurs. Moreover, the transmission mechanism is weaker when arbitrageurs are more risk-averse,

central bank actions are more uncertain (the short rate is more volatile), or the demand by preferred-habitat

investors is more price-elastic. An additional implication is that in transmitting monetary-policy shocks,

arbitrageurs earn a rent. That rent arises from the returns on the carry trades, and reflects bond risk premia,

as we explain in Section 3.4. In that section we also show that bond risk premia are larger, resulting in a

larger rent for arbitrageurs, under the same conditions that generate a weaker transmission mechanism.

3.4. Bond Risk Premia

Under the EH, bond expected returns are equal to the riskless rate. When instead a > 0 and α(τ) > 0,

they differ from the riskless rate and mirror the carry trades of arbitrageurs. This is because risk-averse

arbitrageurs enter into carry trades only if they expect to earn high returns as compensation for the risk

they take. Suppose that the short rate drops, in which case bond yields drop and price-elastic preferred-

habitat investors sell bonds. Bonds earn then positive expected returns in excess of the riskless rate so that

arbitrageurs are induced to buy them. When instead the short rate rises, bonds earn negative expected excess

returns so that arbitrageurs are induced to sell them short. We refer to expected excess returns as risk premia

because they compensate arbitrageurs for risk.

Since in the absence of demand risk factors, the short rate is the only source of time-variation, bond

risk premia are positively related to the slope of the term structure: a low (high) short rate implies both a

term structure with slope higher (lower) than average and positive (negative) bond risk premia. The positive

premia-slope relationship is a widely documented empirical fact in the term-structure literature, starting with
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Fama and Bliss (FB, 1987). FB perform the regression

(28)
1

∆τ
log

(
P

(τ−∆τ)
t+∆τ

P
(τ)
t

)
− y

(∆τ)
t = aFB + bFB

(
f
(τ−∆τ,τ)
t − y

(∆τ)
t

)
+ et+∆τ .

The dependent variable is the return on a zero-coupon bond with maturity τ held over a period ∆τ , in excess

of the spot rate for maturity ∆τ . The independent variable is the slope of the term structure as measured

by the difference between the forward rate between maturities τ −∆τ and τ , and the spot rate for maturity

∆τ . FB find that bFB is positive, larger than one for most τ , and increasing in τ . The implied time-variation

of risk premia is economically significant: predicted premia have a standard deviation of about 1-1.5% per

year, while average premia are about 0.5% per year.

The behavior of bond risk premia is related to the predictability of changes to long rates. Campbell and

Shiller (CS 1991) find that the slope of the term structure predicts changes in long rates, but to a weaker

and typically opposite extent than implied by the EH. CS perform the regression

(29) y
(τ−∆τ)
t+∆τ − y

(τ)
t = aCS + bCS

∆τ

τ −∆τ

(
y
(τ)
t − y

(∆τ)
t

)
+ et+∆τ .

The dependent variable is the change, between times t and t +∆τ , in the yield of a zero-coupon bond that

has maturity τ at time t. The independent variable is the difference between the spot rates for maturities

τ and ∆τ , normalized so that the regression coefficient bCS is equal to one under the EH. CS find that bCS

is smaller than one, negative for most τ , and decreasing in τ . This finding is related to the positive premia-

slope relationship. Indeed, suppose that the term structure has slope higher than average. Because bonds

earn positive expected excess returns, their yields increase by less than under the EH, implying a regression

coefficient bCS smaller than one.14

Proposition 3 computes the FB and CS regression coefficients bFB and bCS in the analytically convenient

case where ∆τ is small. The proposition confirms that when a > 0 and α(τ) > 0, bFB is positive and bCS is

smaller than one. It also shows that bFB increases in the arbitrageurs’ risk-aversion coefficient a, the volatility

σr of the short rate, and the slope α(τ) of the demand by preferred-habitat investors.

Additional implications of Proposition 3 are that bFB is independent of τ and is smaller than one, and that

bCS increases in τ . In the data, by contrast, bFB increases in τ and exceeds one for most maturities, and bCS

14For more material and references on bond return predictability, see the survey by Cochrane (1999). See also Cochrane and
Piazzesi (2005) who find that a tent-shaped factor of yields explains bond risk premia even better than the slope of the term
structure does.
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decreases in τ . Our model can match these empirical properties in the presence of demand risk, as we show

in Sections 4 and 5.

Proposition 3 (Positive Premia-Slope Relationship) For ∆τ → 0 and for all τ :

� The FB regression coefficient in (28) is bFB =
κ∗
r−κr

κ∗
r

. It is positive if arbitrageurs are risk-averse (a > 0)

and the demand by preferred-habitat investors is price-elastic (α(τ) > 0 in a positive-measure subset of

(0,∞)). It increases in a, σ2
r and α(τ).

� The CS regression coefficient in (29) is bCS = 1− (κ∗
r−κr)Ar(τ)τ
τ−Ar(τ)

. It is smaller than one under the same

condition that ensures bFB > 0, and it increases in τ .

3.5. Demand Effects

In the segmentation equilibrium, in which there are no arbitrageurs, the yield y
(τ)
t for maturity τ depends

only on the demand intercept β
(τ)
t = θ0(τ) and demand slope α(τ) for that maturity. The presence of

arbitrageurs changes that aspect of the equilibrium dramatically. The yield y
(τ)
t depends on the demand

intercept and slope for all maturities. Moreover, a change in the demand intercept for maturity τ can have

its largest effects for maturities other than τ .

Suppose that the demand intercept θ0(τ) changes to θ0(τ)+∆θ0(τ), where ∆θ0(τ) is a general function of

τ and represents an unanticipated and permanent change. Maturities for which ∆θ0(τ) > 0 experience a drop

in demand because (5) defines the demand intercept with a negative sign. Proposition 1 implies that κ∗
r and

Ar(τ) do not change, that the change ∆r∗ in r∗ has the same sign as aσ2
r

∫∞
0

∆θ0(τ)Ar(τ)dτ , and that C(τ)

changes by κ∗
r∆r∗

∫ τ

0
Ar(u)du. Hence, the yield y

(τ)
t for maturity τ changes by ∆y

(τ)
t ≡ κ∗

r∆r∗
∫ τ
0

Ar(u)du

τ .

Proposition 4 follows from these observations.

Proposition 4 (Global Demand Effects) A change in the demand intercept from θ0(τ) to θ0(τ)+∆θ0(τ)

affects yields if arbitrageurs are risk-averse (a > 0). Spot rates for all maturities rise if
∫∞
0

∆θ0(τ)Ar(τ)dτ > 0

and drop otherwise. The relative effect across maturities is independent of the maturities where the demand

change originates (
∆y

(τ2)
t

∆y
(τ1)
t

is independent of ∆θ0(τ)). Yields for longer maturities are more affected (
∆y

(τ2)
t

∆y
(τ1)
t

> 1

for τ1 < τ2).
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Proposition 4 shows that the effects of the change ∆θ0(τ) are characterized fully by the integral
∫∞
0

∆θ0(τ)Ar(τ)dτ .

If that integral is positive, then yields for all maturities rise—even for maturities for which demand increases

because ∆θ0(τ) < 0. Thus, demand effects are global: demand intercepts across all maturities are aggre-

gated into the one-dimensional index
∫∞
0

θ0(τ)Ar(τ)dτ , and changes to that index move all yields in the

same direction. These global effects are the polar opposite of the local effects derived in the segmentation

equilibrium.

Demand effects are represented by a one-dimensional index because there is only one risk factor, the short

rate. The index relates to the sensitivity of arbitrageurs’ portfolio to that factor. Suppose that following a

change in preferred-habitat demand, arbitrageurs are induced to hold a portfolio that realizes more losses

when the short rate increases. Arbitrageurs then view bonds as riskier and require higher expected excess

returns to hold them, causing yields to increase for all maturities.

The index is derived by multiplying the demand intercept θ0(τ) for maturity τ by the function Ar(τ) =

1−e−κ∗
rτ

κ∗
r

that characterizes the sensitivity of the τ -maturity bond to the short rate, and integrating across

maturities. If a change in the demand intercept raises that integral, then the sensitivity-weighted demand

for bonds by preferred-habitat investors declines and the sensitivity of arbitrageurs’ portfolio increases. Since

Ar(τ) increases in τ , demand intercepts for longer-maturity bonds receive a larger weight in the index. Hence,

changes to the demand for these bonds have a larger effect on the term structure.

While changes to the demand for longer-maturity bonds have a larger effect on yields, the relative effect

across maturities is the same as when the demand for shorter-maturity bonds changes. Moreover, yields for

longer maturities are more affected (by any demand change). Intuitively, a decrease in demand raises the

instantaneous expected returns of long-maturity bonds more than of short-maturity bonds. This is because

expected excess returns compensate arbitrageurs for risk, and long-maturity bonds are riskier (Ar(τ) increases

in τ). The increase in expected returns causes yields to increase: the yield for maturity τ involves an average

of instantaneous expected returns that the bond with maturity τ earns during its life [t, t+ τ ]. Since demand

changes are permanent, the average of instantaneous expected returns increases more for longer-maturity

bonds. Hence, yields for longer maturities are more affected by demand changes.
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4. DEMAND RISK

In this section we generalize our analysis to the case where demand is time-varying. Since demand affects

yields only when arbitrageurs are risk-averse, we assume a > 0. Time-variation in yields arises because of the

short rate rt and the K demand factors {βk,t}k=1,..,K .

4.1. Equilibrium

We derive the equilibrium following the same three steps as in Section 3.2. We conjecture that there exist

K+2 functions (Ar(τ), {Aβ,k(τ)}k=1,..,K , C(τ)) that depend only on τ such that the time-t price of the bond

with maturity τ is

(30) P
(τ)
t = e−[A(τ)⊤qt+C(τ)],

where A(τ) is the (K +1)× 1 vector (Ar(τ), Aβ,1(τ), .., Aβ,K(τ))⊤. Applying Ito’s Lemma to (10), using the

dynamics (7) of qt, and noting that t+ τ stays constant when taking the derivative, we find that the time-t

instantaneous return on the bond with maturity τ is

(31)
dP

(τ)
t

P
(τ)
t

= µ
(τ)
t dt−A(τ)⊤ΣdBt,

where

(32) µ
(τ)
t ≡ A′(τ)⊤qt + C ′(τ) +A(τ)⊤Γ(qt − rE) +

1

2
A(τ)⊤ΣΣ⊤A(τ)

is the instantaneous expected return. Substituting the bond return (31) into the the arbitrageurs’ optimization

problem (4) yields

(33) max
{X(τ)

t }τ∈(0,T )

{∫ ∞

0

X
(τ)
t (µ

(τ)
t − rt)dτ − a

2

[∫ ∞

0

X
(τ)
t A(τ)dτ

]⊤
ΣΣ⊤

[∫ ∞

0

X
(τ)
t A(τ)dτ

]}
.

Point-wise maximization of (33) yields the arbitrageurs’ first-order condition.

Lemma 2 The arbitrageurs’ first-order condition is

(34) µ
(τ)
t − rt = aA(τ)⊤ΣΣ⊤

[∫ ∞

0

X
(τ)
t A(τ)dτ

]
.
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Equation (34) is the multi-factor counterpart of (14). The left-hand side is the increase in portfolio expected

return if arbitrageurs shift one unit of the numeraire from the short rate rt to the bond with maturity τ .

The right-hand side is the increase in portfolio risk, times the arbitrageurs’ risk aversion coefficient a. The

increase in portfolio risk is equal to the covariance between the return on the additional investment in the

bond and the return on the arbitrageurs’ portfolio. With multiple risk factors, the covariance is the product

of the sensitivity vectors −A(τ) and −
∫∞
0

X
(τ)
t A(τ)dτ of the two returns to the factors, times the factors’

covariance matrix ΣΣ⊤. To show the full analogy between (34) and (14), we can write (34) in terms of factor

prices. Denoting the (K + 1)× 1 vector of factor prices by λt ≡ (λr,t, λβ,1,t, .., λβ,K,t)
⊤, we can write (34) as

µ
(τ)
t − rt = −aA(τ)⊤λt and deduce that factor prices are λt = −ΣΣ⊤

[∫∞
0

X
(τ)
t A(τ)dτ

]
.

Substituting X
(τ)
t from the market-clearing equation (16) into (34), using (5), (6), (30) and (32), and

denoting by Θ(τ) the 1× (K + 1) vector (0, θ1(τ), .., θK(τ)), we find the following counterpart of (18):

A′(τ)⊤qt + C ′(τ) +A(τ)⊤Γ(qt − rE) +
1

2
A(τ)⊤ΣΣ⊤A(τ)− rt

= aA(τ)⊤ΣΣ⊤
∫ ∞

0

[
θ0(τ) + Θ(τ)qt − α(τ)

(
A(τ)⊤qt + C(τ)

)]
A(τ)dτ.(35)

Setting the linear terms in qt on both sides of (35) to be equal yields the system of K + 1 first-order linear

ODEs

(36) A′(τ) +MA(τ)− E = 0,

where M is the (K + 1)× (K + 1) matrix

(37) M ≡ Γ⊤ − a

∫ ∞

0

[
Θ(τ)⊤A(τ)⊤ − α(τ)A(τ)A(τ)⊤

]
dτΣΣ⊤.

Setting the terms that are independent of qt on both sides of (35) to be equal yields the first-order linear

ODE

(38) C ′(τ)− rA(τ)⊤ΓE+
1

2
A(τ)⊤ΣΣ⊤A(τ) = aA(τ)⊤ΣΣ⊤

∫ ∞

0

[θ0(τ)− α(τ)C(τ)]A(τ)dτ.

Equations (36) and (38) must be solved with the initial conditions A(0) = C(0) = 0. To solve (36) and (38),



A PREFERRED-HABITAT MODEL OF THE TERM STRUCTURE OF INTEREST RATES 25

we follow the same two steps as in Section 3. The first step is to take the integrals in (36) and (38) as given

and solve these equations as linear ODEs with constant coefficients. The solution is in Lemma 3.

Lemma 3 Suppose that the matrix M defined in (37) has K + 1 distinct eigenvalues (ν1, .., νK+1). The

function A(τ) = (Ar(τ), Aβ,1(τ), .., Aβ,K(τ))⊤ is given by

Ar(τ) =
1− e−ν1τ

ν1
+

K∑
k′=1

ϕr,k′

(
1− e−νk′+1τ

νk′+1
− 1− e−ν1τ

ν1

)
,(39)

Aβ,k(τ) =

K∑
k′=1

ϕβ,k,k′

(
1− e−νk′+1τ

νk′+1
− 1− e−ν1τ

ν1

)
,(40)

where ({ϕr,k′}k′=1,..,K , {ϕβ,k,k′}k,k′=1,..,K) are scalars derived from the eigenvectors of M . The function C(τ)

is given by

(41) C(τ) =

[∫ τ

0

A(u)⊤du

]
χ− 1

2

∫ τ

0

A(u)⊤ΣΣ⊤A(u)du,

where χ ≡ (χr, χβ,1, .., χβ,K)⊤ is the (K + 1)× 1 vector

(42) χ ≡ rΓE+ aΣΣ⊤
∫ ∞

0

[θ0(τ)− α(τ)C(τ)]A(τ)dτ.

The second step is to ensure that the solution derived in Lemma 3 is consistent with the value of the inte-

grals. There are (K+1)2 integrals in (36). These integrals involve theK+1 functions (Ar(τ), {Aβ,k(τ)}k=1,..K),

and determine the elements of the (K + 1)× (K + 1) matrix M defined in (37). In turn, the eigenvalues and

eigenvectors of M determine the solution for (Ar(τ), {Aβ,k(τ)}k=1,..K) in Lemma 3, and that solution de-

termines the value of the integrals. This yields a nonlinear system of (K + 1)2 equations in the (K + 1)2

integrals. Given a solution to that system, the elements (χr, χβ,1, .., χβ,K) of the vector χ in the solution for

C(τ) in Lemma 3 can be derived from a linear system of K + 1 equations.

In the remainder of this section, we show analytically general properties of the model. We focus on the case

where there is one demand factor (K = 1, four nonlinear equations) and omit the subscript k from that factor.

We additionally assume that the short rate and the demand factor are independent. This corresponds to the
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matrices (Γ,Σ) being diagonal. We denote their diagonal elements by (κr, κβ , σr, σβ) ≡ (Γ1,1,Γ2,2,Σ1,1,Σ2,2).

The case with one independent demand factor is a natural first case to analyze, and it yields a rich set of

results. We analyze the same case numerically in Section 5, where we perform a calibration exercise.15 We

discuss the general case briefly at the end of Section 4.4.

Two useful assumptions for deriving some of our analytical results are that the functions (α(τ), {θk(τ)}k=1,..,K)

are exponentials or linear combinations of exponentials. Under these assumptions, the integrals in (36) in-

volve Laplace transforms of the functions (Ar(τ), {Aβ,k(τ)}k=1,..K) and of those functions’ pairwise products.

Moreover, by multiplying the ODE system (36) by the exponentials in (α(τ), {θk(τ)}k=1,..,K) and by the prod-

ucts of these exponentials with the functions (Ar(τ), {Aβ,k(τ)}k=1,..K), we find equations that involve the

same Laplace transforms. This yields a system of equations in the Laplace transforms, derived in Appendix

A for the general case (Lemma A.1). While that system remains nonlinear, a key advantage of the Laplace-

transform approach is that we do not need to compute the eigenvalues and eigenvectors of M , which can be

real or complex.

We begin our analytical investigation by showing existence of equilibrium. We take the demand elasticity

α(τ) to be the declining exponential α(τ) = αe−δατ , where (α, δα) are positive constants. We take the

impact θ(τ) of the single demand factor on the demand intercept to be a difference between two exponentials

θ(τ) = θ
(
e−δατ − e−δθτ

)
, where (θ, δθ) are positive constants and δα < δθ. A unit increase in the demand

factor βt raises the spot rate for maturity τ in the segmentation equilibrium by

θ(τ)

α(τ)τ
=

θ
(
1− ϵ−(δθ−δα)τ

)
ατ

.

This function has a positive limit at τ = 0 and decreases in τ .

Theorem 1 (Equilibrium Existence) Suppose that there is one demand factor, the matrices (Γ,Σ) are

diagonal, α(τ) = αe−δατ and θ(τ) = θ
(
e−δατ − e−δθτ

)
, where (α, θ, δα, δθ) are positive constants and δθ is

large. An equilibrium exists under either of the following sufficient conditions:

� κβ is close to zero.

15Hayashi (2018) derives two alternative numerical algorithms for solving our model in the case α(τ) = 0. Both algorithms
discretize the functions (Ar(τ), {Aβ,k(τ)}k=1,..K), without imposing the structure derived in Lemma 3. They have the advantage
of handling large values of K as easily as small values.
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� δα(δα + κr)(δα + κβ) > 2aθσrσβ.

In equilibrium, M1,1 > κr, M1,2 > 0, M2,1 < 0 and M2,2 >
κβ−δα

2 .

We complement the existence result in Theorem 1 by computing in Appendix A (Lemma A.2) the equilib-

rium in closed form when the arbitrageurs’ risk-aversion coefficient a is close to zero or to infinity and other

parameters can take any values. For our analysis of a ≈ 0 and a ≈ ∞, we require that α(τ) and θ(τ)
τ have a

positive and a finite limit, respectively, at τ = 0. That restriction is satisfied by the specification in Theorem

1.16 We next examine how the results of Sections 3.3-3.5 are modified in the presence of demand risk.

4.2. Carry Trades and Hedging

Demand risk weakens the transmission of short-rate shocks to bond yields. This is because the carry trades

through which arbitrageurs transmit the shocks become riskier. To hedge against demand risk, arbitrageurs

scale down their carry trades or even convert them into butterfly trades, reversing the sign of their positions

for long maturities. Because of hedging, short-rate shocks can move yields for long maturities in the direction

opposite to the shocks.

To explain hedging in our model, suppose as in Section 3.3 that a shock causes the short rate to drop below

the value that bond yields would take in the segmentation equilibrium. Arbitrageurs can benefit from the

discrepancy between bond yields and the short rate by buying bonds and borrowing short-term. This carry

trade leaves them exposed to a rise in the short rate, as in Section 3.3, and to a drop in bond demand by

preferred-habitat investors. The importance of demand risk relative to short-rate risk rises with maturity. This

is shown in Proposition 5, and can be partly anticipated from the one-factor model, in which short-rate shocks

have an effect on yields that declines with maturity, while permanent demand changes have an increasing

effect. Because long-maturity bonds are highly exposed to demand risk, arbitrageurs can short-sell them to

hedge the demand risk of their aggregate position. Such short-selling occurs when arbitrageurs are sufficiently

risk-averse, and causes yields for long maturities to rise despite the drop in current and expected future short

rates. Buying intermediate-maturity bonds and short-selling long-maturity ones and very short-maturity ones

16For a ≈ 0, our model becomes approximately a one-factor one, with the factor being the short rate. This is because shocks
to the demand factors have small effects on bond yields. The effects of demand shocks are characterized by the one-dimensional
index derived in Proposition 4, with κ∗

r = κr. The only difference relative to Proposition 4 is that yields for longer maturities
may not be the most affected. This is because Proposition 4 assumes permanent demand changes, while shocks to the demand
factors mean-revert.
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(i.e., borrowing short-term) is a butterfly trade, common in term-structure arbitrage.17

Proposition 5 characterizes the response of yields to short-rate and demand shocks. The proposition assumes

M2,1 < 0, a property shown to hold for the equilibrium derived in Theorem 1. The assumptions of Theorem

1 are not needed as long as that property holds.

The characterization is simple when the two eigenvalues of M are real. The function Aβ(τ) is positive,

which implies that a drop in demand causes yields for all maturities to rise, and increases in τ . The function

Ar(τ) is either positive, or switches sign from positive to negative when τ crosses a threshold τ̄ . In the latter

case, a drop in the short rate causes yields for maturities τ > τ̄ to rise. The ratio Ar(τ)
Aβ(τ)

decreases in τ , which

implies that the effect of demand shocks relative to short-rate shocks rises with maturity.

When the two eigenvalues of M are complex, the functions (Ar(τ), Aβ(τ)) exhibit an oscillating pattern

driven by the arbitrageurs’ hedging activity. Following a rise in the short rate, prices of short-maturity bonds

drop. Prices of long-maturity bonds can instead rise because arbitrageurs can buy them to hedge demand risk.

Long-maturity bonds can thus hedge the short-rate risk of a portfolio with long positions in bonds, and earn

negative expected excess returns when arbitrageurs hold such a portfolio in equilibrium. Since arbitrageurs

hold long positions when demand by preferred-habitat investors is low, low demand can cause, through the

cumulation of negative expected returns, the prices of bonds of even longer (“very long”) maturities to rise.

In that case, arbitrageurs do not use the very-long-maturity bonds to hedge demand risk, and those bonds’

prices rise following a drop in the short rate. This yields an oscillating pattern of price sensitivity to the short

rate as a function of maturity. The properties shown for real eigenvalues carry through to complex ones for

the first half-cycle of the oscillation (which can be longer than the maximum maturity T ). The functions

(Ar(τ), Aβ(τ)) begin by being increasing in τ . The function Ar(τ) eventually reaches a maximum, and the

function Aβ(τ) does so at a larger value τ̂ which marks the end of the first half-cycle. We set τ̂ = ∞ when the

17An example of a butterfly trade comes from the 2007-2008 financial crisis. Short-rate cuts triggered by the crisis rendered
the US term structure steeply upward sloping. Term structure arbitrageurs took the view that forward rates did not drop enough
to reflect the low expected future spot rates—the under-reaction result of Proposition 2. For example, a Barclays Capital report
by Pradhan (2009), p.2., points out that while the two-year spot rate was 258 bps lower than the ten-year spot rate, the difference
between their two-year forward counterparts was only 93bps. The report goes on to advise lending at the two-year rate two years
forward and borrowing at the ten-year rate two years forward. Lending at the two-year rate two years forward is a carry trade:
it amounts to shorting two-year bonds and buying four-year bonds. Borrowing at the ten-year rate two years forward amounts
to buying two-year bonds and shorting twelve-year bonds. That position is layered to the carry trade to hedge term-structure
movements at intermediate maturities, and is for a smaller notional amount since the twelve-year bond is more sensitive to
such movements than the four-year bond. The overall trade is a butterfly: a short position in two-year bonds, a long position in
four-year bonds, and a short position in twelve-year bonds. It exerts upward pressure on the twelve-year spot rate, even though
it is triggered by a drop in the short rate.
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two eigenvalues of M are real. We refer to the largest interval of the form (0, τ) over which a given property

holds as a maximal interval.

Proposition 5 (Effect of Short-Rate and Demand Shocks) Suppose that there is one demand factor,

the matrices (Γ,Σ) are diagonal, and M2,1 < 0.

� If the two eigenvalues of M are real, then Aβ(τ) > 0, A′
β(τ) > 0 and

[
Ar(τ)
Aβ(τ)

]′
< 0. Moreover, Ar(τ) > 0

for τ ∈ (0, τ̄) and Ar(τ) < 0 for τ ∈ (τ̄ ,∞), where τ̄ = ∞ when a ≈ 0 or α(τ) = 0, and τ̄ < ∞ when

a ≈ ∞.

� If the two eigenvalues of M are complex, then Aβ(τ) > 0 for τ in a maximal interval (0, ¯̄τ), A′
β(τ) > 0

for τ in a maximal interval (0, τ̂), and
[
Ar(τ)
Aβ(τ)

]′
< 0 for τ ∈ (0, τ̂), where ¯̄τ > τ̂ > 0. If ¯̄τ < ∞, then

Ar(τ) > 0 for τ in a maximal interval (0, τ̄), where τ̄ ∈ (0, ¯̄τ).

4.3. Bond Risk Premia

Demand risk strengthens the positive premia-slope relationship derived in Section 3.4. Indeed, low demand

by preferred-habitat investors implies positive bond risk premia because arbitrageurs must be induced to buy

the bonds to make up for the low investor demand. Because of the positive premia, yields are high and the

term structure is upward-sloping.

Proposition 6 computes the FB and CS coefficients bFB and bCS. It shows that bFB is positive and bCS is

smaller than one for at least all maturities such that the functions (Ar(τ), Aβ(τ)) are positive and Aβ(τ)

increases in τ , and for all maturities when a is close to zero or to infinity. Moreover, when a ≈ ∞ and the

average maturity where demand shocks originate is sufficiently long, bFB exceeds one and increases in τ , while

bCS is negative and decreases in τ .

Proposition 6 (Demand Risk Strengthens Positive Premia-Slope Relationship) Suppose that

there is one demand factor, the matrices (Γ,Σ) are diagonal, M1,2 ≥ 0, M2,1 < 0 and ∆τ → 0.

� The FB regression coefficient in (28) is positive for τ < min{τ̄ , τ̂}, and for all τ when a ≈ 0 or a ≈ ∞.

When a ≈ ∞ and

(43)

∫∞
0

θ(τ)τdτ∫∞
0

θ(τ)dτ
>

∫∞
0

α(τ)τ2dτ∫∞
0

α(τ)τdτ
,
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bFB exceeds one and increases in τ .

� The CS regression coefficient in (29) is smaller than one for τ < min{τ̄ , τ̂}, and for all τ when a ≈ 0

or a ≈ ∞. When a ≈ 0, bCS is close to one and increases in τ . When a ≈ ∞ and (43) holds, bCS is

negative and decreases in τ .

4.4. Demand Effects

Suppose, as in Section 3.5, that the demand intercept θ0(τ) changes to θ0(τ) + ∆θ0(τ), where ∆θ0(τ) is

a general function of τ . The functions (Ar(τ), Aβ(τ)) do not change, and the effects on yields are entirely

through C(τ). Because there are two risk factors, the effects are represented by two one-dimensional indices.

The indices are
∫∞
0

θ0(τ)Ar(τ)dτ and
∫∞
0

θ0(τ)Aβ(τ)dτ , and relate to the sensitivity of arbitrageurs’ portfolio

to the short-rate and the demand factor, respectively.

While demand effects retain a global flavor because they are represented by only two indices across a

continuum of maturities, they become more localized relative to the one-factor case. Recall from Section

3.5 that with one factor, demand changes have the same relative effect across maturities regardless of the

maturities where they originate. This independence result does not extend to two factors. The maturities

where demand shocks originate matter because they influence how the shocks affect one index relative to

the other, and because changes to each index have a different relative effect across maturities. Changes to

the demand for long-maturity bonds have a large effect on
∫∞
0

θ0(τ)Aβ(τ)dτ relative to
∫∞
0

θ0(τ)Ar(τ)dτ ,

and changes to
∫∞
0

θ0(τ)Aβ(τ)dτ have a large effect on long rates relative to short rates. Hence, the effects

of long-maturity bond demand are more pronounced at the long end of the term structure. In comparison,

changes to the demand for short-maturity bonds have a large relative effect on
∫∞
0

θ0(τ)Ar(τ)dτ , and changes

to that index have a large relative effect on short rates. Hence, the effects of short-maturity bond demand

are more pronounced at the short end.

The economic intuition is as follows. Suppose that the demand by preferred-habitat investors for long-

maturity bonds declines, in which case arbitrageurs take up the slack by purchasing those bonds. Since

bonds’ sensitivity to demand shocks relative to short-rate shocks rises with maturity, arbitrageurs’ exposure

to demand risk increases significantly, while their exposure to short-rate risk increases more mildly. The

expected excess returns that arbitrageurs require to bear demand risk increase significantly as well. Since

bonds’ sensitivity to demand shocks rises faster with maturity than their sensitivity to short-rate shocks,
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long-maturity bonds experience a sharp increase in their expected excess returns relative to short-maturity

bonds. Hence, long rates increase sharply. By contrast, when the demand by preferred-habitat investors for

short-maturity bonds declines, long rates increase less than short rates.

To show a formal result on localization, we consider the simple case where the change ∆θ0(τ) represents

a decrease in demand for a specific short maturity τ1 or a specific long maturity τ2 > τ1. We denote the

resulting changes in the yield y
(τ)
t by ∆y

(τ)
t,τ1 and ∆y

(τ)
t,τ2 , respectively.

Proposition 7 (Localization of Demand Effects) When there is one demand factor, a change in the de-

mand intercept from θ0(τ) to θ0(τ)+∆θ0(τ) affects yields only through
∫∞
0

∆θ0(τ)Ar(τ)dτ and
∫∞
0

∆θ0(τ)Aβ(τ)dτ .

When additionally the matrices (Γ,Σ) are diagonal, M2,1 < 0, α(τ) is non-increasing, and the change ∆θ0(τ)

is a Dirac function with point mass at τ1 < τ̂ or at τ2 ∈ (τ1, τ̂),

(44) ∆y
(τ1)
t,τ1 ∆y

(τ2)
t,τ2 > ∆y

(τ2)
t,τ1 ∆y

(τ1)
t,τ2 .

Equation (44) states that the product of the “local” effects that the changes have on the maturity where

they originate exceeds the product of the “cross” effects on the other maturity. Local effects are thus stronger

than cross effects.

We expect full localization when there is a large number of demand factors and arbitrageurs are highly

risk-averse. Indeed, suppose that a demand shock originating at maturity τ1 has its largest effect at maturity

τ2 ̸= τ1. For this to happen, arbitrageurs must hold non-zero positions in at least the bonds of one of the two

maturities. Highly risk-averse arbitrageurs, however, hold non-zero positions only if their exposure to all risk

factors is zero, which is infeasible with a large number of factors. Proposition 1 implies a full localization result

for the effects of short-rate shocks: since the function Ar(τ) converges to zero when the arbitrageurs’ risk-

aversion coefficient a goes to infinity, the effects of short-rate shocks become localized at the zero maturity.

We can derive the same localization result with one and two demand factors, using closed-form solutions for

the large a limit. Extending the full localization result for the effects of demand shocks requires extending

our solutions to a large number of demand factors and is left for future work.

5. CALIBRATION AND POLICY ANALYSIS

In this section we calibrate our model and analyze the effects of different policies by central banks. Since

the model can be given both a nominal and a real interpretation, we calibrate it using nominal yields and then
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again using real yields. In all calibrations we assume that there is one demand factor which is independent

of the short rate. We leave the correlated case, which seems more relevant for the nominal calibration, for

future work. The independent case is a natural first case to investigate, and it yields a remarkably similar

analysis of central-bank policies across the nominal and real calibrations.

5.1. Calibration

The equilibrium term structure is determined by the parameters (r, κr, σr) of the short-rate process, the

parameters (κβ , σβ) of the demand-factor process, the risk-aversion coefficient a of arbitrageurs, and the

functions (α(τ), θ0(τ), θ(τ)) that describe the demand slope and intercept of preferred-habitat investors.

The values of (r, θ0(τ)) affect only the long-run averages of yields and of agents’ positions. They do not

matter for our policy analysis, which concerns how yields and positions respond to shocks. We sketch a

calibration of these parameters in Section 5.3, where we compute unconditional moments of bond returns.

We set α(τ) = αe−δατ and θ(τ) = θ(e−δατ − e−δθτ ) for τ < T , and α(τ) = θ(τ) = 0 for τ > T . This is the

same exponential specification as in Theorem 1, except that we take the maximum bond maturity T to be

finite. We set T = 30 years, the maximum maturity for U.S. government bonds.

The values of (θ(τ), σβ) matter only through their product because (θ(τ), βt) affect the demand of preferred-

habitat investors only through their product as well. We can hence normalize σβ to an arbitrary value, and

we set it equal to σr.

We calibrate the remaining eight parameters (κr, σr, κβ , a, α, θ, δα, δθ) using U.S. data on bond yields and

trading volume, as well as estimates of demand elasticity from the literature. For bond yields, we use the

Gurkaynak, Sack and Wright (GKS) datasets, which report daily spot rates extracted from government bond

prices. The dataset on nominal yields goes from June 1961 to the present. We start our main sample of

nominal yields in November 1985, because this is the earliest when all maturities from one to 30 years are

included, and end it in January 2020. The dataset on real yields goes from January 1999 to the present, and

includes all maturities from two to 20 years. We start our sample of real yields in January 1999 and end it

in January 2020. In addition to our main sample of nominal yields, we consider a sub-sample covering the

same period as the sample of real yields. We source nominal and real yields at the end of each month. For

bond trading volume, we use the FR 2004 dataset, which reports daily volume by primary dealers in the

Treasury market, split into buckets based on the bonds’ remaining time to maturity. Volume on real bonds
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(TIPS) is approximately 3% of total volume, and is not split into maturity buckets until March 2020. For

that reason, we use the volume split for nominal bonds in all calibrations. We do not include T-bills in our

volume calculations because of their special features (e.g., extensive use as collateral). T-bills are also not

included in the GKS datasets. The dataset on volume goes from April 2013 to the present. We end it in

January 2020, and use averages within that period in all calibrations. For demand elasticity, we use estimates

from Krishnamurthy and Vissing-Jorgensen (KVJ 2012).18

Table I reports the calibrated parameters and the empirical moments used to determine them, for the

main sample of nominal yields. Tables C.I and C.II in Appendix C report the same information for the sub-

sample of nominal yields and the sample of real yields, respectively. We express yields and their volatilities

in percentage terms throughout this section, e.g., a yield of 0.02 is expressed as 2.

We determine the first seven parameters in Table I by equating the first seven empirical moments to their

model-generated counterparts. This requires solving a seven-equation non-linear system. The formulas for the

seven model-generated moments are in Appendix C. The seven moments concern volatilities and correlations

of yields and yield changes, and fractions of volume at different maturity buckets. Data on yields and relative

volume cannot identify the arbitrageurs’ risk-aversion coefficient a separately from the parameters (α, θ) that

characterize the slope of preferred-habitat demand and the magnitude of demand shocks, respectively. Only

the products (aα, aθ) can be identified. Intuitively, yields can be volatile because arbitrageurs are highly

risk-averse (high a) and demand shocks are small (low θ), or because arbitrageurs are less risk-averse and

demand shocks are larger.19 We determine α, the eighth parameter in Table I, based on KVJ’s estimates,

and deduce (a, θ) from the products (aα, aθ).

The empirical moment next to each parameter in Table I is the one identifying that parameter. We address

identification formally in Appendix C, where we compute a seven-by-seven table of elasticities of the first

seven moments with respect to the first seven parameters. The elasticity table validates the mapping in

Table I except for the fourth and fifth moments, for which cross-effects from the fifth and fourth parameter,

respectively, are important.

18The dataset of nominal yields is available at https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html

and is described in Gurkaynak, Sack, and Wright (2007). The dataset of real yields is available at
https://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html. The FR 2004 dataset (which reports addi-
tional information to volume) is available at https://www.newyorkfed.org/markets/gsds/search.

19Formally, (37) shows that the matrix M that determines (Ar(τ), Aβ(τ)) through the ODE (36) depends on (a, α, θ) only
through the products (aα, aθ). Hence, (Ar(τ), Aβ(τ)) have that property as well, and so do the moments of returns and volume
computed in Appendix C.



34 D. VAYANOS AND J.-L. VILA

TABLE I

Calibration of model parameters for the main sample of nominal yields.

Parameter Value Empirical moment Value

κr

Mean-reversion of rt
0.125

√
Var

(
y
(1)
t

)
Volatility 1-year yield
– Levels

2.62

σr

Diffusion of rt
0.0146

√
Var

(
y
(1)
t+1 − y

(1)
t

)
Volatility 1-year yield
– Annual changes

1.27

κβ

Mean-reversion of βt
0.053

1
30

∑30
τ=1

√
Var

(
y
(τ)
t

)
Volatility τ -year yield
– Levels, average over τ

2.20

aθ
Arb. risk-aversion
× PH demand shock

3155

1
30

∑30
τ=1

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
Volatility τ -year yield
– Annual changes, average over τ

0.796

aα
Arb. risk-aversion
× PH demand slope

35.3

1
30

∑30
τ=1 Corr

(
y
(1)
t+1 − y

(1)
t , y

(τ)
t+1 − y

(τ)
t

)
Correlation 1-year yield with τ -year yield
– Annual changes, average over τ

0.504

δα
PH demand shock
– short maturities

0.297

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (0, 2]
0.199

δθ
PH demand shock
– long maturities

0.307

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (11, 30]
0.094

α
PH demand slope 5.21 Estimate in KVJ 2012 -0.746
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The mean-reversion κr and diffusion σr of the short rate rt have their largest effect on the one-year yield

y
(1)
t . An increase in σr raises the volatility of that yield and the volatility of yield changes. A decrease in κr

raises the yield’s volatility, but has a weaker effect on the volatility of yield changes because it implies that

the short rate mean-reverts more slowly. Since shocks to the demand factor have a weak effect on the one-year

yield, the volatility of that yield identifies κr, and the volatility of annual changes to that yield identifies σr.

The mean-reversion κβ of the demand factor βt and the magnitude parameter θ of demand shocks have their

largest effect on long-maturity yields. As with (κr, σr), the volatility of yields identifies κβ and the volatility

of annual changes to yields identifies aθ. We average volatilities across all maturities. Using volatilities at

long maturities only does not sharpen the identification.

The slope parameter α of preferred-habitat demand affects how shocks to the short rate are transmitted to

longer maturities. An increase in α weakens the transmission (Proposition 2), and this makes yield changes

at short and long maturities less correlated. Hence, the correlation between annual changes to the one-year

yield and to other yields identifies aα. (As we explain in Appendix C, however, there are important cross-

effects from aθ to correlation and from aα to volatility.) As with (κβ , θ), we average the correlation across all

maturities

The parameters (δα, δθ) control the maturities where demand shocks originate, via the specification θ(τ) =

θ(e−δατ −e−δθτ ). Hence, they affect how volume is split across maturities. An increase in δα raises the relative

volume for short maturities and lowers that for long maturities. An increase in δθ has the same effects, with the

decline in long-maturity volume being relatively more pronounced. Hence, the relative volume for maturities

two years and below identifies δα, and the relative volume for maturities eleven years and above identifies δθ.

Our moment-matching exercise indicates slow mean-reversion for the short rate (κr = 0.125, half-life of

shocks 5.55 years) and even slower mean-reversion for the demand factor (κβ = 0.053, half-life of shocks

13.1 years). The corresponding parameters for the sub-sample of nominal yields and the sample of real yields

are two to three times larger, implying faster mean-reversion. In all samples, demand shocks originate at

short and intermediate maturities, consistent with the fact that only 9.4% of volume concerns bonds with

remaining time to maturity longer than 11 years.

Figure 1 compares the empirical moments, represented by the black crosses, to the model-generated ones,

represented by the red solid lines, for the main sample of nominal yields. Figures C.1 and C.2 in Appendix C

show the same comparisons for the sub-sample of nominal yields and the sample of real yields, respectively.
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Figure 1.— Model-generated and empirical moments for the main sample of nominal yields.
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The comparisons are remarkably similar across the three figures. The figures depend only on the first seven

parameters in Table I, and not on the separate values of a and (α, θ).

The top two panels in Figure 1 report the volatility of yields and the volatility of annual yield changes,

as functions of maturity. The model-generated moments coincide with the empirical ones for the one-year

maturity and on average, by construction. While the empirical moments are decreasing functions of maturity,

the model-generated ones are inverse hump-shaped. The inverse hump shape seems to be driven by the

independence between the short rate and the demand factor, as these factors have their largest effects at

different ends of the term structure. The middle-left panel reports the correlation between annual changes to

the one-year yield and to other yields, as function of maturity. The model-generated moments coincide with

the empirical ones on average, by construction.

The remaining panels in Figure 1 report moments not used in the calibration. The middle-right panel

reports the first principal component of annual yield changes as function of maturity, scaled to one for the

one-year maturity. The model-generated moments are close to the empirical ones, and so is the fraction of

variation explained by the first principal component (76.5% in the model and 81.3% in the data). Hence, our

calibration captures closely the empirical factor structure of yields.

The bottom two panels in Figure 1 report the coefficients of the FB and CS regressions (28) and (29),

respectively, with ∆τ = 1 (returns and yield changes are evaluated over one year). The model generates

less predictability than is found in the data, especially for long maturities. For those maturities, the model-

generated predictability, as measured by the deviation between the FB/CS coefficients and their EH value, is

about 60% of its empirical counterpart. The model-generated coefficients have the same monotonicity as in

the data. If the model is calibrated to match the FB/CS coefficients instead of the volatility of annual yield

changes, then it overshoots that volatility for long maturities, because aθ must take a larger value.

To determine the slope parameter α of preferred-habitat demand, we use KVJ’s estimates of the elasticity of

the demand for government debt. KVJ regress the yield spread between long-maturity AAA-rated corporate

bonds and government bonds on the logarithm of government debt to GDP, and find a coefficient of -0.746

(Table 1, Panel A). Hence, a 0.01 (1 bp) drop in the yield spread is associated with a 0.0134 (= 0.01
0.746 ) increase

in the logarithm of debt to GDP. Assuming that debt to GDP takes originally its average value, which is

43.9% in KVJ’s sample (1919-2008), it increases by 0.0059 (= 43.9%×(e0.0134−1)). To map this estimate into

our model, we interpret the increase in debt to GDP as the slope of preferred-habitat demand for government
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debt. We also assume that the drop in the yield spread results from an increase in government bond yields

across all maturities, and use GDP as the unit of account. KVJ’s estimate implies α = 5.21.

The value α = 5.21 is an upper bound for two reasons. First, instrumental-variables estimation of the

KVJ regression generates a more negative coefficient and hence a smaller slope for preferred-habitat demand.

Second, our model takes as given the returns that preferred-habitat investors earn outside the government

bond market (Appendix B). These returns, however, could change in equilibrium when government bond

yields change, resulting in a lower effective demand elasticity. In the extreme case where returns outside the

government bond market move one-to-one with government bond yields, a change in these yields should not

affect preferred-habitat demand, resulting in an effective slope of zero. In the intermediate case where returns

outside the government bond market adjust by x ∈ (0, 1), the effective slope is α(1− x).

For α = 5.21 and aα = 35.3, the coefficient of arbitrageur risk aversion is a = 6.78. To map a into a

coefficient of relative risk aversion (RRA), we recall that if arbitrageurs have wealth W and a VNM utility

function U , then a = −U ′′(W )
U ′(W ) . Hence, the coefficient of RRA is γ = −U ′′(W )W

U ′(W ) = aW . The macro-finance

literature generally assumes that γ is larger than one and does not exceed ten. For γ = 2 and a = 6.78,

arbitrageur wealth is W = 29.5%, which is 29.5% of GDP since we are using GDP as the unit of account.

Such a value seems large. Suppose that we identify arbitrageurs with hedge funds, which are sophisticated

investors with relatively broad mandates. The assets of hedge funds in the fixed-income, macro and balanced

categories in the last quarter of 2019 added up to $1.2 trillion, which was 5.6% (= 1.2
21.42 ) of U.S. GDP in that

year.20 Smaller values of W correspond to smaller values of α since W is proportional to α holding (aα, γ)

fixed. Since smaller values seem plausible for both W and α, for separate reasons for each parameter, we use

a parameter range. We use α = 5.21 as the upper bound of the range for α, and α = 1.04 as the lower bound.

The lower bound corresponds to an x = 80% adjustment of returns outside the government-bond market to

government-bond yields.21 The upper bound α = 5.21 corresponds to an upper bound 29.5% for W and a

lower bound 6.78 for a. The lower bound α = 1.04 corresponds to a lower bound 5.9% for W and an upper

bound 33.9 for a.

20See https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-management/.
21Duffee (1998) finds that a unit drop in the Treasury bill rate causes the spread between corporate and government bonds to

rise by values ranging from 0.02 for intermediate-term AAA-rated corporate bonds to 0.42 for long-term BBB-rated bonds. An
80% adjustment of corporate bond yields to government bond yields (i.e., a rise in the spread by 0.2) lies within these estimates.



A PREFERRED-HABITAT MODEL OF THE TERM STRUCTURE OF INTEREST RATES 39

0 5 10 15 20 25 30
Maturity (years)

-2

-1.5

-1

-0.5

0

0.5

Y
ie

ld
 c

ha
ng

e

Forward guidance
Forward guidance EH

0 5 10 15 20 25 30
Maturity (years)

-2

-1.5

-1

-0.5

0

0.5

Y
ie

ld
 c

ha
ng

e

Forward guidance
Forward guidance EH

Figure 2.— Effect of a forward-guidance announcement about the path of short rates, for the calibration
based on the main sample of nominal yields.

5.2. Policy Analysis

The first policy that we analyze is a forward-guidance announcement about the path of short rates. We

model this announcement as a change ∆r in the long-run mean r of the short rate rt. We assume that the

change is unanticipated, takes place at time zero, and reverts deterministically to zero at a rate κr.

Figure 2 shows the announcement’s effect on the term structure at time zero, for the calibration based on

the main sample of nominal yields. The figures for the other two calibrations, and the equations describing

the announcement’s effect, are in Appendix C. In each panel of Figure 2, the red solid line represents the

announcement’s effect, and the red dashed line represents the same effect when arbitrageurs are risk-neutral

and the EH holds. The change ∆r is negative, i.e., the announcement is that future short rates will be lower,

and is set to -4 (-400 bps). The change reverts to zero at the rate κr = 0.1 (half-life 6.93 years) in the left

panel and κr = 0.2 (half-life 3.47 years) in the right panel. When κr = 0.1, yields are more affected because

the same is true for expected future short rates.

For both values of κr, yields under-react relative to their EH counterparts. This reflects the under-reaction

result of Proposition 2. The extent of under-reaction increases with maturity. When κr = 0.1, under-reaction

is 25.6% for the two-year yield, 35.1% for the five-year yield, 49.6% for the ten-year yield, 76.1% for the

twenty-year yield, and 102.6% for the thirty-year yield. When κr = 0.2, these numbers rise to 25.7%, 35.7%,

51.6%, 81.6%, and 111.4%, respectively. Thus, forward guidance is effective in changing yields for short

maturities, but less so for longer maturities. To engineer a decline in the ten-year yield by 0.5 (50 bps), for



40 D. VAYANOS AND J.-L. VILA

0 5 10 15 20 25 30
Maturity (years)

-2.5

-2

-1.5

-1

-0.5

0

Y
ie

ld
 c

ha
ng

e

2-yr
5-yr
10-yr
20-yr
30-yr
QE mix

0 5 10 15 20 25 30
Maturity (years)

-2.5

-2

-1.5

-1

-0.5

0

Y
ie

ld
 c

ha
ng

e

2-yr
5-yr
10-yr
20-yr
30-yr
QE mix

Figure 3.— Effect of QE, for the calibration based on the main sample of nominal yields.

example, central banks need to lower the average of expected short rates over the next ten years by about

twice as much (100 bps). The calibration based on the sample of real yields generates a similar number. The

calibration based on the sub-sample of nominal yields implies instead that the average of expected short rates

must drop by about three times as much (150 bps).

The second policy that we analyze is QE. We assume that QE purchases concern government bonds only,

and we model them as a decrease ∆θ0(τ) in the intercept of preferred-habitat demand. (Equation (5) defines

the demand intercept with a negative sign.) We assume that the decrease is unanticipated, takes place at

time zero, and reverts deterministically to zero at a rate κθ.

Figure 3 shows the effect of QE on the term structure at time zero, for the calibration based on the main

sample of nominal yields. The figures for the other two calibrations, and the equations describing the effect

of QE, are in Appendix C. In each panel of Figure 3, the red, green, light blue (cyan), blue and black solid

lines represent the effect of QE purchases of two-, five-, ten-, twenty- and thirty-year bonds, respectively. The

black dashed line represents the effect of QE purchases that conform to the maturity distribution used by

the Fed during QE1, as reported in D’Amico and King (2013). All lines are drawn for a change ∆θ0(τ) in

the intercept of preferred-habitat demand that satisfies
∫∞
0

∆θ0(τ)dτ = −0.12, i.e., QE purchases are 12%

of GDP. This is approximately the value of government bonds purchased by the Fed during QE1, QE2 and

QE3. The demand change mean-reverts to zero at the rate κr = 0.1 (half-life 6.93 years) in the left panel and

κr = 0.2 (half-life 3.47 years) in the right panel.
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Figure 3 is the only one in this section that depends on the separate values of a and (α, θ) rather than only

on the products (aθ, aα). An increase in the coefficient of arbitrageur risk aversion a holding (aθ, aα) constant

results in a proportionate increase in the effects of QE. Relative effects across maturities do not change, i.e.,

Figure 3 looks the same after rescaling the y-axis. We use the value of a that generates the average effect

across the lower bound a = 6.78 and the upper bound a = 33.9.

The effects of QE on the term structure are larger when κθ = 0.1, i.e., when QE is unwound over a longer

period. Intuitively, QE lowers the yield of a bond because it lowers the risk premia that arbitrageurs require

to hold the bond. Moreover, the yield depends not only on the risk premium that arbitrageurs require in the

current instant but on an average of risk premia during the bond’s life. When QE is expected to be unwound

more slowly, risk premia in that average are impacted more.

The effects of QE have a global flavor as in Proposition 4, with some localization as in Proposition 7.

Consistent with Proposition 4, an increase in demand for bonds with longer maturities generates a larger

downward shift in the term structure. For example, the term structure shifts downward more when QE

purchases concern thirty-year bonds than when they concern two-year bonds. That downward shift, however,

is not larger across all maturities: yields for maturities ranging from one to three years are more sensitive to

purchases of two-year bonds than of thirty-year bonds. More generally, and consistent with Proposition 7, an

increase in demand for bonds with short (long) maturities has more pronounced effects at the short (long)

end of the term structure. For example, purchases of two- and five-year bonds have an effect that peaks at

short and intermediate maturities, while purchases of twenty- and thirty-year bonds have an effect that peaks

at long maturities. These features are robust to different values of κθ.

The effects of QE in Figure 3 are somewhat smaller than in the literature. Wiliams (2014) summarizes a

number of QE studies in the U.S. as suggesting that bond purchases of $600 billion by the Fed reduced the

ten-year yield by 0.15-0.25 (15-25 bps). Taking U.S. GDP at that time to be $15 trillion, the $600 billion

purchases are 4% of GDP. Hence, QE purchases of 12% of GDP should reduce the ten-year yield by 0.45-

0.75. The corresponding effect in Figure 3, in the case where the maturities of QE purchases conform to the

distribution used by the Fed during QE1, is 0.24 when κθ = 0.1 and 0.19 when κθ = 0.2. When κθ = 0.1, the

range of the effect between the upper and lower bound of α is 0.08-0.39. The calibration based on the sub-

sample of nominal yields generates the range 0.11-0.54, and that based on the sample of real yields generates

0.09-0.44.

The discrepancy between our calibrations and the estimates from QE studies could arise because some of
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the observed effect of QE was due to forward guidance about the path of short rates. Additionally, arbitrageur

risk aversion during the QE period could have been larger than average because of capital losses and tighter

regulation. The latter explanation is consistent with the calibration based on the sub-sample of nominal yields

generating larger effects than the one based on the main sample.

Figure 3 suggests that central banks seeking to maximize the effects on QE on yields should concentrate

their purchases at long maturities. Moreover, such purchases have particularly large effects on long-maturity

yields. In the extreme case where QE purchases of 12% of GDP are concentrated at the thirty-year maturity,

and where κθ = 0.1, the ten-year yield drops by 0.66 (instead of 0.24, under the maturity distribution used

by the Fed during QE1) and the thirty-year yield drops by 2.51 (instead of 0.29). Of course, it is not possible

to buy 12% of GDP worth of thirty-year bonds because their supply is below that amount.

Even less extreme tilts towards long maturities, in a way consistent with available supply, can generate

sizeable effects. The Fed’s purchases during QE1 incorporated a mild tilt: the average maturity of purchased

bonds was 6.5 years, while that of all available coupon bonds was 5.7 years. To evaluate the effects of a

stronger tilt, suppose that the Fed did not change the total value of its purchases during QE1 but bought

15% of all available supply in any given maturity before moving to a shorter maturity (hence not buying

at all short maturities). The ceiling of 15% is not overly high: D’Amico and King (2013) report that it was

exceeded for the 6-8 and 10-12 maturity buckets. Under the modified maturity distribution, QE purchases

of 12% of GDP lower the 10-year yield by 0.33 (instead of 0.24) and the thirty-year yield by 0.59 (instead of

0.29).

5.3. Unconditional Moments

To compute unconditional moments of bond returns, we must choose values for (r, θ0(τ)). We assume that

θ0(τ) is proportional to θ(τ), thus setting θ0(τ) = θ0(e
−δατ − e−δθτ ) for τ < T , and θ0(τ) = 0 for τ > T .

We determine (r, θ0) by equating empirical averages of yields to their model-generated counterparts. Since

the estimation concerns first moments, we use the longest period available in the GKS dataset: we focus on

nominal yields and start the sample from June 1961. The empirical average of the one-year yield is 5.01.

The empirical average of the seven-year yield, which is the longest maturity covered during the entire sample

period, is 5.90. Our model matches these moments when (r, aθ0) = (4.80, 289).

The model-generated average yield rises with maturity, from 5.01 for the one-year bond to 6.99 for the
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thirty-year bond. The unconditional expected excess return rises with maturity as well, from 0.40% for the

one-year bond to 5.08% for the thirty-year bond. The unconditional Sharpe ratio drops from 0.320 for the

one-year bond to 0.206 for the thirty-year bond, but does so non-monotonically, by first rising until the

seven-year maturity to 0.365. The rise in expected return with maturity reflects the rise in the yield, and

is consistent with the empirical evidence. Empirical Sharpe ratios, by contrast, decline with maturity across

the entire maturity range.22 The increase in the Sharpe ratio that our model generates for short maturities

reflects the inverse hump shape of volatility shown in Figure 1, and seems to be driven by the independence

between the short rate and the demand factor. The unconditional correlation between bond returns and

the stochastic discount factor rises from 0.842 for the one-year bond to one for the seven-year bond, and

subsequently drops to 0.563 for the thirty-year bond. The formulas for the model-generated moments are in

Appendix C.

6. CONCLUSION

We model the term structure of interest rates that results from the interaction between investors with

preferences for specific maturities and risk-averse arbitrageurs. Our model formalizes the preferred-habitat

view of the term structure and embeds it into a modern no-arbitrage framework. We use our model to study

three main questions: how shocks to the short rate, including monetary-policy actions by central banks, are

transmitted to long rates; how bond risk premia depend on the shape of the term structure; and how changes

in preferred-habitat demand, including large-scale bond purchases by central banks, affect the term structure.

We provide qualitative answers as well as quantitative ones through a calibration exercise.

Our approach can be extended in a number of directions. One direction is to derive optimal debt issuance

by governments or corporations when investors have preferences for specific maturities. Work along these lines

includes Greenwood, Hanson, and Stein (2010), Guibaud, Nosbusch, and Vayanos (2013) and Bigio, Nuno, and

Passadore (2019). Another direction is to broaden the asset-pricing implications by allowing arbitrageurs to

trade additional assets. Work along these lines includes Gourinchas, Ray, and Vayanos (2020) and Greenwood,

Hanson, Stein, and Sunderam (2020), who study the joint determination of bond prices and exchange rates. A

third direction is to analyze broader macro-economic settings, in which term-structure shifts affect investment

and output. Work along these lines includes Ray (2019), who embeds our model within a New Keynesian

22For evidence on how bond expected returns and Sharpe ratios vary with maturity see, for example, Duffee (2010) and
Frazzini and Pedersen (2014).
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framework.
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APPENDIX A: PROOFS

Proof of Lemma 1: The proof is in the text. Q.E.D.

Proof of Proposition 1: Equations (21) and (22) follow from integrating the linear ODEs (19) and (20) with the initial

conditions Ar(0) = C(0) = 0. Substituting Ar(τ) from (21) into (23), we find (25). The left-hand side of (25) is increasing in

κ∗
r , is zero for κ∗

r = 0, and converges to infinity when κ∗
r goes to infinity. The right-hand side of (25) is decreasing in κ∗

r , exceeds

κr > 0 for κ∗
r = 0, and converges to κr when κ∗

r goes to infinity. Therefore, (25) has a unique solution for κ∗
r , which is positive.
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Substituting C(τ) from (22) into (24), we find

κ∗
rr

∗
[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

= κrr + aσ2
r

∫ ∞

0
θ0(τ)Ar(τ)dτ +

aσ4
r

2

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)

2du

]
Ar(τ)dτ.(A.1)

Since

κrr =κ∗
rr

[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

+ (κr − κ∗
r)r − κ∗

rraσ
2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ,

and

(κr − κ∗
r)r − κ∗

rraσ
2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)Ar(τ)

2dτ − κ∗
rraσ

2
r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)

[
Ar(τ) + κ∗

r

∫ τ

0
Ar(u)du

]
Ar(τ)dτ

= −raσ2
r

∫ ∞

0
α(τ)τAr(τ)dτ,

where the first step follows from (21) and (25), and the third step follows from integrating (19) from zero to τ and using (21)

and (25), we can write (A.1) as

κ∗
rr

∗
[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]

= κ∗
rr

[
1 + aσ2

r

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

]
− raσ2

r

∫ ∞

0
α(τ)τAr(τ)dτ

+ aσ2
r

∫ ∞

0
θ0(τ)Ar(τ)dτ +

aσ4
r

2

∫ ∞

0
α(τ)

[∫ τ

0
Ar(u)

2du

]
Ar(τ)dτ.(A.2)

Equations (21) and (A.2) imply (26). Q.E.D.

Proof of Proposition 2: Taking expectations conditional on time t in (8), we find

dEt(rt+τ ) = κr(r − Et(rt+τ ))dτ

⇒ Et(rt+τ ) = (1− e−κrτ )r + e−κrτ rt.(A.3)

Equation (A.3) implies

(A.4)
∂Et(rt+τ )

∂rt
= e−κrτ .
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Equation (27) likewise implies

(A.5)
∂f

(τ)
t

∂rt
= A′

r(τ) = e−κ∗
rτ ,

where the second step follows from (21).

Equation (25) implies that if a > 0 and α(τ) > 0 in a positive-measure subset of (0, T ), then κ∗
r > κr. Since the right-hand

side of (25) increases in a, σ2
r and α(τ), and the difference between the left-hand side and the right-hand side increases in κ∗

r ,

κ∗
r increases in a, σ2

r and α(τ). Q.E.D.

Proof of Proposition 3: Equations (1), (2) and (10) imply that the dependent variable in (28) is

1

∆τ
{Ar(τ)rt + C(τ)− [Ar(τ −∆τ)rt+∆τ + C(τ −∆τ)]− [Ar(∆τ)rt + C(∆τ)]}

and the independent variable is

1

∆τ
{Ar(τ)rt + C(τ)− [Ar(τ −∆τ)rt + C(τ −∆τ)]− [Ar(∆τ)rt + C(∆τ)]} .

Therefore, the FB regression coefficient is

bFB =
Cov {[Ar(τ)−Ar(∆τ)]rt −Ar(τ −∆τ)rt+∆τ , [Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]rt}

Var {[Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]rt}

=
[Ar(τ)−Ar(∆τ)]Var(rt)−Ar(τ −∆τ)Cov(rt+∆τ , rt)

[Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]Var(rt)
.(A.6)

Since (A.3) implies

(A.7) Cov(rt+∆τ , rt) = Var(rt)e−κr∆τ ,

we can write (A.6) as

bFB =
Ar(τ)−Ar(τ −∆τ)e−κr∆τ −Ar(∆τ)

Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)
.

Taking the limit ∆τ → 0 and noting from (21) that
Ar(∆τ)

∆τ
→ 1, we find

(A.8) bFB →
A′

r(τ) + κrAr(τ)− 1

A′
r(τ)− 1

=
(κ∗

r − κr)Ar(τ)

κ∗
rAr(τ)

=
κ∗
r − κr

κ∗
r

,

where the second step follows from (19) and (25). Since κ∗
r > κr when a > 0 and α(τ) > 0 in a positive-measure subset of (0, T ),

(A.8) implies bFB > 0. Since κ∗
r increases in a, σ2

r and α(τ), (A.8) implies that bFB increases in the same variables.

Equations (1) and (10) imply that the dependent variable in (29) is

Ar(τ −∆τ)rt+∆τ + C(τ −∆τ)

τ −∆τ
−

Ar(τ)rt + C(τ)

τ
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and the independent variable is

∆τ

τ −∆τ

[
Ar(τ)rt + C(τ)

τ
−

Ar(∆τ)rt + C(∆τ)

∆τ

]
.

Therefore, the CS regression coefficient is

bCS =
Cov

{
Ar(τ−∆τ)

τ−∆τ
rt+∆τ − Ar(τ)

τ
rt,

∆τ
τ−∆τ

[
Ar(τ)

τ
− Ar(∆τ)

∆τ

]
rt
}

Var
{

∆τ
τ−∆τ

[
Ar(τ)

τ
− Ar(∆τ)

∆τ

]
rt
}

=

Ar(τ−∆τ)
τ−∆τ

Cov(rt+∆τ , rt)− Ar(τ)
τ

Var(rt)
∆τ

τ−∆τ

[
Ar(τ)

τ
− Ar(∆τ)

∆τ

]
Var(rt)

.(A.9)

Using (A.7), we can write (A.9) as

bCS =

Ar(τ−∆τ)
τ−∆τ

e−κr∆τ − Ar(τ)
τ

∆τ
τ−∆τ

[
Ar(τ)

τ
− Ar(∆τ)

∆τ

] .

Taking the limit ∆τ → 0, we find

(A.10) bCS →
Ar(τ)

τ
− [A′

r(τ) + κrAr(τ)]

Ar(τ)
τ

− 1
= 1−

A′
r(τ) + κrAr(τ)− 1

Ar(τ)
τ

− 1
= 1−

(κ∗
r − κr)Ar(τ)τ

τ −Ar(τ)
,

where the third step follows from (19) and (25). Since κ∗
r > κr when a > 0 and α(τ) > 0 in a positive-measure subset of (0, T ),

(A.10) implies bCS < 1. Since

Ar(τ)τ

τ −Ar(τ)
=

1− e−κ∗
rτ

κ∗
r

(
1− 1−e−κ∗

rτ

κ∗
rτ

) ,
(A.10) implies that bCS increases in τ if the function

K(x) ≡
1− 1−e−x

x

1− e−x
=

1

1− e−x
−

1

x

is increasing for x > 0. The derivative K′(x) has the same sign as the function

K̂(x) ≡ 1− e−x − xe−
x
2 .

The function K̂(x) is equal to zero for x = 0, and its derivative K̂′(x) has the same sign as e−
x
2 − 1 + x

2
which is positive for

all x. Therefore, K̂(x) > 0 for x > 0, and K(x) is increasing. Q.E.D.
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Proof of Proposition 4: The argument in the text shows that ∆y
(τ)
t = κ∗

r∆r∗
∫ τ
0 Ar(u)du

τ
and ∆r∗ has the same sign as

aσ2
r

∫∞
0 ∆θ0(τ)Ar(τ)dτ . Hence, when a > 0, the change ∆θ0(τ) raises all yields if

∫∞
0 ∆θ0(τ)Ar(τ)dτ > 0 and lowers them

otherwise. The relative effect across maturities is

∆y
(τ2)
t

∆y
(τ1)
t

=

∫ τ2
0 Ar(u)du

τ2∫ τ1
0 Ar(u)du

τ1

,

and is independent of ∆θ0(τ). Since the function Ar(τ) increases in τ , the function
∫ τ
0 Ar(u)du

τ
also increases, and hence the

relative effect across maturities is larger than one for τ1 < τ2. Q.E.D.

Proof of Lemma 2: The proof is in the text. Q.E.D.

Proof of Lemma 3: Using the diagonalization

M = P−1Diag(ν1, ν2, .., νK+1)P,

where Diag(z1, z2, .., zN ) is the N ×N diagonal matrix with elements (z1, z2, .., zN ), and multiplying the ODE system (36) from

the left by P , we can write it as

(A.11) PA′(τ) +Diag(ν1, ν2, .., νK+1)PA(τ)− PE = 0.

Integrating (A.11) with the initial condition A(0) = 0 yields

(A.12) PA(τ) = Diag

(
1− e−ν1τ

ν1
,
1− e−ν2τ

ν2
, ..,

1− e−νK+1τ

νK+1

)
PE.

Using

Diag

(
1− e−ν1τ

ν1
,
1− e−ν2τ

ν2
, ..,

1− e−νK+1τ

νK+1

)

=
1− e−ν1τ

ν1
IK+1 +Diag

(
0,

1− e−ν2τ

ν2
−

1− e−ν1τ

ν1
, ..,

1− e−νK+1τ

νK+1
−

1− e−ν1τ

ν1

)
,

where IN is the N ×N identity matrix, we can write (A.12) as

A(τ) =
1− e−ν1τ

ν1
E+ P−1Diag

(
0,

1− e−ν2τ

ν2
−

1− e−ν1τ

ν1
, ..,

1− e−νK+1τ

νK+1
−

1− e−ν1τ

ν1

)
PE

⇒


Ar(τ)
Aβ,1(τ)

..
Aβ,K(τ)

 =
1− e−ν1τ

ν1


1
0
..
0



+ P−1Diag

(
0,

1− e−ν2τ

ν2
−

1− e−ν1τ

ν1
, ..,

1− e−νK+1τ

νK+1
−

1− e−ν1τ

ν1

)
P


1
0
..
0

 .(A.13)
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Equation (A.13) implies (39) and (40). Integrating (38) with the initial condition C(0) = 0 yields (41). Q.E.D.

We next derive the system of equations in the Laplace transforms. We consider the general case where there are K demand

factors. We assume α(τ) = αe−δατ and θk(τ) =
∑N

n=1 θk,ne
−δθnτ , where N ≥ 1, (α, δα, {θk,n}k=1,..,K, n=1,..,N , {δθn}n=1,..,N )

are scalars and (α, δα, {δθn}n=1,..,N ) are positive. We set

I ≡
∫ ∞

0
α(τ)A(τ)dτ,

J ≡
∫ ∞

0
α(τ)A(τ)A(τ)⊤dτ,

For n = 1, .., N , we set

In ≡
∫ ∞

0
e−δθnτA(τ)dτ,

and denote by Θn the 1× (K + 1) vector (0, θ1,n, .., θK,n). Since the vectors (I, I1, .., IN ) are (K + 1)× 1, and since the matrix

J is (K + 1)× (K + 1) and symmetric, there are a total of

K + 1 +
(K + 1)(K + 2)

2
+ (K + 1)N = (K + 1)

(
K

2
+N + 2

)

distinct elements. These elements are Laplace transforms of the functions (Ar(τ), {Aβ,k(τ)}k=1,..K) and of those functions’

pairwise products. Using (J, {In}n=1,..,N , {Θn}n=1,..,N ), we can write the matrix M defined in (37) as

(A.14) M ≡ Γ⊤ − a

(
N∑

n=1

Θ⊤
n I⊤n − J

)
ΣΣ⊤.

Lemma A.1 Suppose that α(τ) = αe−δατ and θk(τ) =
∑N

j=1 θk,ne
−δθnτ , where N ≥ 1,

(α, δα, {θk,n}k=1,..,K, n=1,..,N , {δθn}n=1,..,N ) are scalars and (α, δα, {δθn}n=1,..,N ) are positive. The (K + 1)
(

K
2

+N + 2
)

elements of (I, J, {In}n=1,..,N ) solve the system of

(A.15) (δαIK+1 +M) I =
α

δα
E,

(A.16) (δθnIK+1 +M) In =
1

δθn
E,

for n = 1, .., N , and

(A.17) (δαIK+1 +M) J + JM⊤ = EI⊤ + IE⊤.
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Proof of Lemma A.1: To derive (A.15), we multiply the ODE system (36) by α(τ) and integrate from zero to infinity. This

yields

(A.18)

∫ ∞

0
α(τ)A′(τ)dτ +MI −

[∫ ∞

0
α(τ)dτ

]
E = 0.

Integration by parts implies∫ ∞

0
α(τ)A′(τ)dτ = [α(τ)A(τ)]∞0 −

∫ ∞

0
α′(τ)A(τ)dτ

= lim
τ→∞

α(τ)A(τ)− α(0)A(0) + δα

∫ ∞

0
α(τ)A(τ)dτ

= lim
τ→∞

α(τ)A(τ) + δα

∫ ∞

0
α(τ)A(τ)dτ,

where the second step follows from α′(τ) = −δαα(τ) and the third step from A(0) = 0. Assuming limτ→∞ α(τ)A(τ) = 0, a

property that is required for the matrix M to be finite (and that holds for the solution in Theorem 1, as we show at the end of

that theorem’s proof), we find

(A.19)

∫ ∞

0
α(τ)A′(τ)dτ = δα

∫ ∞

0
α(τ)A(τ)dτ = δαI.

Using (A.18), (A.19) and a(τ) = αe−δατ , we find (A.15).

To derive (A.16), we likewise multiply the ODE system (36) by e−δθnτ and integrate from zero to infinity. This yields

(A.20)

∫ ∞

0
e−δθnτA′(τ)dτ +MIn −

[∫ ∞

0
e−δθnτdτ

]
E = 0.

Integration by parts and a zero limit at infinity imply

(A.21)

∫ ∞

0
e−δθnτA′(τ)dτ = δθn

∫ ∞

0
e−δθnτA(τ)dτ = δθnIn.

Using (A.20) and (A.21), we find (A.16).

To derive (A.17), we multiply the ODE system (36) from the left by α(τ)A(τ)⊤, add to the resulting (K+1)× (K+1) matrix

its transpose, and integrate from zero to infinity. This yields

(A.22)

∫ ∞

0
α(τ)

[
A′(τ)A(τ)⊤ +A(τ)A′(τ)⊤

]
dτ +MJ + JM⊤ − EI⊤ − IE⊤ = 0.

Integration by parts and a zero limit at infinity imply

(A.23)

∫ ∞

0
α(τ)

[
A′(τ)A(τ)⊤ +A(τ)A′(τ)⊤

]
dτ = δα

∫ ∞

0
α(τ)A(τ)A(τ)⊤dτ = δαJ.
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Using (A.22) and (A.23), we find (A.17).

The total number of equations is (K + 1)
(

K
2

+N + 2
)
, same as the number of unknown Laplace transforms: the vector

equation (A.15) yields K + 1 scalar equations, the vector equations (A.16) for n = 1, .., N yield (K + 1)N scalar equations, and

the matrix equation (A.17) yields
(K+1)(K+2)

2
scalar equations because the matrices in it are symmetric. Q.E.D.

Proof of Theorem 1: The theorem specializes Lemma A.1 to the case K = 1, N = 2, θ11 = −θ12 = θ, δθ1 = δα, δθ2 = δθ,

Γ = Diag(κr, κβ) and Σ = Diag(σr, σβ). Since K = 1 and N = 2, there are nine unknown Laplace transforms, which reduce to

seven because δθ1 = δα implies I1 = I
α
. Setting I ≡ (Ir, Iβ)

⊤, I2 ≡ (Ir,2, Iβ,2)
⊤ and

J ≡
[

Ir,r Ir,β
Ir,β Iβ,β

]
,

the seven unknown Laplace transforms are (Ir, Iβ , Ir,2, Iβ,2, Ir,r, Ir,β , Iβ,β). Setting

∆Ir,θ ≡ θ

(
Ir

α
− Ir,2

)
− Ir,β ,(A.24)

∆Iβ,θ ≡ θ

(
Iβ

α
− Iβ,2

)
− Iβ,β ,(A.25)

we can write the matrix M given by (A.14) as

(A.26)

[
κr + aσ2

rIr,r aσ2
βIr,β

−aσ2
r∆Ir,θ κβ − aσ2

β∆Iβ,θ

]
.

The vector equation (A.15) yields the two scalar equations(
δα + κr + aσ2

rIr,r
)
Ir + aσ2

βIr,βIβ =
α

δα
,(A.27)

− aσ2
r∆Ir,θIr +

(
δα + κβ − aσ2

β∆Iβ,θ

)
Iβ = 0.(A.28)

The vector equation (A.16) yields the two scalar equations(
δθ + κr + aσ2

rIr,r
)
Ir,2 + aσ2

βIr,βIβ,2 =
1

δθ
,(A.29)

− aσ2
r∆Ir,θIr,2 +

(
δθ + κβ − aσ2

β∆Iβ,θ

)
Iβ,2 = 0.(A.30)

The matrix equation (A.17) yields the three scalar equations(
δα

2
+ κr + aσ2

rIr,r

)
Ir,r + aσ2

βI
2
r,β = Ir,(A.31)

(
δα + κr + κβ + aσ2

rIr,r − aσ2
β∆Iβ,θ

)
Ir,β + aσ2

βIr,βIβ,β − aσ2
r∆Ir,θIr,r = Iβ ,(A.32)

− aσ2
r∆Ir,θIr,β +

(
δα

2
+ κβ − aσ2

β∆Iβ,θ

)
Iβ,β = 0.(A.33)
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Equations (A.27)-(A.32) constitute a system of seven equations in the seven unknowns (Ir, Iβ , Ir,r, Ir,β , Iβ,β , Ir,2, Iβ,2). We next

reduce this system into one of four equations in the four unknowns (Ir,r, Ir,β ,∆Ir,θ,∆Iβ,θ).

The system of (A.27) and (A.28) is linear in (Ir, Iβ) and its solution is

Ir =

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr + aσ2

rIr,r)
(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

,(A.34)

Iβ =

α
δα

aσ2
r∆Ir,θ

(δα + κr + aσ2
rIr,r)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

.(A.35)

Likewise, the system of (A.29) and (A.30) is linear in (Ir,2, Iβ,2) and its solution is

Ir,2 =

1
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
(δθ + κr + aσ2

rIr,r)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

,(A.36)

Iβ,2 =

1
δθ

aσ2
r∆Ir,θ

(δθ + κr + aσ2
rIr,r)

(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

.(A.37)

Equation (A.33) is linear in Iβ,β and its solution is

(A.38) Iβ,β =
aσ2

rIr,β∆Ir,θ
δα
2

+ κβ − aσ2
β∆Iβ,θ

.

Substituting Ir from (A.34), we can write (A.31) as(
δα

2
+ κr + aσ2

rIr,r

)
Ir,r + aσ2

βI
2
r,β

−
α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr + aσ2

rIr,r)
(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

= 0.(A.39)

Substituting (Ir, Ir,2) from (A.34) and (A.36), respectively, into the definition (A.24) of ∆Ir,θ, we find

∆Ir,θ −
θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr + aσ2

rIr,r)
(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+

θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
(δθ + κr + aσ2

rIr,r)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+ Ir,β = 0.(A.40)
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Substituting (Iβ , Iβ,2, Iβ,β) from (A.34), (A.36) and (A.38), respectively, into the definition (A.25) of ∆Iβ,θ, we find

∆Iβ,θ −
θ
δα

aσ2
r∆Ir,θ

(δα + κr + aσ2
rIr,r)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+

θ
δθ

aσ2
r∆Ir,θ

(δθ + κr + aσ2
rIr,r)

(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+
aσ2

rIr,β∆Ir,θ
δα
2

+ κβ − aσ2
β∆Iβ,θ

= 0.(A.41)

Substituting (Iβ , Iβ,β) from (A.34) and (A.38), respectively, we can write (A.31) as(
δα + κr + κβ + aσ2

rIr,r − aσ2
β∆Iβ,θ + aσ2

β

aσ2
rIr,β∆Ir,θ

δα
2

+ κβ − aσ2
β∆Iβ,θ

)
Ir,β − aσ2

rIr,r∆Ir,θ

−
α
δα

aσ2
r∆Ir,θ

(δα + κr + aσ2
rIr,r)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

= 0.(A.42)

Equations (A.39)-(A.42) form the system of four equations in the four unknowns (Ir,r,∆Ir,θ,∆Iβ,θ, Ir,β). Given a solution to

that system, we can determine (Ir, Iβ , Ir,2, Iβ,2, Iβ,β) from (A.34)-(A.38).

To show that the system (A.39)-(A.42) has a solution, we proceed in two steps. In Step 1 we take Ir,β > 0 as given, and

construct Ir,r > 0, ∆Ir,θ > 0 and ∆Iβ,θ <
δα+κβ

2aσ2
β

uniquely from (A.39)-(A.41). In Step 2 we treat (Ir,r,∆Ir,θ,∆Iβ,θ) as implicit

functions of Ir,β , and show that (A.42) has a solution Ir,β > 0. We denote the left-hand sides of (A.39), (A.40), (A.41) and

(A.42) by Lr,r, Lr,θ, Lβ,θ and Lr,β , respectively, and set

Dj ≡
(
δj + κr + aσ2

rIr,r
) (

δj + κβ − aσ2
β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

for j = α, θ. For Ir,r ≥ 0, ∆Ir,θ ≥ 0, ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0, Dθ > Dα > 0, and hence (Lr,r, Lr,θ, Lβ,θ, Lr,β) are

continuous functions of (Ir,r,∆Ir,θ,∆Iβ,θ, Ir,β).

Step 1: We first take ∆Ir,θ ≥ 0, ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0 as given, and construct Ir,r > 0 from (A.39). Equation (A.39)

implies

(A.43)
∂Lr,r

∂Ir,r
=

δα

2
+ κr + 2aσ2

rIr,r +

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

aσ2
r ,

which in turn implies
∂Lr,r

∂Ir,r
> 0 for Ir,r ≥ 0. Hence, if Lr,r < 0 for Ir,r = 0, and Lr,r > 0 for Ir,r large enough, then (A.39) has

a unique positive solution for Ir,r. Equation (A.39) implies that Lr,r converges to infinity when Ir,r goes to infinity. We assume

that (∆Ir,θ,∆Iβ,θ, Ir,β) are such that Lr,r < 0 for Ir,r = 0, and return to this issue in Step 2.
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We next take ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0 as given, treat Ir,r > 0 as an implicit function of (∆Ir,θ,∆Iβ,θ, Ir,β), and construct

∆Ir,θ > 0 from (A.40). Equation (A.40) implies that the partial derivative of Lr,θ with respect to ∆Ir,θ when the variation of

Ir,r is taken into account is

L̂r,θ ≡
∂Lr,θ

∂Ir,r

∂Ir,r

∂∆Ir,θ
+

∂Lr,θ

∂∆Ir,θ
.

We show that if Lr,θ = 0 for a value ∆Ir,θ > 0, then L̂r,θ > 0 for the same value. Equation (A.40) implies

∂Lr,θ

∂Ir,r
=

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)2
D2

θ

 aσ2
r ,(A.44)

∂Lr,θ

∂∆Ir,θ
= 1 +

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

 a2σ2
rσ

2
βIr,β .(A.45)

Equation (A.39) implies

(A.46)
∂Lr,r

∂∆Ir,θ
=

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

a2σ2
rσ

2
βIr,β .

Since ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0, (A.46) implies
∂Lr,r

∂∆Ir,θ
> 0 and hence

(A.47)
∂Ir,r

∂∆Ir,θ
= −

∂Lr,r

∂∆Ir,θ

∂Lr,r

∂Ir,r

< 0.

Combining (A.44) and (A.45) with

θ
δj

(
δj + κβ − aσ2

β∆Iβ,θ

)2
D2

j

aσ2
r

∂Ir,r

∂∆Ir,θ
+

θ
δj

(
δj + κβ − aσ2

β∆Iβ,θ

)
D2

j

a2σ2
rσ

2
βIr,β

=

θ
δj

(
δj + κβ − aσ2

β∆Iβ,θ

)
D2

j

((
δj + κβ − aσ2

β∆Iβ,θ

)
aσ2

r

∂Ir,r

∂∆Ir,θ
+ a2σ2

rσ
2
βIr,β

)
,

for j = α, θ,

(
δα + κβ − aσ2

β∆Iβ,θ

)
aσ2

r

∂Ir,r

∂∆Ir,θ
+ a2σ2

rσ
2
βIr,β >

(
δθ + κβ − aσ2

β∆Iβ,θ

)
aσ2

r

∂Ir,r

∂∆Ir,θ
+ a2σ2

rσ
2
βIr,β ,
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which follows from
∂Ir,r

∂∆Ir,θ
< 0, ∆Iβ,θ <

δα+κβ

2aσ2
β

and δθ > δα,

(
δα + κβ − aσ2

β∆Iβ,θ

)
aσ2

r

∂Ir,r

∂∆Ir,θ
+ a2σ2

rσ
2
βIr,β

= −

α
δα

(
δα+κβ−aσ2

β∆Iβ,θ

)2

D2
α

a3σ4
rσ

2
βIr,β

δα
2

+ κr + 2aσ2
rIr,r +

α
δα

(
δα+κβ−aσ2

β
∆Iβ,θ

)2

D2
α

aσ2
r

+ a2σ2
rσ

2
βIr,β

= a2σ2
rσ

2
βIr,β

1−

α
δα

(
δα+κβ−aσ2

β∆Iβ,θ

)2

D2
α

aσ2
r

δα
2

+ κr + 2aσ2
rIr,r +

α
δα

(
δα+κβ−aσ2

β
∆Iβ,θ

)2

D2
α

aσ2
r

 > 0,

which follows from (A.43), (A.46) and (A.47), Dθ > Dα > 0, and

θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
Dα

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
Dθ

= ∆Ir,θ + Ir,β > 0,

which follows from Lr,θ = 0 (i.e., (A.40)), we find

(A.48) L̂r,θ =
∂Lr,θ

∂Ir,r

∂Ir,r

∂∆Ir,θ
+

∂Lr,θ

∂∆Ir,θ
> 1 > 0.

Since L̂r,θ > 0 at any point where Lr,θ = 0, Lr,θ can be equal to zero only once. Hence, if Lr,θ < 0 for ∆Ir,θ = 0, and Lr,θ > 0

for ∆Ir,θ = ∆Ir,θ sufficiently large, and if all values of ∆Ir,θ ∈ (0,∆Ir,θ) yield Ir,r > 0, then (A.40) yields a unique solution

for ∆Ir,θ ∈ (0,∆Ir,θ). We assume that (∆Iβ,θ, Ir,β) are such that these conditions hold, and return to this issue in Step 2.

We finally take Ir,β > 0 as given, treat Ir,r > 0 and ∆Ir,θ > 0 as implicit functions of (∆Iβ,θ, Ir,β), and construct ∆Iβ,θ <

δα+κβ

2aσ2
β

from (A.41). Equation (A.41) implies that the partial derivative of Lβ,θ with respect to ∆Iβ,θ when the variation of

(Ir,r,∆Ir,θ) is taken into account is

(A.49) L̂β,θ ≡
∂Lβ,θ

∂Ir,r

∂Ir,r

∂∆Iβ,θ
+

∂Lβ,θ

∂∆Ir,θ

∂∆Ir,θ

∂∆Iβ,θ
+

∂Lβ,θ

∂∆Iβ,θ
.

We show that if Lβ,θ = 0 for a value ∆Iβ,θ <
δα+κβ

2aσ2
β

, then L̂β,θ > 0 for the same value. Differentiating (A.39) and (A.40) at

the values of (Ir,r,∆Ir,θ) that render (Lr,r, Lr,θ) equal to zero, we find

∂Lr,r

∂Ir,r

∂Ir,r

∂∆Iβ,θ
+

∂Lr,r

∂∆Ir,θ

∂∆Ir,θ

∂∆Iβ,θ
+

∂Lr,r

∂∆Iβ,θ
= 0,(A.50)

∂Lr,θ

∂Ir,r

∂Ir,r

∂∆Iβ,θ
+

∂Lr,θ

∂∆Ir,θ

∂∆Ir,θ

∂∆Iβ,θ
+

∂Lr,θ

∂∆Iβ,θ
= 0,(A.51)
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respectively. Equations (A.50) and (A.51) form a linear system in the unknowns
(

∂Ir,r
∂∆Iβ,θ

,
∂∆Ir,θ
∂∆Iβ,θ

)
. The determinant of that

system is

∂Lr,r

∂Ir,r

∂Lr,θ

∂∆Ir,θ
−

∂Lr,θ

∂Ir,r

∂Lr,r

∂∆Ir,θ
=

∂Lr,r

∂Ir,r

 ∂Lr,θ

∂∆Ir,θ
−

∂Lr,θ

∂Ir,r

∂Lr,r

∂∆Ir,θ

∂Lr,r

∂Ir,r



=
∂Lr,r

∂Ir,r

(
∂Lr,θ

∂∆Ir,θ
+

∂Lr,θ

∂Ir,r

∂Ir,r

∂∆Ir,θ

)

=
∂Lr,r

∂Ir,r
L̂r,θ,

and is positive because
∂Lr,r

∂Ir,r
> 0 and L̂r,θ > 0. Substituting the solution of the system (A.50)-(A.51) into (A.49), we find that

(A.49) has the same sign as the Jacobian determinant

(A.52)

∣∣∣∣∣∣∣∣∣
∂Lr,r

∂Ir,r

∂Lr,r

∂∆Ir,θ

∂Lr,r

∂∆Iβ,θ
∂Lr,θ

∂Ir,r

∂Lr,θ

∂∆Ir,θ

∂Lr,θ

∂∆Iβ,θ
∂Lβ,θ

∂Ir,r

∂Lβ,θ

∂∆Ir,θ

∂Lβ,θ

∂∆Iβ,θ

∣∣∣∣∣∣∣∣∣ .

The partial derivatives (
∂Lr,r

∂Ir,r
,

∂Lr,r

∂∆Ir,θ
,
∂Lr,θ

∂Ir,r
,

∂Lr,θ

∂∆Ir,θ
) are given by (A.43), (A.46), (A.44) and (A.45), respectively. Equations

(A.39), (A.40) and (A.41) imply that the remaining partial derivatives are

∂Lr,r

∂∆Iβ,θ
=

α
δα

D2
α

a3σ2
rσ

4
βIr,β∆Ir,θ,(A.53)

∂Lr,θ

∂∆Iβ,θ
=

( θ
δα

D2
α

−
θ
δθ

D2
θ

)
a3σ2

rσ
4
βIr,β∆Ir,θ,(A.54)

∂Lβ,θ

∂Ir,r
=

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

 a2σ4
r∆Ir,θ,(A.55)

∂Lβ,θ

∂∆Ir,θ
=

(
−

θ
δα

Dα
+

θ
δθ

Dθ
+

Ir,β
δα
2

+ κβ − aσ2
β∆Iβ,θ

)
aσ2

r +

( θ
δα

D2
α

−
θ
δθ

D2
θ

)
a3σ4

rσ
2
βIr,β∆Ir,θ,(A.56)

∂Lβ,θ

∂∆Iβ,θ
= 1−

( θ
δα

(
δα + κr + aσ2

rIr,r
)

D2
α

−
θ
δθ

(
δθ + κr + aσ2

rIr,r
)

D2
θ

)
a2σ2

rσ
2
β∆Ir,θ

+
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2 .(A.57)

The sign of the Jacobian determinant (A.52) does not change if we multiply the last row by
(
δα + κβ − aσ2

β∆Iβ,θ

)
. The

resulting determinant does not change if we subtract the middle row times aσ2
r∆Ir,θ from the last row, and then the first row
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times θ
α

(
1− δαD2

α

δθD
2
θ

)
from the middle row. In the resulting determinant, the elements (1,1), (1,2) and (1,3) are given by (A.43),

(A.46) and (A.53), respectively, the element (2,1) is given by

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)2
D2

θ

 aσ2
r

−
θ

α

(
1−

δαD2
α

δθD
2
θ

) δα

2
+ κr + 2aσ2

rIr,r +

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

aσ2
r



= −
θ
δθ

(δθ − δα)
(
δθ + δα + 2κβ − 2aσ2

β∆Iβ,θ

)
D2

θ

aσ2
r −

θ

α

(
1−

δαD2
α

δθD
2
θ

)(
δα

2
+ κr + 2aσ2

rIr,r

)
,

the element (2,2) by

1 +

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

 a2σ2
rσ

2
βIr,β

−
θ

α

(
1−

δαD2
α

δθD
2
θ

) α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

a2σ2
rσ

2
βIr,β = 1−

θ
δθ

(δθ − δα)

D2
θ

a2σ2
rσ

2
βIr,β ,

the element (2,3) by

( θ
δα

D2
α

−
θ
δθ

D2
θ

)
a3σ2

rσ
4
βIr,β∆Ir,θ −

θ

α

(
1−

δαD2
α

δθD
2
θ

) α
δα

D2
α

a3σ2
rσ

4
βIr,β∆Ir,θ = 0,

the element (3,1) by

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

−
θ
δθ

(
δα + κβ − aσ2

β∆Iβ,θ

)(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

 a2σ4
r∆Ir,θ

−

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)2
D2

θ

 a2σ4
r∆Ir,θ

=

θ
δθ

(δθ − δα)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

a2σ4
r∆Ir,θ,
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the element (3,2) by

[(
−

θ
δα

Dα
+

θ
δθ

Dθ
+

Ir,β
δα
2

+ κβ − aσ2
β∆Iβ,θ

)
aσ2

r +

( θ
δα

D2
α

−
θ
δθ

D2
θ

)
a3σ4

rσ
2
βIr,β∆Ir,θ

](
δα + κβ − aσ2

β∆Iβ,θ

)

−

1 +

 θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

−
θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
D2

θ

 a2σ2
rσ

2
βIr,β

 aσ2
r∆Ir,θ

= −aσ2
r∆Ir,θ +

θ
δθ

(δθ − δα)

D2
θ

a3σ4
rσ

2
βIr,β∆Ir,θ −

∆Iβ,θ

∆Ir,θ

(
δα + κβ − aσ2

β∆Iβ,θ

)
,

where we use Lβ,θ = 0 (i.e., (A.41)), and the element (3,3) by

[
1−

( θ
δα

(
δα + κr + aσ2

rIr,r
)

D2
α

−
θ
δθ

(
δθ + κr + aσ2

rIr,r
)

D2
θ

)
a2σ2

rσ
2
β∆Ir,θ

](
δα + κβ − aσ2

β∆Iβ,θ

)

+

(
δα + κβ − aσ2

β∆Iβ,θ

)
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2 −
( θ

δα

D2
α

−
θ
δθ

D2
θ

)
a4σ4

rσ
4
βIr,β∆I2r,θ

= δα + κβ − aσ2
β∆Iβ,θ −

( θ
δα

Dα
−

θ
δθ

Dθ

)
a2σ2

rσ
2
β∆Ir,θ −

θ
δθ

(δθ − δα)
(
δθ + κr + aσ2

rIr,r
)

D2
θ

a2σ2
rσ

2
β∆Ir,θ

+

δα
2
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2 +
a2σ2

rσ
2
βIr,β∆Ir,θ

δα
2

+ κβ − aσ2
β∆Iβ,θ

= δα + κβ − 2aσ2
β∆Iβ,θ −

θ
δθ

(δθ − δα)
(
δθ + κr + aσ2

rIr,r
)

D2
θ

a2σ2
rσ

2
β∆Ir,θ +

δα
2
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2 ,

where the last step follows from Lβ,θ = 0.

For large δθ, all the terms with Dθ in the denominator are close to zero, and the determinant obtained by multiplying (A.52)
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by
(
δα + κβ − aσ2

β∆Iβ,θ

)
becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δα
2

+ κr + 2aσ2
rIr,r

α
δα

(
δα+κβ−aσ2

β∆Iβ,θ

)
D2

α
a2σ2

rσ
2
βIr,β

α
δα
D2

α
a3σ2

rσ
4
βIr,β∆Ir,θ

+
α
δα

(
δα+κβ−aσ2

β∆Iβ,θ

)2

D2
α

aσ2
r

− θ
α

(
δα
2

+ κr + 2aσ2
rIr,r

)
1 0

0 −aσ2
r∆Ir,θ − ∆Iβ,θ

∆Ir,θ

(
δα + κβ − aσ2

β∆Iβ,θ

)
δα + κβ − 2aσ2

β∆Iβ,θ

+
δα
2

a2σ2
rσ

2
βIr,β∆Ir,θ(

δα
2

+κβ−aσ2
β
∆Iβ,θ

)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

θ
δα

D2
α

(
δα

2
+ κr + 2aσ2

rIr,r

)(
aσ2

r∆Ir,θ +
∆Iβ,θ

∆Ir,θ

(
δα + κβ − aσ2

β∆Iβ,θ

))
a3σ2

rσ
4
βIr,β∆Ir,θ

+

δα + κβ − 2aσ2
β∆Iβ,θ +

δα
2
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2

 α

δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

aσ2
r

+

(
δα

2
+ κr + 2aσ2

rIr,r

)1 +

θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

a2σ2
rσ

2
βIr,β

 .(A.58)

To show that (A.58) is positive, and hence L̂β,θ > 0, we distinguish cases. When ∆Iβ,θ < 0, the only negative term in (A.58) is

the one generated by
∆Iβ,θ

∆Ir,θ

(
δα + κβ − aσ2

β∆Iβ,θ

)
. We group it together with the term generated by one of the two −aσ2

β∆Iβ,θ

in
(
δα + κβ − 2aσ2

β∆Iβ,θ

)
and note that (A.58) exceeds

θ
δα

D2
α

(
δα

2
+ κr + 2aσ2

rIr,r

)
a4σ4

rσ
4
βIr,β∆I2r,θ

+

δα + κβ − aσ2
β∆Iβ,θ +

δα
2
a2σ2

rσ
2
βIr,β∆Ir,θ(

δα
2

+ κβ − aσ2
β∆Iβ,θ

)2

 α

δα

(
δα + κβ − aσ2

β∆Iβ,θ

)2
D2

α

aσ2
r

+

(
δα

2
+ κr + 2aσ2

rIr,r

)1 +

θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
D2

α

a2σ2
rσ

2
βIr,β

 ,

which is positive. When instead ∆Iβ,θ ∈
(
0,

δα+κβ

2aσ2
β

)
, all the terms in (A.58), with

(
δα + κβ − 2aσ2

β∆Iβ,θ

)
counted as a single

term, are positive. Hence, L̂β,θ > 0 at any point ∆Iβ,θ <
δα+κβ

2aσ2
β

where Lβ,θ = 0, which implies that Lβ,θ can be equal to zero

only once. Moreover, if Lβ,θ < 0 for ∆Iβ,θ = ∆Iβ,θ sufficiently negative, and Lβ,θ > 0 for ∆Iβ,θ =
δα+κβ

2aσ2
β

, and if all values of

∆Iβ,θ ∈
(
∆Iβ,θ,

δα+κβ

2aσ2
β

)
yield Ir,r > 0 and ∆Ir,θ > 0, then (A.40) yields a unique solution for ∆Iβ,θ ∈

(
∆Iβ,θ,

δα+κβ

2aσ2
β

)
. We
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assume that Ir,β is such that these conditions hold, and return to this issue in Step 2.

Step 2: Suppose that Ir,β > 0 satisfies

(A.59) aσ2
βI

2
r,β <

α
δα

δα + κr

and define Īr,r > 0 by

(A.60)

(
δα

2
+ κr + aσr Īr,r

)
Īr,r + aσ2

βI
2
r,β −

α
δα

δα + κr + aσ2
r Īr,r

= 0.

Equation (A.60) defines Īr,r > 0 uniquely because the left-hand side increases for Ir,r ≥ 0, converges to infinity when Īr,r goes

to infinity, and is negative for Īr,r = 0 because of (A.59). Suppose that Ir,β satisfies additionally

Ir,β <

θ
δα

δα + κr + aσ2
r Īr,r

−
θ
δθ

δθ + κr + aσ2
r Īr,r

,(A.61)

aσ2
βIr,β <

α

θ
.(A.62)

We can then construct Ir,r > 0, ∆Ir,θ > 0 and ∆Iβ,θ <
δα+κβ

2aσ2
β

uniquely, following the procedure in Step 1. That procedure

assumes some of the boundary conditions, which we next prove using (A.59), (A.61) and (A.62).

Take first ∆Ir,θ ∈ (0,∆Ir,θ), ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0 as given, where ∆Ir,θ > 0 is defined by

(A.63) aσ2
βI

2
r,β =

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

and is positive because of (A.59). Equation (A.39) implies that for Ir,r = 0,

Lr,r = aσ2
βI

2
r,β −

α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

< 0,

where the inequality follows from ∆Ir,θ ∈ (0,∆Ir,θ) and (A.63). Equation (A.39) and (A.60) imply that for Ir,r = Īr,r,

Lr,r =

(
δα

2
+ κr + aσr Īr,r

)
Īr,r + aσ2

βI
2
r,β

−
α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(
δα + κr + aσ2

r Īr,r
) (

δα + κβ − aσ2
β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

=

α
δα

δα + κr + aσ2
r Īr,r

−
α
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(
δα + κr + aσ2

r Īr,r
) (

δα + κβ − aσ2
β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

> 0.



64 D. VAYANOS AND J.-L. VILA

Hence (A.39) has a unique positive solution for Ir,r ∈ (0, Īr,r).

Take next ∆Iβ,θ <
δα+κβ

2aσ2
β

and Ir,β > 0 as given, and treat Ir,r ∈ (0, Īr,r) as an implicit function of (∆Ir,θ,∆Iβ,θ, Ir,β). For

∆Ir,θ = 0, (A.39) and (A.60) imply Ir,r = Īr,r, and (A.40) implies

Lr,θ = −
θ
δα

δα + κr + aσ2
r Īr,r

+

θ
δθ

δθ + κr + aσ2
r Īr,r

+ Ir,β < 0,

where the inequality follows from (A.61). For ∆Ir,θ = ∆Ir,θ, (A.39) and (A.63) imply Ir,r = 0, and (A.40) implies

Lr,θ = ∆Ir,θ −
θ
δα

(
δα + κβ − aσ2

β∆Iβ,θ

)
(δα + κr)

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+

θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
(δθ + κr)

(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+ Ir,β

= ∆Ir,θ −
θ

α
aσ2

βI
2
r,β +

θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
(δθ + κr)

(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ

+ Ir,β

> Ir,β

(
1−

θ

α
aσ2

βIr,β

)
> 0,(A.64)

where the second step follows from (A.63) and the fourth from (A.62). Hence, (A.40) has a unique solution for ∆Ir,θ ∈ (0,∆Ir,θ).

Take finally Ir,β > 0 as given, and treat Ir,r ∈ (0, Īr,r) and ∆Ir,θ ∈ (0,∆Ir,θ) as implicit functions of (∆Iβ,θ, Ir,β). When

∆Iβ,θ goes to minus infinity, (A.63) implies that
∆Ir,θ

δα+κβ−aσ2
β
∆Iβ,θ

converges to a positive limit. Since, in addition, Īr,r is

independent of ∆Iβ,θ, Ir,r ∈ (0, Īr,r) and ∆Ir,θ ∈ (0,∆Ir,θ), (A.41) implies that Lβ,θ converges to minus infinity. We next

determine conditions so that Lβ,θ > 0 for ∆Iβ,θ =
δα+κβ

2aσ2
β

. Equations (A.40) and (A.41) imply

Lβ,θ = ∆Iβ,θ −
aσ2

r(∆Ir,θ + Ir,β)∆Ir,θ

δα + κβ − aσ2
β∆Iβ,θ

−
θ
δθ

(δθ − δα)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
(
δα + κβ − aσ2

β∆Iβ,θ

)
Dθ

+
aσ2

rIr,β∆Ir,θ
δα
2

+ κβ − aσ2
β∆Iβ,θ

= ∆Iβ,θ −
aσ2

r∆I2r,θ

δα + κβ − aσ2
β∆Iβ,θ

−
θ
δθ

(δθ − δα)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
(
δα + κβ − aσ2

β∆Iβ,θ

)
Dθ

+
δα
2
aσ2

rIr,β∆Ir,θ(
δα + κβ − aσ2

β∆Iβ,θ

)(
δα
2

+ κβ − aσ2
β∆Iβ,θ

) .
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Hence, Lβ,θ > 0 for large δθ if

(A.65) ∆Iβ,θ −
aσ2

r∆I2r,θ

δα + κβ − aσ2
β∆Iβ,θ

+
δα
2
aσ2

rIr,β∆Ir,θ(
δθ + κβ − aσ2

β∆Iβ,θ

)(
δα
2

+ κβ − aσ2
β∆Iβ,θ

) > 0.

Setting ∆Iβ,θ =
δα+κβ

2aσ2
β

in (A.65), we can write it as

(A.66)
δα + κβ

2aσ2
β

−
aσ2

r∆I2r,θ
δα+κβ

2

+
δα
2
aσ2

rIr,β∆Ir,θ
κβ(δα+κβ)

4

> 0.

Equation (A.66) is satisfied for κβ ≈ 0. It is also satisfied for a general value of κβ if

(A.67)
δα + κβ

2aσ2
β

−
aσ2

r

(
θ
δθ

δθ+κr

)2

δα+κβ

2

> 0 ⇔ δα(δα + κr)(δα + κβ) > 2aθσrσβ ,

which follows from (A.66) by noting that (A.40) implies ∆Ir,θ <
θ
δθ

δθ+κr
. Under either κβ ≈ 0 or δα(δα+κr)(δα+κβ) > 2aθσrσβ ,

Lβ,θ > 0 for ∆Iβ,θ =
δα+κβ

2aσ2
β

, and hence (A.41) has a unique solution for ∆Iβ,θ <
δα+κβ

2aσ2
β

.

Inequalities (A.59), (A.61) and (A.62) hold for Ir,β close to zero. Consider the largest value Īr,β such that (A.59), (A.61) and

(A.62) hold for all Ir,β < Īr,β . The implicit function theorem ensures that the functions (Ir,r,∆Ir,θ,∆Iβ,θ) are continuous in

Ir,β ≤ Īr,β . For Ir,β close to zero, (A.39) and (A.40) imply that Ir,r and ∆Ir,θ are bounded away from zero. Since, in addition,

∆Iβ,θ is bounded above by
δα+κβ

2aσ2
β

, (A.42) implies Lr,β < 0. We next determine a value I∗r,β ≥ Īr,β such that Lr,β > 0 (and

such that (Ir,r,∆Ir,θ,∆Iβ,θ) are well-defined and continuous in Ir,β ∈ (Īr,β , I
∗
r,β ]). Continuity then ensures that a solution

Ir,β < I∗r,β to (A.42) exists, and hence a solution (Ir,r,∆Ir,θ,∆Iβ,θ, Ir,β) to the system (A.39)-(A.42) also exists.

The inequality among (A.59), (A.61) and (A.62) that switches to an equality at Īr,β cannot be (A.59). Indeed, if (A.59)

switches to an equality at Īr,β , then (A.60) implies Īr,r = 0, and (A.61) becomes

(A.68) Īr,β <

θ
δα

δα + κr
−

θ
δθ

δθ + κr
.

Multiplying (A.62) by (A.68), we find

aσ2
β Ī

2
r,β <

α
δα

δα + κr
−

α
δθ

δθ + κr
<

α
δα

δα + κr
,

which implies that (A.59) holds, a contradiction.
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If (A.61) switches to an equality at Īr,β , then Lr,θ = 0 for ∆Ir,θ = 0, and hence the solution to (A.40) is ∆Ir,θ = 0. Equation

(A.42) then implies Lr,β > 0 for Ir,β = Īr,β = Ī∗r,β .

Suppose instead that (A.62) switches to an equality at Īr,β . Consider a value of Ir,β > Īr,β = α
θaσ2

β

such that (A.59) and

(A.61) hold. Define ∆Ir,θ > 0 by (A.63) and consider the set of ∆Iβ,θ <
δα+κβ

2aσ2
β

such that Lr,θ > 0 for ∆Ir,θ = ∆Ir,θ.

Proceeding as in (A.64) and substituting ∆Ir,θ from (A.63), we can write the condition defining that set as

α
δα

− (δα + κr)aσ2
βI

2
r,β

a3σ2
rσ

4
βI

3
r,β

(
δα + κβ − aσ2

β∆Iβ,θ

)
+ Ir,β

(
1−

θ

α
aσ2

βIr,β

)

+

θ
δθ

(
δθ + κβ − aσ2

β∆Iβ,θ

)
(δθ + κβ)

(
δθ + κβ − aσ2

β∆Iβ,θ

)
+

α
δα

−(δα+κr)aσ
2
β
I2
r,β

aσ2
β
I2
r,β

(
δα + κβ − aσ2

β∆Iβ,θ

) > 0.(A.69)

If (A.69) holds for all ∆Iβ,θ <
δα+κβ

2aσ2
β

, then we can proceed as in the case where (A.59), (A.61) and (A.62) hold, and construct

Ir,r > 0, ∆Ir,θ > 0 and ∆Iβ,θ <
δα+κβ

2aσ2
β

uniquely. Denote by Ī′r,β > Īr,β the maximum value of Ir,β such that (A.69) holds for

all ∆Iβ,θ <
δα+κβ

2aσ2
β

and for all Ir,β ∈ [Īr,β , Ī
′
r,β).

If (A.61) switches to an equality at Ī′′r,β ∈ (Īr,β , Ī
′
r,β ] and (A.59) holds for all Ir,β ∈ [Īr,β , Ī

′′
r,β ], then (Ir,r,∆Ir,θ,∆Iβ,θ) are

well-defined and continuous in Ir,β ∈ [Īr,β , Ī
′′
r,β ] and Lr,β > 0 for Ir,β = Ī′′r,β = I∗r,β .

Suppose instead that (A.61) holds for all Ir,β ∈ [Īr,β , Ī
′
r,β ]. Then (A.59) also holds for all Ir,β ∈ [Īr,β , Ī

′
r,β ]. Indeed, if (A.59)

switches to an equality at Ī′′r,β ∈ (Īr,β , Ī
′
r,β ], then (A.60) implies Īr,r = 0, and (A.64) implies

Ī′′r,β

(
1−

θ

α
aσ2

β Ī
′′
r,β

)
+

θ
δθ

δθ + κβ
> 0

⇒ Ī′′r,β −
θ

α
aσ2

β

(
Ī′′′r,β

)2
+

θ
δθ

δθ + κβ
> 0

⇒ Ī′′r,β −
θ
δα

δα + κβ
+

θ
δθ

δθ + κβ
> 0,(A.70)

where the first and third steps follow from (A.59) switching to an equality at Ī′′r,β . Hence, (A.61) holds in the opposite direction,

a contradiction. Since (A.59) and (A.61) hold for all Ir,β ∈ [Īr,β , Ī
′
r,β ], (Ir,r,∆Ir,θ,∆Iβ,θ) are well-defined and continuous in

Ir,β ∈ [Īr,β , Ī
′
r,β ]. For Ir,β = Ī′r,β , (A.64) switches to an equality for a single value ∆Iβ,θ. (Since the left-hand side is convex in

∆Iβ,θ, if (A.64) switches to an equality for two values of ∆Iβ,θ, then it switches to an inequality in the opposite direction for

values of ∆Iβ,θ in-between, which contradicts the definition of Ī′r,β .) Suppose without loss of generality that the solution ∆Iβ,θ
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is to the right of ∆Iβ,θ, in which case Lβ,θ < 0 for ∆Iβ,θ = ∆Iβ,θ. Consider a value of Ir,β > Ī′r,β such that (A.59) and (A.61)

hold, and denote by ∆Iβ,θ the minimum value of ∆Iβ,θ such that (A.69) holds for all ∆Iβ,θ ∈
(
∆Iβ,θ,

δα+κβ

2aσ2
β

)
. Proceeding

as in the case where (A.59), (A.61) and (A.62) hold, we can construct Ir,r > 0, ∆Ir,θ > 0 and ∆Iβ,θ ∈
(
∆Iβ,θ,

δα+κβ

2aσ2
β

)
uniquely. Consider the largest value Ī′′′r,β > Ī′r,β such that for all Ir,β ∈ [Ī′r,β , Ī

′′′
r,β), (A.59) and (A.61) hold and Lβ,θ < 0 for

∆Iβ,θ = ∆Iβ,θ. The functions (Ir,r,∆Ir,θ,∆Iβ,θ) are well-defined and continuous in Ir,β ∈ (Ī′r,β , Ī
′′′
r,β ]. The same argument as

in (A.70) implies that the inequality among (A.59), (A.61) and Lβ,θ < 0 for ∆Iβ,θ = ∆Iβ,θ that switches to an equality at

Ī′′′r,β cannot be (A.59). If (A.61) switches to an equality at Ī′′′r,β , then Lr,β > 0 for Ir,β = Ī′′′r,β = I∗r,β . If instead, Lβ,θ = 0 for

∆Iβ,θ = ∆Iβ,θ, then (Ir,r,∆Ir,θ,∆Iβ,θ) = (0,∆Ir,θ,∆Iβ,θ). Hence,

Lr,β =

(
δα + κr + κβ − aσ2

β∆Iβ,θ + aσ2
β

aσ2
r Ī

′′′
r,β∆Ir,θ

δα
2

+ κβ − aσ2
β∆Iβ,θ

)
I′′′r,β

−
α
δα

aσ2
r∆Ir,θ

(δα + κr)
(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βI

′′′
r,β∆Ir,θ

>

(
δα + κr + κβ − aσ2

β∆Iβ,θ + aσ2
β

aσ2
r Ī

′′′
r,β∆Ir,θ

δα
2

+ κβ − aσ2
β∆Iβ,θ

)
I′′′r,β

−
θ
δα

a2σ2
rσ

2
β∆Ir,θI

′′′
r,β

(δα + κr)
(
δα + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βI

′′′
r,β∆Ir,θ

= (δα + κr + κβ − 2aσ2
β∆Iβ,θ)I

′′′
r,β −

θ
δθ

a2σ2
rσ

2
βI

′′′
r,β∆Ir,θ

(δθ + κr)
(
δθ + κβ − aσ2

β∆Iβ,θ

)
+ a2σ2

rσ
2
βI

′′′
r,β∆Ir,θ

,

where the first step follows from I′′′r,β > Īr,β = α
θaσ2

β

and the second step from (A.41). For large δθ, Lr,β > 0 if

(A.71) δα + κr + κβ − 2aσ2
β∆Iβ,θ > 0,

which holds because ∆Iβ,θ <
δα+κβ

2aσ2
β

. Hence, Ir,β = Ī′′′r,β = I∗r,β . The solution satisfies Ir,r > 0, ∆Ir,θ > 0, ∆Iβ,θ <
δα+κβ

2aσ2
β

and

Ir,β > 0. Combining these inequalities with (A.26), we find M1,1 > κr, M1,2 > 0, M2,1 < 0 and M2,2 >
κβ−δα

2
.

To complete the existence proof, we show that the integrals in the Laplace transforms (Ir, Iβ , Ir,r, Ir,β , Iβ,β , Ir,2, Iβ,2) con-

verge. That property is assumed when performing the integration by parts in Lemma A.1. Since δθ > δα, the Laplace-transform

integrals converge if the real parts of the eigenvalues of M exceed − δα
2
. Using (A.26), we find that the characteristic polynomial
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of M is

(A.72) P (λ) =
(
κr + aσ2

rIr,r − λ
) (

κβ − aσ2
β∆Iβ,θ − λ

)
+ a2σ2

rσ
2
βIr,β∆Ir,θ.

Since Ir,r > 0, ∆Ir,θ > 0, ∆Iβ,θ <
δa+κβ

2aσ2
β

and Ir,β > 0, P (λ) > 0 for all λ < − δα
2
. Hence, if the eigenvalues are real, they must

exceed − δα
2
. If the eigenvalues are complex, their real part is

κr + aσ2
rIr,r + κβ − aσ2

β∆Iβ,θ

2

and exceeds − δα
2

because Ir,r > 0 and ∆Iβ,θ <
δα+κβ

2aσ2
β

. Q.E.D.

Proof of Proposition 5: Using K = 1 and (A.26), we can write the system (36) as

A′
r(τ) +

(
κr + aσ2

rIr,r
)
Ar(τ) + aσ2

βIr,βAβ(τ)− 1 = 0,(A.73)

A′
β(τ)− aσ2

r∆Ir,θAr(τ) +
(
κβ − aσ2

β∆Iβ,θ

)
Aβ(τ) = 0,(A.74)

and the solution to that system, given in Lemma 3, as

Ar(τ) =
1− e−ν1τ

ν1
+ ϕr

(
1− e−ν2τ

ν2
−

1− e−ν1τ

ν1

)
,(A.75)

Aβ(τ) = ϕβ

(
1− e−ν2τ

ν2
−

1− e−ν1τ

ν1

)
.(A.76)

Equations (A.73) and (A.74), together with the initial conditions Ar(0) = Aβ(0) = 0, imply A′
r(0) = 1 and A′

β(0) = 0.

Differentiating (A.74) at zero and using ∆Ir,θ > 0, which follows from M2,1 < 0 and (A.26), we find A′′
β(0) > 0. Hence,

Ar(τ) > 0, A′
β(τ) > 0 and Aβ(τ) > 0 for small τ .

Suppose that the two eigenvalues of M are real, and without loss of generality set ν1 > ν2. Since the function (ν, τ) −→ 1−e−ντ

ν

decreases in ν, the term in parenthesis in (A.76) is positive. Since, in addition, Aβ(τ) > 0 for small τ , ϕβ > 0 and hence Aβ(τ) > 0

for all τ . Since

A′
β(τ) = ϕβ

(
e−ν2τ − e−ν1τ

)
and ϕβ > 0, A′

β(τ) > 0. Since

Ar(τ)

Aβ(τ)
=

1−e−ν1τ

ν1

ϕβ

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

) +
ϕr

ϕβ
=

1

ϕβ

(
ν1
ν2

1−e−ν2τ

1−e−ν1τ − 1
) +

ϕr

ϕβ
,

and the function (ν1, ν2, τ) −→ 1−e−ν2τ

1−e−ν1τ increases in τ because its derivative has the same sign as eν1τ−1
ν1

− eν2τ−1
ν2

,
[
Ar(τ)
Aβ(τ)

]′
< 0.

Since

A′
r(τ) = e−ν1τ + ϕr

(
e−ν2τ − e−ν1τ

)
,
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the sign of A′
r(τ) can change at most once. Hence, A′

r(τ) > 0 for τ ∈ (0, τ̄ ′) and A′
r(τ) < 0 for τ ∈ (τ̄ ′,∞), where τ̄ ′ is a

threshold in (0,∞]. The function Ar(τ) has the same behavior for a different threshold τ̄ .

When a ≈ 0, Ar(τ) > 0 because Lemma A.2 implies ϕr ≈ 0, ν1 ≈ κr > 0 and ν2 ≈ κβ > 0. When α(τ) = 0, Ir,r = Ir,β = 0,

and hence (A.73) implies Ar(τ) =
1−e−κrτ

κr
> 0. In both cases, τ̄ = ∞. When a ≈ ∞, Lemma A.2 implies that for τ bounded

away from zero

Ar(τ) ≈
1

a
1
3

(
1

n1
+ cr

1− e−ν2τ

ν2

)

=
1

a
1
3 n1

1−

∫∞
0 α(τ ′) 1−e−ν2τ′

ν2
dτ ′∫∞

0 α(τ ′)
(

1−e−ν2τ′

ν2

)2
dτ ′

1− e−ν2τ

ν2



=
1

a
1
3 n1

∫∞
0 α(τ ′)(1− e−ν2τ

′
)(e−ν2τ − e−ν2τ

′
)dτ ′∫∞

0 α(τ ′)(1− e−ν2τ ′ )2dτ ′
.

Since this is negative for τ close to ∞, τ̄ < ∞.

Suppose that the two eigenvalues of M are complex. Since they are conjugates, we set ν1 = µ + iξ and ν2 = µ − iξ for real

numbers (µ, ξ). Equations (A.75) and (A.76) imply that (Ar(τ), Aβ(τ)) take the form

Ar(τ) = ϕr,0 + ϕr,1e
−µτ cos(ξτ) + ϕr,2e

−µτ sin(ξτ),(A.77)

Aβ(τ) = ϕβ,0 + ϕβ,1e
−µτ cos(ξτ) + ϕβ,2e

−µτ sin(ξτ),(A.78)

for real numbers {ϕj,n}j=r,β, n=0,1,2. Since the initial conditions Ar(0) = Aβ(0) = 0 imply ϕj,0+ϕj,1 = 0 for j = r, β, condition

A′
r(0) = 1 implies −ϕr,1µ+ ϕr,2ξ = 1, and condition A′

β(0) = 0 implies −ϕβ,1µ+ ϕβ,2ξ = 0, we can write (A.77) and (A.78) as

Ar(τ) = ϕr,0

[
1−

µ

ξ
e−µτ sin(ξτ)− e−µτ cos(ξτ)

]
+

1

ξ
e−µτ sin(ξτ),(A.79)

Aβ(τ) = ϕβ,0

[
1−

µ

ξ
e−µτ sin(ξτ)− e−µτ cos(ξτ)

]
.(A.80)

Differentiating (A.79) and (A.80), we find

A′
r(τ) = ϕr,0

µ2 + ξ2

ξ
e−µτ sin(ξτ) + e−µτ

[
cos(ξτ)−

µ

ξ
sin(ξτ)

]
,(A.81)

A′
β(τ) = ϕβ,0

µ2 + ξ2

ξ
e−µτ sin(ξτ).(A.82)
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Since A′
β(τ) > 0 for small τ , ϕβ,0 > 0, and hence A′

β(τ) > 0 for τ ∈ (0, π
|ξ| ). The derivative

[
Ar(τ)
Aβ(τ)

]′
has the same sign as

A′
r(τ)Aβ(τ)−Ar(τ)A

′
β(τ)

= e−µτ

[
cos(ξτ)−

µ

ξ
sin(ξτ)

]
ϕβ,0

[
1−

µ

ξ
e−µτ sin(ξτ)− e−µτ cos(ξτ)

]

−
1

ξ
e−µτ sin(ξτ)ϕβ,0

µ2 + ξ2

ξ
e−µτ sin(ξτ)

= ϕβ,0e
−µτ

[
cos(ξτ)−

µ

ξ
sin(ξτ)− e−µτ

]
,(A.83)

where the second step follows from (A.79)-(A.82) and the third by rearranging. Since ϕβ,0 > 0,
[
Ar(τ)
Aβ(τ)

]′
is negative if the term

in brackets in (A.83) is negative. That term is concave in µ and is maximized for µ given by

−
1

ξ
sin(ξτ) + τe−µτ = 0 ⇔ e−µτ =

sin(ξτ)

ξτ
.

The maximum is

(A.84) cos(ξτ)−
sin(ξτ)

ξτ

[
1− log

(
sin(ξτ)

ξτ

)]
= H(ξτ)

sin(ξτ)

ξτ
,

where

H(x) ≡
x cos(x)

sin(x)
− 1 + log

(
sin(x)

x

)
.

The function H(x) is equal to zero for x = 0, and its derivative is

H′(x) = −
x

sin2(x)
+

cos(x)

sin(x)
+

x cos(x)−sin(x)

x2

sin(x)
x

= −
x2 − 2x cos(x) sin(x) + sin2(x)

x sin2(x)
.

Since

x2 − 2x cos(x) sin(x) + sin2(x) > x2 − 2|x sin(x)|+ sin2(x) = (|x| − | sin(x)|)2 > 0

for x ̸= 0, H′(x) > 0 for x < 0, and H′(x) < 0 for x > 0. Since, in addition, H(0) = 0, H(x) < 0. Hence, the maximum (A.84)

is negative for τ ∈ (0, π
|ξ| ), and so is

[
Ar(τ)
Aβ(τ)

]′
. This establishes the results in the proposition for A′

β(τ) and
Ar(τ)
Aβ(τ)

and for the

threshold τ̂ = π
|ξ| . The result for Aβ(τ) and for a threshold ¯̄τ > τ̂ follows because Aβ(0) = 0 and A′

β(τ) > 0 for τ ∈ (0, τ̂) imply

Aβ(τ) > 0 for τ ∈ (0, τ̂ ].

If ¯̄τ < ∞, then Aβ(¯̄τ) = 0 and A′
β(¯̄τ) ≤ 0. If A′

β(¯̄τ) < 0, then ∆Ir,θ > 0 and (A.74) imply Ar(¯̄τ) < 0. If A′
β(¯̄τ) = 0, then

∆Ir,θ > 0 and (A.74) imply Ar(¯̄τ) = 0, and (A.74) implies A′
r(¯̄τ) = 1. Hence, in both cases, Ar(τ) < 0 for τ smaller than and

close to ¯̄τ . This yields the result in the proposition for Ar(τ) and for a threshold τ̄ < ¯̄τ . Q.E.D.
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Lemma A.2 derives the asymptotic behavior of (ν1, ν2, ϕr, ϕβ) when a ≈ 0 and a ≈ ∞. To state and prove the lemma, we

define the functions

F (ν, ν′) ≡
∫ ∞

0
α(τ)

1− e−ντ

ν

1− e−ν′τ

ν′
dτ,

F̂ (ν, ν′) ≡ F (ν, ν′)− F (ν, ν),

ˆ̂
F (ν, ν′) ≡ F (ν, ν) + F (ν′, ν′)− 2F (ν, ν′),

G(ν) ≡
∫ ∞

0
θ(τ)

1− e−ντ

ν
dτ,

Ĝ(ν, ν′) ≡ G(ν′)−G(ν).

We also note that the definitions of (J, Ir,r, Ir,β) imply

Ir,r =

∫ ∞

0
α(τ)Ar(τ)

2dτ,(A.85)

Ir,β =

∫ ∞

0
α(τ)Ar(τ)Aβ(τ)dτ.(A.86)

Lemma A.2 Suppose that there is one demand factor, the matrices (Γ,Σ) are diagonal, and α(τ) and
θ(τ)
τ

have a positive and

a finite limit, respectively, at τ = 0. The asymptotic behavior of (ν1, ν2, ϕr, ϕβ) when a ≈ 0 and a ≈ ∞ is as follows:

� When a ≈ 0, (ν1, ν2, ϕr, ϕβ) ≈ (κr, κβ , a
3cr, acβ), where

cr = −
c2βσ

2
β F̂ (κr, κβ)

κr − κβ
,(A.87)

cβ =
σ2
rG(κr)

κr − κβ
.(A.88)

� When a ≈ ∞, (ν1, ν2, ϕr, ϕβ) ≈ (a
1
3 n1, ν2, a

− 1
3 cr, ϕβ), where

n1 = σ
2
3
r

∫ ∞

0
α(τ)dτ −

[∫∞
0 α(τ) 1−e−ν2τ

ν2
dτ
]2

∫∞
0 α(τ)

(
1−e−ν2τ

ν2

)2
dτ


1
3

> 0.(A.89)

cr = −
1

n1

∫∞
0 α(τ) 1−e−ν2τ

ν2
dτ∫∞

0 α(τ)
(

1−e−ν2τ

ν2

)2
dτ

< 0,(A.90)

ϕβ =

∫∞
0 θ(τ) 1−e−ν2τ

ν2
dτ∫∞

0 α(τ)
(

1−e−ν2τ

ν2

)2
dτ

,(A.91)
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and ν2 solves

(A.92)

∫∞
0 θ(τ) 1−e−ν2τ

ν2
dτ∫∞

0 θ(τ)dτ
=

∫∞
0 α(τ)

(
1−e−ν2τ

ν2

)2
dτ∫∞

0 α(τ) 1−e−ν2τ

ν2
dτ

.

Proof: Substituting (A.75) and (A.76) into (A.73) and identifying terms in 1−e−ν1τ

ν1
and

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

)
, we find

ϕr(ν1 − ν2)− ν1 + κr + aσ2
rIr,r = 0,(A.93)

− ϕrν2 + ϕr
(
κr + aσ2

rIr,r
)
+ ϕβaσ

2
βIr,β = 0,(A.94)

respectively. Using (A.93), we can write (A.94) as

(A.95) ϕr(1− ϕr)(ν1 − ν2) + ϕβaσ
2
βIr,β = 0.

Substituting (A.75) and (A.76) into (A.74) and identifying terms, we find

ϕβ(ν1 − ν2)− aσ2
r∆Ir,θ = 0,(A.96)

− ϕβν2 − ϕr∆Ir,θ + ϕβ

(
κβ − aσ2

β∆Iβ,θ

)
= 0,(A.97)

respectively. Using (A.96), we can write (A.97) as

(A.98) −ν2 − ϕr(ν1 − ν2) + κβ − aσ2
β∆Iβ,θ = 0.

Equations (A.93), (A.95), (A.96) and (A.98) constitute a system of four equations in the four unknowns (ν1, ν2, ϕr, ϕβ).

Substituting (A.75) and (A.76) into the definitions (A.85), (A.86), (A.24) and (A.25) of (Ir,r, Ir,β , ∆Ir,θ,∆Iβ,θ), we can write

that system as

ϕr(ν1 − ν2)− ν1 + κr + aσ2
r

[
F (ν1, ν1) + 2ϕrF̂ (ν1, ν2) + ϕ2

r
ˆ̂
F (ν1, ν2)

]
= 0,(A.99)

ϕr(1− ϕr)(ν1 − ν2) + ϕ2
βaσ

2
β

[
F̂ (ν1, ν2) + ϕr

ˆ̂
F (ν1, ν2)

]
= 0,(A.100)

ϕβ(ν1 − ν2)− aσ2
r

[
G(ν1) + ϕrĜ(ν1, ν2)− ϕβ

[
F̂ (ν1, ν2) + γr

ˆ̂
F (ν1, ν2)

]]
= 0,(A.101)

− ν2 − ϕr(ν1 − ν2) + κβ − ϕβaσ
2
β

[
Ĝ(ν1, ν2)− ϕβ

ˆ̂
F (ν1, ν2)

]
= 0.(A.102)

Suppose that a ≈ 0. Setting (ϕr, ϕβ) = (a3cr, acβ), we can write (A.99)-(A.102) as

a3cr(ν1 − ν2)− ν1 + κr + aσ2
r

[
F (ν1, ν1) + 2a3crF̂ (ν1, ν2) + a6c2r

ˆ̂
F (ν1, ν2)

]
= 0,(A.103)

cr(1− a3cr)(ν1 − ν2) + c2βσ
2
β

[
F̂ (ν1, ν2) + a3cr

ˆ̂
F (ν1, ν2)

]
= 0,(A.104)

cβ(ν1 − ν2)− σ2
r

[
G(ν1) + a3crĜ(ν1, ν2)− acβ

[
F̂ (ν1, ν2) + a3cr

ˆ̂
F (ν1, ν2)

]]
= 0,(A.105)

− ν2 − a3cr(ν1 − ν2) + κβ − a2cβσ
2
β

[
Ĝ(ν1, ν2)− acβ

ˆ̂
F (ν1, ν2)

]
= 0.(A.106)
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The asymptotic behavior of (ν1, ν2, ϕr, ϕβ) is as in the lemma if (A.103)-(A.106) has a non-zero solution (ν1, ν2, cr, cβ) for a = 0.

For a = 0, (A.103) implies ν1 = κr, (A.106) implies ν2 = κβ , (A.105) implies cβ = cβ and (A.104) implies cr = cr.

Suppose that a ≈ ∞. Setting (ν1, ϕr) = (a
1
3 n1, a

− 1
3 cr), we can write (A.99)-(A.102) as

a−
2
3 cr

(
a

1
3 n1 − ν2

)
− n1 + a−

1
3 κr + a

2
3 σ2

r

[
F
(
a

1
3 n1, a

1
3 n1

)
+ 2a−

1
3 crF̂

(
a

1
3 n1, ν2

)
+ a−

2
3 c2r

ˆ̂
F
(
a

1
3 n1, ν2

)]
= 0,(A.107)

a−1cr(1− a−
1
3 cr)

(
a

1
3 n1 − ν2

)
+ a

1
3 ϕ2

βσ
2
β

[
F̂
(
a

1
3 n1, ν2

)
+ a−

1
3 cr

ˆ̂
F
(
a

1
3 n1, ν2

)]
= 0,(A.108)

a−
2
3 ϕβ

(
a

1
3 n1 − ν2

)
− a

1
3 σ2

r

[
G
(
a

1
3 n1

)
+ a−

1
3 crĜ

(
a

1
3 n1, ν2

)
− ϕβ

[
F̂
(
a

1
3 n1, ν2

)
+ a−

1
3 cr

ˆ̂
F
(
a

1
3 n1, ν2

)]]
= 0,(A.109)

a−1
[
−ν2 − a−

1
3 cr

(
a

1
3 n1 − ν2

)
+ κβ

]
− ϕβσ

2
β

[
Ĝ
(
a

1
3 n1, ν2

)
− ϕβ

ˆ̂
F
(
a

1
3 n1, ν2

)]
= 0.(A.110)

The asymptotic behavior of (ν1, ν2, ϕr, ϕβ) is as in the lemma if (A.107)-(A.110) has a non-zero solution (n1, ν2, cr, ϕβ) for

a = ∞. Noting that

lim
a→∞

a
2
3 F
(
a

1
3 n1, a

1
3 n1

)
=

1

n2
1

∫ ∞

0
α(τ)dτ,

lim
a→∞

a
1
3 F
(
a

1
3 n1, ν2

)
=

1

n1

∫ ∞

0
α(τ)

1− e−ν2τ

ν2
dτ,

lim
a→∞

a
1
3 G
(
a

1
3 n1

)
=

1

n1

∫ ∞

0
θ(τ)dτ,

we can write (A.107)-(A.110) for a = ∞ as

n1 − σ2
r

[
1

n2
1

∫ ∞

0
α(τ)dτ + 2cr

1

n1

∫ ∞

0
α(τ)

1− e−ν2τ

ν2
dτ + c2r

∫ ∞

0
α(τ)

(
1− e−ν2τ

ν2

)2

dτ

]
= 0,(A.111)

1

n1

∫ ∞

0
α(τ)

1− e−ν2τ

ν2
dτ + cr

∫ ∞

0
α(τ)

(
1− e−ν2τ

ν2

)2

dτ = 0,(A.112)

1

n1

∫ ∞

0
θ(τ)dτ + cr

∫ ∞

0
θ(τ)

1− e−ν2τ

ν2
dτ − ϕβ

[
1

n1

∫ ∞

0
α(τ)

1− e−ν2τ

ν2
dτ + cr

∫ ∞

0
α(τ)

(
1− e−ν2τ

ν2

)2

dτ

]
= 0,(A.113)

∫ ∞

0
θ(τ)

1− e−ν2τ

ν2
dτ − ϕβ

∫ ∞

0
α(τ)

(
1− e−ν2τ

ν2

)2

dτ = 0.(A.114)

Equations (A.112) and (A.113) imply (A.92). Equation (A.92) has a solution ν2. Indeed, when ν2 goes to infinity, the left-hand

side is

1

ν2

[
1−

∫∞
0 θ(τ)e−ν2τdτ∫∞

0 θ(τ)dτ

]
=

1

ν2

[
1 + o

(
1

ν2

)]
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because
θ(τ)
τ

has a finite limit at zero, and the right-hand side is

1

ν2

[
1−

∫∞
0 α(τ)(1− e−ν2τ )e−ν2τdτ∫∞

0 α(τ)(1− e−ν2τ )dτ

]
=

1

ν2

[
1−

α(0)

ν2
∫∞
0 α(τ)dτ

+ o

(
1

ν2

)]

because α(τ) has a positive limit at zero. Hence, the left-hand side exceeds the right-hand side. When (α(τ), {θk(τ)}k=1,..,K)

become zero for τ larger than a finite threshold T , and ν2 goes to minus infinity, the left-hand side is

e−ν2T

ν2

∫∞
0 θ(τ)

[
eν2T − eν2(T−τ)

]
dτ∫∞

0 θ(τ)dτ
=

e−ν2T

ν22

θ(T )∫∞
0 θ(τ)dτ

+ o

(
1

ν22

)
,

and is smaller than the right-hand side, which is

e−ν2T

ν2

∫∞
0 α(τ)

[
eν2T − eν2(T−τ)

]2
dτ∫∞

0 α(τ)
[
eν2T − eν2(T−τ)

]
dτ

=
e−ν2T

−2ν2
+ o

(
1

ν2

)
.

Hence, a solution ν2 ∈ (−∞,∞) to (A.92) exists. When T = ∞, (α(τ), θ(τ)) ≈ (αe−δατ , θe−δ′ατ ) for τ large and for 0 <

δα ≤ δ′α. When ν2 goes to − δα
2
, the right-hand side goes to infinity, while the left-hand side remains finite. Hence, a solution

ν2 ∈
(
− δα

2
,∞
)
to (A.92) exists.

Using (A.112) to eliminate cr in (A.111), we find n1 = n1. Equations (A.112) and (A.114) imply cr = cr and ϕβ = ϕβ ,

respectively. The Cauchy-Schwarz inequality implies n1 > 0, and hence cr < 0. Q.E.D.

Proof of Proposition 6: Proceeding as in the proof of Proposition 3, we find that the FB regression coefficient is

bFB =
NFB,rVar(rt) +NFB,βVar(βt)

[Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]2 Var(rt) +
[
Aβ(τ)−Aβ(τ −∆τ)

]2
Var(βt)

=
NFB,r

σ2
r

κr
+NFB,β

σ2
β

κβ

[Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]2
σ2
r

κr
+
[
Aβ(τ)−Aβ(τ −∆τ)

]2 σ2
β

κβ

,(A.115)

where

NFB,j =
[
Aj(τ)−Aj(τ −∆τ)e−κj∆τ −Aj(∆τ)

]
[Aj(τ)−Aj(τ −∆τ)−Aj(∆τ)]

for j = r, β. Taking the limit in (A.115) when ∆τ → 0, and noting from (A.75) and (A.76) that
Ar(∆τ)

∆τ
→ 1 and

Aβ(∆τ)

∆τ
→ 0,

we find

(A.116) bFB =
[A′

r(τ) + κrAr(τ)− 1] [A′
r(τ)− 1]

σ2
r

κr
+
[
A′

β(τ) + κβAβ(τ)
]
A′

β(τ)
σ2
β

κβ

[A′
r(τ)− 1]2

σ2
r

κr
+A′

β(τ)
2
σ2
β

κβ

.
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For τ < min{τ̄ , τ̂}, Ar(τ) > 0, Aβ(τ) > 0 and A′
β(τ) > 0. Moreover, (A.73) implies

A′
r(τ) + κrAr(τ)− 1 = −aσ2

rIr,rAr(τ)− aσ2
βIr,βAβ(τ) ≤ 0,(A.117)

A′
r(τ)− 1 = −

(
κr + aσ2

rIr,r
)
Ar(τ)− aσ2

βIr,βAβ(τ) < 0,(A.118)

where the inequalities follow from Ar(τ) > 0, Aβ(τ) > 0, Ir,r ≥ 0 and Ir,β ≥ 0, which in turn follows from M1,2 ≥ 0 and (A.26).

Equations (A.116), Aβ(τ) > 0, A′
β(τ) > 0, (A.117) and (A.118) imply bFB > 0.

When a ≈ 0, (A.75), (A.76) and (ν1, ν2, ϕr, ϕβ) ≈ (κr, κβ , a
3cr, acβ) (Lemma A.2) imply

bFB =

ν1−κr
ν1

(1− e−κrτ )2
σ2
r

κr
+ a2c2β

[
L′
β(τ) + κβLβ(τ)

]
L′
β(τ)

σ2
β

κβ

(1− e−κrτ )2
σ2
r

κr
+ a2c2βL

′
β(τ)

2
σ2
β

κβ

+ o(a2),

where

Lβ(τ) ≡
1− e−κβτ

κβ
−

1− e−κrτ

κr
.

Since Lβ(τ)L
′
β(τ) > 0, and (A.85) and (A.93) imply

(A.119) ν1 − κr = aσ2
r

∫ ∞

0
α(τ)

(
1− e−κrτ

κr

)2

dτ + o(a2),

bFB > 0.

When a ≈ ∞, (A.75), (A.76) and (ν1, ν2, ϕr, ϕβ) ≈ (a
1
3 n1, ν2, a

− 1
3 cr, ϕβ) (Lemma A.2) imply that for τ bounded away from

zero

(A.120) bFB =

σ2
r

κr
+ ϕ

2
β

(
e−ν2τ + κβ

1−e−ν2τ

ν2

)
e−ν2τ

σ2
β

κβ

σ2
r

κr
+ ϕ

2
βe

−2ν2τ
σ2
β

κβ

+ o(1) = 1 +
ϕ
2
β

1−e−ν2τ

ν2
e−ν2τσ2

β

σ2
r

κr
+ ϕ

2
βe

−2ν2τ
σ2
β

κβ

+ o(1).

Hence, bFB > 1. We next show that bFB increases in τ if (43) holds. Equation (43) implies that the left-hand side of (A.92)

exceeds the right-hand side for ν2 = 0, and hence (A.92) has a solution ν2 < 0. We write (A.120) as

(A.121) bFB = 1 +
ϕ
2
βNFB(τ)σ2

β

σ2
r

κr
+ ϕ

2
βDFB(τ)

σ2
β

κβ

+ o(1),

where

NFB(τ) ≡
e2zτ − ezτ

z
,

DFB(τ) ≡ e2zτ ,
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and z ≡ −ν2 > 0, and consider the derivative

 ϕ
2
βNFB(τ)σ2

β

σ2
r

κr
+ ϕ

2
βDFB(τ)

σ2
β

κβ


′

=

σ2
r

κr
ϕ
2
βσ

2
βN

′
FB(τ) + ϕ

4
β

σ4
β

κβ
[N ′

FB(τ)DFB(τ)−NFB(τ)D′
FB(τ)][

σ2
r

κr
+ ϕ

2
βDFB(τ)

σ2
β

κβ

]2 .

Since [
NFB(τ)

DFB(τ)

]′
=

[
1− e−zτ

z

]′
= e−zτ > 0,

N ′
FB(τ)DFB(τ)−NFB(τ)D′

FB(τ) > 0. Since, in addition,

N ′
FB(τ) = 2e2zτ − ezτ > 0,

bFB increases in τ .

Proceeding as in the proof of Proposition 3, we find that the CS regression coefficient is

bCS =
NCS,rVar(rt) +NCS,βVar(βt)

∆τ
τ−∆τ

{[
Ar(τ)

τ
− Ar(∆τ)

∆τ

]2
Var(rt) +

[
Aβ(τ)

τ
− Aβ(∆τ)

∆τ

]2
Var(βt)

}

=
NCS,r

σ2
r

κr
+NCS,β

σ2
β

κβ

∆τ
τ−∆τ

{[
Ar(τ)

τ
− Ar(∆τ)

∆τ

]2 σ2
r

κr
+
[
Aβ(τ)

τ
− Aβ(∆τ)

∆τ

]2 σ2
β

κβ

} ,(A.122)

where

NCS,j =

[
Aj(τ −∆τ)

τ −∆τ
e−κj∆τ −

Aj(τ)

τ

] [
Aj(τ)

τ
−

Aj(∆τ)

∆τ

]
for j = r, β. Taking the limit in (A.122) when ∆τ → 0, we find

bCS →

[
Ar(τ)

τ
− [A′

r(τ) + κrAr(τ)]
] [

Ar(τ)
τ

− 1
]

σ2
r

κr
+
[
Aβ(τ)

τ
−
[
A′

β(τ) + κβAβ(τ)
]]

Aβ(τ)

τ

σ2
β

κβ[
Ar(τ)

τ
− 1
]2 σ2

r
κr

+
[
Aβ(τ)

τ

]2 σ2
β

κβ

= 1−
[A′

r(τ) + κrAr(τ)− 1]
[
Ar(τ)

τ
− 1
]

σ2
r

κr
+
[
A′

β(τ) + κβAβ(τ)
]

Aβ(τ)

τ

σ2
β

κβ[
Ar(τ)

τ
− 1
]2 σ2

r
κr

+
[
Aβ(τ)

τ

]2 σ2
β

κβ

.(A.123)

For τ < min{τ̄ , τ̂}, Aβ(τ) > 0, A′
β(τ) > 0, and (A.117) and (A.118) hold. Equation (A.118) and the initial condition Ar(0) = 0

imply Ar(τ)− τ < 0. Equations (A.9), Aβ(τ) > 0, A′
β(τ) > 0, (A.117) and Ar(τ)− τ < 0 imply bCS < 1.

When a ≈ 0, (A.75), (A.76), (ν1, ν2, ϕr, ϕβ) ≈ (κr, κβ , a
3cr, acβ) (Lemma A.2) and (A.119) imply

bCS = 1− a
σ2
r

(
1− e−κrτ

)
κr

(
1− 1−e−κrτ

κrτ

) ∫ ∞

0
α(τ)

(
1− e−κrτ

κr

)2

dτ + o(a).
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Hence, bCS is smaller than and close to one. Moreover, bCS increases in τ because the function K(x) defined in Proposition 3 is

increasing for x > 0.

When a ≈ ∞, (A.75), (A.76) and (ν1, ν2, ϕr, ϕβ) ≈ (a
1
3 n1, ν2, a

− 1
3 cr, ϕβ) (Lemma A.2) imply that for τ bounded away from

zero

(A.124) bCS = 1−
σ2
r

κr
+ ϕ

2
β

(
e−ν2τ + κβ

1−e−ν2τ

ν2

)
1−e−ν2τ

ν2τ

σ2
β

κβ

σ2
r

κr
+ ϕ

2
β

(
1−e−ν2τ

ν2τ

)2 σ2
β

κβ

+ o(1).

Hence, bCS < 1. We next show that bCS is negative and decreasing in τ if (43) holds. We write (A.124) as

(A.125) bCS = 1−
σ2
r

κr
+ ϕ

2
βNCS(τ)

σ2
β

κβ

σ2
r

κr
+ ϕ

2
βDCS(τ)

σ2
β

κβ

+ o(1),

where

NCS(τ) ≡
(
ezτ + κβ

ezτ − 1

z

)
ezτ − 1

zτ
,

DCS(τ) ≡
(
ezτ − 1

zτ

)2

,

and z ≡ −ν2 > 0. Equation (A.125) implies

(A.126) bCS = −
ϕ
2
β [NCS(τ)−DCS(τ)]

σ2
β

κβ

σ2
r

κr
+ ϕ

2
βDCS(τ)

σ2
β

κβ

+ o(1).

Since

NCS(τ)−DCS(τ) =

[
ezτ +

(
κβ −

1

τ

)
ezτ − 1

z

]
ezτ − 1

zτ

>

[
ezτ −

ezτ − 1

zτ

]
ezτ − 1

zτ
=

zτezτ − ezτ + 1

zτ

ezτ − 1

zτ

and xex − ex + 1 > 0 for all x, (A.126) implies bCS < 0. Consider next the derivative

 σ2
r

κr
+ ϕ

2
βNCS(τ)

σ2
β

κβ

σ2
r

κr
+ ϕ

2
βDCS(τ)

σ2
β

κβ


′

=

σ2
r

κr
ϕ
2
β

σ2
β

κβ
[N ′

CS(τ)−D′
CS(τ)] + ϕ

4
β

σ4
β

κ2
β

[N ′
CS(τ)DCS(τ)−NCS(τ)D′

CS(τ)][
σ2
r

κr
+ ϕ

2
βDCS(τ)

σ2
β

κβ

]2 .
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Since

N ′
CS(τ)−D′

CS(τ) =

[
zezτ +

(
κβ −

1

τ

)
ezτ +

ezτ − 1

zτ2

]
ezτ − 1

zτ

+

[
ezτ +

(
κβ −

1

τ

)
ezτ − 1

z

]
z2τezτ − z (ezτ − 1)

z2τ2

>
z2τ2ezτ − zτezτ + ezτ − 1

zτ2
ezτ − 1

zτ
+

zτezτ − ezτ + 1

zτ

zτezτ − ezτ + 1

zτ2

and x2ex − xex + ex − 1 > 0 for all x, N ′
CS(τ)−D′

CS(τ) > 0. Since

[
NCS(τ)

DCS(τ)

]′
=

[
zτezτ

ezτ − 1

]′
= zezτ

(1 + zτ) (ezτ − 1)− zτezτ

(ezτ − 1)2
= zezτ

ezτ − 1− zτ

(ezτ − 1)2

and ex − 1− x > 0 for all x, N ′
CS(τ)DCS(τ)−NCS(τ)D′

CS(τ) > 0. Hence, bCS decreases in τ . Q.E.D.

Proof of Proposition 7: Substituting C(τ) from (41) into (42), using Γ = Diag(κr, κβ) and Σ = Diag(σ2
r , σ

2
β), and dropping

the subscript 1 from functions of the single demand factor, we find

χr = κrr + aσ2
r

[∫ ∞

0
θ0(τ)Ar(τ)dτ

− χr

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ − χβ

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

+
σ2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2du

)
Ar(τ)dτ +

σ2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2du

)
Ar(τ)dτ

]
,(A.127)

χβ = aσ2
β

[∫ ∞

0
θ0(τ)Aβ(τ)dτ

− χr

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ − χβ

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

+
σ2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2du

)
Aβ(τ)dτ +

σ2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2du

)
Aβ(τ)dτ

]
.(A.128)

The system of (A.127) and (A.128) is linear in (χr, χβ) and its solution is

χr =
1

D

{[
κrr + aσ2

r

∫ ∞

0
θ0(τ)Ar(τ)dτ + Cr

] [
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

−
[
aσ2

β

∫ ∞

0
θ0(τ)Aβ(τ)dτ + Cβ

] [
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]}
,(A.129)

χβ =
1

D

{[
aσ2

β

∫ ∞

0
θ0(τ)Aβ(τ)dτ + Cβ

] [
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

−
[
κrr + aσ2

r

∫ ∞

0
θ0(τ)Ar(τ)dτ + Cr

] [
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]}
,(A.130)
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where

D ≡
[
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

] [
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

−
[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

] [
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]
and

Cj ≡
aσ2

jσ
2
r

2

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)

2du

)
Aj(τ)dτ +

aσ2
jσ

2
β

2

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)

2du

)
Aj(τ)dτ

for j = r, β. The effect of a change in the demand intercept from θ0(τ) to θ0(τ) + ∆θ0(τ) on the yield y
(τ)
t for maturity τ is

∆y
(τ)
t ≡ ∆C(τ)

τ
, which from (41), (A.129) and (A.130) is

∆y
(τ)
t =

1

D

{[
aσ2

r

∫ ∞

0
∆θ0(τ)Ar(τ)dτ

] [
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

−
[
aσ2

β

∫ ∞

0
∆θ0(τ)Aβ(τ)dτ

] [
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]} ∫ τ
0 Ar(u)du

τ

+
1

D

{[
aσ2

β

∫ ∞

0
∆θ0(τ)Aβ(τ)dτ

] [
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

−
[
aσ2

r

∫ ∞

0
∆θ0(τ)Ar(τ)dτ

] [
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]} ∫ τ
0 Aβ(u)du

τ
.(A.131)

Hence, the change ∆θ0(τ) affects yields only through
∫∞
0 ∆θ0(τ)Ar(τ)dτ and

∫∞
0 ∆θ0(τ)Aβ(τ)dτ .

When the change ∆θ0(τ) is a Dirac function with point mass at τ∗,∫ ∞

0
∆θ0(τ)Aj(τ)dτ = Aj(τ

∗)

for j = r, β, and (A.131) becomes

(A.132) ∆y
(τ)
t,τ∗ =

1

D

[
Λr(τ

∗)

∫ τ
0 Ar(u)du

τ
+ Λβ(τ

∗)

∫ τ
0 Aβ(u)du

τ

]
,

where

Λr(τ
∗) ≡ aσ2

rAr(τ
∗)

[
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Aβ(τ)dτ

]

− aσ2
βAβ(τ

∗)

[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]
,

Λβ(τ
∗) ≡ aσ2

βAβ(τ
∗)

[
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Ar(τ)dτ

]

− aσ2
rAr(τ

∗)

[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

]
.
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Using (A.132), we can write (44) in the equivalent form[
Λr(τ1)

∫ τ1
0 Ar(u)du

τ1
+ Λβ(τ1)

∫ τ1
0 Aβ(u)du

τ1

][
Λr(τ2)

∫ τ2
0 Ar(u)du

τ2
+ Λβ(τ2)

∫ τ2
0 Aβ(u)du

τ2

]

>

[
Λr(τ1)

∫ τ2
0 Ar(u)du

τ2
+ Λβ(τ1)

∫ τ2
0 Aβ(u)du

τ2

][
Λr(τ2)

∫ τ1
0 Ar(u)du

τ1
+ Λβ(τ2)

∫ τ1
0 Aβ(u)du

τ1

]

⇔
[
Λr(τ1)Λβ(τ2)− Λr(τ2)Λβ(τ1)

] [∫ τ1
0 Ar(u)du

τ1

∫ τ2
0 Aβ(u)du

τ2
−
∫ τ2
0 Ar(u)du

τ2

∫ τ1
0 Aβ(u)du

τ1

]
> 0.(A.133)

To show that (A.133) holds, we show that each of the two terms in brackets is positive. The second term is positive because it

has the same sign as∫ τ1

0
Ar(u)du

∫ τ2

0
Aβ(u)du−

∫ τ2

0
Ar(u)du

∫ τ1

0
Aβ(u)du

=

∫ τ1

0
Ar(u)du

∫ τ2

τ1

Aβ(u)du−
∫ τ2

τ1

Ar(u)du

∫ τ1

0
Aβ(u)du

>

∫ τ1

0

[
Aβ(u)

Ar(τ1)

Aβ(τ1)

]
du

∫ τ2

τ1

Aβ(u)du−
∫ τ2

τ1

[
Aβ(u)

Ar(τ1)

Aβ(τ1)

]
du

∫ τ1

0
Aβ(u)du = 0,

where the second step follows because Aβ(τ) > 0 and
[
Ar(τ)
Aβ(τ)

]′
< 0 for τ ∈ (0, τ̂). The first term is equal to

[
Ar(τ1)Aβ(τ2)−Ar(τ2)Aβ(τ1)

]
D,

and is positive if D > 0 since Aβ(τ) > 0 and
[
Ar(τ)
Aβ(τ)

]′
< 0 for τ ∈ (0, τ̂). Integration by parts implies that for j = r, β,∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ

=

[
α(τ)

(∫ τ

0
Aj(u)du

)2
]∞
0

+

∫ ∞

0

(∫ τ

0
Aj(u)du

)2

dα̂(τ)−
∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ,(A.134)

where dα̂(τ) denotes the measure generated by the non-decreasing function −α(τ) (which is possibly discontinuous at a finite

threshold T ). Since

[
α(τ)

(∫ τ

0
Aj(u)du

)2
]∞
0

= lim
τ→∞

[
α(τ)

(∫ τ

0
Aj(u)du

)2
]
= 0,

where the second step follows because M is finite, (A.134) implies

(A.135)

∫ ∞

0
α(τ)

(∫ τ

0
Aj(u)du

)
Aj(τ)dτ =

∫∞
0

(∫ τ
0 Aj(u)du

)2
dα̂(τ)

2
≥ 0,
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Likewise, ∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ +

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

= 2

[
α(τ)

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)]∞
0

+ 2

∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

−
∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ −

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

⇒
∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ +

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

=

∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ),

and hence [∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)du

)
Aβ(τ)dτ

] [∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)du

)
Ar(τ)dτ

]

≤
[∫∞

0

(∫ τ
0 Ar(u)du

) (∫ τ
0 Aβ(u)du

)
dα̂(τ)

]2
4

.(A.136)

Equations (A.135) and (A.136) imply that D > 0 if[∫ ∞

0

(∫ τ

0
Ar(u)du

)2

dα̂(τ)

][∫ ∞

0

(∫ τ

0
Aβ(u)du

)2

dα̂(τ)

]

≥
[∫ ∞

0

(∫ τ

0
Ar(u)du

)(∫ τ

0
Aβ(u)du

)
dα̂(τ)

]2
,

which holds because of the Cauchy-Schwarz inequality. Q.E.D.

APPENDIX B: DEMAND OF PREFERRED-HABITAT INVESTORS

There are overlapping generations of preferred-habitat investors living for a period of length T < ∞, and of arbitrageurs living

for a period of length dt. Thus, at each point in time there is a continuum of investor generations and one arbitrageur generation.

Arbitrageurs and investors receive endowment W at the beginning of their life and consume at the end of their life. Arbitrageurs

use their endowment to buy bonds. Investors use their endowment to buy bonds and to invest in a private opportunity (“real

estate”) that pays at the end of their life. To ensure that the slope of the investors’ demand for bonds is finite, we require that

substitution between bonds and the private opportunity is imperfect. We model imperfect substitution by assuming that bonds

pay in a good 1 (“money”) and the private opportunity pays in a different good 2 (“real estate services”). The endowment W

is in good 1. Arbitrageurs and investors can use good 1 to invest in bonds and in the private opportunity.

Consider the optimization problem of an investor n born at time 0. We denote by Ẑ
(τ)
n,t the number of units of the bond

with maturity τ that the investor holds at time t ∈ [0, T ], where one unit of the bond is an investment in the bond with face
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value one. We denote by Wn,t the value of the investor’s bond portfolio at time t and by dcn,t the investment in the private

opportunity between t and t+dt, both expressed in units of good 1. We denote by (Ŵn,t, dĉn,t) the counterparts of (Wn,t, dcn,t)

when expressed in units of the bond maturing at time T :

Ŵn,t ≡
Wn,t

P
(T−t)
t

,

dĉn,t ≡
dcn,t

P
(T−t)
t

.

We finally denote by β̂
(T−t)
n,t > 0 the number of units of good 2 that an investment of one unit of good 1 at time t yields at time

T . The investor’s budget constraint is

(B.1) dŴn,t =

∫ T

0
Ẑ

(τ)
n,td

(
P

(τ)
t

P
(T−t)
t

)
dτ − dĉn,t.

The investor’s utility at time T is

(B.2) u(Cn,T ) +

∫ T

0
β̂
(T−t)
n,t P

(T−t)
t dĉn,t,

and consists of two parts: a utility u(Cn,T ) that is an increasing and concave function of the consumption Cn,T of good 1 at time

T , and a utility
∫ T
0 β̂

(T−t)
n,t P

(T−t)
t dĉn,t that is equal to the consumption of good 2 at time T and is derived from the accumulated

investment in the private opportunity between times 0 and T . The marginal utility u′(Cn,T ) converges to infinity when Cn,T

goes to a lower bound C and to zero when Cn,T goes to infinity. The investor has max-min preferences. At each time t ∈ [0, T ],

the investor chooses (Ẑ
(τ)
n,t , ĉn,t) to maximize the minimum of (B.2) over sample paths of qt = (rt, β1,t, .., βK,t)

⊤ and β̂
(T−t)
n,t ,

subject to the budget constraint (B.1) and the terminal condition Cn,T = Ŵn,T .

Proposition B.1 Assume that Σ has full rank, K ≥ 1, β̂
(T−t)
n,t is a function of (β1,t, .., βK,t), and the term structure involves

no arbitrage, i.e., (34) holds. At time t, the investor holds only the bond maturing at time T and no other bonds. The number

Ẑ
(T−t)
n,t of units of the bond held by the investor solves

(B.3) u′
(
Ẑ

(T−t)
n,t

)
= P

(T−t)
t β̂

(T−t)
n,t .

Proof: Defining (µẐ,n,t, σẐ,n,t) by

∫ T

0
Ẑ

(τ)
n,td

(
P

(τ)
t

P
(T−t)
t

)
dτ ≡ µẐ,n,tdt+ σẐ,n,tdBt,
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where dBt = (dBr,t, dBβ,1,t, .., dBβ,K,t)
⊤, we write the budget constraint (B.1) as

(B.4) dŴn,t = µẐ,n,tdt+ σẐ,n,tdBt − dĉn,t.

Integrating (B.4) from 0 to T and using the terminal condition Cn,T = Ŵn,T , we write the investor’s optimization problem at

t = 0 as

max
(Ẑ

(τ)
n,t ,ĉn,t,∆ĉn,0)

min
(qt,β̂

(T−t)
n,t )

[
u

(
Ŵn,0 +

∫ T

0
µẐ,n,tdt+

∫ T

0
σẐ,n,tdBt −∆ĉn,0 −

∫ T

0
dĉn,t

)

+β̂
(T )
n,0P

(T )
0 ∆ĉn,0 +

∫ T

0
β̂
(T−t)
n,t P

(T−t)
t dĉn,t

]
,(B.5)

where we allow for the possibility that ĉn,t has a discrete change ∆ĉn,0 at t = 0. Since Σ has full rank and K ≥ 1, rt is not

perfectly correlated with (β1,t, .., βK,t). Since, in addition, β̂
(T−t)
n,t is a function of (β1,t, .., βK,t), sample paths of qt and β̂

(T−t)
n,t

exist such that β̂
(T−t)
n,t P

(T−t)
t = u′

(
Ŵn,0 −∆ĉn,0

)
for t > ϵ and for any ϵ > 0. Hence, the minimum in (B.5) is smaller than

min
qt,β̂

(T−t)
n,t

[
u

(
Ŵn,0 +

∫ T

0
µẐ,n,tdt+

∫ T

0
σẐ,n,tdBt −∆ĉn,0 −

∫ T

0
dĉn,t

)

+β̂
(T )
n,0P

(T )
0 ∆ĉn,0 + u′

(
Ŵn,0 −∆ĉn,0

)∫ T

0
dĉn,t

]
,

which in turn is smaller than

(B.6) min
qt,β̂

(T−t)
n,t

[
u
(
Ŵn,0 −∆ĉn,0

)
+ u′

(
Ŵn,0 −∆ĉn,0

)(∫ T

0
µẐ,n,tdt+

∫ T

0
σẐ,n,tdBt

)
+ β̂

(T )
n,0P

(T )
0 ∆ĉn,0

]

because u is concave. If σẐ,n,t ̸= 0 for any interval in (0, T ), then the minimum in (B.6) is minus infinity because the Brownian

motion has infinite variation. Therefore, σẐ,n,t = 0, i.e., the investor holds the bond maturing at time T and zero units of all

other bonds. Since absence of arbitrage requires µẐ,n,t = 0, (B.6) is smaller than

u
(
Ŵn,0 −∆ĉn,0

)
+ β̂

(T )
n,0P

(T )
0 ∆ĉn,0,

and hence

max
(Ẑ

(τ)
n,t ,ĉn,t,∆ĉn,0)

min
(qt,β̂

(T−t)
n,t )

[
u

(
Ŵn,0 +

∫ T

0
µẐ,n,tdt+

∫ T

0
σẐ,n,tdBt −∆ĉn,0 −

∫ T

0
dĉn,t

)

+β̂
(T )
n,0P

(T )
0 ∆ĉn,t +

∫ T

0
β̂
(T−t)
n,t P

(T−t)
t dĉn,t

]

≤ max
∆ĉn,0

[
u
(
Ŵn,0 −∆ĉn,0

)
+ β̂

(T )
n,0P

(T )
0 ∆ĉn,0

]
.(B.7)
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Setting Ẑ
(τ)
n,t = 0 for t ≥ 0 and τ ̸= T − t, and dĉn,t = 0 for t > 0, in (B.5), we find that (B.7) holds also in the reverse sense,

and is therefore an equality. The optimal ∆ĉn,0 thus satisfies

(B.8) u′
(
Ŵn,0 −∆ĉn,0

)
= β̂

(T )
n,0P

(T )
0 .

Since Ŵn,0 − ∆ĉn,0 represents units of the bond maturing at time T that the investor holds at time 0, (B.8) yields (B.3) for

t = 0. The same argument yields (B.3) for t > 0. Q.E.D.

Proposition B.1 implies that preferred-habitat investors demand only the bond whose maturity coincides with the time when

they consume. To ensure that the demand by preferred-habitat investors takes the specific functional form (5)-(7), we assume

specific functions for the utility u and the return β̂
(τ)
n,t on the private opportunity.

Suppose C = −∞, u(Cn,T ) = −e−Cn,T and β̂
(τ)
n,t = eβ

(τ)
t , where β

(τ)
t is given by (6) and (7). Proposition B.1 implies that

the number Ẑ
(T−t)
n,t of units of the bond maturing at time T and held at time t by an investor n born at time 0 is given by

e
−Ẑ

(T−t)
n,t = P

(T−t)
t β̂

(T−t)
n,t ⇔ Ẑ

(T−t)
n,t = − log

(
P

(T−t)
t

)
− β

(T−t)
t .

This coincides with the demand (5)-(7) with α(τ) = 1, except that (5)-(7) concern the present value of the bond rather than its

face value, i.e., the units of the bond. To derive the demand (5)-(7) expressed in present-value terms, we modify the assumed

functions for u and β̂
(τ)
n,t . We can obtain the demand (5)-(7) for a set of values of qt whose probability can be made arbitrarily

close to one.

Suppose that there are two types of preferred-habitat investors born at each time t, in equal measure. For type 1 investors,

C = 0, u(Cn,t+T ) = log(Cn,t+T ) and β̂
(T+t−t′)
n,t′ = − 1

min{β(T+t−t′)
t′ ,−ϵ}

, where β
(τ)
t is given by (6) and (7), and ϵ is positive and

small. For type 2 investors, C = −∞ and β̂
(T+t−t′)
n,t′ = 1. To define u(Cn,t+T ) for type 2 investors, we start with the function

N(x) ≡ −
log(x)

x
,

defined for x > 0. The function N(x) converges to infinity when x goes to zero, and to zero when x goes to infinity. It decreases

for x ∈ (0, e), and increases for x ∈ (e, T ). Its minimum value, obtained for x = e, is − 1
e
. We take x to represent marginal

utility u′(Cn,t+T ), and N(x) to represent Cn,t+T . This defines u(Cn,t+T ) for Cn,t+T > − 1
e
and u′(Cn,t+T ) ∈ (0, e). To define

u(Cn,t+T ) for Cn,t+T < − 1
e

and u′(Cn,t+T ) > e, we extend u′(Cn,t+T ) as a linear function of Cn,T . (Other extensions are

possible as well.) We set the derivative of the linear function so that u′(Cn,t+T ) is continuously differentiable at the extension

point, and take the extension point to be u′(Cn,t+T ) = e(1 − ϵ) (rather than u′(Cn,t+T ) = e) so that the derivative is finite.
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We thus set

u′(Cn,t+T ) = N−1(Cn,t+T ) for Cn,t+T ≥ N [e(1− ϵ)],

u′(Cn,t+T ) = e(1− ϵ)−
e2(1− ϵ)2

log(1− ϵ)
[Cn,t+T −N [e(1− ϵ)]] for Cn,t+T < N [e(1− ϵ)].

Since u′(Cn,t+T ) is positive and decreasing, u(Cn,t+T ) is increasing and concave.

Proposition B.1 implies that the number Ẑ
(T−t)
n,t of units of the bond maturing at time T and held at time t by a type 1

investor born at time 0 is given by

1

Ẑ
(T−t)
n,t

= P
(T−t)
t β̂

(T−t)
n,t .

This yields the demand

P
(T−t)
t Ẑ

(T−t)
n,t =

1

β̂
(T−t)
n,t

= −β
(T−t)
t ,

expressed in present-value terms, when β
(T−t)
t < −ϵ. Proposition B.1 implies that the number Ẑ

(T−t)
n,t of units of the bond

maturing at time T and held at time t by a type 2 investor born at time 0 is given by

N−1
(
Ẑ

(T−t)
n,t

)
= P

(T−t)
t

when P
(T−t)
t < e(1− ϵ). This yields the demand

P
(T−t)
t Ẑ

(T−t)
n,t = P

(T−t)
t N

(
P

(T−t)
t

)
= − log

(
P

(T−t)
t

)
,

expressed in present-value terms. The aggregate demand, expressed in present-value terms, across type 1 and type 2 investors

when β
(T−t)
t < −ϵ and P

(T−t)
t < e(1− ϵ) is

− log
(
P

(T−t)
t

)
− β

(T−t)
t

and coincides with the demand (5)-(7) with α(τ) = 1. Condition β
(T−t)
t < −ϵ requires that the demand intercept in (5) is

negative (smaller than −ϵ). Condition P
(T−t)
t < e(1− ϵ) requires that zero-coupon bonds trade below e(1− ϵ) and hence below

par value. The probability of the set of values of qt such that the two conditions hold simultaneously can be made arbitrarily

close to one if r is sufficiently large and θ0(τ) sufficiently small.

Proposition B.1 and the subsequent analysis require K ≥ 1. To extend them to K = 0, we assume that β̂
(T−t)
n,t is equal to a

deterministic function of T − t plus random noise that is independent across investors n in the same generation. Because of the

random noise, β̂
(T−t)
n,t is not perfectly correlated with rt, and the proof of Proposition B.1 goes through. Because the random

noise is independent across investors in the same generation, β̂
(T−t)
n,t averages to a deterministic function of T − t.
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APPENDIX C: CALIBRATION

C.1. Model-Generated Moments

Equations (1) and (30) imply that when there is one demand factor, the yield for maturity τ is

y
(τ)
t =

Ar(τ)rt +Aβ(τ)βt + C(τ)

τ
.

When, in addition, the demand factor is independent of the short rate, the volatility of the yield is

(C.1)

√
Var

(
y
(τ)
t

)
=

√
Ar(τ)2Var(rt) +Aβ(τ)2Var(βt)

τ
=

√
Ar(τ)2

σ2
r

2κr
+Aβ(τ)2

σ2
β

2κβ

τ
.

The volatility of yield changes during an interval of length ∆τ is√
Var

(
y
(τ)
t+∆τ − y

(τ)
t

)
=

√
Ar(τ)2Var(rt+∆τ − rt) +Aβ(τ)2Var(βt+∆τ − βt)

τ

=

√
Ar(τ)2

σ2
r

κr
(1− e−κr∆τ ) +Aβ(τ)2

σ2
β

κβ
(1− e−κβ∆τ )

τ
,(C.2)

where the second step follows from (A.7) and its counterpart equation for βt. The covariance of yield changes is

Cov
(
y
(τ1)
t+∆τ − y

(τ1)
t , y

(τ2)
t+∆τ − y

(τ2)
t

)

=
Ar(τ1)Ar(τ2)Var(rt+∆τ − rt) +Aβ(τ1)Aβ(τ2)Var(βt+∆τ − βt)

τ

=
Ar(τ1)Ar(τ2)

σ2
r

κr
(1− e−κr∆τ ) +Aβ(τ1)Aβ(τ2)

σ2
β

κβ
(1− e−κβ∆τ )

τ
.(C.3)

The correlation of yield changes can be computed from (C.2) and (C.3). The principal components can be computed from the

covariance matrix of yield changes, with element (τ1, τ2) given by (C.3). The FB and CS regression coefficients are given by

(A.115) and (A.122), respectively.

The volume during an infinitesimal interval [t, t+dt] for the bond with maturity τ ∈ (0, T ) is the absolute value of the change

dZ
(τ)
t in the demand of preferred-habitat investors. The change dZ

(τ)
t is

dZ
(τ)
t = −d

{
α(τ) log(P

(τ)
t ) + β

(τ)
t

}
= d

{
α(τ)

[
Ar(τ)rt +Aβ(τ)βt + C(τ)

]
− [θ0(τ) + θ(τ)βt]

}
,(C.4)

where the first step follows from (5), and the second from (6) and (30) written for one demand factor. Equation (C.4) implies

that expected volume is

E
(∣∣∣dZ(τ)

t

∣∣∣) = E
[
Et

(∣∣∣dZ(τ)
t

∣∣∣)] = E

[√
2

π
Vart

(
dZ

(τ)
t

)]
= E

[√
2

π
V (τ)dt

]
=

√
2

π
V (τ)dt,
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where independence between the short rate and demand implies

V (τ) ≡ α(τ)2Ar(τ)
2σ2

r +
[
α(τ)Aβ(τ)− θ(τ)

]2
σ2
β

= αe−2δατAr(τ)
2σ2

r +
[
αe−δατAβ(τ)− θ

(
e−δατ − e−δθτ

)]2
σ2
β .

In our calculations of relative volume we use
√

V (τ), which is proportional to expected volume.

When yields across all maturities change by ∆y, (1) and (5) imply that the demand of preferred-habitat investors changes by

∆y

∫ ∞

0
α(τ)τdτ = α∆y

∫ ∞

0
e−δατ τdτ = α∆y

1− e−δαT − δαTe−δαT

δ2α
.

Setting (T, δα,∆y) = (30, 0.297, 0.0001) and the demand change to 0.0059, we find α = 5.21.

C.2. Calibrated Parameters

Tables C.I and C.II report the calibrated parameters and the empirical moments used to determine them, for the sub-sample

of nominal yields and the sample of real yields, respectively.

C.3. Elasticities

The matrix in the top panel of Table C.III reports the elasticities of the first seven model-generated moments in Table I

with respect to the first seven parameters, for the main sample of nominal yields. The elasticities are computed by varying each

parameter from its value in Table I times 1.001 to its value in Table I times 0.999, computing the change in the corresponding

model-generated moment, dividing by the value of that moment in the base case, and multiplying by 500.

The elasticities involving (δα, δθ) are hard to interpret because they combine multiple effects. For example, an increase in

δθ lowers the relative volume for long maturities. It also strengthens the effect of demand shocks on yields, since the shocks’

magnitude is θ(τ) = θ
(
e−δατ − e−δθτ

)
, which increases in δθ. This raises the volatility of yields and lowers the correlation

between yield changes at short and long maturities.

To disentangle the effects and facilitate the interpretation of the elasticities, we modify the matrix in the top panel of Table

C.III by subtracting columns i = 4, 5 from columns j = 6, 7, after multiplying each time column i by the scalar needed to make

element (i, j) equal to zero. For i = 4, this amounts to keeping the volatility of annual yield changes constant when changing

(δα, δθ), through a compensating change in aθ. For i = 5, this amounts to keeping the correlation between annual changes to the

one-year yield and to other yields constant when changing (δα, δθ), through a compensating change in aα. Eliminating the effects

of (δα, δθ) on the volatility of yields and on the correlation between them results in the simpler matrix of modified elasticities

in the bottom panel of Table C.III. We focus on that matrix from now on.

The parameter κr has its strongest, negative, effect on the volatility of the one-year yield. The parameter σr has its strongest,

positive, effect on the volatility of the one-year yield and on the volatility of annual changes to that yield. Other parameters
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TABLE C.I

Calibration of model parameters for the sub-sample of nominal yields.

Parameter Value Empirical moment Value

κr

Mean-reversion of rt
0.240

√
Var

(
y
(1)
t

)
Volatility 1-year yield
– Levels

1.89

σr

Diffusion of rt
0.0159

√
Var

(
y
(1)
t+1 − y

(1)
t

)
Volatility 1-year yield
– Annual changes

1.24

κβ

Mean-reversion of βt
0.127

1
30

∑30
τ=1

√
Var

(
y
(τ)
t

)
Volatility τ -year yield
– Levels, average over τ

1.36

aθ
Arb. risk-aversion
× PH demand shock

5305

1
30

∑30
τ=1

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
Volatility τ -year yield
– Annual changes, average over τ

0.705

aα
Arb. risk-aversion
× PH demand slope

80.3

1
30

∑30
τ=1 Corr

(
y
(1)
t+1 − y

(1)
t , y

(τ)
t+1 − y

(τ)
t

)
Correlation 1-year yield with τ -year yield
– Annual changes, average over τ

0.369

δα
PH demand shock
– short maturities

0.269

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (0, 2]
0.199

δθ
PH demand shock
– long maturities

0.279

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (11, 30]
0.094

α
PH demand slope 4.28 Estimate in KVJ 2012 -0.746
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TABLE C.II

Calibration of model parameters for the sample of real yields.

Parameter Value Empirical moment Value

κr

Mean-reversion of rt
0.395

√
Var

(
y
(2)
t

)
Volatility 2-year yield
– Levels

1.59

σr

Diffusion of rt
0.0216

√
Var

(
y
(2)
t+1 − y

(2)
t

)
Volatility 2-year yield
– Annual changes

1.23

κβ

Mean-reversion of βt
0.098

1
19

∑20
τ=2

√
Var

(
y
(τ)
t

)
Volatility τ -year yield
– Levels, average over τ

1.30

aθ
Arb. risk-aversion
× PH demand shock

643

1
19

∑20
τ=2

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
Volatility τ -year yield
– Annual changes, average over τ

0.674

aα
Arb. risk-aversion
× PH demand slope

44.5

1
19

∑20
τ=2 Corr

(
y
(2)
t+1 − y

(2)
t , y

(τ)
t+1 − y

(τ)
t

)
Correlation 2-year yield with τ -year yield
– Annual changes, average over τ

0.660

δα
PH demand shock
– short maturities

0.265

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (0, 2]
0.199

δθ
PH demand shock
– long maturities

0.308

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ)

Relative volume for maturities τ ∈ (11, 30]
0.094

α
PH demand slope 4.16 Estimate in KVJ 2012 -0.746
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TABLE C.III

Elasticities and modified elasticities of model-generated moments with respect to model parameters for the
main sample of nominal yields.

Parameter κr σr κβ aθ aα δα δθ√
Var

(
y
(1)
t

)
-0.538 0.468 -0.006 0.017 -0.041 -0.448 0.500√

Var
(
y
(1)
t+1 − y

(1)
t

)
-0.074 0.467 -0.001 0.012 -0.039 -0.315 0.009

1
19

∑30
τ=1

√
Var

(
y
(τ)
t

)
-0.318 0.344 -0.672 1.493 -0.903 -43.873 43.661

1
19

∑30
τ=1

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
-0.202 0.330 -0.256 1.243 -0.791 -36.446 36.340

1
19

∑30
τ=1 Corr

(
y
(2)
t+1 − y

(2)
t , y

(τ)
t+1 − y

(τ)
t

)
0.083 -0.207 0.225 -1.443 0.514 43.209 -42.273

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ) -0.019 0.179 -0.036 0.028 0.165 -0.379 1.192

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ) 0.189 -0.365 0.236 -0.519 -0.106 15.304 -16.877

Parameter κr σr κβ aθ aα δα δθ√
Var

(
y
(1)
t

)
-0.538 0.468 -0.006 0.017 -0.041 -0.017 0.011√

Var
(
y
(1)
t+1 − y

(1)
t

)
-0.074 0.467 -0.001 0.012 -0.039 -0.018 0.009

1
19

∑30
τ=1

√
Var

(
y
(τ)
t

)
-0.318 0.344 -0.672 1.493 -0.903 0.008 0.003

1
19

∑30
τ=1

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
-0.202 0.330 -0.256 1.243 -0.791 0 0

1
19

∑30
τ=1 Corr

(
y
(2)
t+1 − y

(2)
t , y

(τ)
t+1 − y

(τ)
t

)
0.083 -0.207 0.225 -1.443 0.514 0 0

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ) -0.019 0.179 -0.036 0.028 0.165 0.856 0.327

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ) 0.189 -0.365 0.236 -0.519 -0.106 -0.875 -1.617
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have much weaker effects on these volatilities. Hence, the volatility of the one-year yield identifies κr, and the volatility of annual

changes to that yield identifies σr.

The parameter κβ has its strongest, negative, effect on the average volatility of yields. The parameters (aθ, aα) have their

strongest effects on the average volatility of yields, on the average volatility of annual yield changes, and on the average correlation

between annual changes to the one-year yield and to other yields. Hence, the average volatility of yields identifies κβ , and the

other two moments identify (aθ, aα).23

The parameters (δα, δθ) have their strongest effect on relative volume, positive for short maturities and negative for long

maturities. The effect of δθ on short-maturity volume is weaker. Hence, the relative volume for maturities two years and below

identifies δα, and the relative volume for maturities eleven years and above identifies δθ.

Tables C.IV and C.V provide counterpart matrices to that in the bottom panel of Table C.III, for the sub-sample of nominal

yields and the sample of real yields, respectively. The modified elasticities for these samples have similar magnitudes and signs

to those for the main sample of nominal yields.

C.4. Figures

Figures C.1 and C.2 compare the empirical moments to the model-generated ones, for the sub-sample of nominal yields and

the sample of real yields, respectively. For the sub-sample of nominal yields, the fraction of variation of annual yield changes

explained by the first principal component is 74% in the model and 73.8% in the data. For the sample of real yields, maturities

range from two to twenty. The one-year yield needed to compute the empirical FB and CS coefficients is obtained by spline

interpolation. The first principal component of annual yield changes is scaled to one for the two-year maturity. The fraction of

variation of annual yield changes explained by the first principal component is 83.6% in the model and 85.2% in the data.

C.5. Policy Analysis

Consider an unanticipated change ∆r in the long-run mean r of the short rate rt at time zero that reverts deterministically

to zero at the rate κr. Writing bond prices at time t as

P
(τ)
t = e−[Ar(τ)rt+Aβ(τ)βt+Ar(τ)∆re−κrt+C(τ)]

23Table C.III shows that an increase in aα raises the correlation between yield changes at short and long maturities (element
(5,5) is positive). Intuitively, an increase in α, holding (a, θ) constant, weakens the transmission of short-rate shocks to longer
maturities, and this lowers correlation. At the same time, demand shocks have weaker effects on yields because shocks are better
absorbed when preferred-habitat demand has higher slope. The latter effect lowers volatility and raises correlation. The latter
effect also makes the mapping between aθ and volatility, and between aα and correlation, less clear-cut. To isolate the former
effect, we consider an increase in aα accompanied by an increase in aθ such that the volatility of annual yield changes remains
constant. (This amounts to subtracting column 4 from column 5, after multiplying column 4 by the scalar needed to make
element (4, 5) equal to zero.) Element (5, 5) then turns negative, capturing only the former effect.
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TABLE C.IV

Modified elasticities of model-generated moments with respect to model parameters for the sub-sample of
nominal yields.

Parameter κr σr κβ aθ aα δα δθ√
Var

(
y
(1)
t

)
-0.572 0.454 -0.007 0.025 -0.058 -0.063 0.065√

Var
(
y
(1)
t+1 − y

(1)
t

)
-0.137 0.454 -0.001 0.021 -0.057 -0.062 0.061

1
19

∑30
τ=1

√
Var

(
y
(τ)
t

)
-0.195 0.191 -0.924 2.054 -1.335 0.009 -0.001

1
19

∑30
τ=1

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
-0.122 0.198 -0.507 1.898 -1.251 0 0

1
19

∑30
τ=1 Corr

(
y
(2)
t+1 − y

(2)
t , y

(τ)
t+1 − y

(τ)
t

)
0.157 -0.142 0.406 -2.145 0.930 0 0

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ) -0.045 0.225 -0.107 0.134 0.158 0.938 -0.008

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ) 0.269 -0.362 0.767 -1.626 0.451 -0.724 -1.143

TABLE C.V

Modified elasticities of model-generated moments with respect to model parameters for the sample of real
yields.

Parameter κr σr κβ aθ aα δα δθ√
Var

(
y
(2)
t

)
-0.627 0.460 -0.012 0.028 -0.054 -0.027 0.026√

Var
(
y
(2)
t+1 − y

(2)
t

)
-0.230 0.459 -0.001 0.016 -0.049 -0.028 0.020

1
19

∑20
τ=2

√
Var

(
y
(τ)
t

)
-0.455 0.362 -0.911 1.903 -1.090 0.012 0.003

1
19

∑20
τ=2

√
Var

(
y
(τ)
t+1 − y

(τ)
t

)
-0.386 0.352 -0.427 1.536 -0.916 0 0

1
19

∑20
τ=2 Corr

(
y
(2)
t+1 − y

(2)
t , y

(τ)
t+1 − y

(τ)
t

)
0.129 -0.153 0.377 -1.671 0.683 0 0

∑
0<τ≤2 Volume(τ)∑
0<τ≤30 Volume(τ) -0.094 0.241 -0.084 0.022 0.230 0.838 0.176

∑
11<τ≤30 Volume(τ)∑
0<τ≤30 Volume(τ) 0.457 -0.422 0.514 -0.945 0.051 -0.823 -1.458
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Figure C.1.— Model-generated and empirical moments for the sub-sample of nominal yields.
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Figure C.2.— Model-generated and empirical moments for the sample of real yields.
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and proceeding as in Sections 3 and 4, we find that Ar(τ) solves the ODE

A′
r(τ) + κrAr(τ)− κrAr(τ) = −aσ2

rAr(τ)

∫ ∞

0
α(τ)Ar(τ)Ar(τ)dτ − aσ2

βAβ(τ)

∫ ∞

0
α(τ)Ar(τ)Aβ(τ)dτ.

Proceeding as in the proofs of Lemma 3 and Proposition 7, we find that the solution to the ODE is

Ar(τ) = χr

∫ τ

0
Ar(u)e

−κr(τ−u)du+ χβ

∫ τ

0
Aβ(u)e

−κr(τ−u)du,

where

χr ≡
κr

D

[
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κr(τ−u)du

)
Aβ(τ)dτ

]
,

χβ ≡ −
κr

D
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κr(τ−u)du

)
Aβ(τ)dτ,

and

D ≡
[
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κr(τ−u)du

)
Ar(τ)dτ

]

×
[
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κr(τ−u)du

)
Aβ(τ)dτ

]

−
[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κr(τ−u)du

)
Ar(τ)dτ

]

×
[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κr(τ−u)du

)
Aβ(τ)dτ

]
.

When a = 0, (χr, χβ , Ar(τ), Aβ(τ)) = (κr, 0,
1−e−κrτ

κr
, 0) and

Ar(τ) =

∫ τ

0

(
1− e−κru

)
e−κr(τ−u)du.

Figures C.3 and C.4 show the effects of a forward-guidance announcement about the path of short rates, for the calibrations

based on the sub-sample of nominal yields and the sample of real yields, respectively. In each panel, the red solid line represents

the announcement’s effect on the term structure, and the red dashed line represents the same effect when arbitrageurs are

risk-neutral and the EH holds. The change ∆r in the long-run mean r of the short rate rt is set to -4 (-400 bps). It reverts to

zero at the rate κr = 0.1 in the left panel and κr = 0.2 in the right panel.

Consider next an unanticipated change ∆θ0(τ) in the intercept of preferred-habitat demand at time zero that reverts deter-

ministically to zero at the rate κθ. Writing bond prices at time t as

P
(τ)
t = e−[Ar(τ)rt+Aβ(τ)βt+Aθ(τ)∆θ0(τ)e

−κθt+C(τ)]
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Figure C.3.— Effect of a forward-guidance announcement about the path of short rates, for the calibration
based on the sub-sample of nominal yields.
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Figure C.4.— Effect of a forward-guidance announcement about the path of short rates, for the calibration
based on the sample of real yields.
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and proceeding as in Sections 3 and 4, we find that Aθ(τ) solves the ODE

A′
θ(τ) + κθAθ(τ) = aσ2

rAr(τ)

∫ ∞

0
[∆θ0(τ)− α(τ)Aθ(τ)]Ar(τ)dτ + aσ2

βAβ(τ)

∫ ∞

0
[∆θ0(τ)− α(τ)Aθ(τ)]Aβ(τ)dτ.

Proceeding as in the proofs of Lemma 3 and Proposition 7, we find that the solution to the ODE is

Aθ(τ) = χr

∫ τ

0
Ar(u)e

−κθ(τ−u)du+ χβ

∫ τ

0
Aβ(u)e

−κθ(τ−u)du,

where

χr ≡
1

D

{
aσ2

r

[∫ ∞

0
∆θ0(τ)Ar(τ)dτ

] [
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]

−aσ2
β

[∫ ∞

0
∆θ0(τ)Aβ(τ)dτ

] [
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]}
,

χβ ≡
1

D

{
aσ2

β

[∫ ∞

0
∆θ0(τ)Aβ(τ)dτ

] [
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]

−aσ2
r

[∫ ∞

0
∆θ0(τ)Ar(τ)dτ

] [
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]}
,

and

D ≡
[
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]

×
[
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]

−
[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]

×
[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]
.

When the change ∆θ0(τ) is a Dirac function with point mass at τ∗,

∫ ∞

0
∆θ0(τ)Aj(τ)dτ = Aj(τ

∗)

for j = r, β. Hence, the time-zero change in the yield for maturity τ is

(C.5) ∆y
(τ)
t,τ∗ =

1

D

[
Λr(τ

∗)

∫ τ
0 Ar(u)e−κθ(τ−u)du

τ
+ Λβ(τ

∗)

∫ τ
0 Aβ(u)e

−κθ(τ−u)du

τ

]
,
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Figure C.5.— Effect of QE, for the calibration based on the sub-sample of nominal yields.

where

Λr(τ
∗) ≡ aσ2

rAr(τ
∗)

[
1 + aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]

− aσ2
βAβ(τ

∗)

[
aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Aβ(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]
,

Λβ(τ
∗) ≡ aσ2

βAβ(τ
∗)

[
1 + aσ2

r

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Ar(τ)dτ

]

− aσ2
rAr(τ

∗)

[
aσ2

β

∫ ∞

0
α(τ)

(∫ τ

0
Ar(u)e

−κθ(τ−u)du

)
Aβ(τ)dτ

]
.

Figures C.5 and C.6 show the effects of QE for the calibrations based on the sub-sample of nominal yields and the sample

of real yields, respectively. In each panel, the red, green, light blue (cyan), blue and black solid lines represent the effect of

QE purchases of two-, five-, ten-, twenty- and thirty-year bonds, respectively. The black dashed line represents the effect of QE

purchases that conform to the maturity distribution used by the Fed during QE1, as reported in D’Amico and King (2013). In

all cases, the change ∆θ0(τ) in the intercept of preferred-habitat demand is such that
∫∞
0 ∆θ0(τ)dτ = −0.12, i.e., QE purchases

are 12% of GDP. QE is unwound at the rate κr = 0.1 in the left panel and κr = 0.2 in the right panel. We use the value of a

that generates the average effect across the lower and the upper bound. These bounds are a = 18.8 and a = 93.8, respectively,

in Figure C.5, and a = 10.7 and a = 53.5, respectively, in Figure C.6.
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Figure C.6.— Effect of QE, for the calibration based on the sample of real yields.

C.6. Unconditional Moments

The expected excess return of the bond with maturity τ is equal to the right-hand side of (35). When there is one demand

factor which is independent of the short rate, the right-hand side of (35) becomes

aσ2
rAr(τ)

∫ ∞

0

[
θ0(τ) + θ(τ)βt − α(τ)

(
Ar(τ)rt +Aβ(τ)βt + C(τ)

)]
Ar(τ)dτ

+ aσ2
rAβ(τ)

∫ ∞

0

[
θ0(τ) + θ(τ)βt − α(τ)

(
Ar(τ)rt +Aβ(τ)βt + C(τ)

)]
Aβ(τ)dτ.

Taking expectations with respect to (rt, βt), we find that the unconditional expected excess return is

(C.6) aσ2
rAr(τ)Mr + aσ2

βAβ(τ)Mβ ,

where

Mr ≡
∫ ∞

0
[θ0(τ)− α(τ) (Ar(τ)r + C(τ))]Ar(τ)dτ,

Mβ ≡
∫ ∞

0
[θ0(τ)− α(τ) (Ar(τ)r + C(τ))]Aβ(τ)dτ.

The Sharpe ratio of the bond with maturity τ is

aσ2
rAr(τ)Mr + aσ2

βAβ(τ)Mβ√
σ2
rAr(τ)2 + σ2

βAβ(τ)2
.

The correlation between the return on the bond with maturity τ and the stochastic discount factor is

σ2
rAr(τ)Mr + σ2

βAβ(τ)Mβ√
σ2
rAr(τ)2 + σ2

βAβ(τ)2
√

σ2
rM

2
r + σ2

βM
2
β

.
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The stochastic discount factor parameters (Mr,Mβ) depend on C(τ). When there is one demand factor which is independent of

the short rate, (41) becomes

C(τ) = χr

∫ τ

0
Ar(u)du+ χβ

∫ τ

0
Aβ(u)du−

1

2

(
σ2
r

∫ τ

0
Ar(u)

2du+ σ2
β

∫ τ

0
Aβ(u)

2du

)
.

The constants (χr, χβ) are given by (A.129) and (A.130).
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