
Search and Endogenous Concentration of

Liquidity in Asset Markets ?

Dimitri Vayanos ∗

London School of Economics, CEPR and NBER

Tan Wang 1

Sauder School of Business, University of British Columbia, CCFR

Abstract

We develop a search-based model of asset trading, in which investors of different

horizons can invest in two assets with identical payoffs. The asset markets are par-

tially segmented: buyers can search for only one asset, but can decide which one.

We show the existence of a “clientele” equilibrium where all short-horizon investors

search for the same asset. This asset has more buyers and sellers, lower search times,

and trades at a higher price relative to its identical-payoff counterpart. The clientele

equilibrium dominates the one where all investor types split equally across assets,

implying that the concentration of liquidity is socially desirable.

Key words: Liquidity, Search, Asset pricing

JEL classification numbers: G1, D8

Running title: Endogenous Liquidity Concentration

? We thank an anonymous referee, Peter DeMarzo, Darrell Duffie, Nicholas Econo-
mides, Simon Gervais, Arvind Krishnamurthy, Anna Pavlova, Lasse Pedersen, Ken
Singleton, Pierre-Olivier Weill, seminar participants at Alberta, Athens, Tsinghua,
UCLA, UT Austin, and participants at the SITE 2003 and WFA 2003 conferences
for helpful comments. Jiro Kondo provided excellent research assistance.∗ Corresponding author. Phone +44-20-79556382, Fax +44-20-79557420.

Email addresses: d.vayanos@lse.ac.uk (Dimitri Vayanos),
tan.wang@sauder.ubc.ca (Tan Wang).
1 Supported by the Social Sciences and Humanities Research Council of Canada.

Preprint submitted to Journal of Economic Theory 15 August 2006



1 Introduction

Financial assets differ in their liquidity, defined as the ease of trading them. For

example, government bonds are more liquid than stocks or corporate bonds.

A large body of research has attempted to measure liquidity and relate it

to asset-price differentials. An important and complementary question is why

liquidity differs across assets.

A leading theory of liquidity is based on asymmetric information. For example,

[15], [21] show that market makers can widen their bid-ask spread to compen-

sate for the risk of trading against informed agents. This increases trading costs

for all agents, including the uninformed. In many cases, however, asymmetric

information cannot be the explanation for liquidity differences. For example,

AAA-rated bonds of US corporations are essentially default-free, but are sig-

nificantly less liquid than Treasury bonds. Since both sets of bonds have essen-

tially riskless cash flows, their value should depend only on interest rates. But

information about the latter is generally symmetric, and in any event, possible

asymmetries should be common across bonds. An even starker example comes

from within the Treasury market: just-issued (“on-the-run”) bonds are signif-

icantly more liquid than previously issued (“off-the-run”) bonds maturing on

nearby dates. 1

In this paper we explore an alternative theory of liquidity based on the notion

that asset trading can involve search, i.e., locating counterparties takes time.

Search is a fundamental feature of over-the-counter markets, where trade is

conducted through bilateral negotiations rather than a Walrasian auction. 2

We show that liquidity, measured by search costs, can differ across otherwise

identical assets, and this translates into equilibrium price differentials. We also

perform a welfare analysis, showing that the concentration of liquidity in one

asset dominates equal liquidity in all assets.

1 Evidence on the default risk of corporate bonds is in [25], on the trading costs of
corporate bonds in [5], on the trading costs of government bonds in [12], and on the
on-the-run phenomenon in [13], [34].
2 Examples of over-the-counter markets are for government, corporate, and munic-
ipal bonds, and for many derivatives. We elaborate on the role of search in these
markets in Section 2. See also the discussion in [10].
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We assume that a constant flow of investors enter into a market, seeking to buy

one of two infinitely-lived assets with identical payoffs. After buying an asset,

investors become “inactive” owners, until the time they seek to sell. That event

occurs when the investors’ valuation of asset payoffs switches to a lower level.

The switching rate is inversely related to investors’ horizons, and we assume

that horizons are heterogeneous across investors. To model search, we adopt

the standard framework (e.g., [8]) where investors are matched randomly over

time in pairs. We also assume that markets are partially segmented in that

buyers must decide which of the two assets to search for, and then search for

that asset only.

We show that there exists an asymmetric (“clientele”) equilibrium, where as-

sets differ in liquidity despite having identical payoffs. The market of the more

liquid asset has more buyers and sellers. This results in short search times, i.e.,

high liquidity, and high trading volume. Moreover, prices are higher in that

market, reflecting a liquidity premium that investors are willing to pay for the

short search times. The tradeoff between prices and search times gives rise to

a clientele effect: buyers with high switching rates, who have a stronger prefer-

ence for short search times, search for the liquid asset, while the opposite holds

for the more patient, low-switching-rate buyers. The clientele effect is, in turn,

what generates the higher trading volume in the liquid asset: high-switching-

rate buyers turn faster into sellers, thus generating more turnover. Critical

to the clientele equilibrium is the assumption that buyers cannot search for

both assets simultaneously. Indeed, we show that under simultaneous search,

investors would buy the first asset they find, and assets would have the same

liquidity and price. 3

The liquidity premium increases as the distribution of investors’ switching

rates becomes more dispersed around its median, and is equal to zero when

investors are homogenous. One might expect the premium to increase with an

3 Additionally, the clientele equilibrium might not exist if buyers’ bargaining power,
defined as the probability that they get to make the take-it-or-leave-it offer in a
match, is increasing in the switching rate. Intuitively, if high-switching-rate buyers
can extract most of the surplus, sellers in the liquid market have a low reservation
value. This encourages buyer entry into the liquid market, and can possibly reduce
the measure of sellers below that in the illiquid market, contradicting the existence
of clientele equilibrium.
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upward shift in the switching-rate distribution, consistent with the notion that

short-horizon investors value liquidity more highly. Surprisingly, however, the

premium can decrease because shorter horizons generate more trading, and

this reduces search times and trading costs.

In addition to the clientele equilibrium, there exist symmetric ones, where

the two markets are identical in terms of prices and search times. Comparing

the two types of equilibria reveals, in the context of our model, whether the

concentration of liquidity in one asset is socially desirable. As a benchmark

for this comparison, we determine the socially optimal allocation of entering

buyers across the two markets. Under this allocation, the measure of sellers

differs across markets, and so do the buyers’ search times (which are decreasing

in the measure of sellers). Such a dispersion is optimal so that markets can

cater to different clienteles: buyers with high switching rates go to the market

with the short search times, while the opposite holds for low-switching-rate

buyers.

In the symmetric equilibria the buyers’ search times are identical across mar-

kets, while in the clientele equilibrium some dispersion exists. A sufficient

condition for the clientele equilibrium to dominate the symmetric ones is that

this dispersion does not exceed the socially optimal level. To examine whether

this is the case, we consider the social optimality of buyers’ entry decisions in

the clientele equilibrium. We show that despite the higher prices, buyers do

not fully internalize the relatively short supply of sellers in the liquid market,

and enter excessively in that market. This pushes the measure of sellers in the

liquid market below the socially optimal level, and has the same effect on the

dispersion in buyers’ search times. Thus, the clientele equilibrium dominates

the symmetric ones.

This paper is related to [28], which studies the concentration of liquidity across

two markets. [28] shows that the markets can coexist, but the equilibrium is

generally dominated by shutting one market and concentrating all trade in the

other. The main difference with [28] is that we consider the concentration of

liquidity across assets, rather than across market venues for the same asset. In

particular, when one asset is traded in different venues, sellers have the choice
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of venue. By contrast, when venues correspond to physically different assets

(e.g., Treasury vs. corporate bonds), sellers do not have such choice because

they can only sell the asset they own. For example, in the clientele equilibrium,

sellers of the less liquid asset cannot convert it to the liquid asset and sell it

at the higher price. If such conversion were possible, we would effectively be

back to the one-asset case.

[1] studies the concentration of liquidity under asymmetric information. It

shows that if uninformed traders have discretion over the timing of their trades,

they will all trade when the market is the most liquid. This reduces the infor-

mational content of order flow, feeding back into market liquidity. [6] shows

that uninformed traders can all choose to trade in one of multiple locations

for similar reasons. As [28], these papers concern the concentration of liquidity

across market venues (defined by time or location) rather than assets.

Search-theoretic approaches to liquidity have been explored in the monetary

literature following [20], [29]. 4 [2] shows the coexistence of currencies that

differ in liquidity and price, and [33] analyzes the relative liquidity of currency

and dividend-paying assets. In our model there is no room for currency, and

the focus is on the relative liquidity of dividend-paying assets.

[9], [10], [11] integrate search in models of asset market equilibrium. This paper

builds on their framework, extending it to multiple assets and heterogeneous

investors. Independent work in [35] also considers multiple assets. Investors are

homogeneous, however, and differences in liquidity arise because of exogenous

differences in assets’ issue sizes. Work subsequent to this paper in [32] shows

that differences in liquidity can arise even with identical horizons and issue

sizes, provided that there are short-sellers.

Finally, our welfare analysis is related to [8]. [8] shows that search can drive

a wedge between workers’ wages and marginal products, and this can distort

the choice between different labor markets. In our model a similar distortion

applies to the choice between the markets of different assets. 5

4 See also [22] which links liquidity to search in a partial equilibrium setting.
5 For search models where agents choose between sub-markets, see also [19], [24],
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The rest of this paper is organized as follows. Section 2 presents the model. Sec-

tion 3 determines investor populations, expected utilities, and prices, taking

the allocation of investors across markets as given. Section 4 endogenizes this

allocation and determines the set of market equilibria. The welfare analysis is

in Section 5. Section 6 considers several extensions, and Section 7 concludes.

All proofs are in the Appendix.

2 Model

Time is continuous and goes from 0 to ∞. There are two assets, 1 and 2,

traded in markets 1 and 2, respectively. Both assets pay a constant flow δ of

dividends and are in supply S.

Investors are risk-neutral and have a discount rate equal to r. Upon entering

the economy, they seek to buy one unit of either asset 1 or 2. After buying

the asset, they become “inactive” owners, until the time when they seek to

sell. Thus, there are three groups of investors: buyers, inactive owners, and

sellers. To model trading motives, we assume that upon entering the economy

investors enjoy the full value δ of the dividend flow, but their valuation can

switch to a lower level δ − x with Poisson rate κ. The parameter x > 0 can

capture, in reduced form, the effect of a liquidity shock or a hedging need

arising from a position in another market. Buyers and inactive owners enjoy

the full value δ of the dividend flow. Buyers experiencing a switch to low

valuation simply exit the economy. Inactive owners experiencing the switch

become sellers, and upon selling the asset, they also exit the economy.

There is a flow of investors entering the economy. We assume that investors

are heterogeneous in their horizons, i.e., some have a long horizon and some

a shorter one. In our model, horizons are inversely related to the switching

rates κ to low valuation. Thus, we can describe the investor heterogeneity by a

function f(κ) such that the flow of investors with switching rates in [κ, κ+dκ]

is f(κ)dκ. The total flow is
∫ κ
κ f(κ)dκ, where [κ, κ] denotes the support of

[26], [27].
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f(κ). To avoid technicalities, we assume that f(κ) is continuous and strictly

positive.

The main feature of our model is that the market operates through search.

Search is a fundamental feature of over-the-counter markets, such as those

for government, corporate, and municipal bonds, and for many derivatives.

Indeed, trades in these markets are negotiated bilaterally between dealers and

their customers. And while a customer can easily contact a dealer, dealers

often need to engage in search to rebalance their inventories. For example,

after acquiring a large inventory from a customer, a dealer needs to unload the

inventory to a new customer. This can involve search, and the dealers’ ability

to search efficiently, by knowing which customers are likely to be interested in

a specific transaction, affects the prices they quote in the market. 6

To model search, we adopt the standard framework (e.g., [8]) where buyers and

sellers are matched randomly over time in pairs. This framework is, of course,

a stylized representation of over-the-counter markets because it abstracts away

from the role of dealers. In some fundamental sense, however, dealers come

into existence precisely because customers need to search for counterparties.

The existence of dealers cannot eliminate the search cost, but only can reduce

it and express it in a different form, e.g. bid-ask spread. Thus, modelling over-

the-counter markets in a “pure” search framework allows us to study the effects

of the search friction in a more fundamental manner. Of course, incorporating

dealers could be an interesting extension of our research. 7

We assume that markets are partially segmented in that buyers must decide

which of the two assets to search for, and then search for that asset only.

6 According to [14], pp.436-437: “Liquidity in the corporate bond market is not
derived by knowing what is available and what is being sought in the form of active
bids and offerings... Instead, it is derived by knowing what may be available from,
or what may be sold to, public investors.... A corporate bond dealer will quote some
bid price if a customer wants to sell an issue, but he is likely to quote a better price
if he thinks he knows of the existence of another buyer to whom he can quickly
resell the same issue.”
7 It could also relate our approach to the inventory literature in market microstruc-
ture (e.g., [3], [18]). That literature assumes that buyers and sellers arrive randomly
in the market and can trade with dealers who face costs to holding inventory. [11]
consider a search-based model of asset trading with a continuum of competitive
dealers.
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This assumption is critical. Indeed, Section 6.1 shows that if investors can

search simultaneously for both assets, they buy the first asset they find, and

assets have the same liquidity and price. One interpretation of our assump-

tion is that investors are mutual-fund managers who are constrained to hold

specific types of assets. (For example, government-bond funds are restricted

from investing in corporate bonds.) Managers can, however, decide between

asset types when the fund is incorporated. An alternative interpretation is

that dealers/brokers specialize in different asset types. Market segmentation

could then follow from the costs of employing multiple dealers. One such cost

is complexity: an investor who wants to buy one unit of an asset through mul-

tiple dealers would have to give each dealer an order contingent on the other

dealers’ search outcomes. 8

Summarizing, we can describe the economy by the flow diagram in Figure

1. To each asset, are associated three groups of investors: buyers, inactive

owners, and sellers. Investors entering the economy come from the pool of

outside investors, and investors exiting the economy return to that pool.

To describe the search process, we need to specify the rate at which buyers

meet sellers. We assume that an investor seeking to trade meets investors from

the overall population according to a Poisson process with a fixed arrival rate.

Consequently, meetings with investors seeking the opposite side of the trade

occur at a rate proportional to the measure of that investor group. Denoting

the coefficient of proportionality by λ, and the measures of buyers and sellers

of asset i by µi
b and µi

s, respectively, a buyer of asset i meets sellers at the rate

λµi
s, and a seller meets buyers at the rate λµi

b. Moreover, the overall flow of

meetings for asset i is λµi
bµ

i
s.

The function M(µi
b, µ

i
s) ≡ λµi

bµ
i
s describes the search technology in our model.

While the assumed form of M is partly motivated from tractability, it also

embodies a notion of increasing returns to scale: doubling the measures of

8 The two interpretations are somewhat related: dealers could specialize to better
serve the investors who are constrained to hold specific asset types. We should add
that our assumption does not preclude investors from searching for one asset, and
then switching and searching for the other. It restricts investors from searching
simultaneously for both assets at a given point in time.
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Fig. 1. Flow Diagram for the Two Markets

buyers and sellers more than doubles the flow of meetings. Increasing returns

seem realistic for financial-market search because they imply that an increase

in market size reduces search times of both buyers and sellers. This fits with

the well-documented notion that trading costs are decreasing with trading

volume.

When a buyer meets a seller, the price is determined through bilateral bar-

gaining. We assume that the bargaining game takes a simple form, where one
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party is randomly selected to make a take-it-or-leave-it offer. The probabil-

ity of the buyer being selected is z/(1 + z), where the parameter z ∈ (0,∞)

measures the buyer’s bargaining power.

Because buyers differ in their switching rates κ, they have different reservation

values in the bargaining game, and this can introduce asymmetric information.

We mainly focus on the symmetric-information case, where switching rates are

publicly observable. For example, switching rates could correspond to buyers’

observable institutional characteristics (e.g., insurance companies have a long

horizon, while hedge funds a shorter one). When κ is publicly observable, the

bargaining-power parameter z could in principle depend on κ. We mainly focus

on the case where z is constant, but allow it to depend on κ in Section 6.2.

Finally, in Section 6.3 we consider the asymmetric-information case, where

switching rates are observable only to buyers.

3 Analysis

In this section we take as given the investors’ decisions about which asset

to search for, i.e., which market to enter. We then determine the measures

of buyers, inactive owners, and sellers in each market, the expected utilities

of investors in each group, and the market prices. Throughout, we focus on

steady states, where all of the above are constant over time.

3.1 Demographics

We denote by νi(κ) the fraction of investors with switching rate κ who decide

to enter into market i. We also denote by µi
o the measure of inactive owners

in market i, and recall that the measures of buyers and sellers are denoted by

µi
b and µi

s, respectively.

Because buyers and inactive owners are heterogeneous in their switching rates

κ, we need to consider the distribution of switching rates within each pop-
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ulation. This distribution is not the same as for the investors entering the

market, because investors with different switching rates exit the market at

different speeds. To describe the distribution of switching rates within the

population of buyers in market i, we introduce the function µi
b(κ) such that

the measure of buyers with switching rates in [κ, κ + dκ] is µi
b(κ)dκ. We sim-

ilarly describe the distribution of switching rates within the population of

inactive owners in market i by the function µi
o(κ). These functions satisfy the

accounting identities

κ∫

κ

µi
b(κ)dκ = µi

b, (1)

κ∫

κ

µi
o(κ)dκ = µi

o. (2)

To determine µi
b(κ), we consider the flows in and out of the population of

buyers with switching rates in [κ, κ + dκ]. The inflow is f(κ)νi(κ)dκ, coming

from the outside investors. The outflow consists of those buyers whose val-

uation switches to low and who exit the economy (κµi
b(κ)dκ), and of those

who meet sellers and trade (λµi
b(κ)µi

sdκ). (We are implicitly assuming that

all buyer-seller matches result in a trade, a result we show in Proposition 1.)

Since in steady state inflow equals outflow, it follows that

µi
b(κ) =

f(κ)νi(κ)

κ + λµi
s

. (3)

To determine µi
o(κ), we similarly consider the flows in and out of the pop-

ulation of inactive owners with switching rates in [κ, κ + dκ]. The inflow is

λµi
b(κ)µi

sdκ, coming from the buyers who meet sellers, and the outflow is

κµi
o(κ)dκ, coming from the inactive owners whose valuation switches to low

and who become sellers. Writing that inflow equals outflow, and using (3), we
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find

µi
o(κ) =

λµi
sf(κ)νi(κ)

κ (κ + λµi
s)

. (4)

Market equilibrium requires that the measure of asset owners in each market

is equal to the asset supply. Since asset owners are either inactive owners or

sellers, we have

µi
o + µi

s = S. (5)

Combining (2), (4), and (5), we find

κ∫

κ

λµi
sf(κ)νi(κ)

κ (κ + λµi
s)

dκ + µi
s = S. (6)

Eq. (6) determines µi
s. Eqs. (1) and (3) then determine µi

b, and (2) and (4)

determine µi
o.

3.2 Expected Utilities and Prices

We denote by vi
b(κ) and vi

o(κ), respectively, the expected utilities of a buyer

and an inactive owner with switching rate κ in market i. We also denote by vi
s

the expected utility of a seller, and by pi(κ) the expected price when a buyer

with switching rate κ meets a seller. (The actual price is stochastic, depending

on which party makes the take-it-or-leave-it offer.)

To determine vi
b(κ), we note that in a small time interval [t, t+dt], a buyer can

either switch to low valuation and exit the economy (probability κdt, utility

0), or meet a seller and trade (probability λµi
sdt, utility vi

o(κ) − pi(κ)), or

remain a buyer (utility vi
b(κ)). The buyer’s expected utility at time t is the
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expectation of the above utilities, discounted at the rate r:

vi
b(κ)(1− rdt)

[
κdt0 + λµi

sdt(vi
o(κ)− pi(κ)) + (1− λµi

sdt− κdt)vi
b(κ)

]
.(7)

Rearranging, we find that vi
b(κ) is given by

rvi
b(κ) = −κvi

b(κ) + λµi
s(v

i
o(κ)− pi(κ)− vi

b(κ)). (8)

The term rvi
b(κ) can be interpreted as the flow utility of being a buyer. Ac-

cording to (8), this flow utility is equal to the expected flow cost of switching

to low valuation and exiting the economy, plus the expected flow benefit of

meeting a seller and trading.

Proceeding similarly, we find that vi
o(κ) and vi

s are given by

rvi
o(κ) = δ + κ(vi

s − vi
o(κ)), (9)

and

rvi
s = δ − x + λµi

b(E
i
b(p

i(κ))− vi
s), (10)

respectively, where Ei
b denotes expectation under the probability distribution

of κ in the population of buyers in market i. According to (9), the flow utility

of being an inactive owner is equal to the dividend flow from owning the asset,

plus the expected flow cost of switching to a low valuation and becoming a

seller. Likewise, the flow utility of being a seller is equal to the seller’s valuation

of the dividend flow, plus the expected flow benefit of meeting a buyer and

trading.

The price pi(κ) is the expectation of the buyer’s and the seller’s take-it-or-

leave-it offers. The buyer is selected to make the offer with probability z/(1 +

z), and offers the seller’s revervation value, vi
s. The seller is selected with

probability 1/(1 + z), and offers the buyer’s reservation value, vo(κ) − vb(κ).
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Therefore,

pi(κ) =
z

1 + z
vi

s +
1

1 + z
(vi

o(κ)− vi
b(κ)). (11)

Proposition 1 Eqs. (8)-(11) have a unique solution (vi
b(κ), vi

o(κ), vi
s, p

i(κ)).

This solution satisfies, in particular, vi
o(κ)− vi

b(κ)− vi
s > 0 for all κ.

Since vi
o(κ)− vi

b(κ)− vi
s > 0 for all κ, any buyer’s reservation value exceeds a

seller’s. Thus, all buyer-seller matches result in a trade, a result that we have

implicitly assumed so far. The intuition is simply that any buyer is a more

efficient asset holder than a seller: the buyer values the dividend flow more

highly than the seller, and upon switching to low valuation, faces the same

rate of meeting new buyers as the seller.

4 Equilibrium

In this section, we endogenize investors’ entry decisions, and determine the set

of market equilibria. An investor will enter into the market where the expected

utility of being a buyer is highest. Thus, the fraction ν1(κ) of investors with

switching rate κ who enter into market 1 is given by

ν1(κ) = 1 if v1
b (κ) > v2

b (κ) (12)

0 ≤ ν1(κ) ≤ 1 if v1
b (κ) = v2

b (κ) (13)

ν1(κ) = 0 if v1
b (κ) < v2

b (κ). (14)

Definition 1 A market equilibrium consists of fractions {νi(κ)}i=1,2 of in-

vestors entering in each market, measures {(µi
b, µ

i
o, µ

i
s)}i=1,2 of each group of

investors, and expected utilities and prices {(vi
b(κ), vi

o(κ), vi
s, p

i(κ))}i=1,2, such

that

(a) {(µi
b, µ

i
o, µ

i
s)}i=1,2 are given by (1)-(4) and (6).

(b) {(vi
b(κ), vi

o(κ), vi
s, p

i(κ))}i=1,2 are given by (8)-(11).

(c) ν1(κ) is given by (12)-(14), and ν2(κ) = 1− ν1(κ).
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To determine the set of market equilibria, we establish a sorting condition.

We consider an investor who is indifferent between the two markets, i.e., κ∗

such that v1
b (κ

∗) = v2
b (κ

∗), and examine which market other investors prefer.

Lemma 1 Suppose that v1
b (κ

∗) = v2
b (κ

∗). Then, v1
b (κ) − v2

b (κ) has the same

sign as (µ1
s − µ2

s)(κ− κ∗).

According to Lemma 1, the measure of sellers serves as a sorting device. If,

for example, market 1 has the most sellers, then investors with high switch-

ing rates will have a stronger preference for that market than investors with

low switching rates. The intuition is that high-switching-rate investors have a

stronger preference for short search times, and buyers’ search times are short

in a market with more sellers.

Lemma 1 implies that there can only be two types of equilibria. First, one mar-

ket can have more sellers than the other, in which case it attracts the investors

with high switching rates. We refer to such equilibria as clientele equilibria, to

emphasize that each market attracts a different clientele of investors. Alter-

natively, both markets can have the same measure of sellers, in which case all

investors are indifferent between the two markets. We refer to such equilibria

as symmetric equilibria, to emphasize that markets are symmetric from the

viewpoint of all investors.

4.1 Clientele Equilibria

We focus on the case where market 1 is the one with the most sellers. This

is without loss of generality as any equilibrium derived in this case has a

symmetric counterpart derived by switching the indices of the two markets.

Theorem 1 There exists a unique clientele equilibrium in which market 1 is

the one with the most sellers.

A clientele equilibrium is characterized by the switching rate κ∗ of the investor

who is indifferent between the two markets. Investors with κ > κ∗ enter into

market 1, and investors with κ < κ∗ enter into market 2. According to Theorem
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1, such a cutoff κ∗ exists and is unique.

Theorem 2 The clientele equilibrium where market 1 is the one with the most

sellers, has the following properties:

(a) More buyers and sellers in market 1: µ1
b > µ2

b and µ1
s > µ2

s.

(b) Higher buyer-seller ratio in market 1: µ1
b/µ

1
s > µ2

b/µ
2
s.

(c) Higher prices in market 1: p1(κ) > p2(κ) for all κ.

According to Theorem 2, market 1 has not only more sellers than market

2, but also more buyers, and a higher buyer-seller ratio. Moreover, the price

that any given buyer expects to pay is higher in market 1. The intuition is

as follows. Since there are more sellers in market 1, buyers’ search times are

shorter. Therefore, holding all else constant, buyers prefer entering into market

1. To restore equilibrium, prices in market 1 must be higher than in market

2. This is accomplished by higher buying pressure in market 1, i.e., higher

buyer-seller ratio.

In the resulting equilibrium, there is a clientele effect. Investors with high

switching rates, who have a stronger preference for short search times, prefer

market 1 despite the higher prices. On the other hand, low-switching-rate

investors, who are more patient, value more the lower prices in market 2. The

clientele effect is, in turn, what accounts for the larger measure of sellers in

market 1 since the high-switching-rate buyers turn faster into sellers.

Our model of search provides a natural measure of liquidity. Since investors

cannot trade immediately, they incur a cost of delay. A measure of this cost is

the expected time it takes to find a counterparty, and conversely, a measure

of liquidity is the inverse of this expected time. Since a buyer in market i

meets sellers at the rate λµi
s, the expected time it takes to meet a seller is

τ i
b ≡ 1/(λµi

s). Likewise, the expected time it takes for a seller to meet a buyer

is τ i
s ≡ 1/(λµi

b). Since the measures of buyers and sellers are higher in market

1, the expected times τ i
b and τ i

s are lower in that market, and thus market 1

is more liquid. Note that because there are more buyers and sellers in market

1, the trading volume, defined as the flow λµi
bµ

i
s at which matches occur, is
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higher in that market.

Since market 1 is more liquid than market 2, the price difference between the

two markets can be interpreted as a liquidity premium: buyers are willing to

pay a higher price for asset 1 because of its greater liquidity. In generating

a liquidity premium, our model is analogous to the literature on asset pric-

ing with transaction costs (e.g., [4], [7], [16], [17], [23], [30], [31]). The main

difference with that literature is that we endogenize transaction costs. In par-

ticular, we do not assume that these differ exogenously across assets, but show

that differences can arise endogenously in equilibrium, even when assets are

otherwise identical.

To gain more intuition into the liquidity premium, we compute the equilibrium

in closed form when search frictions are small, i.e., the parameter λ character-

izing the rate of meetings is large. For small frictions, the market converges to

Walrasian equilibrium (WE). In the WE both assets trade at the same price,

determined by demand and supply. If the measure Dh of high-valuation agents

exceeds the total asset supply 2S, there is “excess demand”: high-valuation

agents are marginal and the WE price is equal to their valuation δ/r. If in-

stead Dh is lower than 2S, there is “excess supply”: low-valuation agents are

marginal and the WE price is equal to their valuation (δ − x)/r. In what

follows, we focus on the case Dh = 2S, where there is no excess demand or

supply. This symmetric case has the advantage that calculations are the sim-

plest. 9 We denote the population density of high-valuation agents by g(κ), so

that these agents’ measure is

Dh ≡
κ∫

κ

g(κ)dκ.

9 One simplifying feature of the case Dh = 2S is that when λ goes to ∞, the
measures of buyers and sellers are of order 1/

√
λ. Thus, the rates of meeting buyers

and sellers are of order λ× (1/
√

λ), and converge to ∞. When Dh > 2S, sellers are
the short side of the market and their measure is of order 1/λ, while the measure
of buyers is of order 1. Thus, the rate of meeting buyers converges to ∞ but that
for sellers remains finite. When Dh < 2S, the opposite is true.
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Since the inflow into the group of high-valuation agents with switching rates in

[κ, κ + dκ] is f(κ)dκ, and the outflow generated by switching to low valuation

is κg(κ)dκ, we have g(κ) = f(κ)/κ.

Proposition 2 Suppose that Dh = 2S. When λ goes to infinity, p1(κ) and

p2(κ) converge to the common limit δ
r
− x

r
z

1+z
. Moreover, the following asymp-

totics hold:

µi
s =

αi

√
λ

+ o

(
1√
λ

)
(15)

κ∗ = κ̂ + o

(
1√
λ

)
(16)

p1(κ)− p2(κ) =
x(r + κ̂(1 + z))√

λr(1 + z)

(
1

α2
− 1

α1

)
+ o

(
1√
λ

)
, (17)

where o(1/
√

λ) denotes terms of order smaller than 1/
√

λ, and (α1, α2, κ̂) are

defined by

α1 =

√√√√√
κ∫

κ̂

g(κ)κdκ (18)

α2 =

√√√√√
κ̂∫

κ

g(κ)κdκ (19)

κ∫

κ̂

g(κ)dκ =

κ̂∫

κ

g(κ)dκ. (20)

When search frictions are small, the measures of sellers in the two markets,

{µi
s}i=1,2, are of order 1/

√
λ, and the same can be shown for the measures of

buyers. The switching rate κ∗ of the agent who is indifferent between markets

converges to the median κ̂ of the distribution g(κ), meaning that the measures

of high-valuation agents are equal across markets. Intuitively, since the mea-

sures of buyers and sellers converge to zero, the set of high-valuation agents

in each market coincides in the limit with the set of owners. Moreover, the

measures of owners are equal across markets because assets are in identical
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supply.

The liquidity premium p1(κ)−p2(κ) is of order 1/
√

λ. Corollary 1 explores how

the premium depends on the distribution g(κ) of high-valuation investors, and

on the bargaining-power parameter z. To state the corollary, we consider the

set Φa,b of real functions φ such that (i) φ has support [a, b], (ii)
∫ b
a φ(y)dy = 0,

and (iii) there exists c ∈ (a, b) such that φ(y) < 0 for y ∈ (a, c) and φ(y) > 0

for y ∈ (c, b). Adding a function φ ∈ Φa,b to a distribution shifts weight to the

right, while keeping total weight constant.

Corollary 1 Suppose that Dh = 2S and λ is large.

(a) The liquidity premium decreases when g(κ) is replaced by g(κ) + φ(κ) −
φ(κ), for φ ∈ Φκ,κ̂ and φ ∈ Φκ̂,κ.

(b) The liquidity premium can increase or decrease when g(κ) is replaced by

g(κ) + φ(κ), for φ ∈ Φκ,κ.

(c) The liquidity premium decreases when z increases.

According to Property (a), the liquidity premium decreases when the distri-

bution g(κ) becomes more concentrated around its median. In the extreme

case of a point distribution, the liquidity premium is zero because investors

are homogeneous. As heterogeneity increases, holding the median constant,

the measure of sellers increases in market 1 and decreases in market 2. This

increases the gap between the buyers’ search times across markets, raising the

liquidity premium.

Property (b) concerns a shift in weight towards larger values of κ. One might

expect the liquidity premium to increase since with shorter horizons investors

should value liquidity more highly. The premium can decrease, however, since

shorter horizons imply more trading volume and lower search costs. Property

(b) highlights the importance of endogenizing transaction costs: with exoge-

nous costs, a decrease in horizons generally leads to an increase in the liquidity

premium.
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Property (c) shows that the liquidity premium decreases in the buyers’ bar-

gaining power. The intuition is that buyers’ utility from a transaction is more

sensitive to liquidity than sellers’ utility. Indeed, sellers exit the market after

a transaction, while buyers benefit from the market’s future liquidity when

turning into sellers. When buyers’ have more bargaining power, the price is

driven more by sellers’ utility, and is thus less dependent on liquidity.

Note finally that in order 1/
√

λ, the liquidity premium does not depend on κ,

and the same can be shown for the prices (p1(κ), p2(κ)). Thus, when frictions

are small, prices are almost independent of buyers’ switching rates, and asym-

metric information on switching rates has no effect. We return to this point

when studying the asymmetric-information case in Section 6.3.

4.2 Symmetric Equilibria

In a symmetric equilibrium the measure of sellers is the same across the two

markets. For investors to be indifferent between markets, the prices must also

be the same. These requirements, however, do not determine a unique sym-

metric equilibrium.

Proposition 3 There exist a continuum of symmetric equilibria. In any such

equilibrium, p1(κ) = p2(κ) for all κ.

The intuition for the indeterminacy is that there are infinitely many ways to

allocate investors in the two markets so that the measure of sellers, and an

index of buying pressure that determines prices, are the same across markets.

One trivial example is that for any switching rate, half of the investors go to

each market, i.e., νi(κ) = 1/2 for all κ.

5 Welfare Analysis

In this section we perform a welfare analysis of the allocation of liquidity

across assets. We examine, in particular, whether it is socially desirable that
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liquidity is concentrated in one asset, possibly at the expense of others. In the

context of our model, this amounts to comparing the clientele equilibrium,

where concentration occurs, to the symmetric equilibria.

We use a simple welfare measure which gives the utilities of all investors

present in the market equal weight, and discounts those of the future entrants

at the common discount rate r. Discounting is consistent with equal weighting

since future entrants can be viewed as outside investors whose utility is the

discounted value of entering the market. Our welfare measure thus is

W ≡ ∑

i=1,2




κ∫

κ

[vi
b(κ)µi

b(κ) + vi
o(κ)µi

o(κ)]dκ + vi
sµ

i
s +

1

r

κ∫

κ

vi
b(κ)f(κ)νi(κ)dκ




where the last term reflects the welfare of the stream of future entrants. Lemma

2 shows that welfare takes a simple and intuitive form.

Lemma 2 Welfare is

W =
2δ

r
S − x

r
(µ1

s + µ2
s). (21)

The first term in (21) is the present value of the dividends paid by the two

assets. Welfare would coincide with this present value if all asset owners en-

joyed the full value δ of the dividends. Some owners, however, enjoy only the

value δ − x. These are the sellers in the two markets, and welfare needs to be

adjusted downwards by their total measure.

5.1 Entry in the Clientele Equilibrium

We start by examining the social optimality of investors’ entry decisions in

the clientele equilibrium. This serves as a useful first step for comparing the

clientele equilibrium to the symmetric ones. Investors’ entry decisions are char-

acterized by a cutoff κ∗ such that investors above κ∗ enter into market 1, and

those below κ∗ enter into market 2. To examine whether private decisions are
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socially optimal, we consider the change in welfare if some investors close to

κ∗ enter into a different market than the one prescribed in equilibrium. More

specifically, we assume that at time 0, some buyers with switching rates in

[κ∗, κ∗ + dκ] are reallocated from market 1 to market 2, but from then on en-

try is according to κ∗. This reallocation causes the markets to be temporarily

out of steady state and to converge over time to the original steady state.

To compute the change in welfare, we need to evaluate welfare out of steady

state. We first consider the non-steady state that results when the measure of

buyers in market i with switching rates in [κ, κ+ dκ] is increased by ε relative

to the steady state. Denoting welfare in the non-steady state by W(ε), we set

V i
b (κ) ≡ dW(ε)

dε

∣∣∣∣∣
ε=0

.

The variable V i
b (κ) measures the increase in social welfare by adding buyers

with switching rate κ in market i. It thus represents the social value of these

buyers. Proceeding similarly, we can define the social value V i
o (κ) of owners

with switching rate κ, and the social value V i
s of sellers.

Proposition 4 The social values (V i
b (κ), V i

o (κ), V i
s ) are given by

rV i
b (κ) = −κV i

b (κ) + λµi
s(V

i
o (κ)− V i

b (κ)− V i
s ), (22)

rV i
o (κ) = δ + κ(V i

s − V i
o (κ)), (23)

rV i
s = δ − x + λµi

b(E
i
b(V

i
o (κ)− V i

b (κ))− V i
s ). (24)

Eqs. (22)-(24) are analogous to (8)-(10) that determine investors’ expected

utilities. To compare the two sets of equations, we reproduce (8)-(10) below,

using (11) to eliminate the price:

rvi
b(κ) = −κvi

b(κ) + λµi
s

z

1 + z
(vi

o(κ)− vi
b(κ)− vi

s), (25)

rvi
o(κ) = δ + κ(vi

s − vi
o(κ)), (26)
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rvi
s = δ − x + λµi

b

1

1 + z
(Ei

b(v
i
o(κ)− vi

b(κ))− vi
s). (27)

The key difference between expected utilities and social values concerns the

flow benefit of meeting a counterparty. Consider, for example, the flow benefit

associated to a buyer. In computing the buyer’s expected utility, we multiply

the buyer’s rate of meeting a seller, λµi
s, times the surplus realized by the

buyer-seller pair, vi
o(κ)−vi

b(κ)−vi
s, times the fraction of that surplus that the

buyer appropriates, z/(1+ z). In computing the buyer’s social value, however,

we need to attribute the full surplus to the buyer. This is because the social

value measures an investor’s marginal contribution to social welfare. Since a

trade involving a specific buyer is realized only because that buyer is added

to the market, the buyer’s marginal contribution is the full surplus associated

to the trade. The same is obviously true for the seller. 10 11

Proposition 5 In the clientele equilibrium where market 1 is the one with the

most sellers, the social value of buyer κ∗ is higher in market 2, i.e., V 1
b (κ∗) <

V 2
b (κ∗).

Since the social value of buyer κ∗ is higher in market 2, welfare can be improved

by reallocating some buyers close to κ∗ from market 1 to market 2. Thus, in

the clientele equilibrium, there is excessive entry into market 1, i.e., the more

liquid market. The intuition is as follows. Since buyer κ∗ is indifferent between

the two markets, the buyer’s flow benefit of meeting a seller is the same across

markets. A seller’s flow benefit of meeting a buyer, however, is higher in market

1. This is because the seller’s rate of meeting a buyer involves the measure

of buyers rather than that of sellers, and the buyer-seller ratio is higher in

10 Additionally, in computing the buyer’s social value, we need to consider not the
buyer’s rate of meeting a seller, but the marginal increase in the rate of buyer-seller
meetings achieved by adding the buyer in the market. The two coincide, however,
because the search technology is linear in the measures of buyers and sellers.
11 It is worth explaining why our search model generates discrepancies between
expected utilities and social values, while the standard Walrasian model does not.
In the Walrasian model, the surplus that a buyer-seller pair bargain over is zero,
since either party can leave the pair and obtain immediately the market price from
another counterparty. In the search model, by contrast, the surplus is non-zero,
since finding another counterparty is costly. It is because each party gets only a
fraction of this non-zero surplus that discrepancies between expected utilities and
social values arise.
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market 1. Since a seller’s flow benefit is higher in market 1, the discrepancy

between the seller’s social value and expected utility is larger in that market.

(Recall that social value attributes the full benefit of a meeting to each party,

while expected utility attributes only a fraction.) Conversely, since buyers

bargain on the basis of a seller’s expected utility rather than social value, the

discrepancy between their own social value and expected utility is smaller in

market 1. Given that for the indifferent buyer, expected utility is the same

across the two markets, social value is greater in market 2. Intuitively, sellers

are more socially valuable in market 1 because they are in relatively short

supply in that market. Buyers internalize this through the higher prices, but

only partially, and thus they enter excessively into market 1.

5.2 Clientele vs. Symmetric Equilibria

We start with a methodological observation. Both the clientele and the sym-

metric equilibria are dynamic steady states, and comparing these can be mis-

leading. Indeed, an action aiming to take the market from an inferior steady

state to a superior one, must involve non-steady-state dynamics. For such an

action to be evaluated based only on a comparison between steady states,

these dynamics must be unimportant relative to the long-run limit. This is

the case when the discount rate r is small, which we assume below.

Both the clientele and the symmetric equilibria are fully characterized by the

decisions of investors as to which market to enter. We next determine, and use

as a benchmark, the socially optimal entry decisions in steady state. These

are the solution to the problem

max
ν1(κ)

W ,

where W is given by Lemma 2, µi
s by (6), and ν2(κ) = 1 − ν1(κ). We solve

this problem, (P), in Proposition 6.

Proposition 6 The problem (P) has two symmetric solutions. The first sat-

24



isfies µ1
s > µ2

s, ν1(κ) = 1 for κ > κ∗w, and ν1(κ) = 0 for κ < κ∗w, for a cutoff

κ∗w. The second is derived from the first by switching the indices of the two

markets.

Proposition 6 implies that it is socially optimal to create two markets with

different measures of sellers. This is because the two markets can cater to

different clienteles of investors: buyers with switching rates above a cutoff κ∗w,

who have a greater preference for lower search times, are allocated to the

market with the most sellers, while the opposite holds for buyers below κ∗w.

The cutoff κ∗w determines the heterogeneity of the two markets. Increasing κ∗w,

reduces the entry into the more liquid market, say market 1. This increases

the ratio of sellers µ1
s/µ

2
s, and makes the markets more heterogeneous from a

buyer’s viewpoint.

We next treat the cutoff above which buyers enter into market 1 as a free

variable, and denote it by `. Social welfare is maximized for ` = κ∗w. As ` de-

creases below κ∗w, the two markets become more homogenous from a buyer’s

viewpoint, and welfare decreases. Consider now two values of `: the cutoff

κ∗ corresponding to the clientele equilibrium, and the cutoff κ′ for which the

measure of sellers is the same across the two markets. Since in the clientele

equilibrium there is excessive entry into market 1, markets are not hetero-

geneous enough from a buyer’s viewpoint, and thus κ∗ < κ∗w. At the same

time, since there is some heterogeneity, κ∗ > κ′. Therefore, welfare under the

clientele equilibrium exceeds that under the allocation corresponding to κ′.

Interestingly, welfare under the latter allocation is the same as under any of

the symmetric equilibria. To see why, note that both types of allocations have

the property that the measure of sellers is the same across the two markets.

Consider now an arbitrary allocation with this property, and denote by µs ≡
µ1

s = µ2
s the common measure of sellers. The aggregate measure of inactive

owners (i.e., the sum across both markets) depends on this allocation only

through µs, since µs is the only determinant of the buyers’ matching rate. Since

the aggregate measure of inactive owners plus sellers must equal the aggregate
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asset supply, µs is uniquely determined regardless of the specific allocation. 12

Since, in addition, welfare depends only on µs, it is also independent of the

specific allocation. Summarizing, we can show the following theorem:

Theorem 3 All symmetric equilibria achieve the same welfare. Moreover, for

small r, they are dominated by the clientele equilibrium.

6 Extensions

6.1 Market Integration

Our analysis assumes that markets are partially segmented in that buyers

must decide which of the two assets to search for, and then search for that

asset only. For example, a buyer deciding to search for asset 1 is precluded

from meeting sellers of asset 2. In Proposition 7 we show that this assumption

is critical for the existence of equilibria where assets differ in liquidity and

price.

Proposition 7 If buyers can search simultaneously for both assets, then they

buy the first asset they find. Moreover, prices and sellers’ search times are

identical across assets.

Proposition 7 shows that under simultaneous search, each asset’s buyer pool

consists of the entire buyer population. In particular, there cannot be equilibria

where some buyers decline to buy one asset because they prefer to wait for

the other. Indeed, waiting for one asset could be optimal if sellers sell that

asset cheaply. But then, the asset would attract a large buyer population, and

sellers’ reservation value would be greater than for the other asset.

12 To show this formally, we add (6) for market 1 to the same equation for market
2, and find

κ∫

κ

λµsf(κ)
κ (λµs + κ)

dκ + 2µs = 2S.

This equation determines µs uniquely, regardless of the specific allocation.
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A broad implication of Proposition 7 is that search can explain differences

in liquidity across otherwise identical assets, but only when combined with

some notion of segmentation. In this paper, segmentation takes the form that

buyers are constrained to search for a specific asset (but can choose which

one). Work subsequent to this paper in [32] considers two types of buyers:

agents who establish long positions and can search for both assets, and agents

who need to cover previously established short positions. A short position is

established by borrowing an asset and selling it in the market. Segmentation

arises because of the institutional constraint that short-sellers can deliver to

their lender only the exact same asset they borrowed. Thus, in line with this

paper, short-sellers can only buy a specific asset, but can choose which one at

the borrowing stage.

In addition to assuming that buyers can only search in one market, we are im-

plicitly assuming that sellers can only sell in the market where they originally

bought. In some sense, this captures the difference between multiple market

venues for the same asset (e.g., [28]) and multiple assets. When one asset is

traded in different venues, sellers can sell in any venue and not necessarily

where they bought. By contrast, when venues correspond to different assets,

sellers must sell in the venue where they bought because they can only sell the

asset they own. For example, in the clientele equilibrium, a seller of asset 2

would be better off converting it into asset 1: this would enable him to access

the buyers searching for asset 1, and to sell faster at the higher price. Such

conversion, however, is not feasible because the assets are physically different

(e.g., Treasury and corporate bonds are different certificates).

6.2 Type-Dependent Bargaining Power

In this section we extend our analysis to the case where the bargaining-power

parameter z is a function of κ, rather than a constant.

Proposition 8 Suppose that z(κ) is decreasing. Then, there exists a unique

clientele equilibrium in which market 1 is the one with the most sellers. In this
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equilibrium, p1(κ) > p2(κ) for all κ, if z(κ)
1+z(κ)

< z(κ).

Proposition 8 shows that a clientele equilibrium can exist when z is a function

of κ, provided that it is a decreasing function. Indeed, suppose instead that it

is increasing, i.e., buyers with high switching rates have high bargaining power.

Then, sellers in the more liquid market 1 have low utility relative to sellers

in market 2 because they receive a small fraction of the surplus. This induces

more buyer entry into market 1 (relative to the case where z is constant). Due

to this entry, the measure of sellers in market 1 can become lower than in

market 2, contradicting the existence of clientele equilibrium.

When z is a function of κ, the clientele equilibrium can have different proper-

ties than in Theorem 2. Implicit in the existence result, is the property that

market 1 has the most sellers. For prices, however, results are less clearcut.

We can show that regardless of the form of z(κ), the indifferent buyer κ∗ pays

a higher price in market 1 than in market 2, reflecting the shorter search time.

The same holds for buyers κ < κ∗: they would pay a higher price if they enter

into market 1 (rather than market 2 as they do in equilibrium). Buyers κ > κ∗,

however, might end up paying more if they enter into market 2. Intuitively,

these buyers’ low bargaining power can hurt them more in a market with few

sellers. Our numerical solutions suggest that this phenomenon occurs only for

a small set of parameters, and Proposition 8 rules it out if z does not decrease

too quickly with κ. An additional property in Theorem 2 that does not always

extend is that the buyer-seller ratio is higher in market 1. The intuition is

analogous to that in the previous paragraph: if z is decreasing in κ, buyer

entry in market 1 is limited.

6.3 Asymmetric Information

In this section we extend our analysis to the case where buyers’ switching

rates are not publicly observable. We start by examining whether a clientele

equilibrium exists. Assuming that market 1 is the most liquid, and denoting

by κi the maximum switching rate of an investor in market i, we have κ1 = κ
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and κ2 = κ∗. The buyer with switching rate κi has the lowest reservation value

in market i. Indeed, reservation values decrease in switching rates since high-

switching-rate buyers turn faster into sellers and have to re-incur the search

costs.

For simplicity, we restrict the clientele equilibrium to be in pure strategies,

i.e., all sellers in a given market make the same offer. In a pure-strategy equi-

librium, the sellers’ offer must be accepted by all buyers entering a market.

Indeed, suppose that buyers with switching rates above a cutoff `i < κi reject

the sellers’ offer in market i. Then, the density function µi
b(κ) of buyers in

market i would increase discontinuously at `i, as buyers above `i would exit

the buyer pool at lower rates. 13 This discontinuity would induce the sellers

to slightly lower their offer, to trade with buyers above `i.

Since all buyer-seller matches result in a trade, the equations for the measures

of buyers, inactive owners, and sellers are as in Section 3.1. The equations

for the expected utilities and prices are, however, different, because the price

is the same for all buyers entering a market. More specifically, the sellers’

offer in market i is vi
o(κ

i) − vi
b(κ

i), i.e., the reservation value of the highest-

switching-rate buyer, and the buyers’ offer is vi
s, i.e., the reservation value of a

seller. Since buyers make the offer with probability z/(1 + z), and sellers with

probability 1/(1 + z), the expected price in market i is

pi =
z

1 + z
vi

s +
1

1 + z
(vi

o(κ
i)− vi

b(κ
i)). (28)

The expected utility of a buyer in market i is given by

rvi
b(κ) = −κvi

b(κ) + λµi
s(v

i
o(κ)− pi − vi

b(κ)), (29)

the expected utility of a seller by

rvi
s = δ − x + λµi

b(p
i − vi

s), (30)

13 More specifically, µi
b(κ) would be given by (3) for κ < `i, and µi

b(κ) = f(κ)νi(κ)/κ
for κ > `i, as buyers above `i would exit the buyer pool only because of a switch to
low valuation.
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and the expected utility of an inactive owner by (9).

For a clientele equilibrium to exist, each seller must find it optimal to make

an offer which is accepted by all buyers. Suppose that upon meeting a buyer,

a seller decides to make an offer which is accepted only when the buyer’s

switching rate is up to κ. Then, the offer is vi
o(κ)− vi

b(κ), and if it is rejected

the seller re-enters the search process with expected utility vi
s. Thus, the seller

finds it optimal to trade with all buyers if

κi ∈ argmaxκ

[
P i

b (κ)(vi
o(κ)− vi

b(κ)) + (1− P i
b (κ))vi

s

]
, (31)

where P i
b (κ) denotes the probability that a buyer in market i has switching

rate up to κ.

Additionally, in a clientele equilibrium, buyer κ∗ must be indifferent between

the two markets. In the asymmetric-information case, an indifferent buyer

might not exist. Indeed, suppose that the seller has all the bargaining power

(z = 0). Then, buyer κ∗ receives zero surplus in market 2 (because the price is

equal to his reservation value), but positive surplus in market 1. To formulate

a sufficient condition for the existence of an indifferent buyer, we treat the

cutoff above which investors enter into market 1 as a free variable, and consider

population measures and expected utilities as functions of that variable. We

also consider the value κ′ of the cutoff for which the measures of sellers are

equal in the two markets. Then, the sufficient condition is that when the cutoff

takes the value κ′, buyer κ′ prefers entering into market 2. We refer to this

condition as Condition (C). Proposition 9 confirms that a clientele equilibrium

exists under Conditions (31) and (C), and has the properties in Theorem 2. 14

Proposition 9 If Conditions (31) and (C) hold, a clientele equilibrium exists

and has the following properties:

(a) More buyers and sellers in market 1: µ1
b > µ2

b and µ1
s > µ2

s.

14 In fact, some properties of a clientele equilibrium can be proven more generally,
without using Conditions (31) and (C). These are that market 1 has more buyers
and higher trading volume, and has a higher buyer-seller ratio and higher prices if
it has more sellers.
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(b) Higher buyer-seller ratio in market 1: µ1
b/µ

1
s > µ2

b/µ
2
s.

(c) Higher prices in market 1: p1 > p2.

Conditions (31) and (C) hold, for example, when search frictions are small

and Dh = 2S, i.e., the parameters in the asymptotic analysis of Section 4.1.

This is not surprising: the asymptotic analysis shows that for small frictions,

prices are almost independent of buyers’ switching rates. Therefore, when

switching rates are observable only to buyers, the outcome should be the same

as under symmetric information: a clientele equilibrium should exist and have

the properties in Theorem 2.

Proposition 10 If Dh = 2S and λ is large, then Conditions (31) and (C)

hold.

Having established the existence of a clientele equilibrium, we next examine

its welfare properties. As shown in Section 5, a sufficient condition for the

clientele equilibrium to dominate the symmetric ones is that entry into market

1 is at or above the socially optimal level. To examine whether this condition

holds in the asymmetric-information case, we compare entry decisions with the

symmetric-information case. Under asymmetric information, buyer κ∗ receives

positive surplus from the seller’s offer when entering into market 1, because

the same offer must also be accepted by buyer κ. This induces more entry into

market 1. At the same time, a seller’s outside option is reduced by his inability

to price-discriminate, and this lowers the offer a buyer can make, thus raising

the buyer’s utility. Whether this induces more or less entry into market 1

depends on the relative heterogeneity of investors in the two markets. When,

for example, κ∗ is close to κ, market 1 is more homogeneous. Thus, the inability

to price-discriminate hurts more the sellers in market 2, inducing more entry

into that market. The overall effect is ambiguous. Suppose, for example, that

f(κ) = cκα, where α ∈ R measures the tilt of the distribution towards high

switching rates, c is a normalizing constant (so that Dh = 2S), and κ/κ = 2.

Then, entry into market 1 is greater in the asymmetric-information case as

long as α is smaller than 0.51.

Even when entry into market 1 is lower in the asymmetric-information case,
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it can still be socially excessive, because it is so under symmetric information.

For example, when f(κ) = cκα, entry into market 1 is socially excessive for

all values of α and κ/κ. 15

7 Conclusion

In this paper we explore a theory of asset liquidity based on the notion that

trading involves search. We assume that investors of different horizons can

invest in two identical assets. The asset markets are partially segmented in that

buyers must decide which of the two assets to search for, and then search for

that asset only. We show that there exists a “clientele” equilibrium where all

short-horizon investors search for the same asset. This asset has more buyers

and sellers, lower search times, and trades at a higher price relative to its

identical-payoff counterpart. Thus, our model can provide an explanation for

why assets with similar cash flows can differ substantially in their liquidity

and price (e.g., AAA-rated corporate bonds vs. Treasury bonds, and on- vs.

off-the-run Treasury bonds). This phenomenon cannot be readily explained

with theories based on asymmetric information. Our model also allows for a

welfare analysis of the allocation of liquidity across assets. We show that the

clientele equilibrium dominates the ones where the two markets are identical,

implying that the concentration of liquidity in one asset is socially desirable.

15 There might, however, be counterexamples for more complicated distributions.
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A Appendix

Proof of Proposition 1: Using (11), we can write (8) and (10) as

rvi
b(κ) = −κvi

b(κ) + λµi
s

z

1 + z
(vi

o(κ)− vi
b(κ)− vi

s) (A.1)

rvi
s = δ − x + λµi

b

1

1 + z
(Ei

b(v
i
o(κ)− vi

b(κ))− vi
s). (A.2)

Subtracting (A.1) from (9), we find

r(vi
o(κ)− vi

b(κ)) = δ + κ(vi
s − vi

o(κ) + vi
b(κ))− λµi

s

z

1 + z
(vi

o(κ)− vi
b(κ)− vi

s)

⇒ vi
o(κ)− vi

b(κ) =
δ +

(
κ + λµi

s
z

1+z

)
vi

s

r + κ + λµi
s

z
1+z

. (A.3)

Plugging (A.3) into (A.2), we find

rvi
s = δ − x + λµi

b

1

1 + z
(δ − rvi

s)E
i
b

[
1

r + κ + λµi
s

z
1+z

]
⇒ vi

s =
δ

r
− x

rQi
,(A.4)

where

Qi ≡ 1 + λµi
b

1

1 + z
Ei

b

[
1

r + κ + λµi
s

z
1+z

]
.

Given vi
s, the variables vi

o(κ), vi
b(κ), and pi(κ) are uniquely determined from

(9), (A.1), and (11), respectively. In the rest of the proof, we compute vi
b(κ)

and pi(κ) for use in subsequent proofs. Plugging (A.4) into (A.3), we find

vi
o(κ)− vi

b(κ) =
δ

r
− x

r

κ + λµi
s

z
1+z(

r + κ + λµi
s

z
1+z

)
Qi

. (A.5)
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Subtracting (A.4) from (A.5), we find

vi
o(κ)− vi

b(κ)− vi
s =

x(
r + κ + λµi

s
z

1+z

)
Qi

> 0. (A.6)

Plugging (A.6) into (A.1), we can compute vi
b(κ):

rvi
b(κ) = −κvi

b(κ) + λµi
s

z

1 + z

x(
r + κ + λµi

s
z

1+z

)
Qi

⇒ vi
b(κ) =

λµi
s

z
1+z

x

(r + κ)
(
r + κ + λµi

s
z

1+z

)
Qi

. (A.7)

Plugging (A.4) and (A.5) into (11), we can compute pi(κ):

pi(κ) =
δ

r
− x

r

1− r
1+z

1
r+κ+λµi

s
z

1+z

Qi
. (A.8)

Proof of Lemma 1: Since v1
b (κ

∗) = v2
b (κ

∗) > 0, the difference v1
b (κ)− v2

b (κ)

has the same sign as

v1
b (κ)

v1
b (κ

∗)
− v2

b (κ)

v2
b (κ

∗)
.

(A.7) implies that

v1
b (κ)

v1
b (κ

∗)
− v2

b (κ)

v2
b (κ

∗)
=

r + κ∗

r + κ

[
r + κ∗ + λµ1

s
z

1+z

r + κ + λµ1
s

z
1+z

− r + κ∗ + λµ2
s

z
1+z

r + κ + λµ2
s

z
1+z

]

=
r + κ∗

r + κ

λ(µ1
s − µ2

s)
z

1+z
(κ− κ∗)(

r + κ + λµ1
s

z
1+z

) (
r + κ + λµ2

s
z

1+z

) , (A.9)

which proves the lemma.

To prove Theorem 1, we first prove the following lemma:
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Lemma 3 Suppose that investors’ entry decisions are given by ν1(κ) = 1 for

κ > κ∗, and ν1(κ) = 0 for κ < κ∗, for some cutoff κ∗. Then, µ1
s and µ2

s are

uniquely determined, µ1
s is increasing in κ∗, and µ2

s is decreasing in κ∗.

Proof: Using (6), and setting i = 1, ν1(κ) = 1 for κ > κ∗, and ν1(κ) = 0 for

κ < κ∗, we find

κ∫

κ∗

λµ1
sf(κ)

κ (κ + λµ1
s)

dκ + µ1
s = S. (A.10)

The LHS of this equation is strictly increasing in µ1
s, is zero for µ1

s = 0, and

is infinite for µ1
s = ∞. Therefore, (A.10) has a unique solution µ1

s. Moreover,

differentiating implicitly w.r.t. κ∗, we find

dµ1
s

dκ∗
=

λµ1
sf(κ∗)

κ∗(κ∗+λµ1
s)

1 +
∫ κ
κ∗

λf(κ)
(κ+λµ1

s)2
dκ

> 0.

Proceeding similarly, we find that µ2
s is uniquely determined by

κ∗∫

κ

λµ2
sf(κ)

κ (κ + λµ2
s)

dκ + µ2
s = S. (A.11)

Differentiating implicitly w.r.t. κ∗, we find

dµ2
s

dκ∗
= −

λµ2
sf(κ∗)

κ∗(κ∗+λµ2
s)

1 +
∫ κ∗
κ

λf(κ)
(κ+λµ2

s)2
dκ

< 0.

Proof of Theorem 1: The cutoff κ∗ is determined by the indifference con-

dition v1
b (κ

∗) = v2
b (κ

∗). Using (A.7), we can write this condition as
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µ1
s(

r + κ + λµ1
s

z
1+z

)
Q1

=
µ2

s(
r + κ + λµ2

s
z

1+z

)
Q2

(A.12)

⇔ µ1
s

r + κ∗ + λµ1
s

z
1+z

+ λµ1
b

1
1+z

E1
=

µ2
s

r + κ∗ + λµ2
s

z
1+z

+ λµ2
b

1
1+z

E2
, (A.13)

where

Ei ≡ Ei
b

[
r + κ∗ + λµi

s
z

1+z

r + κ + λµi
s

z
1+z

]
.

Multiplying by the denominators in (A.13), we find

(r + κ∗)(µ1
s − µ2

s) + λ
1

1 + z
(µ1

sµ
2
bE

2 − µ2
sµ

1
bE

1) = 0. (A.14)

Since

E1 =
1

µ1
b

κ∫

κ

r + κ∗ + λµ1
s

z
1+z

r + κ + λµ1
s

z
1+z

µ1
b(κ)dκ =

1

µ1
b

κ∫

κ∗

f(κ)
(
r + κ∗ + λµ1

s
z

1+z

)

(κ + λµ1
s)

(
r + κ + λµ1

s
z

1+z

)dκ

and

E2 =
1

µ2
b

κ∗∫

κ

f(κ)
(
r + κ∗ + λµ2

s
z

1+z

)

(κ + λµ2
s)

(
r + κ + λµ2

s
z

1+z

)dκ,

(A.14) can be written as

µ1
s − µ2

s + µ1
s

1

(r + κ∗)(1 + z)

κ∗∫

κ

λf(κ)
(
r + κ∗ + λµ2

s
z

1+z

)

(κ + λµ2
s)

(
r + κ + λµ2

s
z

1+z

)dκ

−µ2
s

1

(r + κ∗)(1 + z)

κ∫

κ∗

λf(κ)
(
r + κ∗ + λµ1

s
z

1+z

)

(κ + λµ1
s)

(
r + κ + λµ1

s
z

1+z

)dκ = 0. (A.15)

To prove the proposition, we consider (A.15) as a function of the single un-

known κ∗, i.e., treat µ1
s and µ2

s as implicit functions of κ∗ (Lemma 3). To show
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that an equilibrium exists, it suffices to show that (A.15) has a solution κ∗

satisfying µ1
s > µ2

s. For κ∗ = κ, the LHS is negative, since (A.11) implies that

µ2
s = S > µ1

s. Conversely, for κ∗ = κ, the LHS is positive. Therefore, (A.15)

has a solution κ∗ ∈ (κ, κ). To show that µ1
s > µ2

s, we note that

κ∫

κ∗

λf(κ)
(
r + κ∗ + λµ1

s
z

1+z

)

(κ + λµ1
s)

(
r + κ + λµ1

s
z

1+z

)dκ−
κ∫

κ∗

λf(κ)κ∗

(κ + λµ1
s)κ

dκ

=

κ∫

κ∗

λf(κ)
(
r + λµ1

s
z

1+z

)
(κ− κ∗)

(κ + λµ1
s)κ

(
r + κ + λµ1

s
z

1+z

)dκ > 0,

and

κ∗∫

κ

λf(κ)
(
r + κ∗ + λµ2

s
z

1+z

)

(κ + λµ2
s)

(
r + κ + λµ2

s
z

1+z

)dκ−
κ∗∫

κ

λf(κ)κ∗

(κ + λµ2
s)κ

dκ < 0.

Plugging into (A.15), we find

µ1
s − µ2

s +
κ∗

(r + κ∗)(1 + z)


µ1

s

κ∗∫

κ

λf(κ)

(κ + λµ2
s)κ

dκ− µ2
s

κ∫

κ∗

λf(κ)

(κ + λµ1
s)κ

dκ


 > 0.

Combining with (A.10) and (A.11), we find

µ1
s − µ2

s +
κ∗

(r + κ∗)(1 + z)

[
µ1

s

(
S

µ2
s

− 1

)
− µ2

s

(
S

µ1
s

− 1

)]
> 0

⇒ (µ1
s − µ2

s)

[
1 +

κ∗

(r + κ∗)(1 + z)

[
S(µ1

s + µ2
s)

µ1
sµ

2
s

− 1

]]
> 0.

Since the term in brackets is positive, we have µ1
s > µ2

s.

To show that the equilibrium is unique, it suffices to show that for any κ∗ that

solves (A.15), the derivative of the LHS w.r.t. κ∗ is strictly positive. Denoting

the LHS by F (κ∗, µ1
s, µ

2
s), we have

dF (κ∗, µ1
s, µ

2
s)

dκ∗
=

∂F (κ∗, µ1
s, µ

2
s)

∂κ∗
+

∂F (κ∗, µ1
s, µ

2
s)

∂µ1
s

dµ1
s

dκ∗
+

∂F (κ∗, µ1
s, µ

2
s)

∂µ2
s

dµ2
s

dκ∗
.
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We will show that the partial derivatives w.r.t. κ∗ and µ1
s are strictly positive,

while that w.r.t. µ2
s is strictly negative. Since dµ1

s/dκ∗ > 0 and dµ2
s/dκ∗ < 0,

this will imply that dF (κ∗, µ1
s, µ

2
s)/dκ∗ > 0. Setting

hi(κ) ≡ λf(κ)

(κ + λµi
s)

(
r + κ + λµi

s
z

1+z

) ,

we have

∂F (κ∗, µ1
s, µ

2
s)

∂κ∗
=

λµ1
sf(κ∗)

(r + κ∗)(1 + z)(κ∗ + λµ2
s)

+
λµ2

sf(κ∗)
(r + κ∗)(1 + z)(κ∗ + λµ1

s)

+
λµ1

sµ
2
s

z
1+z

(r + κ∗)2(1 + z)




κ∫

κ∗
h1(κ)dκ−

κ∗∫

κ

h2(κ)dκ


 .

To show that the RHS is positive, it suffices to show that the term in brackets

is positive. The latter follows by writing (A.15) as

µ1
s − µ2

s +
µ1

s − µ2
s

1 + z

κ∗∫

κ

h2(κ)dκ− µ2
s

r + κ∗ + λµ1
s

z
1+z

(r + κ∗)(1 + z)




κ∫

κ∗
h1(κ)dκ−

κ∗∫

κ

h2(κ)dκ


 = 0,

and recalling that µ1
s > µ2

s. We next have

∂F (κ∗, µ1
s, µ

2
s)

∂µ1
s

= 1 +
r + κ∗ + λµ2

s
z

1+z

(r + κ∗)(1 + z)

κ∗∫

κ

h2(κ)dκ− µ2
s

λ z
1+z

(r + κ∗)(1 + z)

κ∫

κ∗
h1(κ)dκ

+µ2
s

r + κ∗ + λµ1
s

z
1+z

(r + κ∗)(1 + z)

κ∫

κ∗
h1(κ)

[
λ

κ + λµ1
s

+
λ z

1+z

r + κ + λµ1
s

z
1+z

]
dκ.

To show that the RHS is positive, it suffices to show that the sum of the first

three terms is positive. The latter follows by writing (A.15) as

µ1
s


1 +

r + κ∗ + λµ2
s

z
1+z

(r + κ∗)(1 + z)

κ∗∫

κ

h2(κ)dκ− µ2
s

λ z
1+z

(r + κ∗)(1 + z)

κ∫

κ∗
h1(κ)dκ



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−µ2
s


1 +

1

1 + z

κ∫

κ∗
h1(κ)dκ


 = 0.

An analogous argument establishes that ∂F (κ∗, µ1
s, µ

2
s)/∂µ2

s < 0.

Proof of Theorem 2: Property (a) follows from µ1
s > µ2

s and Property (b).

To prove Property (b), we note that since κ > κ∗ in market 1 and κ < κ∗ in

market 2, E1 < 1 and E2 > 1. (A.14) then implies that

(r + κ∗)(µ1
s − µ2

s) + λ
1

1 + z
(µ1

sµ
2
b − µ2

sµ
1
b) < 0

⇒λ
1

1 + z
(µ2

sµ
1
b − µ1

sµ
2
b) > (r + κ∗)(µ1

s − µ2
s) > 0,

which, in turn, implies Property (b).

We finally prove Property (c). Substituting the price from (A.8), we have to

prove that

1− r
1+z

1
r+κ+λµ1

s
z

1+z

Q1
<

1− r
1+z

1
r+κ+λµ2

s
z

1+z

Q2
.

Dividing both sides by (A.12), we can write this inequality as G(µ1
s) < G(µ2

s),

where

G(µ) ≡

[
1− r

1+z
1

r+κ+λµ z
1+z

] [
r + κ∗ + λµ z

1+z

]

µ
.

Given that µ1
s > µ2

s, the inequality G(µ1
s) < G(µ2

s) will follow if we show that

G(µ) is decreasing. Simple calculations show that

G′(µ) = −r + κ∗

µ2


1− r

(1 + z)
(
r + κ + λµ z

1+z

) −
rλµ z

1+z

(
r + κ∗ + λµ z

1+z

)

(1 + z)
(
r + κ + λµ z

1+z

)2
(r + κ∗)


 .(A.16)
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The term in brackets in increasing in both κ and κ∗, and is equal to z/(1+z) >

0 for κ = κ∗ = 0. Therefore, it is positive, and G(µ) is decreasing.

Proof of Proposition 2: To determine (α1, α2, κ̂), we use (A.10)-(A.12).

Recalling that g(κ) = f(κ)/κ, we can write (A.10) and (A.11) as

κ∫

κ∗

g(κ)

1 + κ
λµ1

s

dκ + µ1
s = S, (A.17)

κ∗∫

κ

g(κ)

1 + κ
λµ2

s

dκ + µ2
s = S. (A.18)

Multiplying both sides of (A.12) by λz/(1 + z), and taking inverses, we find

[
1 +

(r + κ∗)(1 + z)

λµ1
sz

]
Q1 =

[
1 +

(r + κ∗)(1 + z)

λµ2
sz

]
Q2. (A.19)

Moreover, using (1) and (3), we can write Q1 and Q2 as

Q1 = 1 +

∫ κ
κ∗

g(κ)κ
1+ κ

λµ1
s

dκ

λ(µ1
s)

2z
E1

b


 1

1 + (r+κ)(1+z)
λµ1

sz


 (A.20)

Q2 = 1 +

∫ κ∗
κ

g(κ)κ
1+ κ

λµ2
s

dκ

λ(µ2
s)

2z
E2

b


 1

1 + (r+κ)(1+z)
λµ2

sz


 . (A.21)

We next set µi
s = αi/

√
λ + o(1/

√
λ) and κ∗ = κ̂ + γ/

√
λ + o(1/

√
λ), and

consider the asymptotic behavior of (A.17)-(A.19) when λ goes to ∞. Taking

limits in (A.17) and (A.18) when λ goes to ∞, we find

κ∫

κ̂

g(κ)dκ =

κ̂∫

κ

g(κ)dκ = S,

40



i.e., (20). Taking limits in (A.19), we find

∫ κ
κ̂ g(κ)κdκ

(α1)2
=

∫ κ̂
κ g(κ)κdκ

(α2)2
. (A.22)

Equating terms of order 1/
√

λ in (A.17) and (A.18), we find

− 1

α1

κ∫

κ̂

g(κ)κdκ− γg(κ̂) + α1 = 0, (A.23)

− 1

α2

κ̂∫

κ

g(κ)κdκ + γg(κ̂) + α2 = 0. (A.24)

Combining (A.22)-(A.24), we find (18), (19) and γ = 0. Given (18) and (19),

(A.20) and (A.21) imply that limλ→∞ Qi = 1 + 1/z for i = 1, 2. Therefore,

(A.8) implies that

lim
λ→∞

pi(κ) = lim
λ→∞


δ

r
− x

r

1− r
1+z

1
r+κ+λµi

s
z

1+z

Qi


 =

δ

r
− x

r

1

1 + 1
z

=
δ

r
− x

r

z

1 + z
.

(A.8) also implies that

p1(κ)− p2(κ) =
x

r




1− r
1+z

1
r+κ+λµ2

s
z

1+z

Q2
−

1− r
1+z

1
r+κ+λµ1

s
z

1+z

Q1




=
x

rQ2


1− r

λµ2
sz

1

1 + (r+κ)(1+z)
λµ2

sz

−

1− r

λµ1
sz

1

1 + (r+κ)(1+z)
λµ1

sz


 Q2

Q1




=
x

rQ2


1− r

λµ2
sz

1

1 + (r+κ)(1+z)
λµ2

sz

−

1− r

λµ1
sz

1

1 + (r+κ)(1+z)
λµ1

sz


 1 + (r+κ∗)(1+z)

λµ1
sz

1 + (r+κ∗)(1+z)
λµ2

sz


 ,

where the last step follows from (A.12). Therefore,

p1(κ)− p2(κ) =
x

r
(
1 + 1

z

)

1− r√

λα2z
−

[
1− r√

λα1z

]
1 + (r+κ̂)(1+z)√

λα1z

1 + (r+κ̂)(1+z)√
λα2z


 + o

(
1√
λ

)
.
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Simple algebra shows that this is equivalent to (17).

Proof of Corollary 1: Since λ is large, it suffices to show Properties (a)-(c)

for the highest-order term (i.e., 1/
√

λ) in (17). Property (c) follows immedi-

ately since z does not enter in (α1, α2, κ̂). For Properties (a) and (b), we note

that

(α1)2 =

κ∫

κ̂

g(κ)κdκ =




κ∫

κ̂

g(κ)dκ




∫ κ
κ̂ g(κ)κdκ
∫ κ
κ̂ g(κ)dκ

= SEg(κ ≥ κ̂)

and

(α2)2 = SEg(κ ≤ κ̂),

where Eg denotes expectation under g. We denote the new distributions by gφ,

and the new values of (α1, α2, κ̂) by (α1
φ, α

2
φ, κ̂φ). The distribution in case (a)

does not affect the median (κ̂φ = κ̂), but concentrates more weight towards

it. Therefore,

(α1
φ)

2 = SEgφ
(κ ≥ κ̂) ≤ SEg(κ ≥ κ̂) = (α1)2,

(α2
φ)

2 ≥ (α2)2.

(17) then implies that the liquidity premium is lower under gφ than under g.

To prove the result in case (b), we consider the distribution gφ(κ) ≡ g(κ− y),

which shifts weight up uniformly by y. (This distribution is of the form g(κ)+

φ(κ), provided that φ(κ) is defined as g(κ− y)− g(κ) and all distributions are

considered in the common support [κ, κ + y]. A sufficient condition for φ(κ)

to change sign only once is that g(κ) = cκα for any two constants (α, c).) We

have κ̂φ = κ̂ + y,

(α1
φ)

2 = S [Eg(κ ≥ κ̂) + y] ,

(α2
φ)

2 = S [Eg(κ ≤ κ̂) + y] .
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To show that the liquidity premium can be higher or lower under gφ, we

differentiate the higher-order term in (17) w.r.t. y at y = 0. Setting κ̂1 ≡
Eg(κ ≥ κ̂) and κ̂2 ≡ Eg(κ ≤ κ̂), the derivative has the same sign as

d

dy

[(
r

1 + z
+ κ̂ + y

) (
1√

κ̂2 + y
− 1√

κ̂1 + y

)]∣∣∣∣∣
y=0

=

(
1√
κ̂2
− 1√

κ̂1

)
−

r
1+z

+ κ̂

2

(
1

(κ̂2)
3
2

− 1

(κ̂1)
3
2

)

=

(
1√
κ̂2
− 1√

κ̂1

) [
1−

r
1+z

+ κ̂

2

(
1

κ̂1
+

1

κ̂2
+

1√
κ̂1κ̂2

)]
.

The term in brackets is negative for a distribution with κ̂ ≈ κ̂1 (i.e., almost all

mass concentrated on the upper bound of the support). On the other hand,

the term is positive for a distribution with κ̂ ≈ κ̂2, provided that r and κ̂2/κ̂1

are close enough to zero. Therefore, the derivative can have either sign.

Proof of Proposition 3: In a symmetric equilibrium, (A.12) must hold for

all κ∗. This is equivalent to µ1
s = µ2

s = µs (from Lemma 1) and Q1 = Q2.

It is easy to check that there is a continuum of functions ν1(κ) such that

these two scalar equations hold. Plugging these equations into (A.8), we find

p1(κ) = p2(κ) for all κ.

Instead of proving Lemma 2, we prove a more general lemma that (i) covers

non-steady states (where population measures, expected utilities and prices

vary on time), and (ii) does not require that the measures of inactive owners

and sellers add up to the asset supply, as must be the case in equilibrium. We

extend our welfare criterion to non-steady states as

Wt ≡
∑

i=1,2




κ∫

κ

[vi
b,t(κ)µi

b,t(κ) + vi
o,t(κ)µi

o,t(κ)]dκ + vi
s,tµ

i
s,t +

∞∫

t




κ∫

κ

vi
b,t′(κ)f(κ)νi(κ)dκ


 e−r(t′−t)dt′




where the second subscript denotes time.
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Lemma 4 Welfare is

Wt =
2∑

i=1

∞∫

t

[
δ(µi

o,t′ + µi
s,t′)− xµi

s,t′
]
e−r(t′−t)dt′. (A.25)

Proof: It suffices to show that

d(Wte
−rt)

dt
= −

2∑

i=1

[
δ(µi

o,t + µi
s,t)− xµi

s,t

]
e−rt, (A.26)

since this integrates to (A.25). Using the definition of Wt, we find

d(Wte
−rt)

dt
=

∑

i=1,2

Aie−rt,

where

Ai =

κ∫

κ

[
dvi

b,t(κ)

dt
µi

b,t(κ) + vi
b,t(κ)

dµi
b,t(κ)

dt
+

dvi
o,t(κ)

dt
µi

o,t(κ) + vi
o,t(κ)

dµi
o,t(κ)

dt

]
dκ

+
dvi

s,t

dt
µi

s,t + vi
s,t

dµi
s,t

dt
− r




κ∫

κ

[vi
b,t(κ)µi

b,t(κ) + vi
o,t(κ)µi

o,t(κ)]dκ + vi
s,tµ

i
s,t




−
κ∫

κ

vi
b,t(κ)f(κ)νi(κ)dκ. (A.27)

To simplify (A.27), we compute the derivatives of the population measures

and expected utilities. The derivative of a population measure is equal to

the difference between the inflow and outflow associated to that population.

Proceeding as in Section 3.1, we find

dµi
b,t(κ)

dt
= f(κ)νi(κ)− κµi

b,t(κ)− λµi
b,t(κ)µi

s,t, (A.28)

dµi
o,t(κ)

dt
= λµi

b,t(κ)µi
s,t − κµi

o,t(κ), (A.29)
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and

dµi
s,t

dt
=

κ∫

κ

[
κµi

o,t(κ)− λµi
b,t(κ)µi

s,t

]
dκ. (A.30)

To compute the derivatives of the expected utilities, consider, for example,

vb,t(κ). For non-steady states, (7) generalizes to

vi
b,t(κ) = (1− rdt)

[
κdt0 + λµi

sdt(vi
o,t(κ)− pi

t(κ)) + (1− λµi
sdt− κdt)vi

b,t+dt(κ)
]
.

Rearranging, we find

rvi
b,t(κ)− dvi

b,t(κ)

dt
= −κvi

b,t(κ) + λµi
s,t(v

i
o,t(κ)− pi

t(κ)− vi
b,t(κ)). (A.31)

We similarly find

rvi
o,t(κ)− dvi

o,t(κ)

dt
= δ + κ(vi

s,t − vi
o,t(κ)), (A.32)

and

rvi
s,t −

dvi
s,t

dt
= δ − x +

κ∫

κ

λµi
b,t(κ)(pi

t(κ)− vi
s,t)dκ. (A.33)

Plugging (A.28)-(A.30) and (A.31)-(A.33) into (A.27), and canceling terms,

we find

Ai = −δµi
o,t − (δ − x)µi

s,t,

which proves (A.26).

Proof of Proposition 4: We only derive (22), as (23) and (24) can be derived

using the same procedure. Suppose that at time t the measure of buyers with
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switching rates in [κ, κ + dκ] in market i is increased by ε, while all other

measures remain as in the steady state. That is,

µi
b,t(κ) = µi

b(κ) +
ε

dκ
, (A.34)

µi
b,t(κ

′) = µi
b(κ

′) for κ′ /∈ [κ, κ + dκ], µi
o,t(κ

′) = µi
o(κ

′) for all κ′, and µi
s,t = µi

s,

where measures without the time subscript refer to the steady state.

We determine the change in population measures at time t+dt. Consider first

the buyers with switching rates in [κ, κ + dκ]. (A.28) implies that

µi
b,t+dt(κ) = µi

b,t(κ) +
[
f(κ)νi(κ)− κµi

b,t(κ)− λµi
b,t(κ)µi

s,t

]
dt. (A.35)

Plugging (A.34) and µi
s,t = µi

s into (A.35), and using the steady-state version

of (A.35), i.e.,

f(κ)νi(κ)− κµi
b(κ)− λµi

b(κ)µi
s = 0,

we find

µi
b,t+dt(κ) = µi

b(κ) +
ε

dκ
(1− κdt− λµi

sdt).

Thus, the measure of buyers with switching rates in [κ, κ + dκ] increases by

ε(1 − κdt − λµi
sdt) ≡ ε∆i

b(κ). In a similar manner, (A.29) implies that the

measure of inactive owners with switching rates in [κ, κ + dκ] increases by

ελµi
sdt ≡ ε∆i

o(κ), and (A.30) implies that the measure of sellers decreases

by ελµi
sdt ≡ ε∆i

s. Finally, the measures of buyers and inactive owners with

κ′ /∈ [κ, κ + dκ] do not change in order dt.

(A.25) implies that

Wt =
2∑

i=1

[
δ(µi

o,t + µi
s,t)− xµi

s,t

]
dt + (1− rdt)Wt+dt.
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The derivative of Wt w.r.t. ε at ε = 0 is V i
b (κ). The derivative of the term in

brackets is zero since µi
o,t = µi

o and µi
s,t = µi

s. Finally, the derivative of Wt+dt

is ∆i
b(κ)V i

b (κ) + ∆i
o(κ)V i

o (κ)−∆i
sV

i
s . Thus,

V i
b (κ) = (1− rdt)

[
∆i

b(κ)V i
b (κ) + ∆i

o(κ)V i
o (κ)−∆i

sV
i
s

]
.

Rearranging, we find (22).

Proof of Proposition 5: (22)-(24) are the same as (25)-(27), except that

z/(1 + z) and 1/(1 + z) are replaced by 1. Therefore, we can proceed as in

Proposition 1 and replace (A.7) by

V i
b (κ) =

λµi
sx

(r + κ) (r + κ + λµi
s)

[
1 + λµi

bE
i
b

[
1

r+κ+λµi
s

]] .

Using this equation, inequality V 1
b (κ∗) < V 2

b (κ∗) is equivalent to

µ1
s

r + κ∗ + λµ1
s + λµ1

bE
1
w

<
µ2

s

r + κ∗ + λµ2
s + λµ2

bE
2
w

, (A.36)

where

Ei
w ≡ Ei

b

[
r + κ∗ + λµi

s

r + κ + λµi
s

]
.

Dividing both sides by (A.13), we obtain the equivalent inequality

r + κ∗ + λµ1
s

z
1+z

+ λµ1
b

1
1+z

E1

r + κ∗ + λµ1
s + λµ1

bE
1
w

<
r + κ∗ + λµ2

s
z

1+z
+ λµ2

b
1

1+z
E2

r + κ∗ + λµ2
s + λµ2

bE
2
w

. (A.37)

Since for κ > κ∗,

r + κ∗ + λµ1
s

r + κ + λµ1
s

>
r + κ∗ + λµ1

s
z

1+z

r + κ + λµ1
s

z
1+z

,
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we have E1
w > E1. A similar argument implies that E2

w < E2. Therefore, to

show (A.37), it suffices to show that

r + κ∗ + λµ1
s

z
1+z

+ λµ1
b

1
1+z

E1

r + κ∗ + λµ1
s + λµ1

bE
1

<
r + κ∗ + λµ2

s
z

1+z
+ λµ2

b
1

1+z
E2

r + κ∗ + λµ2
s + λµ2

bE
2

,

which is equivalent to

(r + κ∗)
[
(µ1

s − µ2
s)

1

1 + z
+ (µ1

bE
1 − µ2

bE
2)

z

1 + z

]

+λ(µ2
sµ

1
bE

1 − µ1
sµ

2
bE

2)
z − 1

1 + z
> 0. (A.38)

(A.14) implies that

λ
1

1 + z
(µ2

sµ
1
bE

1 − µ1
sµ

2
bE

2) = (r + κ∗)(µ1
s − µ2

s). (A.39)

Substituting µ2
sµ

1
bE

1 − µ1
sµ

2
bE

2 from this equation into (A.38), we find the

equivalent equation

(µ1
s − µ2

s)
z2

1 + z
+ (µ1

bE
1 − µ2

bE
2)

z

1 + z
> 0.

This equation holds because (i) µ1
s > µ2

s and (ii) µ1
bE

1 > µ2
bE

2 (from (A.39)

and µ1
s > µ2

s).

Proof of Proposition 6: From Lemma 2, maximizing W is equivalent to

minimizing µ1
s +µ2

s. We first minimize µ1
s +µ2

s through the choice of a “trigger”

allocation, i.e., a cutoff κ∗w such that ν1(κ) = 1 for κ > κ∗w, and ν1(κ) =

0 for κ < κ∗w. We show that this constrained problem, (Pc), has a unique

solution. We next show that this solution, together with the symmetric one

derived by switching the indices of the two assets, are the only solutions to

the unconstrained problem (P).
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Lemma 3 implies that the derivative of µ1
s + µ2

s w.r.t. κ∗w is

λf(κ∗w)

κ∗w


 µ1

s

κ∗w + λµ1
s +

∫ κ
κ∗w

λf(κ)(κ∗w+λµ1
s)

(κ+λµ1
s)2

dκ
− µ2

s

κ∗w + λµ2
s +

∫ κ∗w
κ

λf(κ)(κ∗w+λµ2
s)

(κ+λµ2
s)2

dκ


 .(A.40)

Multiplying by the denominators, we find that the term in brackets has the

same sign as

Fw ≡ µ1
s − µ2

s + µ1
s

1

κ∗w

κ∗w∫

κ

λf(κ)(κ∗w + λµ2
s)

(κ + λµ2
s)

2
dκ− µ2

s

1

κ∗w

κ∫

κ∗w

λf(κ)(κ∗w + λµ1
s)

(κ + λµ1
s)

2
dκ.

Proceeding as in the existence proof of Theorem 1, we can show that there

exists κ∗w ∈ (κ, κ) such that Fw = 0, and moreover, that for any such κ∗w we

have µ1
s > µ2

s. Proceeding as in the uniqueness proof of Theorem 1, we can

show that for any κ∗w solving Fw = 0, the derivative of Fw w.r.t. κ∗w is positive.

This implies that κ∗w is unique. It also implies that Fw is negative and then

positive, and thus κ∗w corresponds to a minimum of µ1
s + µ2

s.

To show that the solution to (Pc) and its symmetric counterpart are the only

solutions to (P), we proceed by contradiction, assuming that µ1
s + µ2

s is lower

for some non-trigger allocation ν1(κ). We denote the measures of sellers under

ν1(κ) by {µi
sν}i=1,2. Without loss of generality, we assume that µ1

sν ≥ µ2
sν , and

first consider the case µ1
sν > µ2

sν . Define κ̌ by

κ̌∫

κ

f(κ)

κ(κ + λµ2
sν)

dκ =

κ∫

κ

f(κ)ν2(κ)

κ(κ + λµ2
sν)

dκ, (A.41)

and consider the corresponding trigger allocation. Since µ2
sν solves (6) under

the trigger allocation, it coincides with that allocation’s µ2
s. (A.41) implies

that

κ∫

κ̌

f(κ)

κ(κ + λµ2
sν)

dκ =

κ∫

κ

f(κ)ν1(κ)

κ(κ + λµ2
sν)

dκ. (A.42)
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Since ν1(κ) gives non-zero weight to values below κ̌ (being a non-trigger al-

location), and the function 1/(κ + λµ1
sν) is decreasing in κ, (A.42) implies

that

κ∫

κ̌

f(κ)

κ(κ + λµ2
sν)(κ + λµ1

sν)
dκ <

κ∫

κ

f(κ)ν1(κ)

κ(κ + λµ2
sν)(κ + λµ1

sν)
dκ. (A.43)

Multiplying (A.43) by λ(µ1
sν − µ2

sν), and subtracting it from (A.42), we find

κ∫

κ̌

f(κ)

κ(κ + λµ1
sν)

dκ >

κ∫

κ

f(κ)ν1(κ)

κ(κ + λµ1
sν)

dκ. (A.44)

(6) then implies that µ1
sν is greater than the trigger allocation’s µ1

s, a contra-

diction. When µ1
sν = µ2

sν , µ1
sν is equal to the trigger allocation’s µ1

s. Therefore,

the allocation ν1(κ) achieves the same welfare as the trigger allocation, but

since the latter satisfies µ1
s = µ2

s, it is suboptimal from the first part of the

proof.

Proof of Theorem 3: Denote by W(`) the welfare under the trigger allo-

cation with cutoff `. From Proposition 6, W(`) is increasing for ` < κ∗w, and

decreasing for ` > κ∗w. The cutoff κ′ for which the measure of sellers is equal

across markets obviously satisfies κ′ < κ∗, where κ∗ is the clientele-equilibrium

cutoff. Moreover, for small r, we have κ∗ < κ∗w. Indeed, for r = 0, (A.36) takes

the form

µ1
s

κ∗ + λµ1
s + λµ1

bE
1
b

[
κ∗+λµ1

s

κ+λµ1
s

] <
µ2

s

κ∗ + λµ2
s + λµ2

bE
2
b

[
κ∗+λµ2

s

κ+λµ2
s

] . (A.45)

Since

E1
b

[
κ∗ + λµ1

s

κ + λµ1
s

]
=

1

µ1
b

κ∫

κ∗

κ∗ + λµ1
s

κ + λµ1
s

µ1
b(κ)dκ =

1

µ1
b

κ∫

κ∗

f(κ)(κ∗ + λµ1
s)

(κ + λµ1
s)

2
dκ
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and

E2
b

[
κ∗ + λµ2

s

κ + λµ2
s

]
=

1

µ2
b

κ2∫

κ

f(κ)(κ∗ + λµ2
s)

(κ + λµ2
s)

2
dκ,

(A.45) implies that the term in brackets in (A.40) is negative when κ∗w is

replaced by κ∗. Therefore, W(`) is increasing at κ∗, implying that κ∗ < κ∗w.

Since κ′ < κ∗ < κ∗w, and W(`) is increasing for ` < κ∗w, we have W(κ′) <

W(κ∗). Since, in addition, W(κ′) is equal to the welfare Ws in any symmetric

equilibrium (see Footnote 12), we have Ws < W(κ∗).

Proof of Proposition 7: With simultaneous search, the expected utility of

a buyer with switching rate κ does not depend on i, and is given by

rvb(κ) = −κvb(κ) +
2∑

i=1

νi(κ)λµi
s

(
vi

o(κ)− pi(κ)− vb(κ)
)
, (A.46)

where νi(κ) is the probability that the buyer accepts to trade upon meeting

a seller of asset i. This probability is one if the surplus vi
o(κ) − vb(κ) − vi

s is

positive, and zero if it is negative. (Note that ν1(κ) and ν2(κ) do not have to

sum to one if the buyer accepts to buy both assets.) The utility vi
o(κ) of an

inactive owner, the utility vi
s of a seller, and the price pi(κ) can depend on i,

and are given by (9), (10) and (11). In (10), µi
b is the measure of buyers in the

set Bi ≡ {κ : vi
o(κ)− vb(κ)− vi

s > 0}, and in (11), vi
b(κ) is replaced by vb(κ).

We first show that vi
s < δ/r. Using (11), we can write (A.46) as

rvb(κ) =−κvb(κ) +
2∑

j=1

νj(κ)λµj
s

z

1 + z

(
vj

o(κ)− vb(κ)− vj
s

)

≥−κvb(κ) + νi(κ)λµi
s

z

1 + z

(
vi

o(κ)− vb(κ)− vi
s

)
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Therefore, for κ ∈ Bi,

rvb(κ) ≥ −κvb(κ) + λµi
s

z

1 + z

(
vi

o(κ)− vb(κ)− vi
s

)
.

Subtracting this equation and (A.2) from (9), and taking expectations over

Bi, we find

Ei
b(v

i
o(κ)− vb(κ))− vi

s ≤
x

r + κ + λµi
s

z
1+z

+ λµi
b

1
1+z

.

Substituting back into (A.2), we find

rvi
s ≤ δ − x +

λµi
b

1
1+z

x

r + κ + λµi
s

z
1+z

+ λµi
b

1
1+z

⇒ vi
s <

δ

r
.

We next show that in equilibrium all buyers realize positive surplus from at

least one asset. Indeed, suppose that there exists κ such that vi
o(κ)− vb(κ)−

vi
s ≤ 0 for i = 1, 2. Since νi(κ) = 0 for i = 1, 2, (A.46) implies that vb(κ) = 0.

(9) then implies that

vi
o(κ)− vb(κ)− vi

s =
δ − rvi

s

r + κ
.

Since vi
s < δ/r, the surplus is positive, a contradiction.

We finally show that in equilibrium all buyers realize positive surplus from

both assets. If not, there exists κ such that, e.g., v1
o(κ)− vb(κ)− v1

s ≤ 0. Since

all buyers realize positive surplus from at least one asset, we have v2
o(κ) −

vb(κ) − v2
s > 0. Subtracting one equation from the other, and using (9), we

find

v2
o(κ)− v2

s − (v1
o(κ)− v1

s) > 0 ⇒ δ − rv2
s

r + κ
− δ − rv1

s

r + κ
> 0 ⇒ v1

s > v2
s .

The same reasoning implies that B1 ⊂ B2. Writing (A.2) as
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rvi
s = δ − x + λ

1

1 + z

∫

Bi

(vi
o(κ)− vb(κ)− vi

s)µb(κ)dκ

= δ − x + λ
1

1 + z

∫

Bi

[
δ − rvi

s

r + κ
− vb(κ)

]
µb(κ)dκ,

and subtracting this equation for i = 1 from its counterpart for i = 2, we find

r(v2
s − v1

s) = λ
1

1 + z

∫

B1

r(v1
s − v2

s)

r + κ
µb(κ)dκ + λ

1

1 + z

∫

B2\B1

(vi
o(κ)− vb(κ)− vi

s)µb(κ)dκ

>λ
1

1 + z

∫

B1

r(v1
s − v2

s)

r + κ
µb(κ)dκ,

a contradiction since v1
s > v2

s . Therefore, all buyers buy the first asset they find,

and sellers’ search times are identical across assets. Moreover, since sellers’

utilities are identical across assets, so are prices.

Proof of Proposition 8: When z is a function of κ, (A.7) and (A.8) generalize

to

vi
b(κ) =

λµi
s

z(κ)
1+z(κ)

x

(r + κ)
[
r + κ + λµi

s
z(κ)

1+z(κ)

]
Qi

, (A.47)

pi(κ) =
δ

r
− x

r

1− r
1+z(κ)

1

r+κ+λµi
s

z(κ)
1+z(κ)

Qi
, (A.48)

where

Qi ≡ 1 + λµi
bE

i
b

[
1

[1 + z(κ)](r + κ) + λµi
sz(κ)

]
.

(A.9) generalizes to

v1
b (κ)

v1
b (κ

∗)
− v2

b (κ)

v2
b (κ

∗)
=

r + κ∗

r + κ

λ(µ1
s − µ2

s)
z(κ)

1+z(κ)
z(κ∗)

1+z(κ∗)

[
(r + κ)1+z(κ)

z(κ)
− (r + κ∗)1+z(κ∗)

z(κ∗)

]
[
r + κ + λµ1

s
z(κ)

1+z(κ)

] [
r + κ + λµ2

s
z(κ∗)

1+z(κ∗)

]
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Therefore, Lemma 1 holds if the function (r+κ)1+z(κ)
z(κ)

is increasing in κ. (A.15)

generalizes to

µ1
s − µ2

s + µ1
s

1

(r + κ∗)

κ∗∫

κ

λf(κ)
[
r + κ∗ + λµ2

s
z(κ∗)

1+z(κ∗)

]

(κ + λµ2
s) [[1 + z(κ)](r + κ) + λµ2

sz(κ)]
dκ

−µ2
s

1

(r + κ∗)

κ∫

κ∗

λf(κ)
[
r + κ∗ + λµ1

s
z(κ∗)

1+z(κ∗)

]

(κ + λµ1
s) [[1 + z(κ)](r + κ) + λµ1

sz(κ)]
dκ = 0.

Proceeding as in Theorem 1, we can show that this equation has a solution.

The proof that µ1
s > µ2

s goes through if

r + κ∗ + λµs
z(κ∗)

1+z(κ∗)

[[1 + z(κ)](r + κ) + λµsz(κ)]
− κ∗

[1 + z(κ∗)]κ

is positive for κ > κ∗ and negative for κ < κ∗. This is equivalent to the

function

κ

[1 + z(κ)](r + κ) + λµsz(κ)

being increasing in κ. Finally, the uniqueness proof in Theorem 1 goes through

if the function (r+κ)1+z(κ)
z(κ)

is increasing in κ. Therefore, if z(κ) is decreasing in

κ, Lemma 1 and Theorem 1 hold, meaning that a clientele equilibrium exists

and is unique.

(A.16) generalizes to

G′(µ) = −r + κ∗

µ2


1− r

[1 + z(κ)]
[
r + κ + λµ z(κ)

1+z(κ)

] −
rλµ z(κ)

1+z(κ)

[
r + κ∗ + λµ z(κ∗)

1+z(κ∗)

]

[1 + z(κ)]
[
r + κ + λµ z(κ)

1+z(κ)

]2
(r + κ∗)


 .

To show that G′(µ) < 0, it suffices to show that the term in brackets is positive

when κ, κ∗ are set to zero, holding z(κ), z(κ∗) fixed. Solving for z(κ∗), the term
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of brackets is positive if

z(κ∗)
1 + z(κ∗)

<
1

λµ

[
r + λµ

λµ
[r[1 + z(κ)] + λµz(κ)]− r

]
.

This condition holds when z(κ) is decreasing and z(κ)
1+z(κ)

< z(κ).

Proof of Proposition 9: To show that a clientele equilibrium exists, it suf-

fices to find κ∗ such that when (a) entry decisions are given by ν1(κ) = 1 for

κ > κ∗, and ν1(κ) = 0 for κ < κ∗, (b) population measures are as in Sec-

tion 3.1, and (c) expected utilities and prices are given by (9) and (28)-(30),

v1
b (κ) − v2

b (κ) has the same sign as κ − κ∗. Simple algebra shows that the

solution to the system of (9) and (28)-(30) is

vi
b(κ) =

λµi
s

[
r

r+κ

(
r + κi + λµi

s
z

1+z

)
− r

1+z

]
x

r (r + κ + λµi
s)

(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) , (A.49)

vi
o(κ) =

δ

r
−

κ
(
r + κi + λµi

s
z

1+z

)
x

r(r + κ)
(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) , (A.50)

vi
s =

δ

r
−

(
r + κi + λµi

s
z

1+z

)
x

r
(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) , (A.51)

pi =
δ

r
−

(
r z

1+z
+ κi + λµi

s
z

1+z

)
x

r
(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) . (A.52)

To show that there exists κ∗ such that

v1
b (κ

∗)− v2
b (κ

∗) = 0, (A.53)

we treat κ∗ as a free variable and (κi, µi
s, µ

i
b) as functions of κ∗. Condition (C)

implies that the LHS of (A.53) is negative for κ∗ = κ′. To show that it is
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positive for κ∗ = κ, we write it as

[
H(κ1, µ1

s, µ
1
b)−H(κ2, µ2

s, µ
2
b)

] x

r
,

where

H(`, µs, µb) ≡
λµs

[
r

r+κ∗

(
r + ` + λµs

z
1+z

)
− r

1+z

]

(r + κ∗ + λµs)
(
r + ` + λµb

1
1+z

+ λµs
z

1+z

) .

The function H is increasing in ` and µs, and decreasing in µb. For κ∗ = κ,

we have κ1 = κ2 = κ, µ1
s = S, µ2

s < S, µ1
b = 0, and µ2

b > 0. Therefore, the

LHS of (A.53) is positive, and thus this equation has a solution κ∗ ∈ (κ′, κ).

Since κ∗ > κ′, and since µ1
s is increasing in κ∗ and µ2

s is decreasing, we have

µ1
s > µ2

s.

The sign of v1
b (κ)− v2

b (κ) is the same as of

v1
b (κ)

v1
b (κ

∗)
− v2

b (κ)

v2
b (κ

∗)
.

From (A.49), this has the same sign as

(
r + κ + λµ1

s
z

1+z
− r+κ

1+z

)
(r + κ∗ + λµ1

s)(
r + κ + λµ1

s
z

1+z
− r+κ∗

1+z

)
(r + κ + λµ1

s)
−

(
r + κ∗ + λµ2

s
z

1+z
− r+κ

1+z

)
(r + κ∗ + λµ2

s)(
r + κ∗ + λµ2

s
z

1+z
− r+κ∗

1+z

)
(r + κ + λµ2

s)
.

After some algebra, we find that this has the same sign as

(κ− κ∗)
[
(κ− κ∗)

1

1 + z
(r + κ + λµ1

s) + λ(µ1
s − µ2

s)
z

1 + z
(r + κ + λµ1

s)
]
.

Since µ1
s > µ2

s, this has the same sign as κ−κ∗, and thus a clientele equilibrium

exists.
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We next prove Properties (a)-(c). Property (a) follows from µ1
s > µ2

s and

Property (b). To prove Property (b), we note that since H is increasing in `,

H(κ∗, µ1
s, µ

1
b) < H(κ, µ1

s, µ
1
b) = v1

b (κ
∗) = v2

b (κ
∗) = H(κ∗, µ2

s, µ
2
b).

Since

H(κ∗, µs, µb) =
λµs

r
r+κ∗

z
1+z

r + κ∗ + λµb
1

1+z
+ λµs

z
1+z

,

we can write the above inequality as

µ1
s

r + κ∗ + λµ1
b

1
1+z

+ λµ1
s

z
1+z

<
µ2

s

r + κ∗ + λµ2
b

1
1+z

+ λµ2
s

z
1+z

.

Multiplying by the denominators, and using µ1
s > µ2

s, we find Property (b).

We finally prove Property (c). Substituting the price from (A.52), we have to

prove that

r z
1+z

+ κ1 + λµ1
s

z
1+z

r + κ1 + λµ1
b

1
1+z

+ λµ1
s

z
1+z

<
r z

1+z
+ κ2 + λµ2

s
z

1+z

r + κ2 + λµ2
b

1
1+z

+ λµ2
s

z
1+z

.

Dividing both sides by v1
b (κ

∗) = v2
b (κ

∗), we can write this inequality as

K(κ1, µ1
s) < K(κ2, µ2

s), where

K(`, µ) ≡
(
r z

1+z
+ ` + λµ z

1+z

)
(r + κ∗ + λµ)

(
r + ` + λµ z

1+z
− r+κ∗

1+z

)
λµ

.

Since K is decreasing in ` and µ, and since κ1 > κ2 and µ1
s > µ2

s, the inequality

holds.

Proof of Proposition 10: Condition (31) can be written as
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vi
o(κ

i)− vi
b(κ

i) ≥
[
P i

b (κ)(vi
o(κ)− vi

b(κ)) + (1− P i
b (κ))vi

s

]

⇔ (1− P i
b (κ))(vi

o(κ)− vi
b(κ)− vi

s) ≥ vi
o(κ)− vi

b(κ)− (vi
o(κ

i)− vi
b(κ

i)).(A.54)

To show that this holds, we use (A.49)-(A.51). Combining (A.49) and (A.50),

we find

vi
o(κ)− vi

b(κ) =
δ

r
−

[(
r + κi + λµi

s
z

1+z

)
(κ + λµi

s)− λµi
s

r
1+z

]
x

r (r + κ + λµi
s)

(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) , (A.55)

which for κ = κi simplifies into

vi
o(κ

i)− vi
b(κ

i) =
δ

r
−

(
κi + λµi

s
z

1+z

)
x

r
(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) . (A.56)

(A.51) and (A.55) imply that

vi
o(κ)− vi

b(κ)− vi
s =

(r + κi + λµi
s) x

(r + κ + λµi
s)

(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) ,

and (A.55) and (A.56) imply that

vi
o(κ)− vi

b(κ)− (vi
o(κ

i)− vi
b(κ

i)) =
(κi − κ)x

(r + κ + λµi
s)

(
r + κi + λµi

b
1

1+z
+ λµi

s
z

1+z

) .

(A.54) is thus equivalent to

1

κi − κ

∫ κi

κ
f(`)

`+λµi
s
d`

∫ κi

κi
f(`)

`+λµi
s
d`

=
1− P i

b (κ)

κi − κ
≥ 1

r + κi + λµi
s

, (A.57)

where κi denotes the minimum switching rate in market i (κ1 = κ∗ and κ2 =

κ). Proposition 2 shows that when λ goes to ∞, λµi
s is of order

√
λ and thus

converges to ∞. Therefore, the RHS of (A.57) converges to zero and the LHS
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converges to

Li(κ) ≡ 1

κi − κ

∫ κi

κ f(`)dy
∫ κi

κi f(`)dy
.

This function is continuous in the compact set [κi, κi], and strictly positive

since f(κ) > 0. Therefore, it is bounded away from zero, implying that (A.57)

holds for large λ.

We next show Condition (C). From the definition of κ′, we have µ1
s = µ2

s ≡ µs.

Using (A.49), we can then write inequality v1
b (κ

′) < v2
b (κ

′) as

r + κ + λµs
z

1+z
− r+κ′

1+z

r + κ + λµ1
b

1
1+z

+ λµs
z

1+z

<
r + κ′ + λµs

z
1+z

− r+κ′
1+z

r + κ′ + λµ2
b

1
1+z

+ λµs
z

1+z

.

Simple algebra shows that this is equivalent to

λ(µ1
b − µ2

b)
z

1 + z
(r + κ′ + λµs) > (κ− κ′)(r + κ′ + λµ2

b). (A.58)

Proceeding as in Proposition 2 we can show that when λ goes to ∞, κ′ con-

verges to κ̂, µs is asymptotically equal to α/
√

λ, and µi
b is asymptotically equal

to γi/
√

λ, with

α =

√√√√
∫ κ
κ g(κ)κdκ

2
,

γ1 =

∫ κ
κ̂ g(κ)κdκ

α
,

γ2 =

∫ κ̂
κ g(κ)κdκ

α
.

Since γ1 > γ2, (A.58) holds for large λ.
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