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1 Introduction

Why do some assets have a narrow and some a broad investor base? Do assets with a broad base

have different expected returns than assets with a narrow base? Two influential theories characterize

the breadth of ownership and its relationship to expected returns, and yield opposite predictions.

The first theory, formulated by Merton (1987) as the investor-recognition hypothesis, emphasizes

costs of entering asset markets. According to that theory, an asset for which entry costs are high

attracts few investors and trades at a deep discount because of imperfect risk-sharing. Hence, a

narrow investor base indicates an undervalued asset with high expected return. The second theory,

formulated by Miller (1977) and Harrison and Kreps (1978), and further developed by Chen, Hong,

and Stein (2002, CHS), Scheinkman and Xiong (2003) and Hong and Stein (2007), emphasizes

differences of opinion across investors, combined with short-sale constraints. According to that

theory, large disagreements across investors about an asset’s payoff result in the asset being held

only by the most optimistic investors. Since optimists push the asset price up, a narrow investor

base indicates an overvaluated asset with low expected return.

Some empirical findings are consistent with the entry-cost theory. For example, Hong and

Kacperczyk (2009) find that social norms prevent some institutional investors from holding stocks

in “sin industries” (alcohol, gaming and tobacco), and this raises the stocks’ expected returns.

Lou (2014) finds that increased advertising by firms brings in more investors, raises their stock

prices and lowers their expected returns. The overall cross-section of stocks, however, seems better

described by the difference-of-opinion theory. CHS find that stocks with a narrow investor base

earn low expected returns in the cross-section. Diether, Malloy, and Scherbina (2002, DMS) find

that stocks for which financial analysts disagree the most, thus exhibiting more extreme optimism

or pessimism, earn low expected returns.

In this paper we re-examine the empirical relationship between breadth of ownership and ex-

pected returns, and show that it remains puzzling for the leading formulations of the two theories.

We also propose a richer formulation of the difference-of-opinion theory that can explain the puz-

zle. Our formulation has implications not only for the relationship between breadth of ownership

and expected returns but also for how each variable relates to investor beliefs. We test for these

implications using analyst forecasts as a proxy for investor beliefs, and find empirical support.

We show that the empirical relationship between breadth of ownership and expected returns

depends critically on stock size. For large stocks, a narrow investor base predicts low future

returns, consistent with the difference-of-opinion theory and the findings of CHS. For small stocks,

by contrast, a narrow base predicts high future returns, and this effect is stronger than its opposite

for large stocks. This is inconsistent with the difference-of-opinion theory, and is especially puzzling
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because that theory should be more relevant for small stocks. Indeed, since optimists are better

able to absorb a smaller supply, the overvaluation that they generate should be more severe for

small stocks (Hong, Scheinkman, and Xiong (2006)).

We solve the puzzle in a model where the distribution of investor beliefs is described by two

dimensions. In CHS and most other papers in the literature, differences of opinion are described

by the intensity of disagreement, as measured by the difference between optimists’ and pessimists’

beliefs. This one-dimensional description also underlies the empirical exercise in DMS, in which

returns are predicted by the standard deviation of the distribution of analyst forecasts. In our

model instead, stocks vary not only in the intensity of disagreement but also in how polarized

beliefs are: holding optimists’ and pessimists’ beliefs constant, there is variation in the number of

optimists and pessimists relative to investors with moderate beliefs. Polarization has a monotone

effect on expected returns but a non-monotone effect on the distribution of asset ownership. These

effects, for which we find empirical support, drive the size-dependent relationship between asset

ownership and expected returns.

In our model, presented in Section 2, there are multiple stocks and multiple investors with

different beliefs and short-sale constraints. Beliefs for each stock are described by a symmetric

three-point distribution: there are equal numbers of optimists and pessimists, with some rational

investors in the middle. The intensity of disagreement maps to the range of the distribution. The

extent of polarization maps to the distribution’s kurtosis. Holding range constant, higher kurtosis

indicates fewer optimists and pessimists relative to rationals. Stocks differ in their range and

kurtosis, as well as in their size, idiosyncratic variance, and exposure to systematic risk.

Stocks’ expected returns in equilibrium are negatively related to range and positively to kurtosis.

The effect of range follows the same logic as in CHS and DMS. Stocks for which the range is high

exhibit more disagreement: more extreme positive beliefs by optimists and negative beliefs by

pessimists. Therefore, when short-sale constraints keep pessimists out of the market, optimists

render the prices of these stocks higher than of otherwise identical stocks with less extreme beliefs.

The effect of kurtosis follows a different logic. Stocks for which the kurtosis is low exhibit more

polarization: more optimists and pessimists, and fewer rationals. Therefore, when pessimists drop

out of the market, optimists push the prices of these stocks higher than of otherwise identical stocks

with fewer optimists.

Following CHS, we measure breadth of ownership by the fraction of investors holding a stock.

For small stocks, breadth is independent of range. Indeed, since optimists can easily absorb the

small stocks’ supply, these stocks are held only by optimists regardless of how extreme optimistic

beliefs are. For large stocks instead, breadth is negatively related to range. Indeed, large stocks are

held only by optimists when optimistic beliefs are extreme, and by both optimists and rationals
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when beliefs are less extreme. The effect of kurtosis also depends on size, and crucially for our

empirical analysis, changes sign. For small stocks, breadth is negatively related to kurtosis because

these stocks are held only by optimists, and high kurtosis indicates few optimists. For large stocks

instead, breadth is positively related to kurtosis, because these stocks are held by both optimists

and rationals, and high kurtosis indicates few pessimists, who are the only investors not holding

the stocks.

Our theoretical results yield three main empirical hypotheses. The first hypothesis concerns the

relationship between investor beliefs and expected returns. Expected returns should be negatively

related to range holding kurtosis constant, and positively related to kurtosis holding range constant.

The second hypothesis concerns the relationship between investor beliefs and breadth of ownership.

Holding kurtosis constant, breadth should be unrelated to range for small stocks and negatively

related for large stocks. Holding range constant, breadth should be negatively related to kurtosis

for small stocks and positively related for large stocks. The third hypothesis follows from the

first two, and concerns the relationship between breadth of ownership and expected returns. For

small stocks, that relationship is driven by kurtosis since range has no effect on breadth, and is

negative. For large stocks, it is driven by both range and kurtosis, and both variables imply a

positive relationship.

We test the three hypotheses using CRSP data on US stock prices and returns, Thompson

Reuters data on holdings by 13-F institutional investors, and I/B/E/S data on analyst forecasts.

We proxy ownership patterns by those within 13-F investors, computing breadth as the number of

13-F investors holding a stock, divided by the total number of 13-F investors. We proxy investor

beliefs by analyst forecasts, and compute the range and kurtosis of the distribution of forecasts

across analysts. Computing kurtosis requires four or more analysts for a stock. We measure size

by market capitalization and by a proxy directly implied by our model, which is equal to market

capitalization adjusted by idiosyncratic variance, range and kurtosis. We also measure size by book

equity in a robustness test. We describe our dataset and empirical measures in Section 3.

Sections 4 and 5 present our empirical findings on the first and second hypotheses. When

regressing breadth on range, kurtosis and their interactions with size, we find that the coefficient

of kurtosis is negative, and the coefficient of the interaction between kurtosis and size is positive

and larger in magnitude. Thus, kurtosis is negatively related to breadth for small stocks and

positively for large stocks. When regressing expected returns on range and kurtosis, we find that

kurtosis is positively related to expected returns. These results provide direct evidence for the role

of kurtosis and for our model’s new mechanism. The effects of range are also broadly in line with

our model. Partly because of the restriction to four or more analysts, we find weaker effects of

range on expected returns than in DMS.
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Section 6 presents our empirical findings on the third hypothesis. We perform two related tests,

in which, following CHS, we use the first difference ∆B of breadth rather than the level to account

for the high autocorrelation of breadth and its correlation with size. One test is to regress future

returns on ∆B, its interaction with size, and risk controls. The other test is to double-sort stocks

into portfolios based on size and ∆B, and compare the returns and alphas of the high- relative

to the low-∆B portfolio across size groups. Both tests paint a consistent picture: ∆B predicts

negatively the returns of small stocks and positively those of large stocks, with the effect of ∆B for

small stocks being larger in absolute value than the effect for large stocks.

We subject the findings in Section 6 to a series of robustness tests. The findings hold both in

the full sample and when the fraction of a stock held by 13-F investors must exceed a threshold.

The findings, shown on annual returns, become stronger for returns over longer horizons, but do

not hold for quarterly returns. They weaken somewhat in the first half of the sample, when using

the level of breadth rather than the first difference, and when measuring size by book equity. They

become uniformly stronger when measuring breadth of ownership by the Herfindahl index rather

than by the fraction of investors holding a stock.

A final robustness test, in Section 7, is to perform the analysis at the level of investment styles

rather than individual investors. Our model can be applied to styles by assuming that each style

is held by a disjoint group of investors. The findings in Section 6 become stronger at the level of

styles. This rules out alternative explanations for the relationship between asset ownership and

expected returns that apply to the level of investors but not to styles, such as monitoring or rent

extraction by large shareholders, and asymmetric information by corporate insiders.

Our paper is most closely related to CHS. CHS describe the distribution of investor beliefs by

the intensity of disagreement, and show theoretically and empirically that breadth is positively

related to expected returns. We find instead a negative relationship for small stocks and a weaker

positive one for large stocks, and explain this finding in a model where beliefs are described by

two dimensions, intensity of disagreement and polarization. Unlike CHS, we also test for the direct

implications of our model for how the distribution of beliefs relates to breadth and expected returns.

DMS examine empirically how intensity of disagreement relates to expected returns, thus fo-

cusing on the same one-dimensional description of beliefs as in CHS. Proxying investor beliefs by

analyst forecasts, they find that stocks for which disagreement is large earn low returns. We show

that beliefs can be more plausibly described by two dimensions, and that the second dimension—

polarization—is useful in predicting returns. Unlike DMS, we also test for the relationship between

the distribution of beliefs and the breadth of ownership.

Cen, Lu, and Yang (2013, CLY) show theoretically and empirically that the relationship between
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breadth and expected returns turns negative when investor sentiment is volatile. Sentiment in

their model is driven by irrational investors, who trade with rational arbitrageurs. When irrational

investors become optimistic, breadth increases and expected return decreases. The variation in the

number of optimists is central to our model as well. We emphasize its cross-sectional implications,

while CLY focus on the time-series.1

While our model is based on differences of opinion and short-sale constraints, it can be related

to the alternative theory based on entry costs (Merton (1987)). Small stocks in our model are

held only by the optimists, who correspond to the participating investors in the entry-cost theory.

Breadth of ownership within small stocks is driven by variation in the optimists’ number, and thus

by the entry-cost mechanism.

Barberis and Shleifer (2003) show that style investing affects asset prices and returns through

the flows of funds across styles. Flows in their model generate return predictability in the form of

momentum, reversal and lead-lag effects. Similar mechanisms are at play with rational investors

in Vayanos and Woolley (2013). Our style-level findings indicate that variables associated to styles

predict stock returns over horizons longer than those of momentum and lead-lag effects. Moreover,

the direction of the predictability switches sign as stock size increases.

2 Theory

We derive our empirical hypotheses from a model in which different investors value stocks differently

and there are short-sale constraints. Stocks can differ in size, riskiness and the distribution of

investor valuations. We describe the distribution of valuations by range and kurtosis. Our model’s

main results characterize how range and kurtosis relate to expected stock returns and breadth of

ownership, and how these relationships change with stock size and riskiness.

2.1 Model

There are two periods 0 and 1. There are I + 1 assets, indexed by i = 0, 1, .., I, which pay off in

period 1. Asset 0 is riskless. We take it as the numeraire and set its price in period 0 and its payoff

in period 1 equal to one. Assets 1, .., I are risky and we refer to them as stocks. Stock i trades at

price Si per share in period 0, pays dividend Di per share in period 1, and is in supply of θi > 0

1Additional papers that find a non-monotone relationship between breadth and expected returns include Choi,
Jin, and Yan (2012) and Cao and Wu (2022). The former paper finds that breadth is positively related to expected
returns when measured based on the holdings of institutional investors, but is negatively related for retail investors.
The latter paper finds an inverted U -shaped relationship between changes in breadth and expected returns.
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shares. Dividends have the one-factor structure

Di = D̄i + biη + σiηi, (2.1)

where D̄i is stock i’s expected dividend, η is a systematic risk factor, bi ≥ 0 is stock i’s sensitivity

to that factor, ηi represents idiosyncratic risk, and σi is stock i’s sensitivity to that risk. We assume

that the variables (η, {ηi}i=1,..,I) are mutually independent and normally distributed. We set their

mean to zero, which is without loss of generality because we can redefine {D̄i}i=1,..,I , and their

variance to one, which is without loss of generality because we can redefine {bi, σi}i=1,..,I . We set

D̄i to a value D̄ common across stocks, which is without loss of generality because we can redefine

the number of shares θi. We assume that D̄ is large enough so that equilibrium prices are always

positive, and define the return of stock i as Di−Si
Si

and the stock’s expected return as D̄−Si
Si

.

There are N competitive investors indexed by n = 1, .., N . All investors have CARA utility

with risk-aversion coefficient a. Different investors value stocks differently. We model the differences

in valuations as an additional component of dividends that is private to each investor: from the

viewpoint of investor n, the dividend of stock i is Di + ϵin instead of Di. The valuation ϵin could

reflect different opinions or hedging benefits. Adopting the different opinions interpretation from

now on, we refer to ϵin as the opinion or belief of investor n. We also refer to investors with ϵin > 0

as optimists for stock i, to investors with ϵin < 0 as pessimists, and to investors with ϵin = 0 as

rationals. We denote by xin the number of shares of stock i held by investor n. Investors are

subject to short-sale constraints: xin must be non-negative.

The distribution of investors’ beliefs for stock i is symmetric around zero and takes the form

ϵin =


ϵi for Ki ≤ N

2 investors,

0 for N − 2Ki investors,

−ϵi for Ki investors.

(2.2)

There are Ki optimists with valuation ϵi, Ki pessimists with valuation −ϵi, and N − 2Ki rationals.

The range of the distribution is 2ϵi, the standard deviation is
√

2Ki
N ϵi, and the kurtosis is N

2Ki
.

An increase in ϵi does not affect the kurtosis but raises the range and the standard deviation.

An increase in Ki does not affect the range. It raises the standard deviation because there are

more optimists and more pessimists. It lowers the kurtosis because the extreme values ϵi and −ϵi

become smaller when measuring distance in units of the higher standard deviation. Since ϵi affects

the range and not the kurtosis, while the opposite is true for Ki, we can map the effects of ϵi to

those of range and the effects of Ki to those of kurtosis. The standard deviation captures effects

of both ϵi and Ki, which is why we do not use it in our analysis. The mappings that we derive
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between investor beliefs, range and kurtosis extend beyond the three-point distribution (2.2).2

2.2 Equilibrium

Using CARA utility, the dividends’ one-factor structure (2.1) and their normality, and the param-

eter normalizations, we can write the maximization problem of investor n in the mean-variance

form

max
{xin}i=1,..,N

xin≥0

I∑
i=1

(
D̄ + ϵin − Si

)
xin − a

2

( I∑
i=1

bixin

)2

+
I∑

i=1

σ2
i x

2
in

 .

The first-order condition for stock i is

D̄ + ϵin − Si − biλn − aσ2
i xin = 0 if xin > 0,

D̄ + ϵin − Si − biλn − aσ2
i xin ≤ 0 if xin = 0,

where λn ≡ a
∑I

j=1 bjxjn. Using the first-order condition, we can write the investor’s demand for

stock i as

xin = max

{
D̄ + ϵin − Si − biλn

aσ2
i

, 0

}
. (2.3)

Demand is positive if the investor’s expectation D̄+ ϵin of the stock’s dividend, minus a systematic

risk premium biλn, exceeds the stock’s price Si. The systematic risk premium is the product of

the stock’s sensitivity bi to systematic risk times an investor-specific premium λn. The investor

premium λn is the product of the investor’s risk aversion a times the investor’s portfolio sensitivity∑I
j=1 bjxjn to systematic risk.

Aggregating across investors and using market clearing

N∑
n=1

xin = θi, (2.4)

2Suppose that ϵin is equal to zero for a fraction 1− ψ of investors, and is equal to ϵiz for the remaining fraction
ψ, where z is distributed symmetrically in [−1, 0) ∪ (0, 1] with density f(z). The range of the distribution is 2ϵi, the
standard deviation is ψ

∫ 1

0
(ϵiz)

2f(z)dz, and the kurtosis is

ψ
∫ 1

0
(ϵiz)

4f(z)dz[
ψ
∫ 1

0
(ϵiz)2f(z)dz

]2 =

∫ 1

0
z4f(z)dz

ψ
[∫ 1

0
z2f(z)dz

]2 .
An increase in the most optimistic belief ϵi does not affect the kurtosis but raises the range. An increase in the
fraction ψ of irrational investors does not affect the range but lowers the kurtosis. The kurtosis converges to infinity
when the fraction ψ of irrational investors goes to zero. These properties are the same as under the three-point
distribution (2.2).
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we find that the equilibrium price Si of stock i solves

N∑
n=1

max

{
D̄ + ϵin − Si − biλn

aθiσ2
i

, 0

}
= 1. (2.5)

Solving for equilibrium amounts to solving for stock prices {Si}i=1,..,I and investor premia {λn}n=1,..,N .

We focus in the remainder of this paper on model primitives under which the premia {λn}n=1,..,N

are equal across investors. Equality of the premia simplifies the equilibrium considerably, as an

investor’s holdings of a stock i depend only on the investor’s belief ϵi for that stock and not on the

beliefs for the other stocks. Intuitively, the premia would differ across investors if investors differed

in their average optimism across all stocks. Investors with higher average optimism would hold

larger long positions and would be more exposed to systematic risk. As a result, they would hold

a smaller position in a given stock i relative to investors with lower average optimism but same

belief ϵi for stock i. By the same logic, a stock might be held primarily by the investors who are

most pessimistic about it, if these investors are even more pessimistic about other stocks.

Proposition 2.1 characterizes the equilibrium when the premia {λn}n=1,..,N are equal across

investors. It also derives sufficient conditions on the model’s primitives for the premia to be equal.

We denote the common value of holdings for all optimists for stock i by xiO, for all pessimists by

xiP , and for all rationals by xiR.

Proposition 2.1. Suppose that in equilibrium the premia {λn}n=1,..,N are equal across investors.

The price Si of asset i is

Si = D̄ − abi
N

I∑
j=1

bjθj + aθiσ
2
i ϕi, (2.6)

where ϕi is the unique solution of

N∑
n=1

max

{
ϵin

aθiσ2
i

− ϕi, 0

}
= 1. (2.7)

Asset holdings for asset i depend only on investor beliefs for that asset, and are given by

xin = max

{
ϵin
aσ2

i

− θiϕi, 0

}
(2.8)

for investor n. The premia {λn}n=1,..,N are equal across investors under either of the two sufficient

conditions:
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(A) There is no systematic risk (bi = 0 for all i).

(B) For each stock i, there are N
Ki

stocks sharing its characteristics (θi, bi, σi, ϵi,Ki), and each

investor’s distribution of beliefs across this subset of stocks matches the population distribution

of beliefs across the subset.

The equilibrium price Si of stock i is equal to the stock’s expected dividend, minus a systematic

risk premium abi
N

∑I
j=1 bjθj , plus a term aθiσ

2
i ϕi that captures the joint effects of differences of

opinion and idiosyncratic risk. The systematic risk premium is the product of the stock’s sensitivity

bi to systematic risk times the common value of the investor-specific premia {λn}n=1,..,N . The

common value of {λn}n=1,..,N is derived by multiplying investor risk aversion a times portfolio

sensitivity to systematic risk. Portfolio sensitivity is 1
N

∑I
j=1 bjθj and is the same as if each investor

were holding 1
N ’th of the supply of each asset.

The term aθiσ
2
i ϕi, which captures how differences of opinion and idiosyncratic risk impact the

price of stock i, is central to our analysis. We determine how it depends on the range and kurtosis of

the distribution of beliefs in Section 2.3. Using aθiσ
2
i ϕi, we also determine how range and kurtosis

impact the breadth of ownership of stock i.

Proposition 2.1 provides two sufficient conditions on the model’s primitives for the premia

{λn}n=1,..,N to be equal across investors. One obvious condition is that there is no systematic risk

(bi = 0 for all i) because the premia are then all equal to zero. Another condition is that there is

systematic risk but investors are symmetric in their average optimism across stocks in the sense of

Condition (B) in the proposition. Condition (B) requires that if an investor is optimistic about a

stock i, then there are other stocks with the same characteristics (θi, bi, σi, ϵi,Ki) as i such that the

investor is rational or pessimistic about them. Moreover, the distribution of the investor’s beliefs

across the subset of stocks with characteristics (θi, bi, σi, ϵi,Ki) matches the population distribution

of beliefs across the subset. Condition (B) ensures, in particular, that investors are identical in

their average optimism across all stocks. Differences of opinion can be interpreted as pertaining to

the idiosyncratic component of stocks’ dividends rather than to the systematic component.

2.3 Expected Returns and Breadth of Ownership

Range and kurtosis have monotone effects on stock prices and expected returns. Consider stocks

i and i′ such that the range of the distribution of beliefs is higher for stock i (ϵi > ϵi′) and the

other characteristics are identical across the two stocks ((θi, bi, σi,Ki) = (θi′ , bi′ , σi′ ,Ki′)). If the

two stocks are held by all investors, then they trade at the same price because the average belief

across investors is zero (
∑N

n=1 ϵin
N =

∑N
n=1 ϵi′n
N = 0). If, however, pessimists drop out, then stock i
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trades at a higher price than stock i′ and earns lower expected return. This is because the optimists

for stock i are more optimistic than those for stock i′.

Suppose next that stocks i and i′ differ only in the kurtosis of the distribution of beliefs, with

the kurtosis being higher for stock i (Ki < Ki′). If the two stocks are held by all investors, then

they trade at the same price. If, however, pessimists drop out, then stock i trades at a lower price

than stock i′ and earns higher expected return. This is because there are fewer optimists for stock

i than for stock i′.

The condition for pessimists to drop out of a stock can be derived from Proposition 2.1. Equation

(2.8) implies that pessimists hold stock i if − ϵi
aσ2

i
−θiϕi > 0. Equation (2.7) implies that when stock

i is held by all investors, ϕi = − 1
N . Pessimists drop out of stock i if the inequality that results from

substituting ϕi = − 1
N into − ϵi

aσ2
i
− θiϕi > 0 holds in the opposite direction, i.e.,

− ϵi
aσ2

i

+ θi
1

N
< 0 ⇔ ϵi

aθiσ2
i

>
1

N
. (2.9)

Pessimists drop out of the stock if the range ϵi of the distribution of beliefs is sufficiently large

relative to the stock’s supply θi and idiosyncratic variance σ2
i . Pessimists’ reward from holding

the stock is the premium from bearing the stock’s idiosyncratic risk. When differences of opinion

are sufficiently large, that reward is small relative to the pessimists’ negative belief. Differences of

opinion in that case overcome the gains from risk-sharing.

Proposition 2.2. Suppose that in equilibrium the premia {λn}n=1,..,N are equal across investors.

The range and kurtosis of the distribution of investor beliefs have monotone effects on stock prices

and expected returns.

� A stock i with higher range than another stock i′ and same other characteristics (ϵi > ϵi′

and (θi, bi, σi,Ki) = (θi′ , bi′ , σi′ ,Ki′)) trades at a higher price and earns lower expected return

when ϵi
aθiσ2

i
> 1

N . When instead 1
N > ϵi

aθiσ2
i
, price and expected return are equal across the two

stocks.

� A stock i with higher kurtosis than another stock i′ and same other characteristics (Ki < Ki′

and (θi, bi, σi, ϵi) = (θi′ , bi′ , σi′ , ϵi′)) trades at a lower price and earns higher expected return

when ϵi
aθiσ2

i
> 1

N . When instead 1
N > ϵi

aθiσ2
i
, price and expected return are equal across the two

stocks.

We next examine how range and kurtosis affect breadth of ownership, measured by the fraction
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of investors holding a stock. The breadth for stock i is

Bi ≡
Ki1{xiO>0} + (N − 2Ki)1{xiR>0} +Ki1{xiP>0}

N
,

where the indicator function {1{xiZ>0}}Z=O,P,R is equal to one if investors Z = O,R, P hold the

stock (xiZ > 0) and zero if they do not (xiZ = 0). Breadth of ownership can also be measured

using the Herfindahl index, defined by squaring the fraction of the stock held by each investor and

summing across investors. The Herfindahl index for stock i is

Hi ≡ Ki

(
xiO

xiO + xiR + xiP

)2

+ (N − 2Ki)

(
xiR

xiO + xiR + xiP

)2

+Ki

(
xiP

xiO + xiR + xiP

)2

.

The Herfindahl index is high when few investors hold most of the stock, and thus is inversely related

to breadth. While we focus on Bi in our theoretical and empirical analysis, we show in Section 6.3

that our empirical findings carry through to Hi.

Range has a monotone effect of breadth, but the effect of kurtosis is non-monotone and depends

on stock size and riskiness. Consider stocks i and i′ that differ only in the range of the distribution

of beliefs, with the range being higher for stock i (ϵi > ϵi′). Since the pessimists for stock i are

more pessimistic than those for stock i′, they drop out first, i.e., stock i is not held by its pessimists

if the same is true for stock i′. After the pessimists drop out, the rationals are also first to drop

out for stock i. This is because the optimists for stock i are more optimistic than those for stock

i′, and thus push the price of stock i higher than of stock i′. Since the pessimists and the rationals

for stock i drop out first relative to their counterparts for stock i′, breadth for stock i is smaller or

equal than for stock i′.

Suppose next that stocks i and i′ differ only in the kurtosis of the distribution of beliefs, with

the kurtosis being higher for stock i (Ki < Ki′). Since there are fewer optimists for stock i than

for stock i′, stock i has smaller breadth than stock i′ when the two stocks are held only by their

optimists. When, however, stock i is also held by its rationals, it has larger breadth than stock

i′. Indeed, in that case, stock i′ is held only by its optimists, or by its optimists and its rationals.

Moreover, since there are fewer pessimists for stock i than for stock i′, the combined number of

optimists and rationals for stock i exceeds its counterpart for stock i′. Breadth is equal across the

two stocks only when they are also held by their pessimists.

The condition for a stock to be held only by its optimists can be derived from Proposition 2.1.

Equation (2.8) implies that rationals do not hold stock i if ϕi > 0. Equation (2.7) implies that

when stock i is held only by its optimists, ϕi =
ϵi

aθiσ2
i
− 1

Ki
. Therefore, stock i is held only by its
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optimists if

ϵi
aθiσ2

i

>
1

Ki
. (2.10)

For the rationals to drop out, the range ϵi of the distribution of beliefs must be sufficiently large

relative to the stock’s supply θi and idiosyncratic variance σ2
i . The required threshold that the ratio

ϵi
aθiσ2

i
must exceed is 1

Ki
, which is larger than the threshold 1

N required by (2.9) for the pessimists

to drop out. Intuitively, the rationals’ reward from holding a stock is the premium from bearing

the stock’s idiosyncratic risk. When differences of opinion are sufficiently large, optimists push up

the stock’s price to a level where that reward is small relative to the stock’s overpricing. Equation

(2.10) is easier to satisfy for stocks that are in small supply, have low idiosyncratic variance, or have

high range of the distribution of beliefs. For such stocks, kurtosis is negatively related to breadth.

Conversely, kurtosis is positively related to breadth for stocks that are in large supply, have high

variance or have low range.

Proposition 2.3. Suppose that in equilibrium the premia {λn}n=1,..,N are equal across investors.

The range of the distribution of investor beliefs has a monotone effect on the breadth of ownership,

but the effect of kurtosis is non-monotone.

� A stock i with higher range than another stock i′ and same other characteristics (ϵi > ϵi′

and (θi, bi, σi,Ki) = (θi′ , bi′ , σi′ ,Ki′)) has smaller breadth when ϵi
ϵi′Ki

> ϵi
aθiσ2

i
> 1

Ki
or ϵi

ϵi′N
>

ϵi
aθiσ2

i
> 1

N . Otherwise, breadth is equal across the two stocks.

� A stock i with higher kurtosis than another stock i′ and same other characteristics (Ki < Ki′

and (θi, bi, σi, ϵi) = (θi′ , bi′ , σi′ , ϵi′)) has smaller breadth when ϵi
aθiσ2

i
> 1

Ki
and larger breadth

when 1
Ki

> ϵi
aθiσ2

i
> 1

N . When instead 1
N > ϵi

aθiσ2
i
, breadth is equal across the two stocks.

A final proposition concerns the effect of stock size on breadth. Consider stocks i and i′ such

that the number of shares is larger for stock i (θi > θi′) and the other characteristics are identical

across the two stocks ((bi, σi, ϵi,Ki) = (bi′ , σi′ , ϵi′ ,Ki′)). We interpret stock i as the larger stock:

its market capitalization θiSi exceeds that of stock i′ if the common expected dividend D̄ of the

two stocks is large enough. Since pessimists and rationals drop out of a stock if the range of the

distribution of beliefs is large relative to the stock’s supply and idiosyncratic variance, the pessimists

and rationals for stock i′ drop out first relative to their counterparts for stock i. Therefore, breadth

for stock i is larger or equal than for stock i′.

12



Proposition 2.4. Suppose that in equilibrium the premia {λn}n=1,..,N are equal across investors.

Stock size has a monotone effect on the breadth of ownership. A stock i that is larger number of

shares another stock i′ and same other characteristics (θi > θi′ and (bi, σi, ϵi,Ki) = (bi′ , σi′ , ϵi′ ,Ki′))

has larger breadth when 1
Ki

> ϵi
aθiσ2

i
>

θi′
θiKi

or 1
N > ϵi

aθiσ2
i
>

θi′
θiN

. Otherwise, breadth is equal across

the two stocks.

Using Propositions 2.2-2.4, we derive our empirical hypotheses. Our first hypothesis follows

from Proposition 2.2 and concerns the relationship that range and kurtosis have with expected

returns.

Hypothesis 1 (Investor beliefs and expected returns). Expected returns are predictable from

the range and the kurtosis of the distribution of investor beliefs as follows:

� Expected returns are negatively related to range.

� Expected returns are positively related to kurtosis.

Our second hypothesis follows from Proposition 2.3 and concerns the relationship that range and

kurtosis have with breadth. The monotonicity of the effect of kurtosis depends on the comparison

between ϵi
aθiσ2

i
and 1

Ki
, or equivalently between one and

aθiσ
2
i

ϵiKi
. The variable

aθiσ
2
i

ϵiKi
is a composite

involving stock i’s supply θi, idiosyncratic variance σ2
i , range 2ϵi, and kurtosis N

2Ki
. We refer

to it as adjusted size, in the sense that it can be viewed as equal to stock i’s supply adjusted

for idiosyncratic variance, range and kurtosis. Proposition 2.3 implies that breadth is negatively

related to kurtosis for stocks whose adjusted size is small, and is positively related to kurtosis for

stocks whose adjusted size is large.

Proposition 2.3 implies additionally that breadth is unrelated to range for stocks whose adjusted

size is so small that are held only by optimists or is so large that are held by all investors. Breadth

is instead negatively related to range for intermediate values of adjusted size. Assuming that stocks

are not held by their pessimists, i.e., (2.9) holds for all stocks, the cross-effect between range and

adjusted size is negative: range has no effect on breadth for stocks whose adjusted size is small,

and has a negative effect when adjusted size is larger.

Hypothesis 2 (Investor beliefs and breadth of ownership). Breadth of ownership is related

to the range and the kurtosis of the distribution of investor beliefs as follows:

� Breadth is unrelated to range for stocks whose adjusted size is small. The relationship turns

negative for stocks whose adjusted size is large.
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� Breadth is negatively related to kurtosis for stocks whose adjusted size is small. The relation-

ship turns positive for stocks whose adjusted size is large.

Our third hypothesis, which we term Hypothesis 2a because it relates closely to Hypothesis 2,

concerns the relationship between stock size and breadth. The monotonicity of this relationship

follows from Proposition 2.4. The cross-effects are related to those in Hypothesis 2.

Hypothesis 2a (Stock size and breadth of ownership). Breadth of ownership is increasing

in stock size. The effect of size on breadth is stronger for stocks with:

� A low range of the distribution of investor beliefs.

� A high kurtosis of the distribution of investor beliefs.

Our final hypothesis concerns the relationship between breadth and expected returns. That

hypothesis follows by combining Propositions 2.2 and 2.3, or equivalently, Hypotheses 1 and 2.

Suppose that there is independent cross-sectional variation in range and kurtosis. For stocks whose

adjusted size is small, breadth is negatively related to kurtosis and is unrelated to range (Hypothesis

2). Since expected returns are positively related to kurtosis (Hypothesis 1), they are negatively

related to breadth. For stocks whose adjusted size is large, breadth is negatively related to range

and positively to kurtosis (Hypothesis 2). Since expected returns are negatively related to range

and positively to kurtosis (Hypothesis 1), they are positively related to breadth.

Hypothesis 3 (Breadth of ownership and expected returns). Expected returns are pre-

dictable from the breadth of ownership as follows:

� Expected returns are negatively related to breadth for stocks whose adjusted size is small.

� Expected returns are positively related to breadth for stocks whose adjusted size is large.

In our empirical tests of Hypotheses 2 and 3, we use two measures of adjusted size. The first

measure is simply size, defined as market capitalization. The second measure is our model-implied

version, derived by multiplying market capitalization with idiosyncratic variance and kurtosis, and

dividing by range. We also measure size by book equity in a robustness test in Section 6.3.

3 Data Sources and Variables

Our sample consists of common stocks (codes 10 and 11 of CRSP) trading on NYSE, NASDAQ

and AMEX between the first quarter of 1980 and the fourth quarter of 2018. The frequency of
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the sample is quarterly. The range and frequency of the sample are driven by the availability of

the ownership data. Ownership data pertaining to investment styles are available only between

the first quarter of 1997 and the fourth quarter of 2015, so our analysis of style-level ownership is

limited accordingly.

3.1 Stock Returns

We source data on stock prices, stock returns including dividends, trading volume, and number of

outstanding shares from CRSP. We calculate a stock’s return over any given horizon by compound-

ing the stock’s monthly returns during that horizon. We measure a stock’s size in any given quarter

by market capitalization, which we calculate by multiplying the stock’s share price at the end of

the quarter times the number of outstanding shares on the same day. We define small stocks as

those with size below the 30th percentile of our sample, mid-cap stocks as those with size between

the 30th and the 70th percentile, and large stocks as those with size above the 70th percentile.

We construct a number of stock-level variables that we use as controls. These include idiosyn-

cratic volatility, market beta, book-to-market ratio, momentum and turnover. We calculate market

beta and idiosyncratic volatility in any given quarter using a within-quarter time-series regression

of daily excess stock returns over the riskless rate on the daily market excess return. Idiosyncratic

volatility is the standard deviation of the regression residuals, and idiosyncratic variance is its

square. If more than ten observations are missing within the quarter, then we treat the market

beta and idiosyncratic volatility observations as missing. We source the riskless rate and the market

return from Kenneth French’s website.

We source the ratio of book value of equity to market value from the Financial Ratios Suite of

WRDS. WRDS calculates the book-to-market ratio on a quarterly basis and lags all observations

by two months to ensure no look-ahead biases. We construct our momentum variable in any given

quarter by compounding monthly returns during the nine-month period ending at the end of the

quarter.

We construct turnover in each month by dividing the number of shares traded in that month

by the total outstanding shares in the same month. Because reported share volume is estimated

differently by NYSE/AMEX and NASDAQ (Atkins and Dyl (1997)), with the latter roughly double-

counting, we divide NASDAQ share volume by two (Nagel (2005)).

3.2 Institutional Ownership

We source data on institutional ownership from Thomson Reuters (TR). That data are derived

from institutional investors’ 13-F filings. Institutional investors with more than $100 million in
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assets are required to report their stock-level holdings to the SEC on a quarterly basis, within 45

days from the end of the quarter.

We use two different databases of TR. From the first database, TR Stock Ownership, available

in WRDS, we source the number of 13-F institutional investors who hold any given stock, the

total number of 13-F investors, the fraction of the stock held by all 13-F investors, and the stock’s

Herfindahl indexH. The fraction of the stock held by all 13-F investors, which we term institutional

ownership (IO), is calculated by dividing the number of shares held by all 13-F investors by the

total number of outstanding shares of the stock. The Herfindahl index H is calculated by dividing

the number of shares held by a given 13-F investor by the number of shares held by all 13-F

investors, squaring that fraction, and summing across investors.

The second database, Thomson Eikon, groups 13-F institutional investors into investment styles

based on their portfolio characteristics and/or their business type. From that database, we source

the number of investment styles that hold any given stock and the fraction of the stock held by each

style. In our sample, stocks are held by 32 different styles. The 32 styles include seventeen general

styles (e.g. aggressive growth, core growth, core value, deep value, index, etc) and fifteen hedge

fund styles. Appendix B provides more details on the styles and the TR classification procedure.

We construct Breadth B and Herfindahl Index H at the investor and at the style level. The

investor-level variables are calculated as follows. Breadth for stock i and quarter t is the number of

13-F investors who hold the stock in that quarter, divided by the total number of 13-F investors in

the same quarter. Herfindahl Index for stock i in quarter t is calculated by TR as described above.

The style-level variables are calculated as follows. Breadth for stock i and quarter t is the number

of different styles that hold the stock in that quarter. (We do not divide by the total number of

styles as it is constant over time in our sample.) Herfindahl Index for stock i and quarter t is

calculated by dividing the number of shares of the stock held by any given style by the number of

shares held by all styles, squaring that fraction, and summing across styles.

3.3 Analyst Forecasts

We source data on analyst forecasts from the Detail History file of the I/B/E/S database, which

is provided by TR. The data cover the period between the second quarter of 1982 and the fourth

quarter of 2018. We use analyst forecasts for earnings per share (EPS) one fiscal year ahead (FY1).

We examine the EPS FY1 forecasts that appear in each month for each stock. When an analyst

reports more than one forecast for the same stock in the same month, we use only the most recent

forecast.

For any given stock and month, we standardize analyst forecasts by dividing them by the abso-
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lute value of the mean forecast (Diether, Malloy, and Scherbina (2002)). This allows us to express

the dispersion in forecasts in relative terms: a given dispersion in dollar terms is more significant

economically when EPS is low. We calculate the range and kurtosis of the stock’s standardized

forecasts. Range is the difference between the maximum and the minimum standardized forecast.

Kurtosis is the fourth central moment divided by the square of the variance. We apply a finite

sample correction to kurtosis to avoid a mechanical relationship between it and the number of

analysts.3 The finite sample correction requires a sample size of at least four, so we include in our

analysis only stock/month observations with at least four analysts. Not applying the finite sample

correction strengthens our results.

Dividing forecasts by the absolute value of the mean forecast can generate inflated standardized

forecasts, and thus an inflated value of the range, when the mean forecast is close to zero. We

mitigate the effects of inflated values by mapping observations into deciles. Following Nagel (2005),

we transform range and kurtosis into deciles across the population of stocks in any given month,

and normalize the units so that the smallest decile corresponds to zero and the largest to one. We

perform the same transformation for most other variables in our regressions. The decile transfor-

mation removes any time trends from our regression results. We calculate the quarterly values of

the transformed range and kurtosis by averaging over the non-missing months of the quarter. We

treat stock-months with zero mean forecast as missing.

We update the values of range and kurtosis each quarter. We do the same for the ownership

variables B, H and IO, and for their first differences, as well as for momentum. For size, share

price, idiosyncratic volatility, market beta, book-to-market ratio and turnover, we use the values

corresponding to the second quarter of each year. Our results remain similar when updating the

values of these variables each quarter as well. We compute first differences corresponding to quarter

t by subtracting values corresponding to quarter t− 1 from values corresponding to quarter t.

3.4 Sample Size

The full sample includes stock/quarters for which the following criteria are met. There should be

data on the return, size and IO of the stock during the quarter. There should additionally be data

on the breadth B of the stock during the quarter and the previous quarter, so that we can compute

the change ∆B. Finally, the IO of the stock during any of the five quarters surrounding quarter t

3We calculate kurtosis as

n− 1

(n− 2)(n− 3)

[
(n+ 1)

m4

m2
2

− 3(n− 1)

]
+ 3,

where n is the sample size (number of analysts), m4 is the fourth central moment and m2 is the variance. Kurtosis
without the finite sample correction is m4

m2
2
. (See https://www.mathworks.com/help/stats/kurtosis.html.)
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(quarters t−2, t−1, t, t+1 and t+2) should not exceed 100%. These criteria leave us with a total

of 19096 stocks, 617309 stock/quarters, and an average of 4088 stocks per quarter. When using

additional controls, the number of stock/quarters drops to a minimum of 511246 and the average

number of stocks per quarter drops to a minimum of 3386.

We additionally report results for a more restricted sample in which we include a stock/quarter

if the IO of the stock during the quarter, the two previous quarters and the two subsequent

quarters is larger or equal than 30%. We impose that criterion because B being the fraction of

13-F investors holding a stock, can become an imprecise measure of how widely the stock is held

across all investors (including non-13-F ones) for low values of IO. Imposing the IO ≥ 30% criterion

reduces our sample to 264356 stock/quarters, and an average of 1751 stocks per quarter. When

using additional controls, the number of stock/quarters drops to a minimum of 243003 and the

average number of stocks per quarter drops to a minimum of 1609. The excluded stock/quarters

with the IO ≥ 30% criterion constitute 91% of the total stock/quarters corresponding to small

stocks, 59% of those corresponding to mid-cap stocks, and 24% of those corresponding to large

stocks. The results for the IO ≥ 30% sample are generally similar to those for the main sample.

In Sections 4 and 5, where we use data on analyst forecasts, the sample is reduced to 182941

stock/quarters (150467 for IO ≥ 30%). This is because we exclude stock/month observations with

fewer than four analysts. The excluded stock/quarters constitute 98% of the total stock/quarters

corresponding to small stocks, 80% of those corresponding to mid-cap stocks, and 33% of those

corresponding to large stocks. When using additional controls, the number of stock/quarters drops

to a minimum of 175009 stock/quarters (150241 for IO ≥ 30%).

We use data on analyst forecasts in Section 6 as well. Unlike in Sections 4 and 5, where range and

kurtosis are the main explanatory variables, in Section 6 they are needed only to construct adjusted

size, which enters only in some of the regressions. For that reason, we do not exclude in Section

6 stock/month observations with fewer than four analysts. We fill in the missing observations for

range and kurtosis by linearly predicting them from size and idiosyncratic variance.

4 Analyst Forecasts and Breadth of Ownership

In this section we test Hypotheses 2 and 2a. Hypothesis 2 concerns the relationship between

the breadth of ownership B and the distribution of investor beliefs. Hypothesis 2a concerns the

relationship between B and stock size. Because we do not have direct data on investor beliefs, we

proxy them by the forecasts made by financial analysts.

Table I presents descriptive statistics of breadth B, its first difference ∆B, idiosyncratic volatil-
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ity, the range of the distribution of analyst forecasts, the kurtosis of that distribution, and the num-

ber of analysts. We report statistics over the full sample and over the subsamples of stock/quarters

involving small, mid-cap and large stocks. The mean of B across the full sample is 4.62%, meaning

that the average stock is held by only 4.62% of 13-F investors. Consistent with Hypothesis 2a, there

is a strong positive relationship between B and size. The mean of B for small stocks is 0.52%,

for mid-cap stocks is 2.13% and for large stocks is 11.68%. In the subsample of stock/quarters

where institutional ownership IO exceeds 30%, the mean of B rises to 8.59%, reflecting the higher

fraction of large stocks in that subsample. Table I shows additionally a strong negative relationship

between idiosyncratic volatility and size and between range and size.

Table II presents results from contemporaneous pooled OLS regressions of B on the range of the

distribution of analyst forecasts, the kurtosis of that distribution, stock size or adjusted size, IO,

and the interactions of range and kurtosis with size or adjusted size. The regressions involving size

are in Panel A and those involving adjusted size are in Panel B. The coefficients of the interactions

of range and kurtosis with size are informative about Hypothesis 2a because they reveal how the

positive relationship between B and size, shown in Table I, depends on range and kurtosis. The

coefficients of range and kurtosis and of their interactions with size or adjusted size are informative

about Hypothesis 2 because they reveal how B is related to range and kurtosis and how the effects

depend on size or adjusted size.

As described in Section 3.4, we transform range, kurtosis, B, size and adjusted size into deciles

across the population of stocks, and normalize the units so that the smallest decile corresponds

to zero and the largest to one. (We calculate adjusted size as the product of size, idiosyncratic

variance and kurtosis, divided by range, before transforming variables into deciles.) Thus, the

coefficient of range or kurtosis measures the relationship between the respective variable and B

for stocks in the bottom size or adjusted size decile. Moreover the sum of that coefficient and

of the coefficient of the interaction with size or adjusted size measures the relationship between

the respective variable and B for stocks in the top decile. The decile transformation removes any

time trends from our regression results. For the same reason, we include quarterly dummies in

our regressions. The t-statistics are calculated using robust standard errors double-clustered by

stock to address autocorrelation at the stock level (Petersen (2009)) and by quarter to address

contemporaneous correlation across stocks.

The findings in Table II are generally consistent with Hypothesis 2 in the case of size. Consider

first the effect of range. According to Hypothesis 2, B should be unrelated to range for small

stocks and negatively related for large stocks. The coefficient of range, which measures the effect of

range on B for stocks in the bottom size decile is positive, at odds with Hypothesis 2. Consistent

with Hypothesis 2, however, the coefficient of the interaction between range and size is negative,
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Table I: Descriptive statistics of breadth, idiosyncratic volatility, range and kurtosis

Panel A: Full Sample Panel B: IO ≥ 30%

Full Small Mid-cap Large Full Small Mid-cap Large

Breadth (B)

mean 4.62% 0.52% 2.13% 11.68% 8.59% 1.10% 3.07% 13.36%

stdev 7.57% 0.42% 1.38% 10.45% 9.60% 0.57% 1.30% 10.77%

∆B

mean 0.02% 0.01% 0.03% 0.02% 0.02% 0.01% 0.03% 0.02%

stdev 0.64% 0.16% 0.38% 1.05% 0.75% 0.20% 0.40% 0.95%

Idiosyncratic volatility (idvol)

mean 3.07% 4.38% 2.98% 1.96% 2.29% 3.36% 2.69% 1.88%

stdev 2.34% 3.15% 1.78% 1.21% 1.42% 2.20% 1.50% 1.07%

Range

mean 48.40% 80.30% 70.54% 38.79% 44.37% 81.57% 66.82% 35.81%

stdev 129.16% 147.47% 160.99% 112.16% 123.12% 147.31% 157.05% 106.81%

Kurtosis

mean 4.00 3.54 3.73 4.12 4.05 3.56 3.76 4.16

stdev 2.70 2.51 2.59 2.74 2.72 2.47 2.58 2.77

Number of analysts

mean 7.73 4.94 5.91 8.53 8.07 5.02 6.06 8.83

stdev 4.22 1.34 2.40 4.57 4.35 1.37 2.45 4.65

Number of observations

B/∆B 617309 177981 248405 190923 264356 16880 102396 145080

idvol 614808 177363 246980 190465 263931 16835 102141 144955

ran./kurt. 182941 3431 50905 128605 150467 1738 38956 109773

Note: Mean and standard deviation of breadth B, the first difference ∆B of B, idiosyncratic volatility, the range
of the distribution of analyst forecasts, the kurtosis of that distribution, and the number of analysts. Panel A
reports statistics for the full sample, broken down by stock size. Panel B reports statistics for the subsample where
institutional ownership IO exceeds 30%.

meaning that the positive effect of range on B weakens as size increases. Moreover, the sum of

the interaction coefficient and of the coefficient of range is negative, meaning that range and B

are negatively related for stocks in the top size decile. The effect of range on B is negative and

significant at the 5% level for size deciles 7-10.

Consider next the effect of kurtosis. According to Hypothesis 2, B should be negatively related

to kurtosis for small stocks and positively related for large stocks. The coefficient of kurtosis,

which measures the effect of kurtosis on B for stocks in the bottom size decile, is negative. Thus,

consistent with Hypothesis 2, kurtosis and B are negatively related for small stocks. Also consistent
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Table II: Breadth on range and kurtosis of analyst forecasts

Panel A: Size Panel B: Adjusted size

(1): Full sample (2): IO ≥ 30% (1): Full sample (2): IO ≥ 30%

range
0.055***

(5.48)

0.028***

(3.32)

-0.007

(-1.49)

-0.000

(-0.01)

range*size
-0.097***

(-7.40)

-0.057***

(-5.81)

range*adjsize
0.006

(0.89)

-0.000

(-0.01)

kurtosis
-0.016***

(-4.03)

-0.007*

(-1.80)

-0.012***

(-4.90)

-0.010***

(-5.08)

kurtosis*size
0.027***

(5.22)

0.017***

(3.64)

kurtosis*adjsize
0.007**

(2.19)

0.007***

(2.96)

size
0.768***

(59.75)

0.805***

(94.21)

0.695***

(58.46)

0.750***

(109.05)

adjsize
0.033***

(6.36)

0.034***

(8.82)

Note: Contemporaneous pooled OLS regressions of breadth B on the range of the distribution of analyst forecasts,
the kurtosis of that distribution, stock size or adjusted size, IO, the interactions of range and kurtosis with size
or adjusted size, and quarterly dummies. Adjusted size is the product of size, idiosyncratic variance and kurtosis,
divided by range. Stock size and idiosyncratic variance are measured at the end of the last June. Range, kurtosis
and IO are measured at the end of quarter t. Range, kurtosis, B, size, adjusted size and IO are transformed into
deciles across the population of stocks at the time when each variable is measured, and the units are normalized so
that the smallest decile corresponds to zero and the largest to one. The t-statistics, in parentheses, are computed
using robust standard errors double-clustered by stock and by quarter. In this and subsequent tables, three asterisks
(***) denote statistical significance at the 1% level, two asterisks (**) at the 5% level, and one asterisk (*) at 10%
level.

with Hypothesis 2, the coefficient of the interaction between kurtosis and size is positive, meaning

that the negative effect of kurtosis on B weakens as size increases. The sum of the interaction

coefficient and of the coefficient of kurtosis is positive, also consistent with Hypothesis 2. The

effect of kurtosis on B is negative and significant at the 5% level for size deciles 1-5 (slightly below

the 10% level for decile 1 for IO ≥ 30%), and is positive and significant for deciles 8-10 (7-10 for

IO ≥ 30%).

The signs of the interaction terms in the Breadth regressions are consistent not only with

Hypothesis 2 but also with Hypothesis 2a. The negative (positive) coefficient on the interaction be-

tween range (kurtosis) and size means that the positive relationship between B and size strengthens

for low range (high kurtosis) stocks.
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The findings weaken when replacing size by adjusted size. The coefficient of range is insignifi-

cant, consistent with Hypothesis 2, but the coefficient of the interaction term is also insignificant,

at odds with Hypothesis 2. The coefficient of kurtosis is negative and significant, consistent with

Hypothesis 2, and the coefficient of the interaction between kurtosis and adjusted size is positive,

also consistent with Hypothesis 2. The sum of the interaction coefficient and of the coefficient of

kurtosis remains negative, however, at odds with Hypothesis 2. The weaker effects for adjusted size

may be due in part to idiosyncratic volatility being strongly negatively related to size. This lowers

the variability of adjusted size, rendering it a possibly noisy measure.

5 Analyst Forecasts and Expected Returns

In this section we test Hypothesis 1, which concerns the relationship between expected returns and

the distribution of investor beliefs. As in Section 4, we proxy investor beliefs by the forecasts made

by financial analysts.

Table III presents results from pooled OLS regressions of stock returns on the range and the

kurtosis of the distribution of analyst forecasts in quarter t. In the top part of the table we

regress returns in quarter t + 1 and in the bottom part returns in the year formed by quarters

t+ 1 to t+ 4. In Panel A we include as additional independent variables stock size and quarterly

dummies to control for time fixed effects. In Panel B we additionally include share price, IO,

idiosyncratic volatility, market beta, book-to-market ratio, momentum and turnover. We transform

range, kurtosis, size, IO, share price, idiosyncratic volatility, market beta, book-to-market ratio,

momentum and turnover into deciles across the population of stocks, and normalize the units so that

the smallest decile corresponds to zero and the largest to one. We report results for the full sample

of stocks and for two size subsamples constructed using the median of the NYSE size distribution

as cut-off. We compute t-statistics using robust standard errors double-clustered by stock and

by quarter. Fama and MacBeth (1973) regressions for this and subsequent tables yield broadly

similar conclusions regarding statistical significance, even after adjusting for autocorrelation using

Newey-West standard errors. Conclusions are similar also when using non-overlapping returns to

address the autocorrelation.

The findings in Table III provide some support for Hypothesis 1. The coefficient of range is

negative, consistent with Hypothesis 1, but not statistically significant. It becomes more negative

in the subsample of small stocks, and significant at the 10% level for returns one quarter ahead

when including the extra controls. The coefficient of kurtosis is positive, consistent with Hypothesis

1, and significant at the 5% level for returns one quarter ahead when including the extra controls

(10% without the extra controls). It becomes twice as large and more statistically significant in the
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Table III: Returns on range and kurtosis of analyst forecasts

All Stocks
Below Size

Median

Above Size

Median
All Stocks

Below Size

Median

Above Size

Median

Panel A: No extra controls Panel B: Extra controls

1Q

range
-0.007

(-0.78)

-0.010

(-1.20)

-0.003

(-0.29)

-0.007

(-1.42)

-0.010*

(-1.92)

-0.003

(-0.51)

kurtosis
0.003*

(1.73)

0.006**

(2.28)

0.000

(0.18)

0.004**

(2.20)

0.007**

(2.37)

0.001

(0.42)

4Q

range
-0.008

(-0.39)

-0.003

(-0.14)

-0.010

(-0.49)

-0.020

(-1.51)

-0.021

(-1.14)

-0.016

(-1.23)

kurtosis
0.001

(0.21)

0.002

(0.31)

0.000

(0.02)

0.005

(1.02)

0.007

(0.77)

0.003

(0.61)

Note: Pooled OLS regressions of stock returns in quarter t+ 1 and in the year formed by quarters t+ 1 to t+ 4 on
the range and the kurtosis of the distribution of analyst forecasts in quarter t. The regressions in Panel A include as
additional independent variables stock size and quarterly dummies. The regressions in Panel B additionally include
share price, IO, idiosyncratic volatility, market beta, book-to-market ratio, momentum and turnover. Size, share
price, idiosyncratic volatility, market beta, book-to-market ratio and turnover are measured at the end of the last
June. Range, kurtosis, IO and momentum are measured at the end of quarter t. Both sets of variables are transformed
into deciles across the population of stocks at the time when each variable is measured, and the units are normalized
so that the smallest decile corresponds to zero and the largest to one. The size subsamples are constructed using the
median of the NYSE size distribution as cut-off. The t-statistics, in parentheses, are computed using robust standard
errors double-clustered by stock and by quarter.

subsample of small stocks. The difference in expected returns between stocks in the highest and in

the lowest kurtosis decile is 0.4% per quarter, rising to 0.7% for small stocks.

The effect of range on expected returns in Table III is weaker than in DMS. DMS forecast

monthly returns and find that the expected returns of the stocks in the lowest range quintile exceed

those in the highest quintile by 0.79% per month. One reason for the discrepancy is that we forecast

quarterly or annual returns. An additional reason is that we restrict our sample to stock/quarters

with four or more analysts, so that we can calculate the kurtosis, while DMS allow for two or more

analysts. Our stricter criterion excludes primarily stock/quarters involving small stocks, for which

DMS find stronger effects of range. Because of our stricter criterion, the estimates for the effects

of range and kurtosis on expected returns in Table III may be overly conservative.

DMS’s empirical finding that the effect of range on expected returns is larger for small stocks

and our analogous finding in Table III on the effect of kurtosis are consistent with our model.

Suppose that small stocks are held only by their optimists ( ϵi
aθiσ2

i
> 1

Ki
) and that large stocks are

held only by their optimists and their rationals ( 1
Ki

> ϵi
aθiσ2

i
> 1

N ). Suppose also for simplicity that
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there are few optimists relative to rationals (Ki is small relative to N), in which case the prices

of large stocks are determined almost exclusively by the rationals. An increase in range renders

the optimists more optimistic and has no effect on the rationals’ beliefs. Since the prices of large

stocks are determined by the rationals, they do not change. The prices of small stocks instead rise

because they are determined by the optimists, implying a larger effect of range for small stocks. A

decrease in kurtosis raises the number of optimists and lowers that of rationals. The prices of large

stocks barely rise because they are determined by the rationals and the percentage change in the

number of rationals is small. The prices of small stocks rise more because the percentage increase

in the number of optimists and decrease in the risk premium that optimists require to hold small

stocks are large.

6 Breadth of Ownership and Expected Returns

In this section we test Hypothesis 3, which concerns the relationship between breadth B and

expected returns. Hypothesis 3 follows from Hypotheses 1 and 2 tested in Sections 5 and 4,

respectively. The tests in this section can be viewed as complementary to those in Sections 4 and

5: they provide only indirect evidence on the role of investor beliefs and disagreement, but they do

not require noisy proxies of beliefs such as analyst forecasts (except for the calculation of adjusted

size).

6.1 Main Results

Tables IV and V present our main tests of Hypothesis 3. In these tables we use the first difference

∆B of B, rather than the level. This is because B is highly autocorrelated (first-order autocor-

relation is 0.997) and highly correlated with stock size (correlation of breadth and size deciles is

0.904). Hence, using levels may confound the effects of B on returns with the effects of size. CHS

use the first difference of B in their regression of returns on B for similar reasons. In Table VII we

report results using the level of B rather than the first difference.

Table IV presents results from pooled OLS regressions of stock returns in the year formed

by quarters t + 1 to t + 4 on ∆B in quarter t and the interaction between ∆B with stock size or

adjusted size in the same quarter. The results for size are in Panel A, where we include as additional

independent variables size, IO, and quarterly dummies to control for time fixed effects. The results

for adjusted size are in Panel B, where we include as additional independent variables adjusted

size, IO and quarterly dummies. In the specifications termed “Extra controls” we include as

additional independent variables share price, idiosyncratic volatility, market beta, book-to-market
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ratio, momentum and turnover. In the specifications termed “Contemp. ∆IO” we additionally

include the first difference of IO in quarters t + 1 to t + 4 (four variables). The variable ∆IO is

contemporaneous with returns. Controlling for it, as is done also in CHS, removes a relationship

between ∆B and expected returns that arises if ∆B predicts changes in IO, and these changes

affect returns. As in previous tables, we transform variables into deciles and compute t-statistics

using robust standard errors double-clustered by stock and by quarter.

The findings in Table IV are consistent with Hypothesis 3. Consider first the effects for small

stocks. The coefficient of ∆B, which measures the effect of ∆B on expected returns for stocks in

the bottom size or adjusted size decile, is negative in both Panels A and B. Thus, ∆B predicts the

returns of small stocks negatively, consistent with Hypothesis 3.

Consider next the effects for large stocks. The coefficient of the interaction between ∆B with size

is positive, meaning that the negative effect of ∆B on expected returns weakens as size increases.

Moreover, the sum of the interaction coefficient and of the coefficient of ∆B is positive in both

Panels A and B, meaning that ∆B and expected returns are positively related for stocks in the

top size or adjusted-size decile. Thus, ∆B predicts the returns of large stocks positively, consistent

with Hypothesis 3.

The negative effect of ∆B on expected returns is significant at the 5% level for size deciles 1-3

in the full sample with extra controls (second column in Panel A1), which we take as our baseline

specification. The positive effect of ∆B is significant at the 5% level for size decile 10 in the baseline

specification.

Turning to economic significance, the coefficient -0.052 on ∆B in the baseline specification

means that within the smallest size decile, a stock in the top ∆B decile (∆B = 1) earns 5.2%

lower annual expected return than a stock in the bottom ∆B decile (∆B = 0). The sum of that

coefficient and that of the interaction term is 0.019, meaning that within the largest size decile, a

stock in the top ∆B decile earns 1.9% higher annual expected return than a stock in the bottom

∆B decile. The negative predictive effect of ∆B for small stocks is larger than the positive effect

for large stocks.

The effects remain comparable in magnitude in the subsample IO ≥ 30%. They become

somewhat weaker when replacing size by adjusted size. They become two to four times as large

when controlling for ∆IO. Thus, the relationship between ∆B and expected returns that arises

because ∆B predicts changes in IO, and these changes affect returns, is quantitatively important.

Moreover, that relationship works in the opposite direction than the one implied by our model.

Table V complements Table IV by presenting results from portfolio sorts. We construct nine

portfolios based on a 3× 3 double sort, first on size and then on ∆B in quarter t. As per Section
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Table IV: Returns on first difference of breadth

Panel A: Size

Panel A1: Full Sample Panel A2: IO ≥ 30%

(1) (2) (3) (4) (1) (2) (3) (4)

∆B
-0.049**

(-2.03)

-0.052**

(-2.46)

-0.137***

(-5.07)

-0.119***

(-5.02)

-0.071*

(-1.78)

-0.058**

(-2.18)

-0.179***

(-4.44)

-0.147***

(-5.45)

∆B*size
0.068***

(3.09)

0.071***

(3.05)

0.171***

(6.48)

0.172***

(6.24)

0.080**

(2.11)

0.071**

(2.29)

0.210***

(5.49)

0.191***

(6.08)

size
-0.177***

(-6.08)

-0.057***

(-3.17)

-0.310***

(-9.16)

-0.179***

(-9.23)

-0.110***

(-3.03)

-0.048**

(-2.11)

-0.219***

(-5.75)

-0.140***

(-5.91)

IO
0.068***

(5.37)

0.066***

(4.37)

0.124***

(9.78)

0.138***

(9.34)

-0.048***

(-3.37)

-0.047***

(-2.83)

0.074***

(5.16)

0.086***

(5.65)

Extra
controls

No Yes No Yes No Yes No Yes

Contemp.
∆IO

No No Yes Yes No No Yes Yes

Panel B: Adjusted Size

Panel B1: Full Sample Panel B2: IO ≥ 30%

(1) (2) (3) (4) (1) (2) (3) (4)

∆B
-0.032

(-1.56)

-0.032**

(-1.97)

-0.107***

(-4.60)

-0.087***

(-4.68)

-0.033

(-1.02)

-0.020

(-0.99)

-0.110***

(-3.37)

-0.083***

(-3.97)

∆B*adjsize
0.043**

(2.38)

0.041**

(2.30)

0.127***

(5.97)

0.126***

(5.93)

0.033

(1.11)

0.024

(0.98)

0.126***

(4.26)

0.112***

(4.63)

adjsize
-0.129***

(-5.95)

-0.009

(-0.57)

-0.232***

(-10.33)

-0.093***

(-6.64)

-0.063**

(-2.26)

-0.004

(-0.19)

-0.145***

(-5.06)

-0.061***

(-3.12)

IO
0.037*

(1.71)

0.058***

(3.04)

0.075***

(3.80)

0.119***

(6.76)

-0.061***

(-3.92)

-0.050***

(-2.79)

0.054***

(3.81)

0.080***

(4.92)

Extra
controls

No Yes No Yes No Yes No Yes

Contemp.
∆IO

No No Yes Yes No No Yes Yes

Note: Pooled OLS regressions of stock returns in the year formed by quarters t+1 to t+4 on the first difference ∆B of
breadth in quarter t and the interaction of ∆B with stock size or adjusted size in the same quarter. Panel A shows the
results for size. These regressions include as additional independent variables size, IO and quarterly dummies. Panel
B shows the results for adjusted size. These regressions include as additional independent variables adjusted size,
IO and quarterly dummies. The regressions under “Extra controls” additionally include share price, idiosyncratic
volatility, market beta, book-to-market ratio, momentum and turnover. The regressions under “Contemp. ∆IO”
additionally include the first difference of IO in quarters t + 1 to t + 4. Adjusted size is the product of size,
idiosyncratic variance and kurtosis, divided by range. For stock/month observations with fewer than four analysts,
we fill in the missing observations for range and kurtosis by linearly predicting them from size and idiosyncratic
variance over the full sample. Size, adjusted size, share price, idiosyncratic volatility, market beta, book-to-market
ratio and turnover are measured at the end of the last June. ∆B, IO and momentum are measured at the end of
quarter t. Both sets of variables are transformed into deciles across the population of stocks at the time when each
variable is measured, and the units are normalized so that the smallest decile corresponds to zero and the largest to
one. The t-statistics, in parentheses, are computed using robust standard errors double-clustered by stock and by
quarter.

26



Table V: Portfolio double-sorts on size and first difference of breadth

Panel A: Average returns of nine size - ∆B portfolios

Panel A1: Full Sample Panel A2: IO ≥ 30%

Small Mid-cap Large Small Mid-cap Large

Low ∆B
21.43%

(7.08)

14.03%

(5.99)

12.79%

(7.65)

28.54%

(8.50)

15.78%

(6.75)

13.77%

(8.25)

Mid ∆B
19.01%

(8.33)

13.59%

(7.70)

13.13%

(9.37)

18.73%

(8.56)

15.56%

(8.63)

13.92%

(9.86)

High ∆B
17.91%

(7.11)

13.82%

(7.28)

13.41%

(8.78)

21.23%

(6.84)

15.03%

(8.02)

13.72%

(9.24)

Panel B: High ∆B minus Low ∆B

Panel B1: Full Sample Panel B2: IO > 30%

Small Mid-cap Large

Large

minus

Small

Small Mid-cap Large

Large

minus

Small

Average returns
-3.52%***

(-3.34)

-0.20%

(-0.16)

0.62%

(0.58)

4.14%***

(3.88)

-7.31%***

(-2.85)

-0.76%

(-0.53)

-0.05%

(-0.04)

7.27%***

(2.93)

CAPM alpha
-2.45%***

(-3.20)

0.34%

(0.33)

0.74%

(0.66)

3.19%***

(3.38)

-5.95%**

(-2.52)

-0.09%

(-0.08)

0.17%

(0.17)

6.12%**

(2.37)

Carhart-4 alpha
-4.47%***

(-4.60)

-2.56%*

(-1.80)

-1.58%

(-1.53)

2.89%***

(2.59)

-10.11%***

(-3.61%)

-2.72%*

(-1.85)

-2.08%**

(-2.15)

8.03%***

(3.00)

FF-5 & UMD

alpha

-4.40%***

(-3.73)

-2.47%

(-1.58)

-0.09%

(-0.08)

4.31%***

(3.23)

-9.14%***

(-2.76)

-1.27%

(-0.77)

-0.48%

(-0.46)

8.66%***

(2.62)

Note: Average returns of nine portfolios formed by a 3×3 double sort, first on size and then on the first difference ∆B
of breadth in quarter t. We define small stocks as those with size below the 30th percentile of our sample, mid-cap
stocks as those with size between the 30th and the 70th percentile, and large stocks as those with size above the 70th
percentile. Within each size group, we define low ∆B stocks as those with ∆B below the 20th percentile, mid ∆B
stocks as those between the 20th and the 80th percentile, and high ∆H stocks as those above the 80th percentile.
Panel A reports the returns of the nine portfolios. The portfolios are formed at the end of quarter t. Annual returns
are measured in the subsequent year, in the year beginning one month after the end of quarter t, and in the year
beginning two months after the end of quarter t. The average of the entire series of annual returns is calculated.
Portfolio returns are the equally weighted averages of the returns of the stocks in the portfolio. Panel B reports
average annual returns and alphas for long-short strategies that go long in the high ∆B portfolio and short in the
low ∆B portfolio. Alphas are computed using the CAPM, the Carhart (1997) four-factor model, and the Fama and
French (2015) five-factor model augmented by the Carhart (1997) momentum factor. The t-statistics, in parentheses,
are computed using Newey-West standard errors with two lags.

3.1, we define small stocks as those with size below the 30th percentile of our sample, mid-cap

stocks as those with size between the 30th and the 70th percentile, and large stocks as those with

size above the 70th percentile. Within each size group, we define low ∆B stocks as those with ∆B

below the 20th percentile, mid ∆B stocks as those between the 20th and the 80th percentile, and

high ∆B stocks as those above the 80th percentile.
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Panel A reports the returns of the nine portfolios. The portfolios are formed at the end of

quarter t. Annual returns are measured in the subsequent year, in the year beginning one month

after the end of quarter t, and in the year beginning two months after the end of quarter t. The

average of the entire series of annual returns is calculated. Portfolio returns are the equally weighted

averages of the returns of the stocks in the portfolio. Results for value-weighted averages are similar.

Panel B reports average annual returns and alphas for long-short strategies that go long in the high

∆B portfolio and short in the low ∆B portfolio. Alphas are computed using the CAPM, the

Carhart (1997) four-factor model, and the Fama and French (2015) five-factor model augmented

by the Carhart (1997) momentum factor. The t-statistics are computed using Newey-West standard

errors with two lags, to address the serial correlation induced by the overlap of the annual returns.

Panel A shows that for small stocks there is a clear decreasing pattern in average return when

moving from the low ∆B to the high ∆B portfolio. The average annual return drops from 21.43%

for low ∆B to 17.91% for high ∆B. Going long in the high ∆B portfolio and short in the low ∆B

portfolio yields an average annual return of -3.52%, with t-statistic -3.34. The strategy’s CAPM,

four-factor and five-factor alphas are similar to its average return.

For mid-cap stocks, there is no clear pattern in average return across the ∆B portfolios. For

large stocks, a pattern reappears in the full sample and is the opposite to that for small stocks, but

is not statistically significant. The change in the long-short strategies’ returns when moving from

small to large stocks is statistically significant, however. Going long in the large-stock long-short

∆B portfolio and short in the small-stock long-short ∆B portfolio yields an average annual return

of 4.14%, with t-statistic 3.88. These findings are consistent with Hypothesis 3.

When performing the double sort using adjusted size instead of size, the results (not reported)

lose their significance for value-weighted returns and remain significant in some cases for equally

weighted returns. Significance is restored when value weights are computed using adjusted size

rather than size.

Tables IV and V paint a consistent picture. ∆B predicts negatively the returns of small stocks

and positively those of large stocks. The effect of ∆B for small stocks is statistically significant. It

is also larger in absolute value than the effect for large stocks, which is not statistically significant

in some specifications. The change in the effect of ∆B from small to large stocks is statistically

significant.

6.2 Other Horizons

Table VI presents results from the same regressions as in the second and fourth columns of Panel

A1 of Table IV (stock returns in the year formed by quarters t + 1 to t + 4 on ∆B in quarter t,
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the interaction between ∆B and size, size, IO, extra controls, on the full sample, with or without

∆IO), except that stock returns are evaluated over horizons different than one year. We evaluate

returns from quarter t+1 to t+ k and consider horizons of one quarter (k = 1), two years (k = 8),

three years (k = 12), four years (k = 16) and five years (k = 20). We do not express stock returns

in annualized terms, i.e., leave them as cumulative returns. As in Table IV, we transform the

independent variables into deciles, and normalize the units so that the smallest decile corresponds

to zero and the largest to one. We compute t-statistics using robust standard errors double-clustered

by stock and by quarter. Clustering by stock addresses the autocorrelation that arises because the

periods over which returns are evaluated overlap. Using Newey-West standard errors with k − 1

lags, corresponding to the overlap, yields similar standard errors.

The findings in Table VI are consistent with Hypothesis 3 except for the quarterly horizon. Over

a quarterly horizon, ∆B predicts returns of small stocks positively, while Hypothesis 3 implies

a negative effect. Moreover, the effect weakens with stock size, becoming less positive, while

Hypothesis 3 implies that it should become less negative. Controlling for ∆IO brings the coefficients

of ∆B and of the interaction term close to zero but does not change their signs.

Over horizons longer than one year, the relationship between ∆B and future returns is not only

consistent with Hypothesis 3 but becomes stronger as horizon increases. As in Table IV, B predicts

returns of small stocks negatively. Moreover, the effect weakens when moving from small to large

stocks, and becomes positive for large stocks. The coefficients of ∆B and of the interaction term

scale up approximately linearly with horizon. They are statistically significant at the 1% level for

all horizons. Their sum (effect of ∆B on returns of size decile 10) is statistically significant at the

1% level as well.

6.3 Robustness

Tables VII and VIII present results from a series of robustness tests. In column groups (1) and (2)

of Table VII the sample period is split into two sub-periods. In column group (3) the level of B

is used rather than the first difference ∆B. In column group (4) book equity is used rather than

market capitalization to measure size. The regressions are the same as in the second and fourth

columns of Panel A1 of Table IV (stock returns in the year formed by quarters t + 1 to t + 4 on

∆B or B in quarter t, the interaction between ∆B or B and size, size, IO, extra controls, with or

without ∆IO, on the full sample).

Sub-period results are consistent with Hypothesis 3 when controlling for ∆IO: the coefficient of

∆B is negative, the coefficient of the interaction term is positive, and the sum of the two coefficients

is positive. When not controlling for ∆IO, the results are consistent with Hypothesis 3 only in the
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Table VII: Robustness tests: Sub-periods, level of breadth and book equity

(1) First part

of sample

(2Q-1980 to 4Q-1997)

(2) Second part

of sample

(1Q-1998 to 4Q-2017)

(3) Levels of B (4) Book equity

∆B
0.023

(1.42)

-0.019

(-1.07)

-0.101***

(-2.95)

-0.189***

(-4.90)

-0.033*

(-1.77)

-0.095***

(-4.52)

∆B*size
-0.007

(-0.34)

0.059***

(2.75)

0.122***

(3.13)

0.253***

(5.52)

0.039*

(1.93)

0.133***

(5.77)

B
0.115**

(2.49)

-0.084**

(-2.00)

B*size
0.151***

(4.42)

0.357***

(9.87)

Extra controls Yes Yes Yes Yes Yes Yes Yes Yes

Contemp. ∆IO No Yes No Yes No Yes No Yes

Note: In column groups (1) and (2) the sample period is split into two sub-periods. In column group (3) the level of B
is used rather than the first difference ∆B. In column group (4) book equity is used rather than market capitalization
to measure size. All columns present results from pooled OLS regressions of stock returns from end of quarter t to
end of quarter t + 4 on B or ∆B in quarter t and the interaction between B or ∆B with stock size in the same
quarter. The regressions include additionally size, IO, quarterly dummies and the extra controls in Table IV. The
regressions are run with or without ∆IO, as indicated. Variables are transformed into deciles and normalized, as
described in Table IV. The t-statistics, in parentheses, are computed using robust standard errors double-clustered
by stock and by quarter.

second half of the sample. In the first half, both coefficients have the wrong signs. The results using

the level of B rather than the first difference are consistent with Hypothesis 3 when controlling for

∆IO. When not controlling for ∆IO, the coefficient of the interaction term is positive, consistent

with Hypothesis 3, but the coefficient of B is positive, at odds with Hypothesis 3. The results using

book equity rather than market capitalization are consistent with Hypothesis 3, but statistical

significance is weaker than in Table IV.

Table VIII presents results using the Herfindahl index H instead of B as the measure of breadth

of ownership. Column group (1) presents results from the main regressions with annual returns. In

column group (2), returns are quarterly. In column groups (3) and (4), the sample period is split

into two sub-periods. In column group (5), the level of H is used rather than the first difference

∆H. The regressions in each column group are analogous to those in the second and fourth columns

of Panel A1 of Table IV.

Results using H provide stronger support for Hypothesis 3 than results using B: they are

consistent with Hypothesis 3 in the cases where the B results are consistent, and they become

consistent with Hypothesis 3 in additional cases. Since B and H are negatively related, Hypothesis

3 implies that the coefficient of ∆H or H should be positive, the coefficient of the interaction with

size should be negative, and the sum of the two coefficients should be negative. These predictions

31



T
ab

le
V
II
I:
R
o
b
u
st
n
e
ss

te
st
s:

H
e
rfi

n
d
a
h
l
in
d
e
x

(1
):

∆
H

(2
):

∆
H

-
1Q

(3
):

∆
H

-
F
ir
st

p
ar
t

of
sa
m
p
le

(2
Q
-1
98

0
to

4Q
-1
99

7)

(4
):

∆
H

-
S
ec
on

d
p
ar
t

of
sa
m
p
le

(1
Q
-1
99

8
to

4Q
-2
01

7)

(5
):

L
ev
el
s
of

H

∆
H

0.
01

7
**

(2
.0
1)

0.
03

0
**

*

(3
.3
6
)

0.
00

3

(1
.0
5)

0.
00

0

(0
.1
0)

-0
.0
03

(-
0.
32

)

-0
.0
01

(-
0.
08

)

0.
02

3*

(1
.8
0)

0.
04

3*
**

(3
.3
7)

∆
H
*s
iz
e

-0
.0
35

*
*

(-
2
.0
2
)

-0
.0
4
4*

*

(-
2.
51

)

-0
.0
13

*

(-
1.
86

)

-0
.0
07

(-
1.
11

)

-0
.0
21

(-
1.
33

)

-0
.0
20

(-
1.
22

)

-0
.0
26

(-
0.
90

)

-0
.0
41

(-
1.
40

)

H
0.
03

4

(1
.3
8)

0.
18

9*
**

(7
.3
2)

H
*
si
ze

-0
.1
68

**
*

(-
5.
06

)

-0
.3
47

**
*

(-
9.
47

)

E
x
tr
a
co
n
tr
ol
s

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
o
n
te
m
p
.
∆
I
O

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o
te
:
C
o
lu
m
n
g
ro
u
p
(1
)
p
re
se
n
ts

re
su
lt
s
fr
o
m

th
e
m
a
in

re
g
re
ss
io
n
s
w
it
h
a
n
n
u
a
l
re
tu
rn
s,

w
it
h
th
e
fi
rs
t
d
iff
er
en

ce
∆
H

o
f
th
e
H
er
fi
n
d
a
h
l
in
d
ex

ra
th
er

th
a
n
th
e
fi
rs
t

d
iff
er
en

ce
∆
B

o
f
b
re
a
d
th
.
In

co
lu
m
n
g
ro
u
p
(2
),

re
tu
rn
s
a
re

q
u
a
rt
er
ly
.
In

co
lu
m
n
g
ro
u
p
s
(3
)
a
n
d
(4
),

th
e
sa
m
p
le

p
er
io
d
is

sp
li
t
in
to

tw
o
su
b
-p
er
io
d
s.

In
co
lu
m
n

g
ro
u
p
(5
),

th
e
le
v
el

o
f
H

is
u
se
d
ra
th
er

th
a
n
th
e
fi
rs
t
d
iff
er
en

ce
∆
H
.
A
ll
co
lu
m
n
s
p
re
se
n
t
re
su
lt
s
fr
o
m

p
o
o
le
d
O
L
S
re
g
re
ss
io
n
s
o
f
st
o
ck

re
tu
rn
s
fr
o
m

en
d
o
f
q
u
a
rt
er

t
to

en
d
o
f
q
u
a
rt
er
t
+

1
o
r
t
+

4
o
n
H

o
r
∆
H

in
q
u
a
rt
er
t
a
n
d
th
e
in
te
ra
ct
io
n
b
et
w
ee
n
H

o
r
∆
H

w
it
h
st
o
ck

si
ze

in
th
e
sa
m
e
q
u
a
rt
er
.
T
h
e
re
g
re
ss
io
n
s
in
cl
u
d
e

a
d
d
it
io
n
a
ll
y
si
ze
,
I
O
,
q
u
a
rt
er
ly

d
u
m
m
ie
s
a
n
d
th
e
ex
tr
a
co
n
tr
o
ls

in
T
a
b
le

IV
.
T
h
e
re
g
re
ss
io
n
s
a
re

ru
n
w
it
h
o
r
w
it
h
o
u
t
∆
I
O
,
a
s
in
d
ic
a
te
d
.
V
a
ri
a
b
le
s
a
re

tr
a
n
sf
o
rm

ed
in
to

d
ec
il
es

a
n
d
n
o
rm

a
li
ze
d
,
a
s
d
es
cr
ib
ed

in
T
a
b
le

IV
.
T
h
e
t-
st
a
ti
st
ic
s,

in
p
a
re
n
th
es
es
,
a
re

co
m
p
u
te
d
u
si
n
g
ro
b
u
st

st
a
n
d
a
rd

er
ro
rs

d
o
u
b
le
-c
lu
st
er
ed

b
y
st
o
ck

a
n
d
b
y

q
u
a
rt
er
.

32



are borne out in the main regressions with annual returns. They are borne out in the second

subperiod, except that the sum of the coefficients is negative in one case. They are borne out in the

regressions with the level of H rather than the first difference, even when not controlling for ∆IO.

They are borne out in the regressions with quarterly returns. In the latter two cases, statistical

significance for some of the coefficients is lacking, but their signs are consistent with Hypothesis 3

unlike when using B.

7 Ownership at the Style Level

In this section we extend our analysis of breadth of ownership and expected returns to the level

of investment styles. Investors can adopt different styles, such as value and growth, because of

different preferences or beliefs. Assuming that different styles are adopted by disjoint groups of

investors, we can map each style to an investor group and interpret the investors in our model as

styles. With that interpretation, we can test the model using measures of ownership computed

at the style rather than the investor level. The style-level analysis can be viewed as an additional

robustness test. It can also help rule out alternative explanations of our findings on the relationship

between breadth of ownership and expected returns that apply to the level of individual investors

but not to aggregate styles. Examples are explanations based on monitoring or rent extraction

by large shareholders (e.g., Admati, Pfleiderer, and Zechner (1994), Burkart, Gromb, and Panunzi

(1997), Bolton and Von Thadden (1998)) and on asymmetric information by corporate insiders

(e.g., Kyle (1985)).

Breadth is correlated at the investor and at the style level, with a correlation of 0.48. This

correlation is driven partly by size, but remains important even within size groups. The correlation

within the groups of small, mid-cap and large stocks is 0.65, 0.57 and 0.25, respectively. Given the

positive correlation between breadth at the investor and at the style level, we expect our findings

to extend to styles.

Table IX presents descriptive statistics of B and ∆B at the style level. We denote B at the

style level by Bstyle. Consistent with Hypothesis 2a and the findings in Table I, there is a positive

relationship between Bstyle and size. The mean of Bstyle for small stocks is 5.80, meaning that the

average small stock is held by 5.80 out of the 29 styles in our data. The mean of Bstyle rises to 9.33

for mid-cap stocks and to 11.92 for large stocks.

Table X presents results using style-level measures of ownership. Column group (1) presents

results from the main regressions with annual returns. In column groups (2) and (3), returns are

quarterly and bi-annual, respectively. In column group (4), the level of Bstyle is used rather than

the first difference ∆Bstyle. In column group (5), the first difference ∆Hstyle of the style-level
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Table IX: Descriptive statistics of style-level breadth

Panel A: Full Sample Panel B: IO ≥ 30%

Full Small Mid-cap Large Full Small Mid-cap Large

Breadth of Styles (B-styles)

mean 9.24 5.80 9.33 11.92 11.18 8.43 10.51 12.19

stdev 3.67 2.84 2.95 2.64 2.62 2.36 2.26 2.44

∆B-style

mean 0.08 0.09 0.10 0.06 0.06 0.08 0.07 0.05

stdev 0.97 0.91 1.00 0.97 0.95 0.83 0.98 0.95

Number of Observations

Obs. 264353 70213 107174 86966 153053 11749 65332 75972

Note: Mean and standard deviation of style-level breadth Bstyle and of its first difference ∆Bstyle. Panel A reports
statistics for the full sample, broken down by stock size. Panel B reports statistics for the subsample where institu-
tional ownership IO exceeds 30%. The statistics are based on pooled cross-sectional and time-series samples.

Herfindahl index is used instead of ∆Bstyle. The regressions in each column group are analogous to

those in the second and fourth columns of Panel A1 of Table IV. We do not consider sub-periods

because ownership data pertaining to investment styles are available only from 1997 to 2015.

Results using style-level measures of ownership provide strong support for Hypothesis 3. In

all regressions, the coefficients of Bstyle, ∆Bstyle or ∆Hstyle, and of the interaction term with size,

have signs consistent with Hypothesis 3. These coefficients are statistically significant except for

two cases, and their sum has sign consistent with Hypothesis 3 except for one case.

8 Conclusion

We study theoretically and empirically the relationship between investor beliefs, breadth of own-

ership and expected returns. Investor beliefs in our model are described by two dimensions: the

intensity of disagreement between optimists and pessimists, and the polarization of beliefs measured

by the number of optimists and pessimists relative to moderates. These dimensions map, respec-

tively, to the range and kurtosis of the distribution of beliefs across investors. Our two-dimensional

description of beliefs generates a size-dependent relationship between breadth and expected returns:

positive for large stocks and negative for small stocks. This relationship, which we also find in the

data, is puzzling for the one-dimensional description of beliefs that is common in the literature and

based on the intensity of disagreement.

Besides testing for the relationship between breadth and expected returns that our model pre-

dicts, we test for the relationship that beliefs should have with each of these variables. The size-
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dependent breadth-return relationship in our model arises because stocks with more polarized

beliefs (1) earn lower expected returns and (2) have a broader investor base (relative to similar-size

stocks with less polarized beliefs) if they are small and a narrower base if they are large. Proxying

investor beliefs by analyst forecasts, we find empirical support for both predictions.

Our results suggest that a two-dimensional description of beliefs seems necessary to explain

the empirical relationship between breadth and expected returns. Moreover, such a description

better accounts for the relationship between beliefs and each of these variables. Incorporating

the two-dimensional description suggested by our model and CLY into richer dynamic settings,

and fleshing out the joint dynamics of disagreement, polarization, holdings and prices, seems an

interesting direction for future research.
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Appendix

A Proofs

Proof of Proposition 2.1. Suppose λ1 = .. = λN ≡ λ. Setting

Si ≡ D̄ − biλ+ aθiσ
2
i ϕi, (A.1)

we can write (2.5) as (2.7). Equation (2.7) has a unique solution because when the left-hand

side is positive, it is decreasing in ϕi. Summing λn = a
∑I

j=1 bjxjn over n and using (2.4) and

λ1 = .. = λN = λ, we find

λ =
a

N

I∑
j=1

bjθj . (A.2)

Substituting (A.2) into (A.1), we find (2.6). Substituting (A.1) into (2.3) and using λ = λn, we

find (2.8).

When Condition (A) is satisfied, λn = a
∑I

j=1 bjxjn implies λ1 = .. = λN = 0. When Condition

(B) is satisfied, (2.3) and λn = a
∑I

j=1 bjxjn imply

λn =
I∑

j=1

bj max

{
D̄ + ϵjn − Sj − bjλn

σ2
j

, 0

}

=
∑
m∈I

∑
j∈Im

bj max

{
D̄ + ϵjn − Sj − bjλn

σ2
j

, 0

}
, (A.3)

where I is a set formed by one stock in each subset of stocks sharing the same characteristics, and

Im is the subset corresponding to stock m ∈ I. Suppose that Si is given by (2.6) for all i = 1, .., N ,

in which case Condition (B) implies that Sj is equal across j ∈ Im. Suppose also, proceeding by

contradiction, that λn > λn′ for some n, n′ ∈ {1, .., N}. Condition (B), equality of Sj across j ∈ Im,

and bj ≥ 0 for all j ∈ Im, imply

∑
j∈Im

bj max

{
D̄ + ϵjn − Sj − bjλn

aσ2
j

, 0

}
≤
∑
j∈Im

bj max

{
D̄ + ϵjn − Sj − bjλn′

aσ2
j

, 0

}
. (A.4)

Summing (A.4) over m ∈ I and using (A.3), we find λn ≤ λn′ , which contradicts λn > λn′ .

Therefore, λn is equal across n. The first part of the proposition then implies that Si is given by

(2.6) for all i = 1, .., N
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Proof of Proposition 2.2. Suppose ϵi > ϵi′ and (θi, bi, σi,Ki) = (θi′ , bi′ , σi′ ,Ki′). When 1
N >

ϵi
aθiσ2

i
, the unique solution of (2.7) for stock i is ϕi = − 1

N . Since 1
N > ϵi

aθiσ2
i
>

ϵi′
aθiσ2

i
, the unique

solution of (2.7) for stock i′ is also ϕi′ = − 1
N . Therefore, (2.6) implies Si = Si′ . When instead

ϵi
aθiσ2

i
> 1

N , the unique solution of (2.7) for stock i is such that − ϵi
aθiσ2

i
−ϕi < 0. Since − ϵi

aθiσ2
i
−ϕi < 0

and ϵi > ϵi′ ,

1 =
N∑

n=1

max

{
ϵin

aθiσ2
i

− ϕi, 0

}
>

N∑
n=1

max

{
ϵin′

aθiσ2
i

− ϕi, 0

}
.

Therefore, the unique solution of (2.7) for stock i′ satisfies ϕi′ < ϕi, which implies from (2.6)

Si > Si′ .

Suppose next Ki < Ki′ and (θi, bi, σi, ϵi) = (θi′ , bi′ , σi′ , ϵi′). When 1
N > ϵi

aθiσ2
i
, the unique

solution of (2.7) for stock i is ϕi = − 1
N . Since 1

N > ϵi
aθiσ2

i
=

ϵi′
aθiσ2

i
, the unique solution of (2.7) for

stock i′ is also ϕi′ = − 1
N , and (2.6) implies Si = Si′ . When instead ϵi

aθiσ2
i
> 1

N , the unique solution

of (2.7) for stock i is such that − ϵi
aθiσ2

i
− ϕi < 0. Since − ϵi

aθiσ2
i
− ϕi < 0 and Ki < Ki′ ,

1 =

N∑
n=1

max

{
ϵin

aθiσ2
i

− ϕi, 0

}
<

N∑
n=1

max

{
ϵin′

aθiσ2
i

− ϕi, 0

}
.

Therefore, the unique solution of (2.7) for stock i′ satisfies ϕi′ > ϕi, which implies from (2.6)

Si < Si′ . The expected return comparisons follow from the price comparisons because expected

return D̄−Si
Si

is decreasing in the price.

Proof of Proposition 2.3. Suppose ϵi > ϵi′ and (θi, bi, σi,Ki) = (θi′ , bi′ , σi′ ,Ki′). The argument

before the proposition implies that five cases are possible: (1) stocks i and i′ are held only by their

optimists, (2) stock i is held only by its optimists and stock i′ is held by its optimists and additional

investors, (3) stocks i and i′ are held only by their optimists and their rationals, (4) stock i is held

only by its optimists and its rationals and stock i′ is held by all investors, and (5) stocks i and i′

are held by all investors. In Cases (2) and (4), Bi < Bi′ . In Cases (1), (3) and (5), Bi = Bi′ . The

condition for Case (2) is ϵi
ϵi′Ki

> ϵi
aθiσ2

i
> 1

Ki
. The condition for Case (4) is ϵi

ϵi′N
> ϵi

aθiσ2
i
> 1

N .

Suppose next Ki < Ki′ and (θi, bi, σi, ϵi) = (θi′ , bi′ , σi′ , ϵi′). If ϵi
aθiσ2

i
> 1

Ki
, then stock i is held

only by its optimists. Since ϵi
aθiσ2

i
> 1

Ki
> 1

Ki′
, the same is true for stock i′. Therefore, Bi =

Ki
N and

Bi′ =
Ki′
N > Bi. If

1
Ki

> ϵi
aθiσ2

i
> 1

N , then stock i is held only by its optimists and its rationals. Since

ϵi
aθiσ2

i
> 1

N , stock i′ is not held by its pessimists. Therefore, Bi =
N−Ki

N and Bi′ ≤
N−Ki′

N < Bi. If

1
N > ϵi

aθiσ2
i
, then stocks i and i′ are held by all investors, and Bi = Bi′ = 1

Proof of Proposition 2.4. If stock i is held only by its optimists, then ϵi
aθiσ2

i
> 1

Ki
. Since ϵi

aθi′σ
2
i
>
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ϵi
aθiσ2

i
> 1

Ki
, stock i′ is also held only by its optimists. If stock i is not held by its pessimists, then

ϵi
aθiσ2

i
> 1

N . Since ϵi
aθi′σ

2
i
> ϵi

aθiσ2
i
> 1

N , stock i′ is also not held by its pessimists. Therefore, five

cases are possible: (1) stocks i and i′ are held only by their optimists, (2) stock i′ is held only by

its optimists and stock i is held by its optimists and additional investors, (3) stocks i and i′ are

held only by their optimists and their rationals, (4) stock i′ is held only by its optimists and its

rationals and stock i is held by all investors, and (5) stocks i and i′ are held by all investors. In

Cases (2) and (4), Bi > Bi′ . In Cases (1), (3) and (5), Bi = Bi′ . The condition for Case (2) is

1
Ki

> ϵi
aθiσ2

i
>

θi′
θiKi

. The condition for Case (4) is 1
N > ϵi

aθiσ2
i
>

θi′
θiN

.

B Investment Styles of 13-F Investors by Thomson Reuters

Table B.I presents the 32 investment styles in which Thompson Reuters (TR) classifies 13-F in-

vestors.

Table B.I: The 32 investment styles in which Thomson Reuters classifies 13-F investors.

General Styles Hedge Fund Styles

Aggressive Growth, Broker Dealer, Core Growth,

Core Value, Deep Value, Emerging Markets,

GARP(Growth at Reasonable Price), Growth,

Hedge Fund, Income Value, Index, Mixed Style,

Momentum, Sector Specific, Specialty,

VC(Venture Capital)/Private Equity, Yield

Capital Structure Arbitrage, Convertible Arbitrage,

CTA(Commodity Trading Advisors) Managed

Futures, Distressed Securities, Emerging Markets

(Hedge), Equity Hedge, Event Driven (Merger/

Risk Arbitrage), Fixed Income Arbitrage,

Funds of Funds, Global Macro, Long Bias,

Long-Short, Market Neutral, Multi-Strategy

(Hedge), Quantitative/Statistical Arbitrage

Note: The 32 investment styles in which Thompson Reuters (TR) classifies 13-F investors. The left column reports
the seventeen general styles and the right column reports the fifteen hedge fund styles. The styles are reported
alphabetically in each column. The information is available on http://banker.thomsonib.com/ta/help/webhelp/

Ownership_Glossary.htm

TR classifies 13-F investors into styles based on the characteristics of the stocks that they hold,

their historical investment behavior, their current transactions and their general business type. TR

first classifies each stock into a certain group or style based on its price-earnings ratio, dividend

yield, and the three- to five-year projected earnings-per-share growth relative to the corresponding

S&P500 or sector averages. For each 13-F investor, TR then calculates the weights of the different

groups or styles of stocks. The group with the biggest weight generally characterizes the investor’s

style.

Some classifications are more mechanical. 13-F investors whose portfolios follow the composi-

tion of certain indices (e.g. S&P 500, Russell 1000/2000/3000, etc) are classified into the Index
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Figure B.1: Mean share of stock ownership by style

Note: Mean percentage shares in our sample of the 32 investment styles in which Thompson Reuters (TR) classifies
13-F investors. The average shares above 1% are reported separately (twelve styles) and the average shares below
1% are reported together as “other” (twenty styles).

style. Styles such as “Broker Dealer,” “Hedge Funds” and “VC/Private Equity” are assigned

mainly based on the business type of the corresponding investors. Finally, some 13-F investors

are classified into hedge-fund styles depending on their exact investment strategy (e.g. “Convert-

ible Arbitrage,” “Quantitative-Statistical Arbitrage,” “Emerging Markets,” “Fund of funds”). The

relative importance of hedge-fund styles is small.

The pie chart in Figure B.1 shows the size of each of the 32 styles in our sample, defined as the

asset value attributed to the style over the total asset value of all styles. There are twelve styles

with size above 1%. The combined size of the remaining twenty styles is 1.34%.
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