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Abstract 

 
I examine bias and effective degrees of freedom corrections, based upon mimicking 

the first two moment properties of a chi-squared variable, to statistical inference using robust 
and clustered covariance matrices.  Simulation, using 1378 practical regression examples 
found in 44 experimental papers, shows that these corrections render the test statistics nearly 
exact in the face of ideal iid normal errors and provide large improvements in the accuracy of 
statistical inference in the presence of distinctly non-iid non-normal errors.
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I.  Introduction 

 Use of the Eicker (1963)-Hinkley (1977)-White (1980) robust covariance estimate and 

its clustered extension to correct for unknown and unspecified heteroskedasticity or within 

cluster correlation has become widespread in economics.  For example, standard errors are 

calculated using one variation or another of these matrices in 1002 of 1378 OLS regressions 

found in a sample of 44 experimental papers examined further below.  Not long after White 

(1980) established the asymptotic consistency of the robust variance estimate in greatest 

generality, it was quickly recognized that in finite samples statistical inference based upon 

these covariance matrices produces empirical rejection rates greater than nominal size. 

MacKinnon and White (1985) provided simulation evidence and, linking the problem, in the 

first instance, to the reduction in error variance brought about by least squares fitting, 

proposed various adjustments to correct for bias.  These corrections, however, are inadequate, 

as shown in simulations by Angrist and Pischke (2009), who note that the covariance 

estimates are not merely biased but also much more variable than default OLS estimates, 

which contributes to their high rejection rates.  This paper links the bias and variability of 

robust and clustered covariance matrix estimates to the interaction of regression design with 

hypothesis tests, developing easily calculable bias and “effective degrees of freedom” 

adjustments that, as supported by simulations using 1378 practical regressions, render test 

statistics using these covariance estimates nearly exact in the face of ideal iid normal errors 

and provide substantial improvements in the accuracy of inference in situations with non-iid 

non-normal errors. 

 The corrections suggested in this paper are motivated by two observations and two 

claims.  The observations are trivial, noting that the chi-squared variable that underlies the t-

statistic has a variance equal to twice its mean and that the robust and clustered covariance 

matrices can be re-expressed as quadratic forms whose first two moments, following suitable 

adjustment, mimic the chi-squared property.  The claims are that in the face of iid normal 

errors the resulting test statistic is very nearly distributed t- with the degrees of freedom of its 

pseudo chi-squared denominator, and that the same distribution improves the evaluation of 

the test statistic in non-normal non-iid situations.  The method works for the very simple 

reason that the degrees of freedom calculation for the conventional t-statistic reflects the 

number of orthogonal linear combinations of the disturbances used in its calculation, and the 
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effective degrees of freedom correction similarly calculates how regression design interacts 

with hypothesis tests to make the robust and clustered covariance matrices dependent upon a 

reduced number of orthogonal combinations of the disturbances.  This then identifies both the 

bias and variability of the covariance estimates in the case of ideal iid normal errors.  The 

reduced dimensionality remains relevant, however, regardless of the characteristics of the 

error term, explaining the value of the method when extended to non-iid non-normal settings. 

 This paper builds on a number of earlier theoretical results.  Chesher and Jewitt (1987) 

identified the link between leverage and bias bounds for robust covariance estimates.  Chesher 

(1989) then went on to note that these matrices could be re-expressed as quadratic forms and, 

using Hajek’s (1962) inequalities, established that the tails of the distribution of the test 

statistic are bounded by t-distributions with degrees of freedom determined by regression 

design.  The bounds on potential bias and effective degrees of freedom corrections further 

below extend these results to clustered covariance estimates and a variant of the robust 

measure not considered in these earlier papers.  Welch, first in a particular example (1936) 

and then in increasing generality (1938, 1947), developed the idea of approximating the 

distribution of a statistic based upon the sum of unequally weighted chi-squared variables 

using adjustments that mimic the first two moment properties of a chi-squared variable, in the 

process calculating “effective degrees of freedom” which, in essence, identify the variance of 

the variance estimate.  It is but a small step to realize that the robust and clustered variance 

estimates are a version of Welch’s problem, and that further analysis of the quadratic forms 

first examined by Chesher would yield the precise degrees of freedom correction required for 

each hypothesis test, transforming Chesher’s broad bounds into a nearly exact distribution 

based upon the interaction of hypothesis tests with regression design. 

 The idea of using effective degrees of freedom (edf) corrections for the robust and 

clustered variance estimates has been explored in earlier papers.  Kott (1994, 1996) proposed 

such corrections for his own bias corrected refinements of the clustered covariance estimate, 

as did Bell and McCaffrey (2002) using extensions of the MacKinnon and White robust bias 

correction methods to the clustered case.  In an effort to popularize these improvements, 

Imbens and Kolesar (2015) promote the Bell and McCaffrey approach.  This paper extends 

these earlier analyses, which typically only consider a small handful of artificial examples, by 

applying these techniques to 1378 practical regression designs used in published papers.  I 
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show that the MacKinnon and White and Bell and McCaffrey corrections frequently cannot 

be applied as, given regression design, in 1/3rd of published robust or clustered regressions 

they would require inverting a singular matrix.  I find, however, that bias corrections based 

upon the baseline robust and clustered covariance estimates, which can be easily calculated 

for any regression, yield identical results to these other methods when both can be applied.  

Finally, I explicitly link the edf literature to regression design, both in establishing theoretical 

bounds and providing illustrative examples of how the interaction between hypothesis tests 

and regression design determine bias and effective degrees of freedom. 

 The paper proceeds as follows:  Section II below shows how quadratic forms that are 

not based on idempotent matrices can be adjusted to mimic the moment properties of the chi-

squared variable, in the process producing bias and effective degrees of freedom corrections.  

Section III presents convenient computational formulae and derives bounds on the bias and 

edf corrections for the robust and clustered matrices and their diverse variations.  Maximal 

regression leverage plays an important role in determining these bounds and I provide 

examples showing how the interaction of the hypothesis test with regression design 

determines to what degree these bounds are attained.  Section IV presents empirical 

simulations using the 44 paper sample mentioned earlier above, which provides a wide array 

of practical applications.  I begin by showing that regression design in the typical published 

regression is quite poor, with about 1/3rd of regressions having a maximal leverage of 1, 

which renders the MacKinnon and White and Bell and McCaffrey corrections unusable, 

whatever their merits.  I then show the extraordinary performance achieved by the bias and 

edf corrections in simulations with iid normal and decidedly non-iid non-normal disturbances.  

Section V concludes by considering the possibility and value of extensions to non-OLS 

settings.  Stata ado files on my website allow users to ask for these corrections in their robust 

and clustered regressions. 

II. Effective Degrees of Freedom Corrections 

 I use the familiar presentation of the t-statistic to establish notation and motivate the 

bias and edf corrections of the robust and clustered covariance matrices.  In the n-observation 

k-regressor OLS regression model y = Xβ + ε,1 with ε iid ~ N(0, σ2), let b denote the 
                                                

1I follow standard notation, with bold capital and lowercase letters denoting matrices and column vectors, 
respectively.  



4 
 

estimated coefficients and e the estimated residuals.  The symmetric and idempotent matrix M  

= I (n) – X(X ′X)-1X′ is the “residual maker” as e = My  = Mε.  We (correctly) estimate the 

variance of b using V= (X′X)-1e′e/(n-k) and test whether a linear combination w of b is 

significantly different from a null value w0 using the statistic 
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Since, under the null, w′b ~ N(w0,σ
2w′(X′X)-1w), the numerator is a standard normal variable 

while the denominator is the square root of an idempotent quadratic form in the standard 

normal vector ε/σ as 
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With trace(M ) = n-k,2 this is a chi-squared variable with n-k degrees of freedom and,  

consequently, has expectation n-k and variance 2(n-k).  As the estimates b are statistically 

independent of e, the test statistic (1) is the ratio of a standard normal variable to the square 

root of an independently distributed chi-squared variable divided by its degrees of freedom 

and, consequently, follows the t-distribution. 

 Consider now the case where the variance of b is estimated using an alternative 

estimator V i ≠ V.  The usual test statistic is given by 
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where, in the last expression, I have assumed that V i is such that the term in the square root in 

the denominator can be re-expressed as a standard normal quadratic form with matrix Bi.  

Following the usual properties of quadratic forms, if ε is iid normal this has mean µ = 

trace(Bi) and variance ν = 2*trace(BiBi).
3  If Bi is idempotent, this quadratic form is a chi-

squared variable with ν = 2µ.  If Bi is not idempotent, it can be modified to mimic this 

                                                
2Trace(M ) = n - trace(X(X ′X) -1X′) = n - trace(X′X(X ′X)-1) = n-k.  
3Iid is sufficient for the mean property, while the addition of normality establishes the variance. 
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moment property by multiplying it by 2µ/ν, so that its mean is 2µ2/ν and variance 4µ2/ν.  

Recognizing that we will want to divide the resulting “chi-squared” variable by its degrees of 

freedom, we see that we should divide V i by µ to form the test statistic: 
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Since the denominator, with normal disturbances, remains independent of the numerator, we 

can say that this test statistic is distributed t with 2µ2/ν “effective degrees of freedom”. 

 Intuition for why this approach improves statistical inference, even in the presence of 

non-iid non-normal disturbances, can be acquired by thinking about the quadratic forms that 

lie in the denominators of (1), (3) and (4).  When the disturbances are known to be iid, the 

quadratic form in the denominator of (1) has an expectation of 1, i.e. the sum of squared 

residuals divided by degrees of freedom provides an unbiased estimate of the variance σ
2.  To 

allow for the possibility that the disturbances are not iid, we use “robust” covariance estimates 

in (3).  Unfortunately, as shown further below, depending upon the interaction of the 

hypothesis test with regression design, these place uneven weight on estimated residuals.  

Moreover, the estimated residuals themselves tend to be large or small in a manner that 

depends not only on the heteroskedasticity of the disturbance process, but also on regression 

design.  By calculating the bias µ of the variance estimate in the presence of iid disturbances 

and using it to divide the variance estimate in (4), we remove the systematic bias in the 

estimate of variance associated with regression design.  This generally provides gains, even 

when the error process is not iid and hence the true finite sample bias is unknown. 

 Turning to effective degrees of freedom, symmetric matrices allow the decomposition 

UΛU′, where Λ is a diagonal matrix of eigenvalues and U is the matrix whose columns are 

the corresponding mutually orthogonal eigenvectors (U′U = I ).  Consequently, a quadratic 

form ε′Aε can be reexpressed as Σλiηi
2, where, with ui denoting the ith eigenvector and λi its 

corresponding eigenvalue, the ηi = ui′ε are mutually orthogonal linear combinations of the 

disturbances.  In the case of the denominator of (1), as re-expressed in (2), the quadratic form 

involves n-k eigenvalues equal to 1 and k equal to 0, i.e. the estimate of variance involves the 

square of n-k mutually independent variables.  In the case of a general symmetric covariance 
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estimate V i, the number and magnitude of non-zero eigenvalues will vary.  However, the trace 

of a matrix Bi equals the sum of its eigenvalues, while the trace of BiBi equals the sum of the 

squared eigenvalues, so the 2µ
2/ν effective degrees of freedom calculated above reduces to 
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(5) is approximately equal to the number of equally “large” eigenvalues.  By calculating this 

measure under the assumption of iid normal disturbances, edf corrections calculate the way in 

which the interaction between the hypothesis test and regression design places 

disproportionate weight on a reduced number of orthogonal combinations of the disturbances.  

Since the variance of the variance estimate is determined by the number of random variables 

that go into its computation, this provides information on the thickness of the tails of the test 

statistic distribution.  Once again, by accounting for the systematic change in the distribution 

due to regression design, this calculation provides improvements even in cases where the 

disturbances are neither iid nor normal. 

III. Formulae, Bounds and Intuitive Examples 

In this section I present the formulae that underlie the calculation of the bias and 

effective degrees of freedom corrections associated with different versions of the robust and 

clustered covariance matrices, establish theoretical bounds on these measures, and provide 

specific examples that show how they are, in practice, determined by the interaction between 

the hypothesis test and regression design.  Bias and effective degrees of freedom are 

calculated for each quadratic form using the assumption of ideal iid normal errors, but, as 

argued above and shown below, these provide substantial improvements to statistical 

inference in less than ideal circumstances.   

The formulas for the robust and clustered covariance estimates are given by: 
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where I use the notation {} to denote a diagonal or block-diagonal matrix, while mii denotes 

the ith diagonal element of the residual maker M , M gg the block diagonal element associated 

with cluster g, and ei and eg the estimated observation and cluster residuals. Vhc1 is the 

baseline “heteroskedasticity-consistent” robust estimate of covariance with the finite sample 

correction chc1=n/(n-k) originally suggested by Hinkley (1977) to counteract the mean 

reduction in squared residuals brought on by OLS fitting.  Vhc2 and Vhc3 are alternative 

corrections proposed by MacKinnon and White (1985).4  Vhc2 divides by the mean bias in the 

face of iid errors in the variance estimate of observation i itself,5 while Vhc3 overcorrects in an 

attempt to improve the poor performance of Vhc2.  Vcc1 - Vcc3 are corresponding “cluster-

consistent” versions of these matrices, with the introduction of cc1 generally attributed to 

Liang and Zeger (1986)6 and the cc2 and cc3 corrections to Bell and McCaffrey (2002).  It 

goes without saying that the hc2/hc3 and cc2/cc3 bias corrections can only be applied when 

the minimum value of mii and the minimum eigenvalue of the M gg matrices are greater than 

zero, respectively.  I take this as given when discussing their characteristics.  As shown in the 

next section, however, in practice these restrictions are often not met, which limits their 

usefulness. 

For the hypothesis test w′b = w0, these matrices produce quadratic forms in standard 

normal variates of the kind described in the denominator of (3) above 
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4The hc3 correction, as proposed by MacKinnon and White (1985), was actually the jackknife, but 

subsequent simulations found it produced results very similar to Vhc3 above, which has come to be known as hc3 
in texts (Davidson and MacKinnon 1993) and computer software (Stata). 

5E(ei
2) = E(mi′εε′mi) = mi′ E(εε′)mi = mi′{σ

2} mi = σ2mii, where mi denotes the ith column of M  and I have 
made use of the fact that the symmetry and idempotency of M  imply that mi′mi = σ2mii. 

6The appropriate clustered finite sample correction ccc1 is a matter of some debate and confusion.  With nc 
denoting the number of clusters, Stata, for example, uses ccc1 = (nc(n-1))/((nc-1)(n-k)) in its reg and areg 
commands, even when including fixed effects, and yet ccc1 = (nc(n-1))/((nc-1)(n+kfe-k)), where kfe denotes the 
number of fixed effects, when executing identical regressions in its xtreg fixed effects command.  This is a 
somewhat moot point, as bias varies in Vcc1, so no fixed correction can eliminate it.  In using Vcc1 below, I apply 
Stata’s baseline reg/areg ccc1 correction in all regressions.  In practice, as n and nc are typically large, this 
amounts to an n/(n-k) correction and produces, on average, an approximately unbiased covariance estimate.  
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with some algebraic manipulation the relevant Bi are found to be given by 
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where zx,i denotes the ith term of zx and zx,g the terms associated with cluster group g.  Using µx 

= trace(Bx) and νx = 2*trace(BxBx), the mean and variance of these quadratic forms are easily 

calculated using the formulas: 
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with effective degrees of freedom given by 2µ2/ν, as described earlier above. 

Putting aside finite sample corrections, for any given hypothesis test w′b = w0 the 

following inequalities hold (as proven in the appendix): 
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where min
iim  and max

iim are the minimum and maximum diagonal elements of the residual 

maker M , )(min
ggMλ  and )(max

ggMλ the minimum and maximum eigenvalues of the cluster 

sub-matrices M gg of M , and nc equals the number of clusters. 

Result (11a) indicates that, absent the degrees of freedom correction, Vhc1 is 

downward biased because of the reduction in error variance brought about by OLS fitting.  As 

1 ≥ mii  ≥ 0, with the typical n/(n-k) correction it may be upward or downward biased. Vhc2 is 
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unbiased for all w, while Vhc3 overcompensates and is upward biased.  (11b) shows that 

similar inequalities hold for the cci cluster consistent versions, with bias bounds determined 

by the minimum and maximum eigenvalues of the cluster sub-matrices Mgg of the residual 

maker M .  (11c) indicates that these eigenvalue limits lie strictly outside the limits of the 

diagonal elements of M  whenever there exists a non-zero off-diagonal element mij in the 

cluster sub-matrix M gg associated with max
iim or min

iim .  This indicates that, with iid errors, the 

bias of the clustered covariance estimate has greater potential dispersion than its robust 

counterpart, although there is no ordering for any given hypothesis test.  (11d) establishes 

bounds on effective degrees of freedom.  There is no theoretical or empirical ordering 

between the edf of the various matrices.  In practice, however, the edf for the various hci (or 

cci) are virtually identical (see Section IV), i.e. increased bias is almost exactly offset by 

increased variance.  This reflects the common way in which they depend upon a limited 

number of residuals, as seen in the examples which follow below. 

 The practical characteristics of the robust and clustered covariance matrices derive 

from the interaction between a given hypothesis test and regression design.   To explore this, 

it might be helpful to first remind the reader of some terminology.  The hat matrix H = 

X(X ′X)-1X′ puts the “hat” on y, as ŷ = Xβ = Hy.  The element hij is the derivative of the 

predicted value of yi with respect to observation yj.  hii, the influence of observation yi on its 

own predicted value, is known as the leverage of observation i.  Leverage ranges between 0 

and 1, as H is idempotent and symmetric and hence: 

∑∑
≠

+==
ij

ijii
j

ijii hhhh 222)12(  

Leverage averages k/n7 and when hii = k/n for all i, the regression is considered perfectly 

balanced.  The residual maker M  equals I (n) – H, so H appears implicitly in the results in (11) 

above.  When, for example, regression design is perfectly balanced, mii = 1- hii = 1- k/n for all 

i and with the typical n/(n-k) finite sample correction the Vhc1 estimate of variance is unbiased 

for all hypothesis tests w.  Leverage features prominently in the analysis of the “robustness” 

of regressions, i.e. the sensitivity of coefficient estimates to particular observations, where it 

is easily shown that its influence depends upon an interaction with the error term (see Huber 

                                                
7Σi hii = trace(H) = trace(X(X ′X)-1X′) = trace(X′X(X ′X)-1) = k, so Σi hii/n = k/n. 
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1981, Fox 2008).  In a similar fashion, the impact of leverage on bias and, most importantly, 

effective degrees of freedom depends upon its interaction with the hypothesis test w. 

 Consider the case of the robust hc1 estimate of the variance of a linear combination w 

of the estimated coefficients b, w′ Vhc1w.  From (6) above, we see that, putting aside the finite 

sample correction, this is given by z′{ ei
2} z, where z′ = w′(X′X)-1X′ and {ei

2} is the diagonal 

matrix composed of estimated residuals.  If w′ = xi′, where xi′ is the ith observation row of X, 

then z = hi′, the ith row of H.  Thus, in this case, the estimate of variance is a leverage 

weighted average of the estimated disturbances.  As hii increases, the weight on the residual 

for observation i increases and the magnitude of the weights on the other observations 

decreases, as can be seen by examining (12) above.  In the limit, hii equals 1, all hij  j ≠ i equal 

0, and the variance estimate depends upon only one residual and has one effective degree of 

freedom.  The weighting implicitly created by leverage in this hypothesis test also determines 

bias, as the residuals have unequal expected variance.8  The hc2 and hc3 corrections, dividing 

each ei
2 by mii or mii

2, can eliminate or overcorrect bias, but they cannot correct for the 

weights placed on a limited number of residuals and hence retain roughly the same miniscule 

degrees of freedom. 

 As a counter-example, consider the hypothesis test that uses xw n= , so 

0w=′=′ bxbw n  is a test of whether the predicted mean of y equals w0/n.  If the regression 

contains a constant term, it can be shown, using standard results on the inverses of partitioned 

matrices, that z′ = w′(X′X)-1X′ equals a row vector of 1s.  Thus, z′{ ei
2} z is an equally 

weighted sum of all residuals and the effective degrees of freedom is n-k, the theoretical 

maximum.  Moreover, with the n/(n-k) finite sample correction, the expected bias is zero.  

This example shows that, with an appropriately chosen hypothesis test, regression design has 

no influence whatsoever on bias or the effective degrees of freedom of the regression. 

 The two examples given above can also be interpreted in terms of the quadratic forms.  

As noted earlier, the robust variance estimate involves the quadratic form (ε/σ)′Bx(ε/σ), with 

Bx equal to a constant times M {zx,i
2}M .  When xw n= , z is a row vector of 1s, Bx equals M , 

and the robust variance estimate actually reduces to the default OLS covariance estimate.  

With M ’s n-k eigenvalues equal to 1 and k eigenvalues equal to 0, the dimensionality of the 

disturbances affecting the variance estimate is n-k.  If w′ = xi′, z = hi′ and as the number of 

                                                
8As can be seen from (10), the bias in the estimated variance for this hypothesis test is given by Σjhij

2mjj/hii. 
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non-zero elements of hi falls below n-k the number of non-zero eigenvalues in M {z x,i
2}M  

falls with them.  In the limit, as hii equals 1, z has only one non-zero element, so M {zx,i
2}M  

has only one non-zero eigenvalue and the dimensionality of disturbances affecting the 

variance estimate is 1.  It is helpful, in thinking about this, to recall that a linear combination 

of iid normal variables behaves like a single normal variable, so it is not the number of 

disturbances (ε) that goes into the calculation that matters but the number of effective 

orthogonal linear combinations.  Moreover, to facilitate intuition I have couched the 

discussion in terms of the number of distinct non-zero eigenvalues, but it is fairly obvious that 

what matters is the number of “large” eigenvalues, as discussed in the previous section.  The 

hc2/hc3 adjustments, by reweighting the residuals, can influence the relative size of 

eigenvalues and hence the effective degrees of freedom, but this effect is dominated by the 

fact that they depend upon the same z weighted combination of a limited number of residuals. 

 The extension of these ideas to clustered covariance estimates is fairly straightforward.  

The symmetry and idempotency of H implies that for the block element Hgg we have Hgg = 

HggHgg + H~g~g, where H~g~g = ΣhHghHgh′ and Hgh equals the elements of H associated with 

the g x h cluster observations.  Let λi denote an eigenvalue of Hgg and ui the corresponding 

eigenvector.  Using Hggui = λiui, we have: 

iiiiiiii
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As λi goes to 1, ui′H~g~gui is driven to 0.  Next, consider the hypothesis test w = Xgui, so that z′ 

= w′(X′X)-1X′ =  ui′Hg, where Hg equals the rows of H associated with cluster g.  The 

quadratic form for the clustered cc1 case involves a constant times the matrix M { zx,hzx,h′} M .  

The non-zero eigenvalues of zx,hzx,h′ equal those of zx,h′zx,h, so we see that we are actually 

considering the non-zero values of the scalars ui′HghHghui′.  As λi goes to 1, these go to zero 

for all h ≠ g and the cluster covariance estimate has only one non-zero eigenvalue and 

depends upon only one of the many possible orthogonal combinations of the disturbances.  

Once again, the cc2 and cc3 corrections adjust for the bias in the variance of the disturbances, 

but do not eliminate the reduced dimensionality.  

 The preceding examples show how regression design interacts with hypothesis tests to 

produce reduced degrees of freedom.  Poor regression design is a necessary but not sufficient 
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condition for a reduction in effective degrees of freedom.  This allows the following bounds, 

proven in the appendix: 
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An example where these bounds are attained is where there are two regressors, a constant and 

an independent variable which equals 1 for half of the observations and -1 for the other half.  

This is a perfectly balanced regression design, with nnkhh iiii /2/minmax === .  The matrix 

(X′X)-1X′ is now made up of two column vectors, x1 and x2, one for each type of observation.  

There exist hypothesis tests w such that w′x1 or w′x2 = 0.  In these cases, half of the elements 

of z′ = w′(X′X)-1X′ equal zero, so the robust covariance estimate depends upon only half of 

the residuals and the effective degrees of freedom for hc1, hc2 and hc3 can be shown to equal 

12/ −n , attaining the bound predicted above.  If each cluster contains two observations, one 

of each type, then n/2)()( minmax == gggg HH λλ 9 and the effective degrees of freedom for cc1, 

cc2, and cc3 are all also equal to 12/ −n , attaining the indicated bound for these estimates as 

well. 

IV. Empirical Results 

 I demonstrate the improvements in statistical inference afforded by bias and effective 

degrees of freedom corrections using 1378 OLS regression specifications taken from 44 

experimental papers published in the journals of the American Economic Association.10  The 

robust and clustered covariance matrices are used in 167 and 835 of these regressions, 

respectively, so these papers provide practical examples of the conditions under which these 

covariance matrices are used.  The number of robust regressions is, however, somewhat 

small.  Since the robust covariance matrix could, in principle, have been used in any of these 

regressions, I enlarge the robust sample by considering its application in all 1378 

                                                
9As the paired cluster observations are orthogonal, so Hgg is diagonal. 
10These papers are part of a comprehensive 53 experimental paper sample used in a separate study of 

randomization inference (Young 2015, which provides details regarding the selection criteria).  9 of the 53 
papers do not contain OLS regressions and hence to not appear in the simulations above. 
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regressions.11  In the case of 591 regressions the dependent variable is binary, which allows 

me to evaluate performance in the face of non-normal heteroskedastic errors. 

The papers in my sample typically present a regression specification of the form yi = 

t i′βt + xi′βx + εi, where t i is a vector of treatment characteristics, xi a vector of other 

determinants of the outcome yi, and βt and βx are the coefficients associated with each type of 

regressor.  The coefficients of primary interest in these papers are those associated with 

treatment variables and the t-statistics test the null that each of these coefficients is zero.  To 

this end, I use the non-treatment variables to generate complex simulated data that satisfies 

the null of no treatment effect.  I initially run the baseline equation yi = xi′βx + εi and then use 

the predicted values and random draws of normal iid errors, with standard deviation equal to 

that of the estimated standard error of the baseline equation, to produce 10,000 sets of 

simulated data.   To allow for non-iid disturbances, I take the estimated standard error, 

mechanically divide its variance into cluster and iid components (with the cluster share of 

variance ranging from .2 to .8), and produce another 10,000 sets of data with normal but 

cluster-correlated disturbances.  To allow for non-normal heteroskedastic disturbances, I take 

the equations in which the dependent variable is binary, estimate a baseline probit equation 

using xi, and then use this to produce simulated binary outcomes.  The unconditional variance 

of the simulated dependent variable is given by P(1-P), where P is the predicted probability of 

the baseline probit equation.  OLS fitting eliminates some of this inherent heteroskedasticity, 

but the departure from iid disturbances remains large, as illustrated by the poor performance 

of the baseline OLS estimate of covariance in the simulations below.  To add cluster level 

correlation to these binary outcomes, I divide the standard normal disturbance that underlies 

the probit determination of 0/1 outcomes into cluster and iid components, with the cluster 

component share again ranging from .2 to .8, producing cluster correlated non-normal 

heteroskedastic disturbances.  On all of this simulated data based upon baseline equations 

without treatment regressors, I then run a full OLS regression, including the original author 

specified treatment variables, and use t-tests to evaluate the null that each treatment 

coefficient is zero.  Since the nulls are by construction true, the test statistics should reject 

each null 1 percent of the time at the .01 level.   

                                                
11The clustered sample cannot be enlarged quite as simply, as it would require specifying a variable to cluster 

on in the non-clustered regressions. 
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 Table I summarizes key characteristics of the sample.   As shown in panel (a), the 

number of observations ranges from 40 to 450,000, and the number of clusters, in clustered 

regressions, from 11 to 5648, with mean values of 5314 and 215, respectively.  Maximum 

leverage and the maximum eigenvalue of the cluster components of the hat matrix both range 

from nearly 0 to 1.  24 percent of the regressions have a maximum leverage of 1 and 38 

percent of the clustered regressions have a maximum cluster eigenvalue of 1.  Application of 

the hc2/hc3/cc2/cc3 corrections of the robust and clustered covariance matrices in these cases 

involves division by zero, 12 and hence is not practical, whatever the merits of these methods.  

As noted earlier in the Introduction, Bell and McCaffrey (2002) implement clustered edf 

corrections by first applying the cc2 bias correction, which ensures that the covariance 

estimate in the face of iid errors is unbiased for all hypothesis tests, and then calculating the 

edf correction for the particular hypothesis test.  In contrast, when working with cc1, I 

calculate both bias and edf corrections separately for each hypothesis test.  The Bell and 

McCaffrey approach, endorsed by Imbens and Kolesar (2015), depends upon computationally 

costly inversions of potentially large cluster sub-matrices (M gg), inversions which are, 

moreover, impossible in more than a third of the practical cases in my experimental sample.  

As seen further below, the cc1 (and similarly hc1) based approach yields virtually identical 

results to cc2 and cc3 when all can be applied, but working directly with cc1 is 

computationally simpler and much more widely implementable. 

Panel (b) of Table I reports the bias and edf hc1 and cc1 measures for the treatment 

coefficients in my sample regressions.  The bias of the robust and clustered covariance 

matrices, with Stata’s finite sample corrections, averages close to 1, but ranges quite widely.  

Effective degrees of freedom in robust regressions average only 40 percent of each 

regression’s putative n-k degrees of freedom, while in clustered regressions they are typically 

just under 50 percent of the theoretical nc-1 limit.  Panel (c) focuses on regressions where the 

hc2/hc3/cc2/cc3 corrections can be implemented, and shows the patterns described by the 

theory of the last section.  The hc2/cc2 corrections eliminate bias, but at the cost of increasing 

the variance of the variance estimate, while the hc3/cc3 overcorrection has a positive, and 

occasionally quite large, bias and also a substantially larger variance.  All three techniques 

have quite similar effective degrees of freedom, as the movements in bias and variance offset  

                                                
12As mii = 1-hii = 0 and λmin(M gg) = 1 - λmax(Hgg) = 0. 
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Table I: Characteristics of the Sample 

 mean s.d. min max  mean s.d. min max 

(a) 1378 regressions (a) 835 clustered regressions 

n 
max
iih  

5314 
.383 

2.5e4 

.395 
40 

3.8e-5 
4.5e5 

1 

nc 
)(max

ggHλ  
215 
.616 

417 
.376 

11 
9.3e-4 

5648 
1 

(b) 3665 coefficients in 1378 regressions (b) 1897 coefficients in 835 clustered regressions 

µhc1 

n-k 
edfhc1 

.990 
5209 
2102 

.064 
2.9e4 
1.5e4 

.138 
22 

1.11 

1.24 
4.5e5 
3.9e5 

µcc1 

nc-1 
edfcc1 

.976 
266 
126 

.130 
511 
378 

.060 
10 

1.17 

1.93 
5647 
5000 

(c) 2819 coef. in 1053 regressions with max
iih  < 1 (c) 929 coef. in 514 regressions with )(max

ggHλ  < 1 

µhc1 

µhc2 

µhc3 

.990 
1 

1.07 

.043 
0 

.100 

.520 
1 

1.00 

1.06 
1 

2.02 

µcc1 
µcc2 
µcc3 

.939 
1 

1.12 

.083 
0 

.193 

.479 
1 

1.00 

1.01 
1 

2.47 

νhc1 

νhc2 

νhc3 

.018 

.026 

.060 

.040 

.127 

.499 

5.1e-6 
5.1e-6 
5.1e-6 

.493 
1.90 
7.78 

νcc1 
νcc2 
νcc3 

.034 

.048 

.110 

.043 

.095 

.386 

4.0e-4 

4.0e-4 

4.0e-4 

.429 
1.55 
6.21 

edfhc1 

edfhc2 

edfhc3 

2591 
2590 
2589 

1.7e4 

1.7e4 

1.7e4 

1.11 
1.05 
1.03 

3.9e5 

3.9e5 

3.9e5 

edfcc1 

edfcc2 

edfcc3 

195 
193 
191 

529 
529 
529 

1.56 
1.29 
1.15 

5000 
4999 
4999 

  Notes:  s.d. = standard deviation; n = number of observations; nc = number of clusters; k = number of 
regressors; hmax = maximum leverage of the regression; λ

max= maximum cluster eigenvalue of the hat matrix; 
µ, ν and edf = bias, variance and effective degrees of freedom of the variance estimate for the coefficient; aeb 
= a*10b; coef. = coefficients.   hc1 and cc1 corrections are calculated with Stata’s finite sample correction, so 
the relative bias bounds listed earlier in (11) do not apply. 

 

each other.  As noted earlier, fundamentally the three estimates place weight on the same 

disturbances, albeit somewhat transformed, and hence depend roughly upon the same linear 

combinations of the error process.13 

Figures I and II below graph the actual ln reduction in degrees of freedom against the 

theoretical bound for the hc1 and cc1 estimators.  As noted in the preceding section, leverage 

creates the possibility of reduced degrees of freedom, but the actual reduction depends upon 

the specific hypothesis test.  As the theoretical bound falls, however, hypothesis tests, even if 

randomly selected across the universe of possible tests, produce results that range within the 

increased bounds.  Consequently, edf fall with increased maximal leverage.  Figures III and 

IV graph the bias of the variance estimate against its theoretical lower bound.  Here we see 

                                                
13The pairwise correlation of the different hci (cci) edf with each other is 1.0000.  Transformed into lns to 

moderate the influence of large values, edfhc1 has a correlation of .9999 with edfhc2 and .9980 with edfhc3, while 
edfcc1 has a correlation of .9996 with edfcc2 and .9976 with edfcc3. 



16 
 

 

that greater potential bias translates into increased dispersion, but with little change in average 

bias.  This stems from the finite sample corrections used in the hc1 and cc1 estimates.  For 

example, in the case of hc1 the range of bias is maxmin 1 iiii hm −=  to minmax 1 iiii hm −= , but the 

average of mii is always (n-k)/n.  Different hypotheses tests use different linear combinations 

of residuals, each of which underestimates its own variance (with iid disturbances) by mii.  

Not surprisingly, bias on average is close to (n-k)/n, so the hc1 finite sample correction of  

n/n-k approximately eliminates average bias, which is after all the whole point of the finite 

sample correction.14 

Figures I-IV explain why, in Young (2015), I find that coverage bias is increasing  

in maximal leverage.  As maximal leverage increases, effective degrees of freedom typically 

fall.  Consequently, test statistics evaluated with the default n-k or nc-1 degrees of freedom 

                                                
14In examining Figures III and IV the reader might note the points along the y-axis.  These represent the large 

mass of regressions where maximal leverage hii or the maximum eigenvalue of the sub-matrices Hgg equals 1.  
The average bias across all of these extreme cases is still close to one, but there is a great deal of dispersion. 
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have thicker tails than expected, producing rejection probabilities for each hypothesis test that 

are greater than nominal size.  As maximal leverage increases, the dispersion of the bias of the 

covariance estimate increases.  As the absolute value of the t-statistic is a convex function of 

the covariance estimate, this increased dispersion raises its average value across all hypothesis 

tests, raising average rejection probabilities above nominal size.15  This effect can be seen in 

the tables below by comparing hc1 and cc1 with hc2 and cc2, which have virtually the same 

effective degrees of freedom and average bias, but eliminate the variation in bias and, 

consequently, have somewhat lower rejection rates (without bias and edf corrections). 

 Tables II - IV show the remarkable improvement in the accuracy of statistical 

inference allowed by bias and effective degrees of freedom corrections. Table II begins with 

the application of the robust covariance estimate to all 3665 treatment coefficients in 1378 

regressions.  Panel (a) of the table uses simulations with ideal normal iid disturbances.  Under 

such circumstances statistical inference based upon the default OLS covariance estimate is 

exact, as confirmed by the simulation results, which reject an average of .01 of the time, with 

a standard deviation of .001, i.e. precisely the predicted values with 10,000 simulations per 

equation.  Statistical inference based upon the hc1 robust covariance estimate, however, is 

biased and wildly inaccurate, rejecting the (true) null of a zero coefficient an average of .0132 

of the time, with rejection probabilities reaching as high as .4253, producing a standard 

deviation of the rejection rate more than 20 times that of the OLS estimates.  With bias and 

effective degrees of freedom corrections, however, inference based upon the hc1 estimate is 

nearly exact, rejecting the null .0099 of the time with a standard deviation of .0013.  In panel 

(b) of the table I restrict attention to those regressions where the hc2 and hc3 corrections can 

be applied.  As shown, these provide some improvement over hc1, producing more accurate 

mean rejection rates, but extreme outcomes are still present and the standard deviation of the 

rejection rate remains 9 to 12 times greater than that of the default OLS method.  With bias 

and edf corrections, however, the three robust methods are indistinguishable and nearly exact, 

as shown in the right-hand panel. 

 Panels (c) and (d) of Table II examine results when the error generating process is  

non-normal and heteroskedastic, a consequence of the binary character of the dependent 

                                                
15The rejection probability for an individual hypothesis test might be lower than nominal size (due to an 

upward biased covariance estimate), but averaged across all hypothesis tests the absolute value of the t-statistic 
increases with greater bias dispersion. 
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Table II:  Empirical Size at the .01 Level with Robust Covariance Estimates 
(10000 simulations per regression) 

 uncorrected, df = n-k bias and edf corrected 

 mean s.d. min max Mean s.d. min max 

(a) ideal normal iid disturbances - 3665 coefficients in 1378 regressions 

default OLS 
hc1 

.0100 

.0132 
.0010 
.0224 

.0066 

.0056 
.0133 
.4253 

 
.0099 

 
.0013 

 
.0000 

 
.0135 

(b) ideal normal iid disturbances - 2819 coefficients in 1053 regressions with hmax < 1 

default OLS 
hc1 
hc2 
hc3 

.0100 

.0124 

.0117 

.0094 

.0010 

.0160 

.0118 

.0085 

.0066 

.0065 

.0065 

.0012 

.0133 

.2697 

.2013 

.1477 

 
.0099 
.0099 
.0099 

 
.0013 
.0013 
.0013 

 
.0000 
.0000 
.0000 

 
.0135 
.0134 
.0138 

(c) non-normal heteroskedastic disturbances - 1522 coef. in 591 regressions with binary y 

default OLS 
hc1 

.0136 

.0169 
.0373 
.0459 

.0000 

.0000 
.5853 
.6408 

 
.0111 

 
.0082 

 
.0000 

 
.1655 

(d) non-normal heteroskedastic disturbances - 1181 coef. in 453 reg. with hmax < 1 & binary y 

default OLS 
hc1 
hc2 
hc3 

.0144 

.0178 

.0172 

.0150 

.0421 

.0515 

.0505 

.0485 

.0000 

.0000 

.0000 

.0000 

.5853 

.6408 

.6409 

.6405 

 
.0106 
.0106 
.0106 

 
.0052 
.0051 
.0051 

 
.0000 
.0000 
.0000 

 
.1315 
.1313 
.1313 

   Notes:  df = degrees of freedom; edf = effective degrees of freedom; reg. = regressions; y = 
dependent variable; otherwise as in Table I. 

 

variable.  The baseline probit equations that are used as the data generating process produce 

substantial heteroskedasticity.  In 190 of the 591 estimating equations, at least one 

observation has a predicted probability (P) less than .0001, and in 138 cases at least one 

observation has a predicted probability greater than .9999.  The unconditional P(1-P) variance 

of these observations is close to zero.  More generally, the standard deviation of the 

unconditional observation level variance averages .062 and ranges between 0 and .222.  The 

deleterious impact this heteroskedasticity has on statistical inference is immediately apparent 

in panel (c).  The default OLS estimate of covariance is biased, rejecting .0136 of the time, 

and extraordinarily variable, with a standard deviation of .0373, i.e. 37 times greater than the 

exact rate, and with rejection rates rising as high as .5853.  Unfortunately, the hc1 robust 

“correction” for heteroskedasticity performs even worse, with a mean rejection rate of .0169 

and a standard deviation of .0459.  With bias and edf corrections, however, the mean and 

standard deviation of the robust rejection rate are reduced to .0111 and .0082, respectively.  

Panel (d) shows that the hc2 and hc3 corrections of the robust covariance matrix, when they  
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 Table III:  Empirical Size at the .01 Level with Clustered Covariance Estimates 
(10000 simulations per regression) 

 uncorrected, df = nc-1 bias and edf corrected 

 mean sd min max mean sd min max 

(a) ideal normal iid disturbances – 1897 coefficients in 835 regressions 

default OLS 
cc1 

.0100 

.0157 
.0010 
.0255 

.0071 

.0008 
.0131 
.5277 

 
.0097 

 
.0013 

 
.0000 

 
.0132 

(b) ideal normal iid disturbances – 929 coefficients in 514 regressions with λmax < 1 

default OLS 
cc1 
cc2 
cc3 

.0100 

.0150 

.0116 

.0085 

.0010 

.0108 

.0050 

.0035 

.0072 

.0075 

.0074 

.0001 

.0127 

.1473 

.1116 

.0770 

 
.0098 
.0097 
.0096 

 
.0012 
.0013 
.0016 

 
.0000 
.0000 
.0000 

 
.0132 
.0133 
.0133 

(c) non-normal heteroskedastic disturbances – 737 coef. in 324 regressions with binary y 

default OLS 
cc1 

.0174 

.0153 
.0053 
.0101 

.0000 

.0000 
.5853 
.1268 

 
.0097 

 
.0036 

 
.0000 

 
.0622 

(d) non-normal heteroskedastic disturbances – 489 coef. in 235 reg. with λmax < 1 & binary y 

default OLS 
cc1 
cc2 
cc3 

.0210 

.0145 

.0115 

.0084 

.0649 

.0097 

.0052 

.0039 

.0000 

.0000 

.0000 

.0000 

.5853 

.1268 

.0621 

.0621 

 
.0098 
.0097 
.0096 

 
.0039 
.0038 
.0039 

 
.0000 
.0000 
.0000 

 
.0622 
.0621 
.0618 

   Notes:  as in Tables I and II. 

 

can be applied, are not very effective, as these estimators remain substantially biased on 

average and remarkably unpredictable, with a standard deviation of rejection rates 50 times 

that of the exact test statistic.  Once again, however, with bias and edf corrections all three 

methods are virtually identical, producing, in this sample of regressions, rejection rates that 

are only slightly biased on average (.0106) and have a standard deviation (.0052) that is one-

tenth that of the unadjusted measures.  These and later results show that bias and edf 

corrections, motivated with normal iid errors, substantially improve the accuracy of statistical 

inference in situations with less than ideal disturbances. 

 Table III above examines statistical inference using the clustered estimate of 

covariance in regressions that clustered in the original papers.  In panel (a) we see, once again, 

that with ideal normal iid errors the baseline clustered covariance method, cc1, is biased and 

very variable, producing rejection rates as high as .5277 at the .01 level.  With bias and edf 

corrections, however, it is virtually exact.  The cc2/cc3 corrections, as shown in panel (b), 

reduce the average bias of the rejection rate, with cc3 overcorrecting and producing an 

average rejection rate of .0085 at the .01 level.  With bias and edf corrections, however, all 
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three methods are very similar, although corrected cc1 produces the lowest standard deviation 

of results, .0012, which approaches the .0010 level of exact statistics.  Panels (c) and (d) 

examine performance with the non-normal heteroskedastic disturbances produced by binary 

dependent variables. Once again, without corrections coverage is upward biased or (in the 

case of cc3) downward biased, and quite variable.  With bias and edf corrections, as shown in 

the right-hand side of panel (d), the three measures produce virtually identical unbiased 

rejection rates and standard deviations of the rejection rate (.0039) that, despite the non-

normality and heteroskedasticity, are only four times that of an exact statistic. 

Table IV below examines rejection rates when the error process has a cluster level 

random effect that accounts for either .2 or .8 of the total error variance.  Treatment in these 

regressions is often administered at the cluster level and, hence, highly correlated with the 

cluster random effects.  Under these circumstances, the default OLS covariance matrix 

grossly understates coefficient standard errors (Kloek 1981, Moulton 1986), producing 

rejection rates much greater than nominal size. As shown in the table, clustered standard 

errors improve, dramatically, on the performance of the default OLS estimator, but have 

somewhat biased coverage on average and produce highly volatile results.  In the broadest 

samples, in panel (a) for example, the cc1 correction has a mean rejection rate of .0167 and a 

standard deviation 25 times that of the exact benchmark (.001), with rejection rates ranging as 

high as .5285.  With bias and edf corrections, however, the mean rejection probability is 

.0103, with a standard deviation of only .0020.  The problems of the different cci estimators 

are somewhat less in the smaller samples that allow calculation of cc2/cc3 or have binary 

dependent variables, as seen in the other panels of the table.  Nevertheless, it is notable that 

average coverage bias is almost completely eliminated and the standard deviation of results 

substantially reduced with the application of the corrections.   
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 Table IV:  Empirical Size at the .01 Level with Cluster Random Effects  
and Clustered Covariance Estimates (10000 simulations per regression) 

 uncorrected bias and edf corrected 

 mean sd min max Mean sd min max 

ρ = .2 

(a) ideal normal iid disturbances – 1897 coefficients in 835 regressions 

default OLS 
cc1 

.1029 

.0167 
.1566 
.0250 

.0036 

.0010 
.8079 
.5285 

 
.0103 

 
.0020 

 
.0000 

 
.0333 

(b) ideal normal iid disturbances – 929 coefficients in 514 regressions with λmax < 1 

default OLS 
cc1 
cc2 
cc3 

.1831 

.0166 

.0122 

.0084 

.1879 

.0123 

.0055 

.0036 

.0036 

.0078 

.0073 

.0003 

.8079 

.1455 

.1119 

.0792 

 
.0109 
.0102 
.0096 

 
.0021 
.0015 
.0017 

 
.0000 
.0000 
.0000 

 
.0333 
.0208 
.0131 

(c) non-normal heteroskedastic disturbances – 737 coef. in 324 regressions with binary y 

default OLS 
cc1 

.0848 

.0156 
.1359 
.0100 

.0000 

.0000 
.7557 
.1025 

 
.0099 

 
.0031 

 
.0000 

 
.0339 

(d) non-normal heteroskedastic disturbances – 489 coef. in 235 reg. with λmax < 1 & binary y 

default OLS 
cc1 
cc2 
cc3 

.1181 

.0150 

.0115 

.0082 

.1561 

.0093 

.0042 

.0028 

.0000 

.0000 

.0000 

.0000 

.7557 

.1025 

.0345 

.0226 

 
.0102 
.0097 
.0093 

 
.0029 
.0026 
.0026 

 
.0000 
.0000 
.0000 

 
.0339 
.0230 
.0229 

ρ = .8 

(e) ideal normal iid disturbances – 1897 coefficients in 835 regressions 

default OLS 
cc1 

.2059 

.0170 
.2564 
.0234 

.0000 

.0001 
.9044 
.5326 

 
.0106 

 
.0027 

 
.0000 

 
.0365 

(f) ideal normal iid disturbances – 929 coefficients in 514 regressions with λmax < 1 

default OLS 
cc1 
cc2 
cc3 

.3491 

.0169 

.0118 

.0078 

.2813 

.0125 

.0056 

.0038 

.0000 

.0042 

.0030 

.0002 

.9044 

.1519 

.1141 

.0792 

 
.0112 
.0100 
.0090 

 
.0028 
.0022 
.0025 

 
.0000 
.0000 
.0000 

 
.0365 
.0231 
.0135 

(g) non-normal heteroskedastic disturbances – 737 coef. in 324 regressions with binary y 

default OLS 
cc1 

.2080 

.0152 
.2356 
.0106 

.0000 

.0000 
.8921 
.0985 

 
.0096 

 
.0045 

 
.0000 

 
.0378 

(h) non-normal heteroskedastic disturbances – 489 coef. in 235 reg. with λmax < 1 & binary y 

default OLS 
cc1 
cc2 
cc3 

.2804 

.0150 

.0110 

.0074 

.2539 

.0102 

.0052 

.0035 

.0000 

.0000 

.0000 

.0000 

.8921 

.0985 

.0335 

.0270 

 
.0102 
.0094 
.0086 

 
.0041 
.0036 
.0036 

 
.0000 
.0000 
.0000 

 
.0378 
.0276 
.0278 

   Notes:  ρ = share of error variance accounted for by cluster random effect; otherwise, as in 
Tables I and II. 
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V.  Conclusion 

 Extensions of the OLS methods described above to non-OLS settings easily suggest 

themselves.  In a GLS setting, the GLS transform in principle renders the error term iid.  In 

practice, however, in my sample papers authors generally still use a clustered covariance 

estimate.  The GLS transformed independent variables could be used to calculate leverage for 

the regression and make appropriate corrections.  In maximum likelihood estimation, such as 

that of probit or logit models, authors, again, generally use the robust or clustered covariance 

estimate.16  The scores of these generalized linear models can be reinterpreted as including 

error terms which, with a suitable GLS transform, are iid.  Thus, leverage can be calculated, 

using the GLS transformed independent variables, and bias and edf corrections made.  Unlike 

OLS, however, in both of these examples “leverage” is a function of the estimated GLS 

covariance matrix, and hence a function not merely of the regressors, but also of the realized 

disturbances.  The sampling variation in the correction itself could easily undo any benefits 

gained by the attempt to understand how regression design favours certain residuals. 

 Such extensions also miss the implications of the results presented above.  The 

argument presented in this paper is twofold: first, that an adjustment designed to mimic the 

moment properties of the chi-squared distribution closely approximates the actual distribution 

of the test statistic with ideal iid normal errors, and second, that the estimated distribution 

improves the accuracy of inference in the presence of non-ideal errors.  The tables, with both 

iid normal and non-iid non-normal disturbances, establish that there is some validity to both 

statements.  The first-step, however, does not have to be calculated using an approximation 

formula.  It can be calculated by simulation, i.e. drawing enough ideal iid disturbances to get 

an estimate of the empirical distribution of the test statistic.  In the spirit of the second-step, 

this distribution can then be used to evaluate the regression test statistic, based as it is upon 

whatever error process is actually at work in the data.  In the case of OLS regressions, the bias 

and edf corrections are easily calculated and much less costly than simulating the distribution 

of the test statistic.  In other applications, if an approximation formula is unknown or 

potentially less reliable, simulation based upon ideal disturbances as modelled by the baseline 

specification can provide insight into its distribution in less ideal circumstances.  

                                                
16Implicitly suggesting that the likelihood may be mis-specified and their estimation procedures quasi-

maximum likelihood. 
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Appendix: Proofs 

 I provide proofs of the results stated in (11) and (14).  I make repeated use of two 
well-known matrix results, which for convenient reference I enumerate.  First, regarding the 
Rayleigh quotient: 
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2
1

2
1

2
1
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where z is a non-zero vector, A a symmetric matrix, B a symmetric positive definite matrix, 
and B½ the symmetric root of B.  Second, for matrices A and B: 

(p2) the non-zero eigenvalues of AB = the non-zero eigenvalues of BA, 

when AB and BA are both defined.  I remind the reader that leverage is bounded by 1 ≥ hii ≥ 
0, so mii = 1 – hii is bounded by 0 ≤ mii ≤ 1.   From (13) earlier, it can be seen that similar 
bounds apply to the eigenvalues of Hgg and M gg.  In discussing hc2/hc3 and cc2/cc3, I take it 
as given that min

iim > 0 and λmin(M gg) > 0, respectively, so the measures can actually be 
implemented. 

Beginning with (11a) and (11b), substituting in for zx in (10) using (8), and dropping 
the finite sample adjustments cx, we see that the means are given by the Rayleigh quotients:  
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From (p1) we see that the maxima and minima of these equal the maximum and minimum 
eigenvalues of the diagonal and block diagonal matrices in the numerators, proving (11a) and 
(11b).  The inequalities on these means follow from the bounds on mii and λ(Mgg) described 
above. 
 To prove (11c) I once again appeal to the Rayleigh quotient, noting that it implies that 
the maximum and minimum eigenvalues of A equal the maximum and minimum of e′Ae 
across all vectors e such that e′e = 1.  Let ei denote the vector with a 1 in the ith position and 0s 
everywhere else.  Since the diagonal of {M gg} equals {mii}, one can see that ei′{ M gg} ei = 
ei′{ mii}ei, which shows that the maximum and minimum of e′{ M gg} e must lie weakly outside 
the bounds given by the maximum and minimum of e′{ mii}e.  Strict inequality comes when 
{ M gg} contains non-zero within-cluster off-diagonal elements in the rows associated with the 
maximum and minimum values of mii.  To see this, let e have τ in the ith position, η in the jth 
position (both within the same cluster), and 0s everywhere else.  With τ2 + η2 = 1 (as e′e = 1), 
we have dτ/dη = -η/τ.  We then have f(η) = e′{ M gg} e = τ2mii + 2τηmij + η2mjj, with f ′(η) = 2(-
ηmii + mijτ - mijη

2/τ + ηmjj), f(0) = mii and f ′(0) = 2mij.  From this it follows that if mij is not 
zero there is a small deviation away from τ = 1 (with η moving above or below zero) such that 
f(η) is greater or less than mii.  This indicates that the bounds for e′{ M gg}e lie strictly outside 
those for e′{ mii} e if there are any non-zero within cluster elements in the rows associated with 
the maximum and minimum values of mii,

17 establishing (11c). 

                                                
17In the proof the elements must be within cluster because {M gg} is block diagonal, so that an e with τ in the 

ith position and η in the jth position (belonging to another cluster), produces f(η) = e′{ M gg} e = τ2mii + η2mjj, with  
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 For (11d), I begin by determining the rank of the matrix in each quadratic form: 
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where I have used the fact that rank(M ) = n-k and re-expressed {zx,gz′x,g} as RxR′x, where Rx 

is an n x nc matrix composed of column vectors with zx,g in each column in the position 
associated with the observations for the cluster associated with the number of the column, and 
0s everywhere else. Rx is at most of rank nc and M  of rank n-k.  However, when x = cc1 the 
row sum of MR cc1 always equals a column of 0s, as (allowing i(nc) to denote an ncx1 column 
vector of 1s): 

0wX)XX(XX)XX(IMziMR 11 =′′′−== −− ))()n(()n()a3( cc1ccc1  

As the columns are co-linear, the rank of the product is no more than nc-1.  Hence, rank(Bcc1) 
≤ min(nc-1,n-k).  The columns of MR cc2 and MR cc3, however, need not be collinear,18 and so 
the rank upper bound for Bhc2 and Bhc3 is min(nc,n-k).  
 Effective degrees of freedom equal 2µx

2/νx, where µx = trace(Bx) and νx = 
2*trace(BxBx).  Let λi denote the ith non-zero eigenvalue of Bx.  There are r such eigenvalues, 
where r is the rank of Bx.  Writing the edf in terms of these eigenvalues we have: 
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It is readily apparent that this attains a minimum value of 1 when there is only one non-zero 
eigenvalue.  Maximizing with respect to λi we derive the first order condition: 
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which is satisfied when λi = λ for all i, at which point edfx = r.  We conclude that edfx ranges 
between 1 and r, which, using the rank bounds noted above, establishes the results reported in 
(11d).  The examples later in the text show how these bounds can be attained. 
 With regards to (14), I begin by noting that (a4) implies: 
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where min
xµ is the minimum possible bias of w′Vxw, as established earlier in (11a) and (11b).  

All that remains, then, is to establish bounds on λ
max(Bx).  As seen in (9) earlier, each Bx is of 

                                                                                                                                                   
f  ′(η) = 2(-ηmii + ηmjj), f ′(0) = 0 and f ′′ = 2(-mii + mjj), i.e. a local maximum or minimum as mii is the maximal or 
minimal diagonal element. 

18And in fact are not in some of the practical cases examined in Section IV above. 
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the form MAM , where A and M  are both positive semi-definite.  The non-zero eigenvalues of 
this matrix satisfy MAMu i = λiui, where ui is the eigenvector associated with λi.  Using the 
fact that M  is idempotent, we pre-multiply by M  and see that Mλiui = MMAMu i = MAMu i  
= λiui.  With λi > 0, this implies Mu i = ui, so we pre-multiply by ui′ and see that ui′λiui = 
ui′MAMu i = ui′Au i, yielding the result λi = ui′Au i/ ui′ui.  λi can be expressed as a Rayleigh 
quotient of A, and hence is bounded by the maximum eigenvalue of A. 
 In the case of hci, A is the diagonal matrix )/(}{ 2

, zz′ixz , with maximum eigenvalues 
given by the maximum values of the diagonal elements.  Applying the formulas for z and zx,i 
as defined earlier in (8) we have: 
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where mx,i = 1, mii
-½, or mii

-1 as x = hc1, hc2 or hc3, respectively, and xi is the ith row of X.  
Following (p1), (a7) attains its maximum value at the maximum eigenvalue of  
(X′X)½(X′X)-1ximx,i

2xi′(X′X)-1(X′X)½ = (X′X)-½ximx,i
2xi′(X′X)-½.  Applying (p2), we see that 

this matrix has only one non-zero eigenvalue, equal to mx,i
2xi′(X′X)-1xi = mx,i

2hii.  As mii = 1 - 
hii, the maximum of this, considering in each case the expression for mx,i, is attained when 

max
iiii hh = .  Applying our knowledge of min

xµ from (11a), then gives the hc results reported in 
(14).   

In the case of cci, we seek the maximum eigenvalues of the block diagonal matrix A 
= )/(}{ ,, zzzz gg ′′xx .  Again, applying earlier formulas we have each block diagonal element 
given by: 
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where M x,g = 1, Mgg
-½, or  M gg

-1 as x = cc1, cc2 or cc3, respectively, and xg is the matrix 
composed of the rows of X associated with cluster g.  .  Applying (p2), we realize there is 
only one non-zero eigenvalue, given by 
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Using (p1), we see that the maximum value of this is given by the maximum eigenvalue of 
(X′X)-½xg′M x,gM x,gxg(X′X)-½.  Applying (p2) once again, we see that this equals the maximum 
eigenvalue of M x,gxg(X′X)-1xg′M x,g = M x,gHggM x,g.  As λmax(AB) ≤ λmax(A)λmax(B) if A is 
symmetric positive semi-definite and B symmetric positive definite (Roy 1954), we see that 
λ

max(M x,gHggM x,g) ≤ λmax(M x,g)
2
λ

max(Hgg).  As λmax(M gg
-½) = (1- λmax(Hgg))

 -½, applying our 
knowledge of min

xµ from (11b) then gives the cc results reported in (14). 
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