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Abstract

| examine bias and effective degrees of freedomections, based upon mimicking
the first two moment properties of a chi-squaredalde, to statistical inference using robust
and clustered covariance matrices. Simulatiomgu$B78 practical regression examples
found in 44 experimental papers, shows that thesedions render the test statistics nearly
exact in the face of ideal iid normal errors anovpde large improvements in the accuracy of
statistical inference in the presence of distinatin-iid non-normal errors.



I. Introduction

Use of the Eicker (1963)-Hinkley (1977)-White (D98obust covariance estimate and
its clustered extension to correct for unknown anspecified heteroskedasticity or within
cluster correlation has become widespread in ecasoni-or example, standard errors are
calculated using one variation or another of threa&ices in 1002 of 1378 OLS regressions
found in a sample of 44 experimental papers exadriun¢her below. Not long after White
(1980) established the asymptotic consistencyefabust variance estimate in greatest
generality, it was quickly recognized that in fengamples statistical inference based upon
these covariance matrices produces empirical iefecates greater than nominal size.
MacKinnon and White (1985) provided simulation evide and, linking the problem, in the
first instance, to the reduction in error variabceught about by least squares fitting,
proposed various adjustments to correct for bidsese corrections, however, are inadequate,
as shown in simulations by Angrist and Pischke @20®&ho note that the covariance
estimates are not merely biased but also much waorable than default OLS estimates,
which contributes to their high rejection ratesisTpaper links the bias and variability of
robust and clustered covariance matrix estimat#isetinteraction of regression design with
hypothesis tests, developing easily calculable dnak“effective degrees of freedom”
adjustments that, as supported by simulations uk¥7@ practical regressions, render test
statistics using these covariance estimates nea&dgt in the face of ideal iid normal errors
and provide substantial improvements in the acguohanference in situations with non-iid
non-normal errors.

The corrections suggested in this paper are ntetiay two observations and two
claims. The observations are trivial, noting ttnat chi-squared variable that underlies the t-
statistic has a variance equal to twice its meahtlat the robust and clustered covariance
matrices can be re-expressed as quadratic formsenfirst two moments, following suitable
adjustment, mimic the chi-squared property. Tlénes are that in the face of iid normal
errors the resulting test statistic is very nedistributed t- with the degrees of freedom of its
pseudo chi-squared denominator, and that the sastndodtion improves the evaluation of
the test statistic in non-normal non-iid situatiod$e method works for the very simple
reason that the degrees of freedom calculatiothBoconventional t-statistic reflects the

number of orthogonal linear combinations of théutisances used in its calculation, and the



effective degrees of freedom correction similadycalates how regression design interacts
with hypothesis tests to make the robust and aledteovariance matrices dependent upon a
reduced number of orthogonal combinations of teéudbances. This then identifies both the
bias and variability of the covariance estimatethancase of ideal iid normal errors. The
reduced dimensionality remains relevant, howewgardless of the characteristics of the
error term, explaining the value of the method weetended to non-iid non-normal settings.

This paper builds on a number of earlier theoattiesults. Chesher and Jewitt (1987)
identified the link between leverage and bias bsuod robust covariance estimates. Chesher
(1989) then went on to note that these matricekldmeire-expressed as quadratic forms and,
using Hajek’s (1962) inequalities, established thattails of the distribution of the test
statistic are bounded by t-distributions with degref freedom determined by regression
design. The bounds on potential bias and effectegrees of freedom corrections further
below extend these results to clustered covariastimates and a variant of the robust
measure not considered in these earlier paperschWest in a particular example (1936)
and then in increasing generality (1938, 1947)etigped the idea of approximating the
distribution of a statistic based upon the sumna&qually weighted chi-squared variables
using adjustments that mimic the first two momewipgrties of a chi-squared variable, in the
process calculating “effective degrees of freedavhich, in essence, identify the variance of
the variance estimate. It is but a small steg#tize that the robust and clustered variance
estimates are a version of Welch'’s problem, antfthither analysis of the quadratic forms
first examined by Chesher would yield the precisgrdes of freedom correction required for
each hypothesis test, transforming Chesher’s hooadds into a nearly exact distribution
based upon the interaction of hypothesis tests meihession design.

The idea of using effective degrees of freedon) @alrections for the robust and
clustered variance estimates has been exploreatlierepapers. Kott (1994, 1996) proposed
such corrections for his own bias corrected refi@ets of the clustered covariance estimate,
as did Bell and McCaffrey (2002) using extensiohthe MacKinnon and White robust bias
correction methods to the clustered case. Infantéd popularize these improvements,
Imbens and Kolesar (2015) promote the Bell and Mic€&aapproach. This paper extends
these earlier analyses, which typically only coesia small handful of artificial examples, by

applying these techniques to 1378 practical regrestesigns used in published papers. |



show that the MacKinnon and White and Bell and M&@w corrections frequently cannot

be applied as, given regression design, iff bfpublished robust or clustered regressions
they would require inverting a singular matrixfinid, however, that bias corrections based
upon the baseline robust and clustered covariastoaates, which can be easily calculated
for any regression, yield identical results to thether methods when both can be applied.
Finally, | explicitly link the edf literature to geession design, both in establishing theoretical
bounds and providing illustrative examples of hbe interaction between hypothesis tests
and regression design determine bias and effedégeces of freedom.

The paper proceeds as follows: Section Il beloons how quadratic forms that are
not based on idempotent matrices can be adjustedhtac the moment properties of the chi-
squared variable, in the process producing bias#fedtive degrees of freedom corrections.
Section Il presents convenient computational fdemwand derives bounds on the bias and
edf corrections for the robust and clustered masrend their diverse variations. Maximal
regression leverage plays an important role inrdeteng these bounds and | provide
examples showing how the interaction of the hypsithest with regression design
determines to what degree these bounds are attaBextion IV presents empirical
simulations using the 44 paper sample mentiondaeabove, which provides a wide array
of practical applications. | begin by showing thegression design in the typical published
regression is quite poor, with about i /8f regressions having a maximal leverage of 1,
which renders the MacKinnon and White and Bell MtoCaffrey corrections unusable,
whatever their merits. | then show the extraongdimeerformance achieved by the bias and
edf corrections in simulations with iid normal ashecidedly non-iid non-normal disturbances.
Section V concludes by considering the possibditg value of extensions to non-OLS
settings. Stata ado files on my website allow siseiask for these corrections in their robust

and clustered regressions.

II. Effective Degrees of Freedom Corrections
| use the familiar presentation of the t-statisbi@stablish notation and motivate the
bias and edf corrections of the robust and cludteozariance matrices. In the n-observation

k-regressor OLS regression mogiet Xp + ¢,* with £ iid ~ N(0, 5%, letb denote the

!l follow standard notation, with bold capital amiercase letters denoting matrices and column x&cto
respectively.



estimated coefficients arthe estimated residuals. The symmetric and idéemponatrixM
=1(n) — X(X'X) X' is the “residual maker” as= My = M. We (correctly) estimate the
variance ob using V=(X'X)"e’e/(n-k) andtest whether a linear combinatianof b is
significantly different from a null value ywising the statistic

w'b - w,
wh-w, _ JTW(X'X) w
JW'Vw \/ 1 ée

@

n-k o
Since, under the nuly'b ~ N(Wo,cszw'(X'X)'lw), the numerator is a standard normal variable

while the denominator is the square root of an jpletent quadratic form in the standard

normal vectok/s as
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With traceM) = n-k? this is a chi-squared variable with n-k degreeedfidom and,
consequently, has expectation n-k and varianc&R(#s the estimatds are statistically
independent og, the test statistic (1) is the ratio of a standamal variable to the square
root of an independently distributed chi-squaredaide divided by its degrees of freedom
and, consequently, follows the t-distribution.

Consider now the case where the variandeisfestimated using an alternative
estimatorV; #V. The usual test statistic is given by

w'b-w, w'b-w,
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where, in the last expression, | have assumedAhatsuch that the term in the square root in
the denominator can be re-expressed as a standianalnjuadratic form with matrii;.
Following the usugbroperties of quadratic forms,4fis iid normal this has mean=
traceB;) and variance = 2*trace(3iBi).3 If B is idempotent, this quadratic form is a chi-

squared variable with = 2u. If B; is not idempotent, it can be modified to mimicsthi

*TraceM) = n - traceX(X'X)X’) = n - traceX’X(X'X)™) = n-k.

3lid is sufficient for the mean property, while taddition of normality establishes the variance.
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moment property by multiplying it byu2v, so that its mean igi@v and variance 4/v.
Recognizing that we will want to divide the resudti‘chi-squared” variable by its degrees of
freedom, we see that we should divideby p to form the test statistic:

w'b-w, w'b-w,

@ wb-w, _ JTW(X'X) _ JoW(X'X) w

V. 1 w'V.w !
TR
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Since the denominator, with normal disturbancesaras independent of the numerator, we

can say that this test statistic is distributedth@u?/v “effective degrees of freedom”.

Intuition for why this approach improves statiatimference, even in the presence of
non-iid non-normal disturbances, can be acquirethimking about the quadratic forms that
lie in the denominators of (1), (3) and (4). Whiea disturbances are known to be iid, the
guadratic form in the denominator of (1) has aneesation of 1, i.e. the sum of squared
residuals divided by degrees of freedom providesrdniased estimate of the variarée To
allow for the possibility that the disturbances aog iid, we use “robust” covariance estimates
in (3). Unfortunately, as shown further below, eleging upon the interaction of the
hypothesis test with regression design, these plaegen weight on estimated residuals.
Moreover, the estimated residuals themselves ®be targe or small in a manner that
depends not only on the heteroskedasticity of thieidance process, but also on regression
design. By calculating the biasof the variance estimate in the presence of studbances
and using it to divide the variance estimate in\ remove the systematic bias in the
estimate of variance associated with regressioiged his generally provides gains, even
when the error process is not iid and hence theefinite sample bias is unknown.

Turning to effective degrees of freedom, symmaetradrices allow the decomposition
UAU’, whereA is a diagonal matrix of eigenvalues dnds the matrix whose columns are
the corresponding mutually orthogonal eigenvectofsl =1). Consequently, a quadratic
form ¢’A¢ can be reexpressed 4,2, where, withu; denoting the' eigenvector and its
corresponding eigenvalue, the= u;'e are mutually orthogonal linear combinations of the
disturbances. In the case of the denominator)pBilre-expressed in (2), the quadratic form
involves n-k eigenvalues equal to 1 and k equél ice. the estimate of variance involves the

square of n-k mutually independent variables.hindase of a general symmetric covariance



estimateV;, the number and magnitude of non-zero eigenvalilesary. However, the trace
of a matrixB; equals the sum of its eigenvalues, while the tcd&B; equals the sum of the

squared eigenvalues, so the/2 effective degrees of freedom calculated aboveaesito
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(5) is approximately equal to the number of equdllyge” eigenvalues. By calculating this
measure under the assumption of iid normal dishobs, edf corrections calculate the way in
which the interaction between the hypothesis tedtragression design places
disproportionate weight on a reduced number ofogtimal combinations of the disturbances.
Since the variance of the variance estimate igu@ted by the number of random variables
that go into its computation, this provides infotima on the thickness of the tails of the test
statistic distribution. Once again, by accounfimgthe systematic change in the distribution
due to regression design, this calculation providgsovements even in cases where the

disturbances are neither iid nor normal.

Ill. Formulae, Bounds and Intuitive Examples

In this section | present the formulae that unddhe calculation of the bias and
effective degrees of freedom corrections associattéddifferent versions of the robust and
clustered covariance matrices, establish theotdtmands on these measures, and provide
specific examples that show how they are, in pcactietermined by the interaction between
the hypothesis test and regression design. Bidefiective degrees of freedom are
calculated for each quadratic form using the assiompf ideal iid normal errors, but, as
argued above and shown below, these provide sulastamprovements to statistical
inference in less than ideal circumstances.

The formulas for the robust and clustered covagastimates are given by:

(6) thl = Chcl(x’x) - X '{ Qz} X(x’x) - Vccl = Cccl(x'x) - X '{ ege'g} X(X 'X) °

2
Viea =(X'X) '1X'{2—}X(X'X) TV =(XX) XM e M X(XX)
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Vi =(X'X) '1x'{%}X(X'X) T Ve = (XX XM SeeM EX(XX)



where | use the notation {} to denote a diagonablock-diagonal matrix, whilen; denotes
the {" diagonal element of the residual makirM 44 the block diagonal element associated
with cluster g, an@ andey the estimated observation and cluster residVals.is the
baseline “heteroskedasticity-consistent” robustrese of covariance with the finite sample
correction gc;=n/(n-k) originally suggested by Hinkley (1977)dounteract the mean
reduction in squared residuals brought on by Otiid. V2 andVycs are alternative
corrections proposed by MacKinnon and White (198¥),., divides by the mean bias in the
face of iid errors in the variance estimate of obston i itself> while V.3 overcorrects in an
attempt to improve the poor performance/gf,. Ve - Veczare corresponding “cluster-
consistent” versions of these matrices, with theduction of ccl generally attributed to
Liang and Zeger (1988xand the cc2 and cc3 corrections to Bell and Ma@gf2002). It
goes without saying that the hc2/hc3 and cc2/ca8 borrections can only be applied when
the minimum value of; and the minimum eigenvalue of thl,g matrices are greater than
zero, respectively. | take this as given whenudising their characteristics. As shown in the
next section, however, in practice these restrictiare often not met, which limits their
usefulness.

For the hypothesis testb = wp, these matrices produce quadratic forms in stahdar
normal variates of the kind described in the dematair of (3) above

U

wVw e

€
) oWw'(X'X) tw _;Bi o

If one defines

“The hc3 correction, as proposed by MacKinnon anita\(i985), was actually the jackknife, but
subsequent simulations found it produced resultg sinilar toV.z above, which has come to be known as hc3
in texts (Davidson and MacKinnon 1993) and compsitétware (Stata).

°E(e?) = E(mi'se'm;) = m/E(eg’)m; = m{{c%} m; = 6°m;, wherem; denotes thé"icolumn ofM and | have
made use of the fact that the symmetry and idempgtefM imply thatm'm; = o’m;;

®The appropriate clustered finite sample correctignis a matter of some debate and confusion. With n
denoting the number of clusters, Stata, for examples g;= (n(n-1))/((n-1)(n-K)) in its reg and areg
commands, even when including fixed effects, andye= (n.(n-1))/((n-1)(n+ke-K)), where kg denotes the
number of fixed effects, when executing identiegressions in its xtreg fixed effects command.sTéia
somewhat moot point, as bias varies g Ms0 no fixed correction can eliminate it. In wsW,; below, | apply
Stata’s baseline reg/aregjccorrection in all regressions. In practice, and n are typically large, this
amounts to an n/(n-k) correction and produces,venage, an approximately unbiased covariance egima
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@) Z =2, =W(XX) X', 7, =W(XX) XM, Zs =WXX) XM,
Z'_ ccl_W(x X) 1x Z::CZ_W(XX)_lX{M_}/Z} ch3_W(x X) 1X{M }
and Cth = Ch03 = Ccc2 = Cc03 = :L

with some algebraic manipulation the relev@nare found to be given by

© BX—Z,X M{Z M (x=hcl,hc2,0rhc3),

' M (x=cclec2,0rccel),

_C

B, = Z_XZ M{z, ,Z\,
wherez,; denotes théiterm ofz, andz,4 the terms associated with cluster group g. Uging
= traceBy) andvy = 2*traceBy«By), the mean and variance of these quadratic formsasily

calculated using the formulas:

— 2 —
0 __sz m. v =
(l ) Ky y i ZiMmi, vy

(;32 z,;)* (x=hcl,hc2,0rhc3),

:_szg aeZxgr vx—(ZZ)ZZZ(ngMghth) (x=ccl,cc2,0rcc3).

with effective degrees of freedom given hy/2, as described earlier above.
Putting aside finite sample corrections, for anyegihypothesis test’'b = w, the

following inequalities hold (as proven in the apgie

1) (@) 0SM™ Sp<M™<L =1 1S(M™) <p<(m™)?
(b) 0SA™(M ) Sp SA™ M )<L p,=1 1SA™M )" Sp,<A™M )™
(©) A™" (M gg) S ™, ™ <A™ (M),
wth >whenevem, #0 0 j #i in theM ,, associateavith m™ or m"™
(d) n-k=edf 21 (x=hclhc2orhc3)

min(n, -1 n-k) 2edf, 21 min(n,,n—k)=2edf =1 (x=cc2orcc3)

min

wherem,

max

and m; " are the minimum and maximum diagonal elementsefésidual
makerM, A™"(M gg) andA™(M ) theminimum and maximum eigenvalues of the cluster
sub-matriced gg of M, and n equals the number of clusters.

Result (11a) indicates that, absent the degrefreedom correctioryyc is
downward biased because of the reduction in eanarce brought about by OLS fitting. As

1>m; >0, with the typical n/(n-k) correction it may bpward or downward biase®; is



unbiased for allv, while Vy,c3 overcompensates and is upward biased. (11b) stihaws
similar inequalities hold for the cci cluster catsent versions, with bias bounds determined
by the minimum and maximum eigenvalues of the elustib-matriceM y4 of the residual
makerM. (11c) indicates that these eigenvalue limitstrectly outside the limits of the
diagonal elements ®fl whenever there exists a non-zero off-diagonal efem; in the
cluster sub-matrii 4q associated witm™or m™. This indicates that, with iid errors, the
bias of the clustered covariance estimate hasegrpatential dispersion than its robust
counterpart, although there is no ordering for gingn hypothesis test. (11d) establishes
bounds on effective degrees of freedom. There ihaoretical or empirical ordering
between the edf of the various matrices. In pcacthowever, the edf for the various hci (or
cci) are virtually identical (see Section V), iiecreased bias is almost exactly offset by
increased variance. This reflects the common wayhich they depend upon a limited
number of residuals, as seen in the examples wollkdw below.

The practical characteristics of the robust andtered covariance matrices derive
from the interaction between a given hypothesisaed regression design. To explore this,
it might be helpful to first remind the reader ofize terminology. The hat matiik =
X(X'X)™X’ puts the “hat” ory, as§ = Xp = Hy. The elementy; is the derivative of the
predicted value of; with respect to observatigh h;, the influence of observatignon its
own predicted value, is known as the leverage eéplation i. Leverage ranges between 0
and 1, a# is idempotent and symmetric and hence:

@2 h =30 =H 30
Leverage averages K/and wherh; = k/n for all i, the regression is considered peitfy
balanced. The residual makérequald (n) —H, soH appears implicitly in the results in (11)
above. When, for example, regression design ey balancedm; = 1-h; = 1- k/n for all
i and with the typical n/(n-k) finite sample cortien the W, estimate of variance is unbiased
for all hypothesis tests. Leverage features prominently in the analysithef‘robustness”
of regressions, i.e. the sensitivity of coefficiestimates to particular observations, where it

is easily shown that its influence depends upoimtnaction with the error term (see Huber

s by = tracef) = traceK(X'X)X") = traceK'X(X'X)™) = k, soZ; hi/n = kin.
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1981, Fox 2008). In a similar fashion, the impaideverage on bias and, most importantly,
effective degrees of freedom depends upon itsaotem with the hypothesis test

Consider the case of the robust hcl estimateeofdhiance of a linear combination
of the estimated coefficients w'Vc.qw. From (6) above, we see that, putting asideithitef
sample correction, this is given by e? z, wherez’ = w/(X’X) X’ and {? is the diagonal
matrix composed of estimated residualsw'lE x;’, wherex;’ is the i" observation row oX,
thenz = hy', the " row of H. Thus, in this case, the estimate of variancedeserage
weighted average of the estimated disturbancedy; Agreases, the weight on the residual
for observation i increases and the magnitude efatbights on the other observations
decreases, as can be seen by examining (12) abotlee limit, h; equals 1, ally; j #i equal
0, and the variance estimate depends upon onlyesi@ual and has one effective degree of
freedom. The weighting implicitly created by lexge in this hypothesis test also determines
bias, as the residuals have unequal expected eafiafihe hc2 and hc3 corrections, dividing
eache? by m;; or mi2, can eliminate or overcorrect bias, but they cépaect for the
weights placed on a limited number of residuals lagrce retain roughly the same miniscule
degrees of freedom.

As a counter-example, consider the hypothesighastuse® = nX, so
w'b =nx'b =w, is a test of whether the predicted meag efjuals wn. If the regression
contains a constant term, it can be shown, usargdsird results on the inverses of partitioned
matrices, thar’ = w'(X'X) X’ equals a row vector of 1s. Thle{,az}z is an equally
weighted sum of all residuals and the effectiverdeg of freedom is n-k, the theoretical
maximum. Moreover, with the n/(n-k) finite sampl@rection, the expected bias is zero.
This example shows that, with an appropriately ehdsypothesis test, regression design has
no influence whatsoever on bias or the effectivgreles of freedom of the regression.

The two examples given above can also be intexgriatterms of the quadratic forms.
As noted earlier, the robust variance estimateliresthe quadratic forne/g)'Bx(¢/c), with
B, equal to a constant tim&&{z,;2tM. Whenw =nX, z is a row vector of 18, equals,
and the robust variance estimate actually redur#setdefault OLS covariance estimate.
With M’s n-k eigenvalues equal to 1 and k eigenvaluesalggu, the dimensionality of the

disturbances affecting the variance estimate is if-W’ = x;’, z = h;’ and as the number of

8As can be seen from (10), the bias in the estimeaeidnce for this hypothesis test is givenzl;iyjzmj/h“.
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non-zero elements o falls below n-k the number of non-zero eigenvalined {z,;*} M
falls with them. In the limit, al; equals 1z has only one non-zero element,l\ﬂc{zx,iz}M
has only one non-zero eigenvalue and the dimengipoédisturbances affecting the
variance estimate is 1. It is helpful, in thinkialout this, to recall that a linear combination
of iid normal variables behaves like a single ndmaaiable, so it is not the number of
disturbancesej that goes into the calculation that matters batrtumber of effective
orthogonal linear combinations. Moreover, to figatié intuition | have couched the
discussion in terms of the number of distinct nemzeigenvalues, but it is fairly obvious that
what matters is the number of “large” eigenvalassgiscussed in the previous section. The
hc2/hc3 adjustments, by reweighting the residuas,influence the relative size of
eigenvalues and hence the effective degrees afdregbut this effect is dominated by the
fact that they depend upon the sanveeighted combination of a limited number of resildu

The extension of these ideas to clustered cowegiastimates is fairly straightforward.
The symmetry and idempotencytefimplies that for the block elemeRy, we haveH g =
HggHgg + H~g~g WhereH _¢-4=2nHgnHgn' andHgn equals the elements Ef associated with
theg x h cluster observations. L&tdenote an eigenvalue By andu; the corresponding
eigenvector. Usin#lggui = Aiui, we have:

@3 Hyu =Au, =H H u +H__u =H Au +H__u

- UiAU =uidfu +uiH o,

As J;i goes to 1ui'H-g-gui is driven to 0. Next, consider the hypothesiswes Xqu;, so thatz’
=W/(X'X)*X" = ui'Hg, whereHy equals the rows dff associated with cluster g. The
quadratic form for the clustered ccl case involvesnstant times the matik{ z,hz.n'} M.
The non-zero eigenvalues @z’ equal those afy 'z, SO We see that we are actually
considering the non-zero values of the scaldkHgnli'. Asii goes to 1, these go to zero
for all h # g and the cluster covariance estimate has only onezero eigenvalue and
depends upon only one of the many possible orthalgmymbinations of the disturbances.
Once again, the cc2 and cc3 corrections adjugh®bias in the variance of the disturbances,
but do not eliminate the reduced dimensionality.

The preceding examples show how regression dadigracts with hypothesis tests to

produce reduced degrees of freedom. Poor regredsiign is a necessary but not sufficient
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condition for a reduction in effective degreesreedom. This allows the following bounds,
proven in the appendix:

1- hi?nax

14 edf 2 mc’:l><(1,(h“r"ax)’1 —l) (x=hc1hc2), edf > ma{l 1-hmn [(h"™)™ - 1]]

— Jmax H
edf, > max{l, A™(H ) - 1) (x=cclcc2), edf,, >ma 1%[%“(%)* -1
1- A" (H )

An example where these bounds are attained is vwhere are two regressors, a constant and
an independent variable which equals 1 for hathefobservations and -1 for the other half.
This is a perfectly balanced regression desigm Wit* =h™" =k/n=2/n. The matrix
(X’X) X" is now made up of two column vectoxs,andx,, one for each type of observation.
There exist hypothesis testssuch thatv'’x; orw’x, = 0. In these cases, half of the elements
of Z =w'(X'X) !X’ equal zero, so the robust covariance estimatendspgoon only half of

the residuals and the effective degrees of freefdorncl, hc2 and hc3 can be shown to equal
n/2-1, attaining the bound predicted above. If eacbktelucontains two observations, one
of each type, thed™(H ;) = A™(H ) = 2/n° and the effective degrees of freedom for ccl,
cc2, and cc3 are all also equaht@ -1, attaining the indicated bound for these estimases

well.

IV. Empirical Results

| demonstrate the improvements in statisticalregriee afforded by bias and effective
degrees of freedom corrections using 1378 OLS ssgya specifications taken from 44
experimental papers published in the journals efAmerican Economic Associatioh. The
robust and clustered covariance matrices are nsg@7 and 835 of these regressions,
respectively, so these papers provide practicahgkes of the conditions under which these
covariance matrices are used. The number of rabgsessions is, however, somewhat
small. Since the robust covariance matrix couddhrinciple, have been used in any of these

regressions, | enlarge the robust sample by comsglés application in all 1378

°As the paired cluster observations are orthogaiety, is diagonal.

% These papers are part of a comprehensive 53 exgrtafrpaper sample used in a separate study of
randomization inference (Young 2015, which providetails regarding the selection criteria). 9haf 53
papers do not contain OLS regressions and henoet @ppear in the simulations above.
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regression$t In the case of 591 regressions the dependeratblaris binary, which allows
me to evaluate performance in the face of non-nbhmt@roskedastic errors.

The papers in my sample typically present a regyrespecification of the form;
ti'Bt + Xi'Bx + &, wheret; is a vector of treatment characteristigsa vector of other
determinants of the outcomeg sndp: andpy are the coefficients associated with each type of
regressor. The coefficients of primary intereshiese papers are those associated with
treatment variables and the t-statistics test thietimat each of these coefficients is zero. To
this end, | use the non-treatment variables to gg@eomplex simulated data that satisfies
the null of no treatment effect. | initially ruhd baseline equation ¥ x;'Bx + & and then use
the predicted values and random draws of normaridrs, with standard deviation equal to
that of the estimated standard error of the baselquation, to produce 10,000 sets of
simulated data. To allow for non-iid disturbanddeske the estimated standard error,
mechanically divide its variance into cluster aiddciomponents (with the cluster share of
variance ranging from .2 to .8), and produce arratBed00 sets of data with normal but
cluster-correlated disturbances. To allow for monmal heteroskedastic disturbances, | take
the equations in which the dependent variablenanyi estimate a baseline probit equation
usingx;, and then use this to produce simulated binargayaés. The unconditional variance
of the simulated dependent variable is given byP(where P is the predicted probability of
the baseline probit equation. OLS fitting elimemsome of this inherent heteroskedasticity,
but the departure from iid disturbances remaingelaas illustrated by the poor performance
of the baseline OLS estimate of covariance in theilsitions below. To add cluster level
correlation to these binary outcomes, | dividegtasndard normal disturbance that underlies
the probit determination of 0/1 outcomes into usind iid components, with the cluster
component share again ranging from .2 to .8, prioduciuster correlated non-normal
heteroskedastic disturbances. On all of this satedl data based upon baseline equations
without treatment regressors, | then run a full @egression, including the original author
specified treatment variables, and use t-testgdtuate the null that each treatment
coefficient is zero. Since the nulls are by camgion true, the test statistics should reject

each null 1 percent of the time at the .01 level.

YThe clustered sample cannot be enlarged quitergssias it would require specifying a variablectoster
on in the non-clustered regressions.
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Table | summarizes key characteristics of the $amg\s shown in panel (a), the
number of observations ranges from 40 to 450,008 tlae number of clusters, in clustered
regressions, from 11 to 5648, with mean values3dmand 215, respectively. Maximum
leverage and the maximum eigenvalue of the clustarponents of the hat matrix both range
from nearly 0 to 1. 24 percent of the regresstmnge a maximum leverage of 1 and 38
percent of the clustered regressions have a maxiohuster eigenvalue of 1. Application of
the hc2/hc3/cc2/cc3 corrections of the robust dustered covariance matrices in these cases
involves division by zerd? and hence is not practical, whatever the meritsese methods.
As noted earlier in the Introduction, Bell and Méf@ay (2002) implement clustered edf
corrections by first applying the cc2 bias cormatiwhich ensures that the covariance
estimate in the face of iid errors is unbiasedalbhypothesis tests, and then calculating the
edf correction for the particular hypothesis tdstcontrast, when working with cc1, |
calculate both bias and edf corrections separ&telgach hypothesis test. The Bell and
McCaffrey approach, endorsed by Imbens and Kolgs5), depends upon computationally
costly inversions of potentially large cluster subtrices i), inversions which are,
moreover, impossible in more than a third of thecfical cases in my experimental sample.
As seen further below, the ccl (and similarly Hzd3ed approach yields virtually identical
results to cc2 and cc3 when all can be appliedwouking directly with ccl is
computationally simpler and much more widely impéstable.

Panel (b) of Table I reports the bias and edf hed a1l measures for the treatment
coefficients in my sample regressions. The bias®frobust and clustered covariance
matrices, with Stata’s finite sample correctiongrages close to 1, but ranges quite widely.
Effective degrees of freedom in robust regressamesage only 40 percent of each
regression’s putative n-k degrees of freedom, whilgustered regressions they are typically
just under 50 percent of the theoreticalldimit. Panel (c) focuses on regressions whieee t
hc2/hc3/cc2/cc3 corrections can be implemented shodrs the patterns described by the
theory of the last section. The hc2/cc2 corredielminate bias, but at the cost of increasing
the variance of the variance estimate, while tt8du8 overcorrection has a positive, and
occasionally quite large, bias and also a subsilyntarger variance. All three techniques

have quite similar effective degrees of freedonthasmovements in bias and variance offset

Asmy; = 1h; = 0 andi™(Mgg) = 1 -A™(Hyg) = 0.
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Table I: Characteristics of the Sample

mean s.d. min max mean s.d. min max
(a) 1378 regressions (a) 835 clustered regressions
n 5314  2.5¢ 40 4.5¢ Ne 215 417 11 5648
max 383 395 3.8¢ 1 |A™(H,) 616 376  9.3¢ 1

(b) 3665 coefficients in 1378 regressions  (b) 188&fficients in 835 clustered regressions

et .990 .064 .138 1.24 Hect .976 .130 .060 1.93
n-k 5209 2.9¢ 22 4.5 N1 266 511 10 5647
edf,; 2102 1.5¢ 1.11 3.9¢ edf.; 126 378 1.17 5000

(c) 2819 coef. in 1053 regressions wiff* < 1 |(c) 929 coef. in 514 regressions wiflt(H ) <1
Mhe1 .990 .043 .520 1.06 Hee1 .939 .083 479 1.01

Hhc2 1 0 1 1 Mec2 1 0 1 1

Hhca 1.07 .100 1.00 2.02 Hecs 1.12 193 1.00 2.47
Vhel .018 040 5.1¢€° 493 Veel .034 043  4.0¢ 429
Vhez .026 127 5.1€° 1.90 Veea .048 095  4.0¢ 1.55
Vhea .060 499  5.1¢° 7.78 Vees .110 386  4.0¢ 6.21

edf; 2591 1.7¢ 1.11 3.9¢ edf., 195 529 1.56 5000
edf, 2590 1.7¢ 1.05 3.9¢ edf., 193 529 1.29 4999
edf.s 2589 1.7¢ 1.03 3.9¢ edf.; 191 529 1.15 4999

Notes: s.d. = standard deviation; n = numberbsiervations; J= number of clusters; k = number of
regressorsh™ = maximum leverage of the regressidtf-= maximum cluster eigenvalue of the hat matrix;
i, v and edf = bias, variance and effective degreéeeflom of the variance estimate for the coeffigiad
= a*1@; coef. = coefficients. hcl and ccl correctiorescalculated with Stata’s finite sample correctiem
the relative bias bounds listed earlier in (11ndbapply.

each other. As noted earlier, fundamentally theglestimates place weight on the same
disturbances, albeit somewhat transformed, andehéapend roughly upon the same linear
combinations of the error proce'Ss.

Figures | and Il below graph the actual In redutfiodegrees of freedom against the
theoretical bound for the hcl and ccl estimatésnoted in the preceding section, leverage
creates the possibility of reduced degrees of freedut the actual reduction depends upon
the specific hypothesis test. As the theoreticainal falls, however, hypothesis tests, even if
randomly selected across the universe of posssts,tproduce results that range within the
increased bounds. Consequently, edf fall witheéased maximal leverage. Figures Il and

IV graph the bias of the variance estimate agatisisheoretical lower bound. Here we see

3The pairwise correlation of the different hci (ceijf with each other is 1.0000. Transformed in®tb
moderate the influence of large values,gdfas a correlation of .9999 with gdfand .9980 with edfs, while
edf..; has a correlation of .9996 with gdfand .9976 with edf,.
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Figure I: Robust Effective Degrees of Freedom
and Bounds Created by Maximum Leverage

Figure II: Clustered Effective Degrees of Freedon
and Bounds Created by Maximum Leverage
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that greater potential bias translates into in@dakspersion, but with little change in average
bias. This stems from the finite sample corrediosed in the hcl and ccl estimates. For
example, in the case of hcl the range of biag/{s=1-h">* to m™ =1-h"", but the
average ofn; is always (n-k)/n. Different hypotheses testsdifferent linear combinations
of residuals, each of which underestimates its warrance (with iid disturbances) Ioy;.
Not surprisingly, bias on average is close to (imk3o the hcl finite sample correction of
n/n-k approximately eliminates average bias, wiscéfter all the whole point of the finite
sample correctioh!

Figures I-1V explain why, in Young (2015), | finddt coverage bias is increasing
in maximal leverage. As maximal leverage increastective degrees of freedom typically

fall. Consequently, test statistics evaluated whthdefault n-k or A1 degrees of freedom

In examining Figures Il and IV the reader mightenthe points along the y-axis. These represeniaiiye
mass of regressions where maximal levetgger the maximum eigenvalue of the sub-matridggequals 1.
The average bias across all of these extreme st close to one, but there is a great dealigpersion.
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have thicker tails than expected, producing rejecgirobabilities for each hypothesis test that
are greater than nominal size. As maximal levemageases, the dispersion of the bias of the
covariance estimate increases. As the absolube wdlthe t-statistic is a convex function of
the covariance estimate, this increased dispersiggs its average value across all hypothesis
tests, raising average rejection probabilities ahweminal sizé®> This effect can be seen in

the tables below by comparing hcl and ccl withdm@ cc2, which have virtually the same
effective degrees of freedom and average bialbuinate the variation in bias and,
consequently, have somewhat lower rejection rat@bqut bias and edf corrections).

Tables Il - IV show the remarkable improvementhe accuracy of statistical
inference allowed by bias and effective degredseaidom corrections. Table Il begins with
the application of the robust covariance estimat@it3665 treatment coefficients in 1378
regressions. Panel (a) of the table uses simaktioth ideal normal iid disturbances. Under
such circumstances statistical inference based tigpdefault OLS covariance estimate is
exact, as confirmed by the simulation results, Wh&ject an average of .01 of the time, with
a standard deviation of .001, i.e. precisely tredjmted values with 10,000 simulations per
equation. Statistical inference based upon therblodst covariance estimate, however, is
biased and wildly inaccurate, rejecting the (tnuel) of a zero coefficient an average of .0132
of the time, with rejection probabilities reachiag high as .4253, producing a standard
deviation of the rejection rate more than 20 tittieg of the OLS estimates. With bias and
effective degrees of freedom corrections, howewégrence based upon the hcl estimate is
nearly exact, rejecting the null .0099 of the tiwith a standard deviation of .0013. In panel
(b) of the table | restrict attention to those esgions where the hc2 and hc3 corrections can
be applied. As shown, these provide some impromimeer hcl, producing more accurate
mean rejection rates, but extreme outcomes alg@gdent and the standard deviation of the
rejection rate remains 9 to 12 times greater thahdf the default OLS method. With bias
and edf corrections, however, the three robust austlare indistinguishable and nearly exact,
as shown in the right-hand panel.

Panels (c) and (d) of Table Il examine resultsmitihe error generating process is

non-normal and heteroskedastic, a consequence diitary character of the dependent

5The rejection probability for an individual hypotte test might be lower than nominal size (duento a
upward biased covariance estimate), but averagedsall hypothesis tests the absolute value of-ttatistic
increases with greater bias dispersion.
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Table 1I: Empirical Size at the .01 Level with Risth Covariance Estimates
(10000 simulations per regression)

uncorrected, df = n-k bias and edf corrected
mean s.d. min max Mean s.d. min max

(a) ideal normal iid disturbances - 3665 coefficiemt4.878 regressions

default OLS .0100 .0010 .0066  .0133
hcl .0132 .0224  .0056  .4253 .0099 .0013 .0000 .0135

(b) ideal normal iid disturbances - 2819 coeffitgeim 1053 regressions witii*™ < 1
default OLS .0100 .0010 .0066  .0133

hcl .0124 .0160 .0065 .2697 .0099 .0013 .0000 .0135
hc2 .0117 .0118 .0065 .2013 .0099 .0013 .0000 .0134
hc3 .0094 .0085 .0012 .1477 .0099 .0013 .0000 .0138

(c) non-normal heteroskedastic disturbances - 822 in 591 regressions with binary y
default OLS .0136 .0373 .0000 .5853

hcl .0169 .0459 .0000 .6408 .0111 .0082 .0000  .1655

(d) non-normal heteroskedastic disturbances - tb@L in 453 reg. with™ < 1 & binary y
default OLS .0144 .0421  .0000 .5853

hcl .0178 .0515 .0000 .6408 .0106  .0052 .0000  .1315
hc2 .0172 .0505 .0000 .6409 .0106  .0051 .0000  .1313
hc3 .0150 .0485 .0000 .6405 .0106  .0051 .0000  .1313

Notes: df = degrees of freedom; edf = effectiegrees of freedom; reg. = regressions; y =
dependent variable; otherwise as in Table I.

variable. The baseline probit equations that aezllas the data generating process produce
substantial heteroskedasticity. In 190 of the &&imating equations, at least one
observation has a predicted probability (P) leas ti®001, and in 138 cases at least one
observation has a predicted probability greatem tB899. The unconditional P(1-P) variance
of these observations is close to zero. More gelyethe standard deviation of the
unconditional observation level variance averafé& and ranges between 0 and .222. The
deleterious impact this heteroskedasticity hastatistical inference is immediately apparent
in panel (c). The default OLS estimate of covar@is biased, rejecting .0136 of the time,
and extraordinarily variable, with a standard deeiaof .0373, i.e. 37 times greater than the
exact rate, and with rejection rates rising as laigh5853. Unfortunately, the hcl robust
“correction” for heteroskedasticity performs eveorse, with a mean rejection rate of .0169
and a standard deviation of .0459. With bias affcerrections, however, the mean and
standard deviation of the robust rejection rateradeiced to .0111 and .0082, respectively.

Panel (d) shows that the hc2 and hc3 correctiotiseofobust covariance matrix, when they
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Table Ill: Empirical Size at the .01 Level withuStered Covariance Estimates
(10000 simulations per regression)

uncorrected, df =sl bias and edf corrected
mean sd min max mean sd min max

(a) ideal normal iid disturbances — 1897 coeffitsen 835 regressions

default OLS .0100 .0010 .0071 .0131
ccl .0157 .0255 .0008  .5277 .0097 .0013 .0000 .0132

(b) ideal normal iid disturbances — 929 coefficgeint 514 regressions witi™ < 1
default OLS .0100 .0010 .0072  .0127

ccl .0150 .0108 .0075 .1473 .0098 .0012 .0000 .0132
cc2 .0116 .0050 .0074 .1116 .0097 .0013 .0000 .0133
cc3 .0085 .0035 .0001 .0770 .0096 .0016  .0000 .0133

(c) non-normal heteroskedastic disturbances — @8%. i 324 regressions with binary y

default OLS .0174 .0053 .0000  .5853
ccl .0153 .0101 .0000 .1268 .0097 .0036 .0000 .0622

(d) non-normal heteroskedastic disturbances — 488 i 235 reg. witi™ < 1 & binary y
default OLS .0210 .0649  .0000 .5853

ccl .0145 .0097 .0000 .1268 .0098 .0039 .0000  .0622
cc2 .0115 .0052 .0000 .0621 .0097 .0038 .0000 .0621
cc3 .0084 .0039 .0000 .0621 .0096  .0039 .0000  .0618

Notes: asin Tables | and Il.

can be applied, are not very effective, as thesmators remain substantially biased on
average and remarkably unpredictable, with a standeviation of rejection rates 50 times
that of the exact test statistic. Once again, lvewewith bias and edf corrections all three
methods are virtually identical, producing, in te@mple of regressions, rejection rates that
are only slightly biased on average (.0106) anctlamstandard deviation (.0052) that is one-
tenth that of the unadjusted measures. Thesea#grdresults show that bias and edf
corrections, motivated with normal iid errors, dalngially improve the accuracy of statistical
inference in situations with less than ideal distunces.

Table 11l above examines statistical inferencengshe clustered estimate of
covariance in regressions that clustered in thgiral papers. In panel (a) we see, once again,
that with ideal normal iid errors the baseline tdusd covariance method, ccl, is biased and
very variable, producing rejection rates as higlb237 at the .01 level. With bias and edf
corrections, however, it is virtually exact. The2fcc3 corrections, as shown in panel (b),
reduce the average bias of the rejection rate, egghovercorrecting and producing an

average rejection rate of .0085 at the .01 leV®ith bias and edf corrections, however, all
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three methods are very similar, although correctddproduces the lowest standard deviation
of results, .0012, which approaches the .0010 lefvekact statistics. Panels (c) and (d)
examine performance with the non-normal heteroskteddisturbances produced by binary
dependent variables. Once again, without corresttmverage is upward biased or (in the
case of cc3) downward biased, and quite variatdléh bias and edf corrections, as shown in
the right-hand side of panel (d), the three measpreduce virtually identical unbiased
rejection rates and standard deviations of thetieje rate (.0039) that, despite the non-
normality and heteroskedasticity, are only fouregsnthat of an exact statistic.

Table IV below examines rejection rates when thergarocess has a cluster level
random effect that accounts for either .2 or .&eftotal error variance. Treatment in these
regressions is often administered at the cluste lend, hence, highly correlated with the
cluster random effects. Under these circumstarnbegjefault OLS covariance matrix
grossly understates coefficient standard errore€Kl1981, Moulton 1986), producing
rejection rates much greater than nominal sizeshfsvn in the table, clustered standard
errors improve, dramatically, on the performancéhefdefault OLS estimator, but have
somewhat biased coverage on average and produdg kaatile results. In the broadest
samples, in panel (a) for example, the ccl cowadias a mean rejection rate of .0167 and a
standard deviation 25 times that of the exact berack (.001), with rejection rates ranging as
high as .5285. With bias and edf corrections, harethe mean rejection probability is
.0103, with a standard deviation of only .0020.e Phnoblems of the different cci estimators
are somewhat less in the smaller samples that alédeulation of cc2/cc3 or have binary
dependent variables, as seen in the other pan#ig ¢tdble. Nevertheless, it is notable that
average coverage bias is almost completely elimthahd the standard deviation of results

substantially reduced with the application of therections.
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Table 1V: Empirical Size at the .01 Level withuSter Random Effects
and Clustered Covariance Estimates (10000 simuaper regression)

uncorrected bias and edf corrected
mean sd min max Mean sd min max

p=.2
(a) ideal normal iid disturbances — 1897 coeffitsén 835 regressions

default OLS .1029 1566  .0036  .8079
ccl .0167 .0250 .0010 .5285 .0103 .0020 .0000 .0333

(b) ideal normal iid disturbances — 929 coefficgeint 514 regressions witi™ < 1
default OLS .1831 .1879  .0036  .8079

ccl .0166 .0123 .0078  .1455 .0109 .0021 .0000  .0333
cc2 .0122 .0055 .0073 .1119 .0102 .0015 .0000 .0208
cc3 .0084 .0036 .0003 .0792 .0096 .0017 .0000 .0131

(c) non-normal heteroskedastic disturbances — @8%. i 324 regressions with binary y

default OLS .0848 1359  .0000  .7557
ccl .0156 .0100 .0000 .1025 .0099 .0031 .0000 .0339

(d) non-normal heteroskedastic disturbances — 488 i 235 reg. witi™ < 1 & binary y
default OLS .1181 1561  .0000 .7557

ccl .0150 .0093 .0000 .1025 .0102 .0029 .0000 .0339
cc2 .0115 .0042 .0000 .0345 .0097 .0026 .0000 .0230
cc3 .0082 .0028 .0000 .0226 .0093 .0026 .0000 .0229
p=.8

(e) ideal normal iid disturbances — 1897 coeffitsen 835 regressions

default OLS .2059 .2564  .0000  .9044
ccl .0170 .0234 .0001 .5326 .0106  .0027 .0000  .0365

() ideal normal iid disturbances — 929 coefficeirt 514 regressions wifli® < 1
default OLS .3491 .2813  .0000  .9044

ccl .0169 .0125 .0042  .1519 .0112 .0028 .0000  .0365
cc2 .0118 .0056 .0030 .1141 .0100 .0022 .0000 .0231
cc3 .0078 .0038 .0002 .0792 .0090 .0025 .0000 .0135

(g) non-normal heteroskedastic disturbances — @8¥. m 324 regressions with binary y

default OLS .2080 .2356  .0000 .8921
ccl .0152 .0106  .0000 .0985 .0096 .0045 .0000 .0378

(h) non-normal heteroskedastic disturbances — 488 i 235 reg. witi™ < 1 & binary y
default OLS .2804 2539  .0000 .8921

ccl .0150 .0102 .0000 .0985 .0102 .0041 .0000 .0378
cc2 .0110 .0052 .0000 .0335 .0094 .0036 .0000 .0276
cc3 .0074 .0035 .0000 .0270 .0086 .0036  .0000 .0278

Notes: p = share of error variance accounted for by clustedom effect; otherwise, as in
Tables | and 1.
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V. Conclusion

Extensions of the OLS methods described aboveneQLS settings easily suggest
themselves. In a GLS setting, the GLS transforiprinciple renders the error term iid. In
practice, however, in my sample papers authorsrgéyetill use a clustered covariance
estimate. The GLS transformed independent vasatideld be used to calculate leverage for
the regression and make appropriate correctiamsnaximum likelihood estimation, such as
that of probit or logit models, authors, again, @@ty use the robust or clustered covariance
estimate’® The scores of these generalized linear modeldeasinterpreted as including
error terms which, with a suitable GLS transforme, iedd. Thus, leverage can be calculated,
using the GLS transformed independent variabled béas and edf corrections made. Unlike
OLS, however, in both of these examples “leverage’ function of the estimated GLS
covariance matrix, and hence a function not mevétye regressors, but also of the realized
disturbances. The sampling variation in the cdiwedtself could easily undo any benefits
gained by the attempt to understand how regresieign favours certain residuals.

Such extensions also miss the implications ofdiselts presented above. The
argument presented in this paper is twofold: fitsit an adjustment designed to mimic the
moment properties of the chi-squared distributilmsely approximates the actual distribution
of the test statistic with ideal iid normal erroasd second, that the estimated distribution
improves the accuracy of inference in the presefc®n-ideal errors. The tables, with both
iild normal and non-iid non-normal disturbancesakelsh that there is some validity to both
statements. The first-step, however, does not t@bse calculated using an approximation
formula. It can be calculated by simulation, deawing enough ideal iid disturbances to get
an estimate of the empirical distribution of thsttetatistic. In the spirit of the second-step,
this distribution can then be used to evaluataéigeession test statistic, based as it is upon
whatever error process is actually at work in thtad In the case of OLS regressions, the bias
and edf corrections are easily calculated and nesshcostly than simulating the distribution
of the test statistic. In other applications,nfapproximation formula is unknown or
potentially less reliable, simulation based upaaldlisturbances as modelled by the baseline

specification can provide insight into its distritmun in less ideal circumstances.

¥Implicitly suggesting that the likelihood may besasipecified and their estimation procedures quasi-
maximum likelihood.
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Appendix: Proofs

| provide proofs of the results stated in (11) &4). | make repeated use of two
well-known matrix results, which for convenientegednce | enumerate. First, regarding the
Rayleigh quotient:

() maxinZ
z 7Bz

= A" BHABH), minZaZ = yin(BEABH)
z Z

wherez is a non-zero vectoA a symmetric matrix3 a symmetric positive definite matrix,
andB” the symmetric root d8. Second, for matrices andB:

(p2) the non-zero eigenvaluesAB = the non-zero eigenvaluesiBA,

whenAB andBA are both defined. | remind the reader that leyeia bounded by % h;; >
0, som; = 1 —h;; is bounded by & m; <1. From (13) earlier, it can be seen that simila
bounds apply to the eigenvaluesHhfy andMyq. In discussing hc2/hc3 and cc2/cc3, | take it
as given tham™> 0 andi™"(M gg) > 0, respectively, so the measures can actually b
implemented.

Beginning with (11a) and (11b), substituting in #in (10) using (8), and dropping
the finite sample adjustmentg we see that the means are given by the Rayleigtiants:

cc2 1! cc3
7

_ Z'{ mi}Z _Zz _Z'{m?l}z _ Z’{ M gg}z _7z _ Z'{M ;;}Z
@D ppy= ; v Mhee = s T o He T oo —
Zz Zz Zz Zz Zz

From (pl) we see that the maxima and minima ofetleegial the maximum and minimum
eigenvalues of the diagonal and block diagonalicedrin the numerators, proving (11a) and
(11b). The inequalities on these means follow ftbmbounds om; andi(M y4¢) described
above.

To prove (11c) | once again appeal to the Raylgigitient, noting that it implies that
the maximum and minimum eigenvaluesfoéqual the maximum and minimumefe
across all vectore such that'e = 1. Lete denote the vector with a 1 in tH®position and Os
everywhere else. Since the diagonalldfy{} equals {m;}, one can see tha'{Myg}e =
e'{ m;} &, which shows that the maximum and minimungéM g} e must lie weakly outside
the bounds given by the maximum and minimuna’fin;}e. Strict inequality comes when
{Mgg} contains non-zero within-cluster off-diagonal lents in the rows associated with the
maximum and minimum values of;. To see this, let haver in the [" position,n in the ['
position (both within the same cluster), and Ospwbere else. With? +n? =1 (asee = 1),
we have d/dn = -n/t. We then have f{) = €{Myg} e = ©°m; + 2mmy +nmy, with f'(n) = 2(-
nmy + myt - myn/t +qmy), f(0) =my; and £(0) = 2ny. From this it follows that ifny; is not
zero there is a small deviation away from 1 (withn moving above or below zero) such that
f(n) is greater or less than;. This indicates that the bounds &M g} e lie strictly outside
those fore{ m;} eif there are any non-zero within cluster elementthe rows associated with
the maximum and minimum valuesm§,*’ establishing (11c).

In the proof the elements must be within clusterabse Mg} is block diagonal, so that sswith t in the
i position and in the |" position (belonging to another cluster), produ¢gs= e{Mgygle= °m; + nzmj, with
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For (11d), | begin by determining the rank of thatrix in each quadratic form:

@2) rank(BhCI)—rank( M{Z }MJS min(rank(M),rank({zf’i})) <n-k

rank(B ) = rank( M{z,,Z\ 1M j =rank(MR ,) £ min(n_,n—k)

where | have used the fact that ravij(= n-k and re-expressea,{;z'v g} as RyR'x, whereRy

is an n x gmatrix composed of column vectors wily in each column in the position
associated with the observations for the clusteo@ated with the number of the column, and
Os everywhere els®y is at most of rankgqandM of rank n-k. However, whex= ccl the

row sum ofMR .;; always equals a column of 0s, as (allowiifig) to denote andgtl column
vector of 1s):

@3 MR i (n,) =Mz, = (I (n) = X(X'X) " XYX(X'X) "w) =0

ccl

As the columns are co-linear, the rank of the pev@ino more thansf1. Hence, raniBcc1)
< min(n-1,n-k). The columns d¥IR .c; andMR (¢35, however, need not be collinédrand so
the rank upper bound f@c, andBpcz is min(n,n-k).

Effective degrees of freedom equal®vy, wherep, = traceB,) andvy =
2*traceBxB,). Letl; denote the'l non-zero eigenvalue &, There are r such eigenvalues,
where r is the rank d,. Writing the edf in terms of these eigenvaluesharee:

It is readily apparent that this attains a minimatue of 1 when there is only one non-zero
eigenvalue. Maximizing with respectiowe derive the first order condition:

@) A =2A?/2Ai al

which is satisfied wheh = A for all i, at which point edf=r. We conclude that gdfanges
between 1 and r, which, using the rank bounds nabbede, establishes the results reported in
(11d). The examples later in the text show howgehgounds can be attained.

With regards to (14), | begin by noting that (adplies:

ZAJ (zl/]j _tracdB,) _ 4 "

@6) edf _(_1 > ac o, H
2/]2 AmaX(B )(Zr:/lJ A (Bx) A (BX) A (Bx)

where ™ is the minimum possible bias afV,w, as established earlier in (11a) and (11b).
All that remains, then, is to establish boundsBH(B,). As seen in (9) earlier, eaBh is of

f'(n) = 2(nm; +nmy), f'(0) = 0 and f = 2(im; + my), i.e. a local maximum or minimum &% is the maximal or
minimal diagonal element.

8And in fact are not in some of the practical casesmined in Section IV above.
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the formMAM , whereA andM are both positive semi-definite. The non-zer@piglues of
this matrix satishMAMu ; = 4;u;, whereu; is the eigenvector associated with Using the
fact thatM is idempotent, we pre-multiply by and see tha#l 4iu; = MMAMu ; = MAMu
= Aui. With 4;> 0, this impliesMu; = u;, so we pre-multiply by’ and see that'Aju; =
ui'MAMu ; = ui’Au;, yielding the result; = ui’Aui/ u'u;. A; can be expressed as a Rayleigh
quotient ofA, and hence is bounded by the maximum eigenvalée of

In the case of hch is the diagonal matrikz:}/(Zz) , with maximum eigenvalues
given by the maximum values of the diagonal elesieApplying the formulas far and z;
as defined earlier in (8) we have:

2 r ! -1 2 ! ! -1
@) Z'x,i :W(X X) 'Xin'qx,i)fli(x X)"w
(Z2) w'(X'X)"w

wheremy; = 1,m;””, orm;* asx = hcl, hc2 or he3, respectively, aqds the " row of X.
Following (pl), (a7) attains its maximum valuels thaximum eigenvalue of
(XX)AXX) i 5 (XX) HXX) 2 = (XX) im0 (XX) ™ Applying (p2), we see that
this matrix has only one non-zero eigenvalue, etpail *x;'(X"X) ™ x; = my;?hi. Asm; =1 -
hi;, the maximum of this, considering in each casesttpression for i, is attained when
h, =h™. Applying our knowledge ofz"" from (11a), then gives the hc results reported in
(14).

In the case of cci, we seek the maximum eigenvaltit®e block diagonal matri&
={z,,Z,,}/(Z2) . Again, applying earlier formulas we have eadtkldiagonal element
given by:

Z,gZyg M X (XX) ' (X'X) XM

(88) ng' X9 — ' ' —
(Z2) w'(X'X)"w

whereM,4 = 1, Mgg'l/z, or Mgg'1 asx = ccl, cc2 or cc3, respectively, ands the matrix
composed of the rows of associated with cluster g. . Applying (p2), walize there is
only one non-zero eigenvalue, given by

W'(X'X) XM, M X
w'(X'X) ™ w

(X'X)'w

@)

Using (pl), we see that the maximum value of thigiven by the maximum eigenvalue of
(X'X) g/ M x oM x Xg(X'X) ™. Applying (p2) once again, we see that this egjtt& maximum
eigenvalue oM gXg(X'X) XgMxg = MyxgHgMxg. ASI™(AB) < A"A)I™(B) if A is
symmetric positive semi-definite aBdsymmetric positive definite (Roy 1954), we sed tha
A" My gHggM xg) <A™ (M x,g)zflmaYHgg)- Asi™(Mgg™) = (1-A"(Hgg) ™, applying our

min

knowledge ofz, " from (11b) then gives the cc results reported #).(1
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