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Appendix A:  Characteristics of the Model’s Equilibrium 
This appendix provides the mathematical details behind the assertions made in Section I. 

All of the proofs are couched in terms of a two sector economy (goods and services).  Their 

extension to the more complex N-sector case is straightforward. 

(a):  Regardless of the cumulative distribution function describing the paired draw (zG, zS), 

1)/)(/( −>= iiii zdzd ππξ  [equation (4) in the paper]. 

Let Gj|i(y|z) describe the conditional probability zj < y given that zi = z, i.e. the cumulative 

distribution function of zj given zi, and let gj|i describe the corresponding conditional density and 

gi the marginal density of zi.  Then, with ω = wi /wj 
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where, in cases where the domains of gi and Gj|i do not include all positive real numbers I extend 

them, for the purpose of the integration, by defining gi and gj|i as equal to zero in the extended 

region (and similarly for other proofs below).  Note that gi(zi)gj|i(ωzi,|zi) = gi,j(zi,ωzi), the joint 

distribution of zi and zj at the point (zi,ωzi).   Assuming this joint distribution has mass along a 

positive measure of the ray with slope ω from the origin, we have dN/dω > 0 and dπi /dω > 0,1 

and it follows that 
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As noted in the text, this result is fairly obvious.   

For particular distributional forms, it is easy to calculate closed form solutions for ξ 

illustrating the properties imposed by different distributional assumptions.  Thus, for the case 

where the zi are independent draws from fréchet distributions with cumulative distribution 

functions Gi(zi) = exp(-(zi/λi)
-θ), we have: 
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1If it does not, we are at a value of ω where neither πi nor iz  vary with ω, so the derivative of one with 

respect to the other is not well defined. 
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where I have used the substitution x = zi
-θC in the second line.  Consequently:  

θππξ /1)/)(/()a5( −== iiii zdzd  

Thus, for independent draws from fréchet distributions ξ is a constant, a function of the 

distribution’s dispersion parameter.  

 It is not difficult to find distributions with different characteristics.  Thus, if zG and zS are 

independent draws from exponential distributions with densities λiexp(-ziλi), allowing 

ijji ww λλω /~ =  we have: 
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so ξ once varies between 0 and -1 as ω goes from 0 to ∞ or, equivalently, πi goes from 0 to 1.  In 

this case ξ is a function of sectoral size alone.  The log-normal distribution provides an 

interesting third example.  With independent productivity draws with ln means µi and (for 

simplicity) common standard deviation σ, we have:2 

                                                 
2Proven by applying corollary 2.2b and theorem 2.6 of J. Aitchison and J.A.C. Brown, The LogNormal 

Distribution with special reference to its uses in economics, Cambridge: Cambridge University Press, 1957. 
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where N() is the cumulative standard normal and ω~  = ln(wi/wj) + µi - µj.  Holding constant the 

size of each sector (i.e. σω /~ ), as σ goes from 0 to ∞ ξ goes from 0 to -1 in both sectors. 

 (b):  Equality of mean sectoral wages with different distributions.  

In the case of independent draws from fréchet distributions, equilibrium wages per worker 

equalize across sectors.  Using (a4) earlier:   
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which is independent of i.  This is not a general characteristic of this type of model.  For example, 

for the case wher e the productivities are independent draws from the exponential distribution, we 

use (a6) and see: 
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(c):  Independence of the paired productivity draws and η(z) = zg(z)/G(z), the elasticity of the 

distribution function generating the draws, declining in z are, together, sufficient 

conditions for 0/ <ii dzd π  and ξ < 0, i.e. for average labour efficacy to be declining in a 

sector's share of total employment. 

 Equation (a1) above gives the formulas for
iz and πi for a general joint distribution 

function gi,j(zi,zj) determining the paired productivity draws (zi,zj).  (a1) also notes that these are 

functions of the endogenous variable ω = wi/wj.  From this we see that: 
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where N(ω) is defined earlier in (a1).  As dN/dω divided by dπi/dω equals dN/dπi, which is the 

quality of the marginal worker, we see intuitively that the condition we are looking for is that the 

quality of the marginal worker entering the industry is less than that of the average worker.  

Substituting using the formulas in (a1) we have 
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and where I have redefined the terms in [] as the difference between the expectation of two 

random variables with cumulative density functions Fa(x) and Fb(x).  As is well known, if Fa(x) > 

Fb(x) for all x, then E(a) < E(b).3   Note that Fa(x) is the same as Fb(x) except for the weighting 

function η.  If zi and zj are independent, then η becomes 
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which is the elasticity of the distribution function.  If this is non-increasing in its argument, then 

Fa(x) > Fb(x) for all x4 and E(a) < E(b).  Strict inequality follows if η is strictly decreasing.5   

Note that this is a sufficient but not necessary condition, as E(a) < E(b) does not imply Fa(x) > 

Fb(x) for all x. 
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5Thus, for uniform distributions on [a,b], where η is a constant if a = 0, 0/ =ii dzd π for some values of ω. 
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 Figure A1 provides some intuition as to 

why independence alone is not sufficient to 

guarantee ξ < 0 and an additional condition on 

zg(z)/G(z), such as that specified above, is 

needed.  Individual talent is distributed across 

the (zi,zj) space depicted in the diagram.  The 

ray zj = wizi/wj determines the division between 

sectors, with workers with (zi,zj) draws above 

the ray working in industry j and those with 

draws below the ray working in sector i.  

Initially, workers below ray OAwork in 

industry i, but as wi/wj rises from ω0 to ω1  

workers in the region encompassed by the rays OA  and OB shift to the sector.  The average 

quality of pre-existing sector i workers depends on the zi weighted integral of the joint density in 

the area below OA  , while the quality of marginal workers depends upon the zi weighted integral 

of the joint density in the area between OA  and OB .  Even if zi and zj are independent, it is 

possible for the marginal worker to be of higher quality if the ratio [Gj(ω1zi)- Gj(ω0zi)]/ Gj(ω0zi) 

(the relative cumulative density for the zj draws) rises with zi in some regions, i.e. more relative 

weight is placed on higher values of zi in the marginal worker integral.  Thinking of ω1/ω0 as the 

same relative change applied for each zi, avoiding this everywhere amounts to an elasticity 

restriction on Gj. The condition is sufficient, but not necessary, because it is possible for 

[Gj(ω1zi)- Gj(ω0zi)]/ Gj(ω0zi) to be rising in some areas and falling elsewhere and yet, depending 

upon the distribution of zi, for the average quality of the marginal worker to still be lower than 

that of pre-existing workers. 

(d):  The range of prices supported by the supply curve in the standard Cobb-Douglas model with 

unequal sectoral factor intensities (footnote in the introduction). 

 For the standard Cobb-Douglas model with homogenous labour and production functions 
ii

iiii LKAQ αα −= 1
, the first order conditions for the optimal use of labour and capital imply: 

 1)/(   and   )/()1()1d( −=−= ii

iiiiiiiiii LKAPrLKAPw αα αα  

where w is the wage and r the rental.  From this it follows that 



 6 

 
ii

ii

ii

ii
i

i

i

i

i

A

rwr

A

LKr
P 

r

w

L

K iii

α
αα

αα
α ααα −−− −==
−

=
111 )1/()/()/(

   so  ,
1

)2d(  

Consequently: 

 ji

i

j

jji

iij

i

j

j

i

A

A

r

w

A

A

P

P
j

iij

αα
ααα
ααα

α

ααα

==
−
−








= −

−−

 if 
)1/(

)1/(
)3d(

1

1

 

The last equality simply notes that if the factor income shares are identical, the standard model 

yields a horizontal Baumol supply curve.   

Focusing on the first equality in (d3), we see that, holding constant the productivities Ai 

and Aj, the equilibrium variation in relative prices depends upon the equilibrium variation in w/r.  

The question is what range of variation in w/r is possible given constant total factor productivities 

and a constant endowment of capital and labour.  Let sector j be the sector with the higher capital 

intensity (αj > αi), and note that in equilibrium it must be the case that Kj/Lj > K/L > Ki/Li, i.e. the 

economy-wide capital-labour ratio must lie between the two sectoral capital-labour ratios.  From 

(d2) this implies 
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Since the economy-wide capital labour ratio is the weighted average of the sectoral capital labour 

ratios (with weights equal to their employment shares), as w/r moves to its lower bound the 

output of sector i goes to 0, while as it reaches its upper bound the output of sector j goes to zero.  

Consequently, as w/r moves from its lower to its upper bound the relative output Qi/Qj goes from 

0 to ∞.  This traces out the supply curve.  Combining (d3) and (d4) we see that the relative price 

change associated with this movement is: 
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In the BLS KLEMS 1987 to 2010 database the average annual capital income shares of value 

added for aggregate goods and services are αG = .35 and αS = .32, respectively.  Plugging these 

numbers into (d5), we get a variation in the ln relative price of goods to services from the bottom 

to the top of the supply curve of .03*ln(119/104) = .0040, i.e. 4/10ths of one percent.  For all 
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intents and purposes, this is a horizontal supply curve. Thus, operating as if goods and services 

share the same factor income share provides a very close approximation to the actual relative 

supply curve generated by their differing factor intensities. 

 
Appendix B:  Labour Quality Measures for the BLS KLEMS 

 As noted in the text, the BLS KLEMS total factor productivity estimates do not 

differentiate by worker type.  For its aggregate private business and private non-farm business 

TFP measures, however, the BLS constructs measures of differentiated labour input using March 

Supplement Current Population Survey (CPS) data to construct measures of differentiated labour 

input and then adjusting the hours totals to match Current Employment Statistics (CES).  I use a 

similar methodology to construct differentiated labour measures for the 60 private sectors in the 

KLEMS and the government sector. 

 The first difficulty one encounters lies in matching the industrial sector definitions of the 

CPS and the KLEMS.  From 2003 to 2010, the CPS data uses aggregations of the categories in 

the 2002 NAICS (North American Industry Classification System), which are a close match to 

the NAICS categories used in the 60 sector KLEMS.  The only exceptions are NAICS 523 

(securities, commodity contracts and investments) and 525 (funds, trusts and other financial 

vehicles), which are separate in the KLEMS but combined in the CPS data.  I assume that the 

distribution of workers by type within the two sectors is the same as in the combined CPS sector.  

Pre-2003 data, however, are based upon the 1972, 1980 and 1987 SIC (Standard Industrial 

Classification) codes.  While the differences between one SIC and another are minor, and easily 

reconciled by renumbering and combining a few detailed sub-categories, the differences between 

the SIC and the NAICS appear more substantial. 

 The BLS and I address the issue of changing sectoral definitions in labour statistics using 

2000-2002 CPS data.  In the 2000, 2001 and 2002 iterations of the CPS, industry and occupation 

data were collected using both the old and new classification systems.  In its published labour 

statistics, the BLS uses the cross-distribution of employment between old industry and new 

industry in the dual coded data to convert the old data series to the new industrial definitions 

(http://www.bls.gov/cps/constio198399.htm).  I follow a similar methodology, except that I use 

the cross distribution from old system industry x occupation categories to new industry.  

However, there are hundreds of industry and occupation categories, so not every industry x 

occupation cross-classification present in the 1987-2002 data appears in the 2000-2002 sample.  

For those missing observations, I use higher levels of aggregation, using first the old system 
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industry x detailed (46 categories) occupation cross-classification, then the old system industry x 

major (14 categories) occupation cross-classification, and, when all else fails, for a handful of 

observations, simply the old system industry to new system industry distribution. 

 The second problem that arises is that of zeros.  I cross-classify workers by 61 sectors (60 

private plus public administration), 2 sexes, 6 age groups, 5 educational categories, and 24 years.6  

Given the limited samples in the CPS, this inevitably creates lots of zeros.  Zeros are a serious 

problem, as total factor productivity calculations involve calculating ln changes.  I address this 

issue by using iterative proportional fitting7 to estimate the full five-dimensional cross 

distribution using sub-dimensional totals.  Iterative proportional fitting fits a model that assumes 

independence at higher dimensions.  To illustrate with the three dimensional example where X is 

cross classified by i, j and k, one can use the observed Xij, Xjk, and Xik totals to produce estimates 

ijkX̂  which are ln-linearly related to implicit interaction factors λij, λjk, and λik, with no 

interactions at the i x j x k level.  By using sub-dimensional totals to estimate the full array, one 

eliminates the zeros in the detailed cross-classifications.  For my estimates of wages per hour, 

where the samples are particularly sparse as the data are not available for all workers, I use all of 

the two dimensional cross-classifications to estimate the five dimensional array.  I calculate total 

hours and total income for each two-dimensional sub-array, iteratively proportional fit the entire 

five dimensional array, and then take ratios of cells to calculate wages per hour.  For my worker 

and hours data, the samples are larger.  I begin by defining 12 major sector aggregations (the 

principal sectors, with manufacturing sub-divided into durables and non-durables) for the 61 

detailed sectors.  I then iteratively proportionally fit the five dimensional array using every 

available three dimensional array based upon major industry classification and every two 

dimensional array based upon detailed industry classification.8  The use of major industry 

aggregations allows me to include interactions at higher dimensions without introducing zeros 

into cells, while the detailed industry two dimensional arrays retain the information on cross-

distributions at that level. 

                                                 
6The age categories are 15-24, 25-34, 35-44, 45-54, 55-64, and 65+; the educational categories are less than 

high school, completed high school, some college, completed college, and more than college; the years are 1987-
2010. 

7See Agresti, Alan.  Categorical Data Analysis.  New York:  John Wiley and Sons, 1990. 
 

8Thus, allowing D to denote detailed industry, M major industry, S sex, A age, E education and Y year, I 
use the sub-dimensional arrays DS, DA, DE, DY, MSA, MSE, MSY, MAE, MAY, MEY, SAE, SAY, SEY, and 
AEY.  In iterative proportional fitting, one can aggregate a dimension into sub-categories.  As long as that sub-
category contains additional cross-distributions, it is not redundant (i.e. MS is redundant given DS, but MSA is not) 
and provides an additional interaction factor. 
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 To summarize my procedure, I begin by using the 2000-2002 CPS SIC industry x 

occupation to NAICS industry population distribution to convert 1987-2002 industry data to 2002 

NAICS definitions.  I then use the CPS March Supplement individual weights and aggregate to 

the 60 KLEMS sectors plus the government sector.  I treat as a "worker" anyone who reports 

more than zero hrs of work in the previous week.  I then adjust the population totals and hours of 

work totals by year x industry to match the BLS estimates of workers and hours by year x 

industry9 and iteratively proportionally fit workers and total hours to calculate workers and hours 

by industry x sex x age x education x year.  For wages per hour, I take all individuals for which 

the BLS is able to calculate a wage per hour (based upon the direct report or data on "usual 

hours"), aggregate into 61 sectors using the CPS weights, adjust hours totals by industry using the 

BLS CES data, and then iteratively proportionally fit total earnings and hours, taking the ratio of 

the two five dimensional arrays to calculate wages per hour.  The combination of hours and 

wages per hour then allow me to calculate sub-factor income shares by industry (jLiΘ in the paper) 

and the data on hours per worker allow me to calculate Tornqvist measures of the growth of 

labour quality by sector which are comparable to those the BLS calculates for the aggregate 

private sector: 
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where j
itH  denotes total hours of worker type j in industry i at time t and itH  denotes total hours 

in sector i at time t.  The measures are added to the growth of labour input and subtracted from 

the growth of total factor productivity in the BLS data.  The data on the distribution of the 

population by worker characteristic then allow me to calculate weighted and unweighted 

Tornqvist measures of the changing shares of the labour force: 
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where j
itπ  denotes the share of the aggregate working population of type j in industry i at time t 

and itπ  denotes the share of the aggregate working population in sector i at time t.  These 

                                                 
9The KLEMS TFP database only contains indices of hours.  I take levels of hours and workers from the 

Industry Employment and Hours Data Tables of the BLS labour productivity database.  These are not strictly 
consistent with the hours indices of the BLS KLEMS total factor productivity database.  However, I do not use these 
totals to change the measure of the growth of total labour input (hours) in the KLEMS database calculations, but only 
to calculate distributions of workers by characteristic, as shown shortly in (B1) and (B2).  
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measures are used as the instrumented dependent variable in Section II.  Since everything is 

benchmarked to the BLS totals, theitH and itπ  measures are simply the original BLS data and are 

consistent with the totals of j
itH  and j

itπ  across j.  The two measures in (B2) are different, but 

highly correlated, with a correlation coefficient of .917. 

 

Appendix C:  Existing Micro-Data Estimates (McLaughlin & Bils 2001) 
 McLaughlin & Bils (2001, tables 4 and 5) using PSID data from 1979 to 1992 report that 

the average ln wage of industry leavers relative to stayers in industries with contracting 

employment shares and industry entrants relative to stayers (continuing workers) in industries 

with expanding employment shares is about -16 or -17 percent without adjustment for worker 

characteristics and -6 or -7 percent with adjustment for worker characteristics.  These estimates 

might lead one to conclude that comparative advantage is indeed aligned with absolute 

advantage, but that Roy worker efficacy effects are rather small.  In this appendix I show that the 

data examined by McLaughlin & Bils have little to do with the expansion and contraction of 

industries and are mostly related to a form of “churning” whereby workers simultaneously exit 

and enter industries. 

 I work with the annual 1971-199710 records of the PSID, using both the low income 

sample and the census based representative sample, focusing on the industry of employment of 

household heads.  I use two industrial classifications: (a) 9 aggregate sectors, a measure which 

should eliminate spurious industry shifts brought about by minor errors and misclassifications; 

(b) 24 sectors, which is the greatest detail I can achieve while keeping industry definitions 

relatively consistent across the years, and is similar to the detail used by McLaughlin & Bils.11   

For a given industry i, examined in period t, workers are classified as stayers if they were in the 

same industry i in period t-1, entrants if they were in a different industry j in period t-1, and 

leavers if they worked in industry i in period t-1 but work in industry j in period t.  To be in the 

sample a worker needs to both report industry of employment and allow the calculation of ln  

                                                 
10Prior to 1971 industry is not reported; after 1997 the PSID moves to a biannual framework and hence the 

calculation of movers and stayers is not comparable.   
119 sectors:  1 agriculture, forestry & fishing; 2 mining; 3 manufacturing; 4 construction; 5 transport, 

communications & utilities; 6 wholesale & retail trade; 7 finance, insurance and real estate; 8 other services (except 
gov't); and 9 government & armed forces.  24 sectors:  1 agriculture, forestry & fishing; 2 mining; 3 metal industries; 
4 machinery (inc. electrical); 5 motor vehicles & other transportation equipment; 6 food & kindred products (inc. 
tobacco); 7 textile mill products, apparel & other fabricated textile products, plus shoes; 8 paper & allied products; 9 
chemical & allied products, petroleum & coal products, and rubber & misc. plastic products; 10 printing & 
publishing; 11 other manufacturing; 12 construction; 13 transportation; 14 communication; 15 public utilities; 16 
wholesale trade; 17 retail trade; 18 finance, insurance and real estate; 19 business services; 20 personal services; 21 
health; 22 education; 23 other services (except gov’t); 24 government & armed forces. 
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Table C-1:  Entry, Exit and Sectoral Growth in the PSID (observations are industry x year) 

 Representative & Low Income Sample Representative Sample Alone 

 7 Private Sectors 22 Private Sectors 7 Private Sectors 22 Private Sectors 

 Rates ln Rates Rates ln Rates Rates ln Rates Rates ln Rates 

Correlation Between Entry and Exit Rates 

General 
(p-value) 

.675 
(.000) 

.717 
(.000) 

.842 
(.000) 

.759 
(.000) 

565 
(.000) 

.577 
(.000) 

.747 
(.000) 

.664 
(.000) 

Partial 
(p-value) 

.282 
(.000) 

.167 
(.025) 

.302 
(.000) 

.128 
(.002) 

.224 
(.002) 

.118 
(.114) 

.229 
(.000) 

.106 
(.012) 

N 182 181 572 571 182 180 572 564 

Regression on Change in Industry Employment Share (with industry & year dummies) 

E
nt

ry
 ∆πit 

(s.e.) 
N 

.165 
(.099) 
182 

1.07 
(.506) 
182 

.217 
(.085) 
572 

1.11 
(.410) 
572 

.175 
(.132) 
182 

.828 
(.711) 
182 

.237 
(.111) 
572 

.751 
(.544) 
567 

E
xi

t 
E

xi
t ∆πit 

(s.e.) 
N 

.061 
(.099) 
182 

.094 
(.507) 
181 

.025 
(.081) 
572 

-.077 
(.415) 
571 

-.125 
(.125) 
182 

-.545 
(.706) 
181 

.017 
(.105) 
572 

-.245 
(.569) 
569 

   Notes:  N = number of industry x year observations.  An occasional observation is lost when taking the ln of a zero 
entry or exit rate.  Partial correlation = correlation of residuals from regression on industry and year dummies.  
Regressions = regression of entry or exit rates on industry & year dummies and the change in the share of non-
agricultural employment (∆πit). 

 

wage per hour in consecutive years.  This eliminates unknown industry and workers who were 

completely out of employment in one year or the other.  Every worker who is an entrant in 

industry i in period t is a leaver from some industry j in period t-1.  Although I use all 9 or 24 

sectors to categorize workers, I focus on entry/exit rates in the 7 or 22 private non-agricultural 

sectors.12  Overall I have about 61500 individual x year observations (a little over half in 

representative sample households) in these industries, with about 15% of these being entrants or 

leavers according to the broad sectoral definitions and 23% according to the narrow sectoral  

definitions.  

 I begin by reporting, in the top panel of Table C-1, the correlation between the sample 

fractions, at the industry x year level, of entrants (in entrants and stayers) and leavers (in leavers 

and stayers).  As shown, there is a very strong positive correlation between the fraction of the 

                                                 
12I relate these rates to the BLS Current Employment Statistics based historical SIC measures of 

employment, which exclude agriculture, while the focus on private sector activity is consistent with the measures 
examined earlier in the paper. 
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sample that enters an industry between period t-1 and t and the fraction that leaves the same 

industry between the same two periods.  This holds true whether the measures are in levels or in 

lns, using both the low income and representative sample or just the representative sample alone.  

The partial correlation of the entry and exit rates, after removing industry and year fixed effects, 

is weaker but still generally highly significant.  In contrast, in the bottom panel of the table I 

report the regression of the industry entry and exit rates on the change in the sector’s share of 

non-agricultural employment, with industry and year fixed effects.  As shown, the regression 

coefficients are almost universally insignificant, the only exception being entry rates for the 22 

industry measure, and this result largely disappears when the sample is restricted to PSID 

representative households alone. 

 Table C-2 follows the McLaughlin & Bils methodology, examining the average relative 

ln wages of different groups.  Without adjustment for worker characteristics, the wages of 

entrants or leavers are found to be between 11 and 19 percent lower than those of stayers (first 

four columns).  With adjustment for worker characteristics (last four columns), these mean 

differences are greatly reduced and, in many cases, rendered statistically insignificant.  Moreover, 

in all cases the vast majority of the estimates that underlie the calculation of these averages are 

insignificant.  Thus, for example, while the relative wages of entrants to stayers in expanding 

sectors are on average 3.1 percent (7 sectors) or 2.9 percent (22 sectors) lower among the 

representative PSID sample, only about 1/10th of the industry x year differences that underlie the 

calculation of these means are, by themselves, statistically significant at the 5% level.  Unlike 

McLaughlin & Bils, Table C-2 reports relative wages in both expanding and contracting sectors 

for all measures.  As shown, while the relative wages of entrants are lower than stayers in 

expanding industries, the difference is, generally, even larger in contracting industries.  

Similarly, while the relative wages of leavers are lower than stayers in contracting industries, the 

difference is generally almost as large in expanding industries.  These results completely 

undermine the interpretation of these wage differences as reflecting the relative efficacy of 

entrants in expanding industries and leavers in contracting industries. 

 In sum, changes of industrial sector in the PSID appear to reflect a form of “churning”, 

whereby both entry and exit simultaneously occur within industries.  It is not hard to motivate 

such movement, either with models of creative destruction within sectors or with a more general 

idiosyncratic destruction of existing jobs and appearance of new opportunities.  Workers with 

systematically lower human capital appear to play a disproportionate role in this churning, as 

adjustment for observable characteristics eliminates most of the relative wage differences.  While  
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Table C-2:  Mean Wage Differences Between Industry Entrants or Leavers vs. Stayers in the PSID 

 Average ln Wages Differences Adjusted for Worker Characteristics 

 7 Private Sectors 22 Private Sectors 7 Private Sectors 22 Private Sectors 

 πit ↑ πit ↓ πit ↑ πit ↓ πit ↑ πit ↓ πit ↑ πit ↓ 

Entrants vs. Stayers (representative & low income PSID sample) 

Mean Dif. 
(s.e.) 

Significant/N 

-.141 
(.014) 
27/90 

-.189 
(.014) 
44/92 

-.128 
(.010) 
65/241 

-.161 
(.010) 
84/331 

-.031 
(.009) 
12/90 

-.065 
(.010) 
25/92 

-.033 
(.007) 
25/241 

-.050 
(.007) 
41/331 

Leavers vs. Stayers (representative & low income PSID sample) 

Mean Dif. 
(s.e.) 

Significant/N 

-.144 
(.014) 
25/92 

-.164 
(.015) 
32/89 

-.128 
(.011) 
53/243 

-.134 
(.010) 
68/328 

-.012 
(.010) 
7/92 

-.032 
(.011) 
6/89 

-.008 
(.008) 
21/243 

-.019 
(.007) 
12/328 

Entrants vs. Stayers (representative PSID sample) 

Mean Dif. 
(s.e.) 

Significant/N 

-.140 
(.019) 
18/90 

-.154 
(.019) 
34/91 

-.118 
(.014) 
34/241 

-.117 
(.014) 
59/326 

-.031 
(.012) 
10/90 

-.059 
(.014) 
20/91 

-.029 
(.009) 
22/241 

-.022 
(.010) 
35/326 

Leavers vs. Stayers (representative PSID sample) 

Mean Dif. 
(s.e.) 

Significant/N 

-.120 
(.019) 
11/92 

-.162 
(.019) 
28/89 

-.108 
(.015) 
29/242 

-.112 
(.014) 
50/327 

-.007 
(.014) 
7/92 

-.045 
(.013) 
9/89 

-.004 
(.010) 
21/242 

-.008 
(.011) 
28/327 

   Notes:  Observations are industry x year measures of wage differences.   Adjusted for Worker Characteristics = the 
coefficients on entrant (or leaver) yearly dummies in industry level regressions with controls for sex, age, age2, race 
(African-American), education (8 categories) and year (dummies), with random effects for PSID individuals.  πit ↑ 
(πit ↓): observations in industries whose share of total employment increased (decreased) in that year.  Mean Dif: 
mean year x industry difference for observations with πit ↑ or πit ↓; s.e. = standard error of the mean difference; N = 
number of industry x year observations; Significant = number of such observations which are, individually, 
significantly different from 0 at the 5% level. 

 

these facts are interesting in and of themselves, they provide little insight into the impact of the 

expansion or contraction of industry employment shares on average worker efficacy. 


