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Abstract

We introduce a new point process, the dynamic contagion process, by generalising the Hawkes
process and the Cox process with shot noise intensity. Our process includes both self-excited and
externally excited jumps, which could be used to model the dynamic contagion impact from endoge-
nous and exogenous factors of the underlying system. We have systematically analysed the theoretical
distributional properties of this new process, based on the piecewise deterministic Markov process
theory developed by Davis (1984), and the extension of the martingale methodology used by Dassios
and Jang (2003). The analytic expressions of the Laplace transform of the intensity process and
the probability generating function of the point process have been derived. An explicit example of
specified jumps with exponential distributions is also given. The object of this study is to produce
a general mathematical framework for modelling the dependence structure of arriving events with
dynamic contagion, which has the potential to be applicable to a variety of problems in economics,
finance and insurance. We provide an application of this process to credit risk, and the simulation
algorithm for further industrial implementation and statistical analysis.
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1 Introduction

The behavior of default contagion through business links is more obvious during the recent financial
crisis, especially after the collapse of Lehman Brothers in September 2008. More recently, the Greek
debt crisis in 2010 has the contagion impact spreading to EU members, such as Portugal, Spain, and
even to United Kingdom. A point process with its intensity dependent on the point process itself could
provide a more effective model to capture this contagion phenomenon. However, only a few examples
exist in the literature. These include the pioneering work of Jarrow and Yu (2001) and the more recent
one Errais, Giesecke and Goldberg (2009). Jarrow and Yu (2001) pointed out that, a model with the
default intensity only depending linearly on a set of macroeconomic variables is not sufficient to explain
the phenomena of clustering defaults around an economic recession; therefore, they introduced the con-
cept of credit contagion, whereby upon default of a given name, the contagion jump shocks will impact
immediately to the counterpart’s default intensity. Furthermore, Errais, Giesecke and Goldberg (2009)
found that, by using the self-excited Hawkes process, originally introduced by Hawkes (1971) (see also
Hawkes and Oakes (1974), Oakes (1975) ), the clustering of defaults observed from real financial data
could be modelled more consistently. On the other hand, there are plenty of papers, including Duffie
and Gârleanu (2001), and Longstaff and Rajan (2008), suggesting that, the default intensity could be
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impacted exogenously by multiple common factors, such as idiosyncratic, sector specific or market-wide
events.

In this paper, we combine both ideas and introduce a new point process, the dynamic contagion
process, by generalising the Hawkes process (with exponential decay) and the Cox process with shot
noise intensity (with exponential decay) used by Dassios and Jang (2003), to include both the self-excited
and externally excited jumps. We use it to model the dynamic contagion impact from both endogenous
(self-excited) and exogenous (externally excited) factors of the underlying system. This approach also
extends the idea of default contagion by Jarrow and Yu (2001), to have a richer set of parameters, capable
to capture some key aspects of the behavior of arriving events, such as the frequency, magnitude of the
impact, and the decay with time.

To define and characterise the dynamic contagion process mathematically, we give a cluster process
representation, implement the piecewise deterministic Markov process theory developed by Davis (1984)
(and see also Davis (1993)), and then extend the martingale methodology introduced by Dassios and
Jang (2003) (and see also Dassios and Jang (2005)), to obtain the distributional properties for this new
process. This process is analysed by deriving the first and second moments, and then more importantly
the Laplace transform of the intensity process and the probability generating function of the point pro-
cess, respectively. Furthermore, an explicit example of jumps with exponential distributions, and an
application in credit risk are also given. The simulation algorithm is provided for further industrial im-
plementation and statistical analysis.

The paper is organised as follows. Section 2 gives the mathematical definition of the process.
Section 3 as the main section, analyses and derives some key distributional properties. The joint Laplace
transform - probability generating function of the intensity process and the point process is derived in
Section 3.1. The Laplace transform of the intensity process and the probability generating function of
the point process are obtained in Section 3.2 and Section 3.3, respectively; the Hawkes process with
exponential decay is included as an important special case and a brief summary of its distributional
properties is also given. In Section 3.4, we obtain the first and second moments of the intensity process
and the point process. We also provide an explicit example of jumps with exponential distributions in
Section 4, an application to credit risk and the algorithm for simulating the process in Section 5. Section
6 concludes this paper and suggests some further potential applications.

2 Definition

The dynamic contagion process includes both the self-excited jumps, which are distributed according to
the branching structure of a Hawkes process with exponential fertility rate, and the externally excited
jumps, which are distributed according to a particular shot noise Cox process.

Daley and Vere-Jones (2003) (see also Hawkes and Oakes (1974)) gives a cluster process represen-
tation for a general Hawkes process, now we extend it to represent the mathematical definition for our
process in Definition 2.1 as a cluster point process, additionally characterised by the stochastic intensity
representation and infinitesimal generator.

Definition 2.1. The dynamic contagion process is a cluster point process D on R+: The number of
points in the time interval (0, t] is defined by Nt = ND(0,t]. The cluster centers of D are the particular
points called immigrants, the other points are called offspring.They have the following structure:

(a) The immigrants are distributed according to a Cox process A with points {Dm}m=1,2,... ∈ (0,∞) and
shot noise stochastic intensity process

a + (λ0 − a) e−δt +
∑

i≥1

Yie
−δ(t−T

(1)
i )I

{
T

(1)
i ≤ t

}
,

where

• a ≥ 0 is the constant reversion level,
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• λ0 > 0 is a constant as the initial value of the stochastic intensity process (defined later by
(1)),

• δ > 0 is the constant rate of exponential decay,
• {Yi}i=1,2,... is a sequence of independent identical distributed positive (externally excited) jumps

with distribution function H(y), y > 0, at the corresponding random times
{

T
(1)
i

}
i=1,2,...

fol-

lowing a homogeneous Poisson process Mt with constant intensity ρ > 0,
• I is the indicator function.

(b) Each immigrant Dm generates a cluster Cm = CDm , which is the random set formed by the points
of generations 0, 1, 2, ... with the following branching structure:

the immigrant Dm is said to be of generation 0. Given generations 0, 1, ..., j in Cm, each point
T (2) ∈ Cm of generation j generates a Cox process on (T (2),∞) of offspring of generation j + 1
with the stochastic intensity Ze−δ(·−T (2)) where Z is a positive (self-excited) jump at time T (2) with
distribution function G(z), z > 0, independent of the points of generation 0, 1, ..., j.

(c) Given the immigrants, the centered clusters

Cm −Dm =
{

T (2) −Dm : T (2) ∈ Cm

}
, Dm ∈ A,

are independent identical distributed, and independent of A.

(d) D consists of the union of all clusters, i.e.

D =
⋃

m=1,2,...

CDm
.

Therefore, the dynamic contagion process can also be defined as a point process Nt ≡
{

T
(2)
k

}
k≥1

on R+, with the non-negative Ft−stochastic intensity process λt following the piecewise deterministic
dynamics with positive jumps, i.e.

λt = a + (λ0 − a) e−δt +
∑

i≥1

Yie
−δ(t−T

(1)
i )I

{
T

(1)
i ≤ t

}
+

∑

k≥1

Zke−δ(t−T
(2)
k )I

{
T

(2)
k ≤ t

}
, (1)

where

• {Ft}t≥0 is a history of the process Nt, with respect to which {λt}t≥0 is adapted,

• {Zk}k=1,2,... is a sequence of independent identical distributed positive (self-excited) jumps with

distribution function G(z), z > 0, at the corresponding random times
{

T
(2)
k

}
k=1,2,...

,

• the sequences {Yi}i=1,2,...,
{

T
(1)
i

}
i=1,2,...

and {Zk}k=1,2,... are assumed to be independent of each

other.

From the definition above and because of the exponential decay, we can see that λt is a Markov
process. In particular, it decreases with rate δ (λt − a), and incurs additive upward (externally excited)
jumps that have distribution function H with rate ρ, and additive upward (self-excited) jumps that have
distribution function G with rate λt. Moreover, when jumps of the latter type occur, Nt increases by 1.
Hence, (Nt, λt) is also a Markov process.

With the aid of piecewise deterministic Markov process theory and using the results in Davis (1984),
the infinitesimal generator of the dynamic contagion process (λt, Nt, t) acting on a function f(λ, n, t)
within its domain Ω(A) is given by

Af(λ, n, t) =
∂f

∂t
− δ (λ− a)

∂f

∂λ
+ ρ

(∫ ∞

0

f(λ + y, n, t)dH(y)− f(λ, n, t)
)

+λ

(∫ ∞

0

f(λ + z, n + 1, t)dG(z)− f(λ, n, t)
)

, (2)
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where Ω(A) is the domain of the generator A such that f(λ, n, t) is differentiable with respect to λ, t for
all λ, n and t, and

∣∣∣∣
∫ ∞

0

f(λ + y, n, t)dH(y)− f(λ, n, t)
∣∣∣∣ < ∞,

∣∣∣∣
∫ ∞

0

f(λ + z, n + 1, t)dG(z)− f(λ, n, t)
∣∣∣∣ < ∞.

Remark 2.1. We could alternatively define the dynamic contagion process as a special case (without
the diffusion terms) of the general affine point processes by Duffie, Filipović and Schachermayer (2003),
with the infinitesimal generator specified by (2).

Remark 2.2. Note that, the dynamic contagion process is a point process Nt such that

P
{
Nt+∆t −Nt = 1

∣∣Nt

}
= λt∆t + o(∆t),

P
{
Nt+∆t −Nt > 1

∣∣Nt

}
= o(∆t),

where ∆t is a sufficient small time interval and λt is given by (1).

Remark 2.3. Note that, the intensity process λt is always above the level a, i.e. λt ∈ E = [a,∞) for
any time t.

Remark 2.4. An economic interpretation from the perspective of the cluster process representation for
the dynamic contagion process is the following: For a certain company, there are two classes of economic
shocks: the primary shocks directly to this company and the common market-wide shocks. The arrivals
of these primary shocks to this company are modelled by the generation 0 of the dynamic contagion
process, i.e. the point process A (as described by (a)) with the intensity process modelled based on
the external economic evolution including a stream of market-wide shocks: a shock at time T

(1)
i has the

magnitude of impact Yi with distribution H and decays exponentially with rate δ. In the aftermath of
each primary shock to this company, it could further trigger a series of subsidiary internal turbulences
in this company following the branching structure (as described by (b)): similarly a turbulence at time
T

(2)
k has the magnitude of impact Zk with distribution G and decays exponentially with rate δ.

To give an intuitive picture of this process from the perspective of the stochastic intensity repre-
sentation, we present Figure 1 for illustrating how the externally excited jumps {Yi}i=1,2,... (marked by
single arrow ↓) and self-excited jumps {Zk}k=1,2,... (marked by double arrow l) in the intensity process
λt interact with its dynamic contagion point process Nt.
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Figure 1: Externally Excited and Self-excited Jumps in Intensity Process λt of Dynamic Contagion Process Nt

Now, in this more general framework of the dynamic contagion process, the classic Cox process with
shot noise intensity (with exponential decay), used by Dassios and Jang (2003) for pricing catastrophe
reinsurance and derivatives, can be recovered, by setting reversion level a = 0 and eliminating the self-
excited jumps {Zk}k=1,2,...; the Hawkes process (with exponential decay), used by Errais, Giesecke and
Goldberg (2009) for modelling the portfolio credit risk, can be recovered, by setting the intensity ρ = 0
of the externally excited jumps {Yi}i=1,2,....

3 Dynamic Contagion Process

3.1 Joint Laplace Transform - Probability Generating Function of (λT , NT )

We derive the joint Laplace transform - probability generating function of (λT , NT ) for a fixed time T in
Theorem 3.1 below, which leads to the key results of this paper, Laplace transform of λT and probability
generating function of NT in Section 3.2 and Section 3.3, respectively.

Theorem 3.1. For the constants 0 ≤ θ ≤ 1, v ≥ 0 and time 0 ≤ t ≤ T , the conditional joint Laplace
transform - probability generating function for the process λt (defined in Definition 2.1) and the point
process Nt is given by

E
[
θ(NT−Nt)e−vλT

∣∣∣∣Ft

]
= e−

(
c(T )−c(t)

)
e−B(t)λt , (3)

where B(t) is determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
(
B(t)

)− 1 = 0, (4)

ĝ(u) =:
∫ ∞

0

e−uzdG(z),

with boundary condition B(T ) = v; and c(t) is determined by

c(t) = aδ

∫ t

0

B(s)ds + ρ

∫ t

0

[
1− ĥ

(
B(s)

)]
ds, (5)
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ĥ(u) =:
∫ ∞

0

e−uydH(y).

Proof. Consider a function f(λ, n, t) with an exponential affine form

f(λ, n, t) = ec(t)An(t)e−B(t)λ,

substitute into Af = 0 in (2); we then have

A′(t)
A(t)

n +
(
−B′(t) + δB(t) + A(t)ĝ(B(t))− 1

)
λ +

(
c′(t) + ρĥ(B(t))− ρ− aδB(t)

)
= 0. (6)

Since this equation holds for any n and λ, it is equivalent to solving three separated equations




A′(t)
A(t) = 0 (7.1)
−B′(t) + δB(t) + A(t)ĝ(B(t))− 1 = 0 (7.2)
c′(t) + ρĥ(B(t))− ρ− aδB(t) = 0 (7.3)

. (7)

We have A(t) = θ immediately from (7.1); and substitute into (7.2) by adding the boundary condition
B(T ) = v, we have the ODE as (4); then, by (7.3) with boundary condition c(0) = 0, the integration as
(5) follows. Since ec(t)θNte−B(t)λt is a F−martingale by the property of the infinitesimal generator, we
have

E
[
ec(T )θNT e−B(T )λT

∣∣∣∣Ft

]
= ec(t)θNte−B(t)λt . (8)

Then, by the boundary condition B(T ) = v, (3) follows.

3.2 Laplace Transform of λT

Theorem 3.2. The conditional Laplace transform λT given λ0 at time t = 0, under the condition
δ > µ1G

, is given by

E
[
e−vλT

∣∣λ0

]
= exp

(
−

∫ v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

)
× exp

(−G−1
v,1(T )λ0

)
, (9)

where
µ1G

=:
∫ ∞

0

zdG(z),

Gv,1(L) =:
∫ v

L

du

δu + ĝ(u)− 1
1.

Proof. By setting t = 0 and θ = 1 in Theorem 3.1, we have

E
[
e−vλT

∣∣F0

]
= e−c(T )e−B(0)λ0 , (10)

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + ĝ
(
B(t)

)− 1 = 0,

with boundary condition B(T ) = v. It can be solved, under the condition δ > µ1G
, by the following

steps:

1. Set B(t) = L(T − t) and τ = T − t, it is equivalent to the initial value problem

dL(τ)
dτ

= 1− δL(τ)− ĝ(L(τ)) =: f1(L), (11)

with initial condition L(0) = v; we define the right-hand side as the function f1(L).

1It will be clear in the proof later that Gv,1(L) is a one by one function of L and hence its inverse function G−1
v,1(T ) exsits.
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2. Under the condition δ > µ1G
, we have

∂f1(L)
∂L

=
∫ ∞

0

ye−LzdG(z)− δ ≤
∫ ∞

0

zdG(z)− δ = µ1G
− δ < 0, for L ≥ 0,

then, f1(L) < 0 for L > 0, since f1(0) = 0.

3. Rewrite (11) as
dL

δL + ĝ(L)− 1
= −dτ,

by integrating both sides from time 0 to τ with initial condition L(0) = v > 0, we have
∫ v

L

du

δu + ĝ(u)− 1
= τ,

where L ≥ 0, we define the function on left hand side as

Gv,1(L) =:
∫ v

L

du

δu + ĝ(u)− 1
,

then,
Gv,1(L) = τ,

obviously L → v when τ → 0; by convergence test,

lim
u→0

1
u
1

δu+ĝ(u)−1

= δ + lim
u→0

ĝ(u)− 1
u

= δ − µ1G
> 0,

and we know that
∫ v

0
1
udu = ∞, then,

∫ v

0

du

δu + ĝ(u)− 1
= ∞,

hence, L → 0 when τ → ∞; the integrand is positive in the domain u ∈ (0, v] and also for
L ≤ v, Gv,1(L) is a strictly decreasing function; therefore, Gv,1(L) : (0, v] → [0,∞) is a well defined
(monotone) function, and its inverse function G−1

v,1(τ) : [0,∞) → (0, v] exists.

4. The unique solution is found by

L(τ) = G−1
v,1(τ), or, B(t) = G−1

v,1(T − t).

5. B(0) is obtained,
B(0) = L(T ) = G−1

v,1(T ).

Then, c(T ) is determined by

c(T ) = aδ

∫ T

0

G−1
v,1(τ)dτ + ρ

∫ T

0

[
1− ĥ

(G−1
v,1(τ)

)]
dτ, (12)

by the change of variable G−1
v,1(τ) = u, we have τ = Gv,1(u), and

∫ T

0

[
1− ĥ

(G−1
v,1(τ)

)]
dτ =

∫ G−1
v,1(T )

G−1
v,1(0)

[1− ĥ(u)]
∂τ

∂u
du =

∫ v

G−1
v,1(T )

1− ĥ(u)
δu + ĝ(u)− 1

du,

similarly, ∫ T

0

G−1
v,1(τ)dτ =

∫ v

G−1
v,1(T )

u

δu + ĝ(u)− 1
du.

Finally, substitute B(0) and c(T ) into (10), and Theorem 3.2 follows.

7



Theorem 3.3. If δ > µ1G
, then the Laplace transform of the asymptotic distribution of λT is given by

lim
T→∞

E
[
e−vλT

∣∣λ0

]
= exp

(
−

∫ v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

)
, (13)

and this is also the Laplace transform of the stationary distribution of the process {λt}t≥0.

Proof. Let T → ∞ in Theorem 3.2, then G−1
v,1(T ) → 0 and the Laplace transform of the asymptotic

distribution follows immediately as given by (13).
To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz (1986) (and see also Costa

(1990)), we need to prove that, for any function f within its domain Ω(A), we have
∫

E

Af(λ)Π(λ)dλ = 0, (14)

where E = [a,∞) is the domain for λ, Af(λ) is the infinitesimal generator of the dynamic contagion
process acting on f(λ), i.e.

Af(λ) = −δ (λ− a)
df(λ)

dλ
+ ρ

(∫ ∞

0

f(λ + y)dH(y)− f(λ)
)

+ λ

(∫ ∞

0

f(λ + z)dG(z)− f(λ)
)

, (15)

and Π(λ) is the density function of λ with the Laplace transform given by (13).

We will now try to solve equation (14). For the first term of (14), we have
∫

E

[
−δ(λ− a)

df(λ)
dλ

]
Π(λ)dλ

= −δ

∫ ∞

a

(λ− a)f ′(λ)Π(λ)dλ = −δ

∫ ∞

λ=a

f ′(λ)
∫ λ

u=a

[
(u− a)Π(u)

]′dudλ

= −δ

∫ ∞

u=a

∫ ∞

λ=u

f ′(λ)
[
(u− a)Π(u)

]′dλdu = δ

∫ ∞

a

f(u)
[
(u− a)Π(u)

]′du,

or, ∫

E

[
−δ(λ− a)

df(λ)
dλ

]
Π(λ)dλ = δ

∫ ∞

a

f(λ)
[
(λ− a)Π(λ)

]′dλ,

since for a density function Π, obviously we have

lim
y→a

Π(y)(y − a) = 0.

For the second term of (14), by change variable λ + y = s (y ≤ s) in the double integral,
∫

E

[
ρ

∫ ∞

0

f(λ + y)dH(y)
]

Π(λ)dλ

= ρ

∫ ∞

λ=a

Π(λ)
∫ ∞

y=0

f(λ + y)dH(y)dλ = ρ

∫ ∞

s=a

f(s)
∫ s

y=0

Π(s− y)dH(y)ds,

or, ∫

E

[
ρ

∫ ∞

0

f(λ + y)dH(y)
]

Π(λ)dλ = ρ

∫ ∞

λ=a

f(λ)
∫ λ

y=0

Π(λ− y)dH(y)dλ.

For the third term of (14), by change variable λ + z = s (z ≤ s) in the double integral,
∫

E

[
λ

(∫ ∞

0

f(λ + z)dG(z)
)]

Π(λ)dλ

=
∫ ∞

λ=a

λΠ(λ)
∫ ∞

z=0

f(λ + z)dG(z)dλ =
∫ ∞

s=a

f(s)
∫ s

z=0

(s− z)Π(s− z)dG(z)ds,
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or, ∫

E

[
λ

(∫ ∞

0

f(λ + z)dG(z)
)]

Π(λ)dλ =
∫ ∞

λ=a

f(λ)
∫ λ

z=0

(λ− z)Π(λ− z)dG(z)dλ.

Therefore,
∫

E

Af(λ)Π(λ)dλ

=
∫ ∞

a

f(λ)
[
δ

d
dλ

(
(λ− a)Π(λ)

)
+ ρ

(∫ λ

0

Π(λ− y)dH(y)−Π(λ)

)

+

(∫ λ

0

(λ− z)Π(λ− z)dG(z)− λΠ(λ)

)]
dλ.

Set ∫

E

Af(λ)Π(λ)dλ = 0,

for any function f(λ) ∈ Ω(A), then,

δ
d
dλ

(
(λ− a)Π(λ)

)
+ ρ

(∫ λ

0

Π(λ− y)dH(y)−Π(λ)

)
+

(∫ λ

0

(λ− z)Π(λ− z)dG(z)− λΠ(λ)

)
= 0,

by the Laplace transform

Π̂(v) =: L{Π(λ)} =
∫

E

Π(λ)e−vλdλ,

we have

L
{

d
dλ

(
(λ− a)Π(λ)

)}
= vL{(λ− a)Π(λ)} = v

(
−dΠ̂(v)

dv
− aΠ̂(v)

)
,

L
{∫ λ

0

Π(λ− y)dH(y)

}
= L

{∫ λ

0

Π(λ− y)h(y)dy

}
= Π̂(v)ĥ(v),

L
{∫ λ

0

(λ− z)Π(λ− z)dG(z)

}
= L

{∫ λ

0

(λ− z)Π(λ− z)g(z)dz

}

= L{λΠ(λ)} ĝ(v) = −dΠ̂(v)
dv

ĝ(v),

then,

δv

(
−dΠ̂(v)

dv
− aΠ̂(v)

)
+ ρ[ĥ(v)− 1]Π̂(v) +

(
1− ĝ(v)

)
dΠ̂(v)

dv
= 0,

or, (
1− δv − ĝ(v)

)
dΠ̂(v)

dv
+

(
− aδv + ρ[ĥ(v)− 1]

)
Π̂(v) = 0,

which is an ODE with the solution given by

Π̂(v) = Π̂(0) exp

(
−

∫ v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

)
.

Note that, given the initial condition

Π̂(0) =
∫

E

Π(λ)dλ = 1,
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we have the unique solution

Π̂(v) = exp

(
−

∫ v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

)
,

which is exactly given by (13).

Since Π is the unique solution to (14), we have the stationarity for the intensity process {λt}t≥0.

Alternative approaches for proving the stationarity for the special case of the Hawkes process and
other related processes can be found in Hawkes and Oakes (1974), Brémaud and Massoulié (1996) and
Massoulié (1998).

The self-excited Hawkes process was introduced theoretically by Hawkes (1971), and applied to risk
theory by Chavez-Demoulin, Davison and Mc Neil (2005), and then only very recently applied to credit
risk for modelling the default contagion by Errais, Giesecke and Goldberg (2009). It can be considered
as an important special case under this more general framework of dynamic contagion process, all of
the counterpart results can be obtained, by eliminating the impact from the externally excited jumps,
i.e. setting its intensity ρ = 0 in the corresponding results. Here we give the Laplace transform of
the stationary distribution of the intensity process λt for the Hawkes process with exponential decay
in Corollary 3.1. The probability generating function of the Hawkes point process Nt will be given by
Corollary 3.2 of Section 3.3.

Corollary 3.1. If δ > µ1G
, then the Laplace transform of the asymptotic distribution of λT for the

Hawkes process with exponential decay is given by

lim
T→∞

E
[
e−vλT

∣∣λ0

]
= exp

(
−aδ

∫ v

0

u

δu + ĝ(u)− 1
du

)
, (16)

and this is also the Laplace transform of the stationary distribution of the process {λt}t≥0.

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 3.3, the result follows
immediately.

The limit of the log-Laplace transform for Hawkes processes with a general fertility rate can be
found in Bordenave and Torrisi (2007) and Stabile and Torrisi (2010).

3.3 Probability Generating Function of NT

Theorem 3.4. The conditional probability generating function of NT given λ0 and N0 = 0 at time t = 0,
under the condition δ > µ1G

, is given by

E
[
θNT

∣∣λ0

]
= exp

(
−

∫ G−1
0,θ(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

)
× exp

(
−G−1

0,θ(T )λ0

)
,

where

G0,θ(L) =:
∫ L

0

du

1− δu− θĝ(u)
, 0 ≤ θ < 1. (17)

Proof. By setting t = 0, v = 0 and assuming N0 = 0 in Theorem 3.1, we have

E
[
θNT

∣∣F0

]
= e−c(T )e−B(0)λ0 ,

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
(
B(t)

)− 1 = 0,

with boundary condition B(T ) = 0. It can be solved, under the condition δ > µ1G
, by the following

steps:
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1. Set B(t) = L(T − t) and τ = T − t,

dL(τ)
dτ

= 1− δL(τ)− θĝ(L(τ)) =: f2(L), 0 ≤ θ < 1, (18)

with initial condition L(0) = 0; we define the right-hand side as the function f2(L).

2. There is only one positive singular point, denoted by v∗ > 0, obtained by solving the equation
f2(L) = 0. This is because, for the case 0 < θ < 1, the equation f2(L) = 0 is equivalent to

ĝ(u) =
1
θ
(1− δu), 0 < θ < 1,

note that ĝ(·) is a convex function, then it is clear that there is only one positive solution to this
equation; for the case θ = 0, there is only one singular point v∗ = 1

δ > 0; and for both cases,

v∗ =
1
δ

(
1− θĝ(v∗)

)
≥ 1− θ

δ
> 0; (19)

then, we have f2(L) > 0 for 0 ≤ L < v∗ and f2(L) < 0 for L > v∗.

3. Rewrite (18) as
dL

1− δL− θĝ(L)
= dτ,

and integrate, ∫ L

0

du

1− δu− θĝ(u)
= τ,

where 0 ≤ L < v∗, we define the function on left-hand side as

G0,θ(L) =:
∫ L

0

du

1− δu− θĝ(u)
(20)

then,
G0,θ(L) = τ,

as L → 0 when τ → 0, and L → v∗ when τ →∞; the integrand is positive in the domain u ∈ [0, v∗)
and L ≥ 0, G0,θ(L) is a strictly increasing function; therefore, G0,θ(L) : [0, v∗) → [0,∞) is a well
defined function, and its inverse function G−1

0,θ(τ) : [0,∞) → [0, v∗) exists.

4. The unique solution is found by

L(τ) = G−1
0,θ(τ), or, B(t) = G−1

0,θ(T − t).

5. B(0) is obtained,
B(0) = L(T ) = G−1

0,θ(T ).

Then, c(T ) is determined by

c(T ) = aδ

∫ T

0

G−1
0,θ(τ)dτ + ρ

∫ T

0

[
1− ĥ

(
G−1

0,θ(τ)
)]

dτ, (21)

where, by the change of variable,

∫ T

0

G−1
0,θ(τ)dτ =

∫ G−1
0,θ(T )

0

u

1− δu− θĝ(u)
du,

∫ T

0

[
1− ĥ

(
G−1

0,θ(τ)
)]

dτ =
∫ G−1

0,θ(T )

0

1− ĥ(u)
1− δu− θĝ(u)

du.

Finally, substitute B(0) and c(T ) into (10), and the result follows.
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Corollary 3.2. The conditional probability generating function of NT of the Hawkes process with expo-
nential decay, under the condition δ > µ1G

given λ0 and N0 = 0, is given by

E
[
θNT

∣∣λ0

]
= exp

(
−aδ

∫ G−1
0,θ(T )

0

u

1− δu− θĝ(u)
du

)
× e−G

−1
0,θ(T )λ0 .

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 3.4, the result follows
immediately.

The probability P{NT = 0
∣∣λ0} can be derived by simply letting θ = 0 in the probability generating

function of NT in Theorem 3.4.

Corollary 3.3. The conditional probability of no jump given λ0 and N0 = 0, under the condition δ > µ1G
,

is given by

P
{
NT = 0

∣∣λ0

}
= exp

(
−

∫ uT

0

aδu + ρ[1− ĥ(u)]
1− δu

du

)
× e−uT λ0 , (22)

where
uT =:

1
δ

(
1− e−δT

)
.

Proof. Since

P
{
NT = 0

∣∣λ0

}
= E

[
θNT

∣∣λ0

] ∣∣∣∣
θ=0

,

and

G0,0(L) =: G0,θ(L)
∣∣∣∣
θ=0

=
∫ L

0

1
1− δu

du = −1
δ

ln (1− δL) ,

then, the inverse function

uT = G−1
0,0(T ) =

1
δ

(
1− e−δT

)
,

by letting θ = 0 in Theorem 3.4, (22) follows.

Remark 3.1. Note that, since there is no jump in the point process Nt from time t = 0 to t = T , the
conditional probability P

{
NT = 0

∣∣λ0

}
is not dependent on the distribution of the self-excited jumps,

and the result is similar to the non-self-excited case by Dassios and Jang (2003).

Theoretically, the probability P
{
NT = n

∣∣λ0

}
for any natural number n ∈ N can be derived by

P
{
NT = n

∣∣λ0

}
=

∂n

∂θn
E

[
θNT

∣∣λ0

]
,

here, we derive the result of P
{
NT = 1

∣∣λ0

}
in Corollary 3.4, for instance.

Corollary 3.4. The conditional probability of exactly one jump given λ0 and N0 = 0, under the condition
δ > µ1G

, is given by

P
{
NT = 1

∣∣λ0

}
= P

{
NT = 0

∣∣λ0

}×
{ [

a
(
1− e−δT

)
+ ρ[1− ĥ(uT )] + λ0e

−δT
]

×
∫ uT

0

ĝ(u)
(1− δu)2

du−
∫ uT

0

ĝ(u)
(1− δu)2

(
aδu + ρ[1− ĥ(u)]

)
du

}
,

where
uT =

1
δ

(
1− e−δT

)
.
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Proof. To simplify the notation, we define

ϕ(u, θ) =:
aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

.

Then,

P
{
NT = 1

∣∣λ0

}
=

∂

∂θ
exp

[
−

∫ G−1
0,θ(T )

0

ϕ(u, θ)du− G−1
0,θ(T )λ0

] ∣∣∣∣
θ=0

= P
{
NT = 0

∣∣λ0

}× (−1)

[∫ G−1
0,θ(T )

0

∂ϕ(u, θ)
∂θ

du +
(
ϕ

(
G−1

0,θ(T ), θ
)

+ λ0

) ∂

∂θ
G−1

0,θ(T )

] ∣∣∣∣
θ=0

= P
{
NT = 0

∣∣λ0

}× (−1)
[∫ uT

0

∂ϕ(u, θ)
∂θ

∣∣∣∣
θ=0

du +
(
ϕ (uT , 0) + λ0

) ∂

∂θ
G−1

0,θ(T )
∣∣∣∣
θ=0

]
,

where

∂ϕ(u, θ)
∂θ

∣∣∣∣
θ=0

=
ĝ(u)

(
aδu + ρ[1− ĥ(u)]

)

(
1− δu− θĝ(u)

)2

∣∣∣∣
θ=0

=
ĝ(u)

(
aδu + ρ[1− ĥ(u)]

)

(1− δu)2
,

ϕ(uT , 0) = eδT
(
a

(
1− e−δT

)
+ ρ(1− ĥ(uT ))

)
,

and ∂
∂θG−1

0,θ(T )
∣∣∣∣
θ=0

can be derived as below. Since L(T ; θ) = G−1
0,θ(T ), we have the non-linear ODE of

L(τ ; θ),
L(τ ; θ)′ = 1− δL(τ ; θ)− θĝ(L(τ ; θ)), 0 ≤ θ < 1,

with the initial condition L(0; θ) = 0, differentiate both sides with respect to θ,

L(1)(τ ; θ)′ = −δL(1)(τ ; θ)−
[
ĝ(L(τ ; θ)) + θĝ(1)(L(τ ; θ))

]
, 0 ≤ θ < 1,

where
L(1)(τ ; θ) =

∂

∂θ
L(τ ; θ); ĝ(1)(L(τ ; θ)) =

∂

∂θ
ĝ(L(τ ; θ)),

by setting θ = 0, we have the ODE for L(1)(τ ; 0),

L(1)(τ ; 0)′ = −δL(1)(τ ; 0)− ĝ(L(τ ; 0)),

with the initial condition L(1)(0; 0) = 0, given L(τ ; 0) = 1
δ

(
1− e−δτ

)
, then, L(1)(τ ; 0) can be uniquely

solved,
∂

∂θ
G−1

0,θ(T )
∣∣∣∣
θ=0

= L(1)(τ ; 0) = −e−δT

∫ T

0

ĝ

(
1− e−δs

δ

)
eδsds < 0;

equivalently, by the change of variable u = 1−e−δs

δ ,

∫ T

0

ĝ

(
1− e−δs

δ

)
eδsds =

∫ uT

0

ĝ(u)
(1− δu)2

du.

Similarly to the point process Nt, the probability generating function of the size of a cluster generated
by a point of any generation can also be derived as follows.

Theorem 3.5. For the size of a cluster generated by a point of any generation, Ñt, under the condition
δ > µ1G

, we have

E
[
θÑT

∣∣λ̃0

]
= e−G

−1
0,θ(T )λ̃0 , (23)

E
[
θÑ∞

∣∣λ̃0

]
= e−v∗λ̃0 ,
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where G0,θ(·) and v∗ are given by (17) and (19), respectively, and λ̃0 is the value of one of the associated
externally excited or self-excited jumps. In particular, for a cluster generated by a point of generation 0,
we have

E
[
θÑ∞

]
= ĥ(v∗);

for a cluster generated by a point of subsequent generations, we have

E
[
θÑ∞

]
=

1− δv∗

θ
. (24)

Proof. For the size of a cluster generated by a point of any generation, the infinitesimal generator of the
process (λ̃t, Ñt, t) acting on a function f(λ̃, ñ, t) within its domain Ω(A) is given by

Af(λ̃, ñ, t) =
∂f

∂t
− δλ̃

∂f

∂λ̃
+ λ̃

(∫ ∞

0

f(λ̃ + z, ñ + 1, t)dG(z)− f(λ̃, ñ, t)
)

,

as it is just a special case of Theorem 3.1 and Theorem 3.4, we can derive (23) immediately. By the proof
of Theorem 3.4, we know that

lim
T→∞

G−1
0,θ(T ) = v∗,

then,
E

[
θÑ∞

∣∣λ̃0

]
= lim

T→∞
E

[
θÑT

∣∣λ̃0

]
= lim

T→∞
e−G

−1
0,θ(T )λ̃0 = e−v∗λ̃0 .

In particular, for a cluster generated by a point of generation 0, we have

E[θÑ∞ ] = E
[
E

[
θÑ∞

∣∣λ̃0

]]
= E[e−v∗λ̃0 ] = E[e−v∗Y1 ] = ĥ(v∗);

for a cluster generated by a point of subsequent generations, we have

E
[
θÑ∞

]
= E

[
e−v∗Z1

]
= ĝ(v∗) =

1− δv∗

θ
.

Remark 3.2. The size of a cluster generated by a point of any generation actually is a pure Hawkes
process with the reversion level a = 0, a special case of dynamic contagion process. As time t →∞, the
distribution of λ̃t converges to the distribution of a degenerate random variable at 0.

Remark 3.3. Alternatively, (24) can be derived from the perspective of the cluster process definition
given by Definition 2.1, and we observe that each subcluster has the same distribution E(θ) = E

[
θÑ∞

]
as

its ancestor (for a cluster generated by a point of subsequent generation 1, 2, ...), and hence E(θ) satisfies
the functional equation

E(θ) = ĝ

(
1− θE(θ)

δ

)

which also leads to (24).

We also provide an explicit example for Theorem 3.5 in Theorem 4.3 by assuming the jumps with
the exponential distributions.

3.4 Moments of λt and Nt

Any moment of λt and Nt can be obtained by differentiating the Laplace transform of λt and the
probability generating function of Nt with respect to v and θ, and then setting v and θ equal to zero,
respectively. Alternatively, we can obtain the first and second moments of λt and Nt directly by solving
ODEs, and also this method is slightly easier to generalise to derive higher moments beyond the condition
δ > µ1G

, therefore we will proceed with this method here.
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Theorem 3.6. The conditional expectation of the process λt given λ0 at time t = 0, is given by

E
[
λt

∣∣λ0

]
=

µ1H
ρ + aδ

δ − µ1G

+
(

λ0 − µ1H
ρ + aδ

δ − µ1G

)
e−(δ−µ1G)t, for δ 6= µ1G

, (25)

E
[
λt

∣∣λ0

]
= λ0 + (µ1H

ρ + aδ) t, for δ = µ1G
, (26)

where
µ1H

=:
∫ ∞

0

ydH(y).

Proof. By the martingale property of the infinitesimal generator as given in (2), we have a F−martingale

f(λt, Nt, t)− f(λ0, N0, 0)−
∫ t

0

A(λs, Ns, s)ds

for f ∈ Ω(A). Now, by particularly setting f(λ, n, t) = λ, we have

Aλ = −(δ − µ1G
)λ + µ1H

ρ + aδ,

then, λt − λ0 −
∫ t

0
Aλsds is a F−martingale, and we have

E
[
λt −

∫ t

0

Aλsds

∣∣∣∣λ0

]
= λ0.

Hence,

E
[
λt

∣∣λ0

]
= λ0 + E

[∫ t

0

Aλsds

∣∣∣∣λ0

]
= λ0 − (δ − µ1G

)
∫ t

0

E
[
λs

∣∣λ0

]
ds + (µ1H

ρ + aδ) t,

by differentiating with respect to t, we obtain the non-linear inhomogeneous ODE,

du(t)
dt

= − (δ − µ1G
) u(t) + µ1H

ρ + aδ,

where u(t) = E
[
λt

∣∣λ0

]
, with the initial condition u(0) = λ0. This ODE has the solution given by (25)

and (26).

Lemma 3.1. The second moment of the process λt given λ0 at time t = 0, is given by

E
[
λ2

t

∣∣λ0

]
= λ2

0e
−2(δ−µ1G

)t

+
2(µ1H

ρ + aδ) + µ2G

δ − µ1G

(
λ0 − µ1H

ρ + aδ

δ − µ1G

) (
e−(δ−µ1G

)t − e−2(δ−µ1G
)t
)

+
(

(2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

2(δ − µ1G
)2

+
µ2H

ρ

2(δ − µ1G
)

) (
1− e−2(δ−µ1G

)t
)

, for δ 6= µ1G
, (27)

E
[
λ2

t

∣∣λ0

]
= λ2

0 +
(

2(µ1H
ρ + aδ) + µ2G

)(
λ0t +

1
2

(µ1H
ρ + aδ) t2

)
+ µ2H

ρt, for δ = µ1G
, (28)

where
µ2H

=:
∫ ∞

0

y2dH(y); µ2G
=:

∫ ∞

0

z2dG(z).

Proof. By setting f(λ, n, t) = λ2 in (2), we have

Aλ2 = −2(δ − µ1G
)λ2 +

(
2(µ1H

ρ + aδ) + µ2G

)
λ + µ2H

ρ.

Since λ2
t − λ2

0 −
∫ t

0
Aλ2

sds is a F−martingale by the martingale property of the generator, we have

E
[
λ2

t −
∫ t

0

Aλ2
sds

∣∣∣∣λ0

]
= λ2

0.
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Hence,

E
[
λ2

t

∣∣λ0

]
= λ2

0 − 2(δ − µ1G
)
∫ t

0

E
[
λ2

s

∣∣λ0

]
ds +

(
2(µ1H

ρ + aδ) + µ2G

) ∫ t

0

E
[
λs

∣∣λ0

]
ds + µ2H

ρt,

by differentiating with respect to t, we have the ODE,

du(t)
dt

+ 2(δ − µ1G
)u(t) =

(
2(µ1H

ρ + aδ) + µ2G

)(
λ0 − µ1H

ρ + aδ

δ − µ1G

)
e−(δ−µ1G

)t

+
(2(µ1H

ρ + aδ) + µ2G
) (µ1H

ρ + aδ)
δ − µ1G

+ µ2H
ρ,

where u(t) = E
[
λ2

t

∣∣λ0

]
, with the initial condition u(0) = λ2

0. This ODE has the solution given by (27)
and (28).

Theorem 3.7. The conditional variance of the process λt given λ0 at time t = 0, is given by

Var
[
λt

∣∣λ0

]
=

1
2(δ − µ1G

)

(
µ2G

(µ1H
ρ + aδ)

δ − µ1G

− µ2H
ρ− 2µ2G

λ0

)
e−2(δ−µ1G

)t

+
µ2G

δ − µ1G

(
λ0 − µ1H

ρ + aδ

δ − µ1G

)
e−(δ−µ1G

)t

+
1

2(δ − µ1G
)

(
µ2H

ρ +
µ2G

(µ1H
ρ + aδ)

δ − µ1G

)
, for δ 6= µ1G

, (29)

Var
[
λt

∣∣λ0

]
=

1
2
µ2G

(µ1H
ρ + aδ) t2 + (µ2G

λ0 + µ2H
ρ) t, for δ = µ1G

. (30)

Proof. By Var
[
λt

∣∣λ0

]
= E

[
λ2

t

∣∣λ0

] − (
E

[
λt

∣∣λ0

])2 based on Theorem 3.6 and Lemma 3.1, the result
follows.

Corollary 3.5. Assume δ > µ1G
, then the first and second moments and the variance of the stationary

distribution of the process λt are given by

E [λt] =
µ1H

ρ + aδ

δ − µ1G

, (31)

E
[
λ2

t

]
=

(2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

2(δ − µ1G
)2

+
µ2H

ρ

2(δ − µ1G
)
, (32)

Var [λt] =
1

2(δ − µ1G
)

(
µ2H

ρ +
µ2G

(µ1H
ρ + aδ)

δ − µ1G

)
.

Proof. By setting time t → ∞ in (25), (26), (27), (28), and (29), (30), respectively, then the results
follow.

We will now derive the moments for the point process Nt assuming that δ > µ1G
.

Theorem 3.8. For the stationary distribution of the process λt, given the condition δ > µ1G
and N0 = 0,

the expectation of the point process Nt is given by

E [Nt] =
µ1H

ρ + aδ

δ − µ1G

t. (33)

Proof. By setting f(λ, n, t) = n in (2), we have An = λ. Since Nt −N0 −
∫ t

0
λsds is a martingale by the

martingale property of the intensity process λt of the point process Nt given by the definition (1), we
have

E
[
Nt −N0

∣∣F0

]
= E

[∫ t

0

λsds

∣∣∣∣F0

]
,

and also we know E [λt] from Corollary 3.5, then, by assuming N0 = 0, we have

E [Nt] = E [Nt −N0] =
∫ t

0

E [λs] ds =
µ1H

ρ + aδ

δ − µ1G

t.
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Lemma 3.2. For the stationary distribution of the process λt, given the condition δ > µ1G
and N0 = 0,

we have

E [λtNt] = k̄
(
1− e−(δ−µ1G)t

)
+

(
µ1H

ρ + aδ

δ − µ1G

)2

t, (34)

where

k̄ =:
2µ1G

(µ1H
ρ + aδ) + µ2H

ρ

2 (δ − µ1G
)2

+
µ2G

(µ1H
ρ + aδ)

2 (δ − µ1G
)3

. (35)

Proof. By setting f(λ, n, t) = λn in (2), we have

A (λn) = −(δ − µ1G
)λn + (µ1H

ρ + aδ) n + λ2 + µ1G
λ.

Since λtNt−λ0N0−
∫ t

0
A (λsNs) ds is a F−martingale by the martingale property of the generator, given

N0 = 0, we have the ODE,

du(t)
dt

= − (δ − µ1G
)u(t) + (µ1H

ρ + aδ)E [Nt] + E
[
λ2

t

]
+ µ1G

E [λt] ,

where u(t) = E [λtNt], with the initial condition u(0) = 0. Note that, E [Nt], E
[
λ2

t

]
and E [λt] are already

given by (33), (32) and (31), respectively, therefore, this ODE has the solution given by (34).

Theorem 3.9. For the stationary distribution of the process λt, given the condition δ > µ1G
and N0 = 0,

the second moment and the variance of the point process Nt are given by

E
[
N2

t

]
=

2
δ − µ1G

(
e−(δ−µ1G)t − 1

)
+ 2k̄t +

(
µ1H

ρ + aδ

δ − µ1G

)2

t2,

Var [Nt] =
2

δ − µ1G

(
e−(δ−µ1G)t − 1

)
+ 2k̄t,

where constant k̄ is given by (35).

Proof. By setting f(λ, n, t) = n2 in (2), we have A (
n2

)
= (2n + 1)λ. Since N2

t −N2
0 −

∫ t

0
(2Ns + 1) λsds

is a F−martingale by the martingale property of the generator, given N0 = 0, we have

E
[
N2

t

]
= 2

∫ t

0

E [λsNs] ds +
∫ t

0

E [λs] ds,

where E [λtNt] and E [λt] are given by(34) and (31), respectively, then E
[
N2

t

]
follows. Since Var [Nt] =

E
[
N2

t

]− E [Nt]
2 given E [Nt] in (33), Var [Nt] follows.

The moments for the special case Hawkes process and other similar processes can also be found in
Oakes (1975) and Azizpour and Giesecke (2008), and more generally in Brémaud, Massoulié and Ridolfi
(2002).

4 Example: Jumps with Exponential Distributions

To give an explicit example for the key distributional properties derived above, in this section we assume
both externally excited and self-excited jumps follow exponential distributions, i.e. the density functions

h(y) = αe−αy; g(z) = βe−βz, where y, z;α, β > 0, (36)

the Laplace transforms have the explicit forms

ĥ(u) =
α

α + u
; ĝ(u) =

β

β + u
. (37)

Then the corresponding Laplace transform of λT , conditional probability generating function of NT , con-
ditional probability P

{
NT = 0

∣∣λ0

}
and P

{
NT = 1

∣∣λ0

}
are obtained respectively as below. We will use

these results to model the credit default risk in Section 5. Note that, there are parameters (a, ρ, δ;α, β;λ0)
for the general dynamic contagion process and (a, δ;β;λ0) for the Hawkes process.
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4.1 Laplace Transform of λT

Lemma 4.1. If both the self-excited and externally excited jumps follow exponential distributions, i.e.
the density functions are specified by (36), then the conditional Laplace transform of λT given λ0 at time
t = 0, under the condition δβ > 1, is given by

E
[
e−vλT

∣∣λ0

]
= e−

(
C1(v)−C1(G−1

v,1(T ))
)
e−G

−1
v,1(T )λ0 ,

where

C1(u) =:





au + ρ(α−β)
δ(α−β)+1 ln(α + u) + 1

δ

(
a + ρ

δ(α−β)+1

)
ln

(
u + δβ−1

δ

)
for α 6= β − 1

δ

au + ρβ
δβ−1 ln(α + u)− αρ

δ(δβ−1)
1

α+u + 1
δ

(
a− ρ

δβ−1

)
ln

(
u + δβ−1

δ

)
for α = β − 1

δ

, (38)

and

Gv,1(L) =
1

δ(δβ − 1)

[
δβ ln

( v

L

)
− ln

(
δv + (δβ − 1)
δL + (δβ − 1)

)]
.

Proof. By Theorem 3.2 and µ1G
= 1

β , the condition is δ > 1
β ; and substitute (37), into Theorem 3.2, we

have
Gv,1(L) =

∫ v

L

u + β

δu
(
u + δβ−1

δ

)du,

and

C1(v)− C1

(G−1
v,1(T )

)
=

∫ v

G−1
v,1(T )

(
a + ρ

δ
1

u+α

)
(β + u)

u + δβ−1
δ

du.

Note that, when calculating the integral, we need consider the special case when α = β − 1
δ . Then, the

result follows.

Theorem 4.1. If both the externally excited and self-excited jumps follow exponential distributions, i.e.
the density functions are specified by (36), then, under the condition δβ > 1, the stationary distribution
of the process {λt}t≥0 is given by





a + Γ̃1 + Γ̃2 for α ≥ β

a + Γ̃3 + B̃ for α < β and α 6= β − 1
δ

a + Γ̃4 + P̃ for α = β − 1
δ

,

where independent random variables

Γ̃1 ∼ Gamma
(

1
δ

(
a +

ρ

δ(α− β) + 1

)
,
δβ − 1

δ

)
;

Γ̃2 ∼ Gamma
(

ρ(α− β)
δ(α− β) + 1

, α

)
;

Γ̃3 ∼ Gamma
(

a + ρ

δ
,
δβ − 1

δ

)
;

Γ̃4 ∼ Gamma
(

a + ρ

δ
, α

)
;

B̃
D=

N1∑

i=1

X
(1)
i , N1 ∼ NegBin

(
ρ

δ

β − α

γ1 − γ2
,
γ2

γ1

)
, X

(1)
i ∼ Exp(γ1),

γ1 = max
{

α,
δβ − 1

δ

}
, γ2 = min

{
α,

δβ − 1
δ

}
;

P̃
D=

N2∑

i=1

X
(2)
i , N2 ∼ Poisson

( ρ

δ2α

)
, X

(2)
i ∼ Exp (α) .

B̃ follows a compound negative binomial distribution with underlying exponential jumps; P̃ follows a
compound Poisson distribution with underlying exponential jumps.
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Proof. By Lemma 4.1, Theorem 3.3, and as G−1
v,1(T ) → 0 when T → ∞, we use the explicit function

C1(u) in (38) to derive the Laplace transform of the stationary distribution of the process {λt}t≥0 by
Π̂(v) = e−(C1(v)−C1(0)), then,

Π̂(v) =





e−va
(

α
α+v

) ρ(α−β)
δ(α−β)+1

( δβ−1
δ

v+ δβ−1
δ

) 1
δ (a+ ρ

δ(α−β)+1 )
for α ≥ β

e−va
( δβ−1

δ

v+ δβ−1
δ

) a+ρ
δ

(
γ2
γ1

1−
(
1− γ2

γ1

)
γ1

γ1+v

) ρ
δ

β−α
γ1−γ2

for α < β and α 6= β − 1
δ

e−va
(

α
α+v

) ρ+a
δ

exp
[

ρ
δ2α

(
α

α+v − 1
)]

for α = β − 1
δ

. (39)

If α ≥ β, it is obvious that, (39) is the Laplace transform of two independent Gamma distributions Γ̃1

and Γ̃2 shifted by a constant a. If α < β and α 6= β − 1
δ , then always γ1 > γ2, and the second term is

the Laplace transform of Gamma distribution with two parameters a+ρ
δ and δβ−1

δ ; the third term is the
Laplace transform of a compound negative binomial distribution with two parameters ρ

δ
β−α

γ1−γ2
and γ2

γ1
,

and the underlying jumps follows an exponential distribution with parameter γ1, since we know that the
Laplace transform of negative binomial distribution N1 with two parameters (r, p) is

E
[
e−vN1

]
=

(
p

1− (1− p)e−v

)r

.

Then

E
[
e−vB̃

]
= E

[
E

[
e−v

∑N1
i=1 X

(1)
i

] ∣∣∣∣N1

]
= E

[(
γ1

γ1 + v

)N1
]

= E
[
e
− ln

(
γ1+v

γ1

)
N1

]

=


 p

1− (1− p)e− ln
(

γ1+v
γ1

)




r

=

(
p

1− (1− p) γ1
γ1+v

)r

,

where
p =

γ1

γ2
∈ (0, 1); r =

ρ

δ

β − α

γ1 − γ2
∈ R+.

Also, it is also easy to identify the corresponding Laplace transforms for the case when α = β − 1
δ .

We discuss some important special cases below.

Remark 4.1. If both jumps follows the same exponential distribution, i.e. α = β, then Γ̃1 and Γ̃2

combine as one single Gamma random variable Γ̃3.

Remark 4.2. For the non-self-excited case, i.e. when β = ∞, we have the Laplace transform of the
stationary distribution of the process {λt}t≥0 given by

Π̂(v) = e−va

(
α

α + v

) ρ
δ

,

then, {λt}t≥0 follows a shifted Gamma distribution,

{λt}t≥0
D= a + Γ̃5,

where
Γ̃5 ∼ Gamma

(ρ

δ
, α

)
,

which recovers the result by Dassios and Jang (2003) by setting a = 0.
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Remark 4.3. For the Hawkes process, i.e. the non-externally-excited case when α = ∞, or ρ = 0, we
have the Laplace transform of the stationary distribution of the process {λt}t≥0 given by

Π̂(v) = e−va

(
δβ−1

δ

v + δβ−1
δ

) a
δ

, (40)

then, {λt}t≥0 follows a shifted Gamma distribution,

{λt}t≥0
D= a + Γ̃6,

where

Γ̃6 ∼ Gamma
(

a

δ
,
δβ − 1

δ

)
.

The result for the particular case α = β − 1
δ is actually the limit version of the result for the case

when α < β and α 6= β − 1
δ . In the following sections, we only focus on the main case when α 6= β − 1

δ ,
with the Laplace transform of the stationary distribution of the process {λt}t≥0 specified by (39).

4.2 Probability Generating Function of NT

Theorem 4.2. If both the externally excited and self-excited jumps follow exponential distributions, i.e.
the density functions are specified as (36), then the conditional probability generating function of NT

given λ0 and N0 = 0 at time t = 0, under the condition δβ > 1, is given by

E
[
θNT

∣∣λ0

]
= e−

(
C2(G−1

0,θ(T ))−C2(0)
)
e−G

−1
0,θ(T )λ0 , α 6= −v∗−,

where

C2(u) =: −au +
α(β − α)ρ

δ
(
α + v∗−

)
(α + v∗)

ln(u + α)

+
1

δ(v∗ − v∗−)

{[
a
(
v∗− + (1− θ)β

)
+ ρv∗−

β + v∗−
α + v∗−

]
ln

(
u− v∗−

)

−
[
a
(
v∗ + (1− θ)β

)
+ ρv∗

β + v∗

α + v∗

]
ln (v∗ − u)

}
,

and
G0,θ(L) = K(L)−K(0), 0 ≤ L < v∗,

where

K(u) =: − 1
δ
(
v∗ − v∗−

)
[

(v∗ + β) ln (v∗ − u)− (
v∗− + β

)
ln

(
u− v∗−

) ]
, 0 ≤ u < v∗,

v∗ =
√

∆− (δβ − 1)
2δ

> 0; (41)

−β ≤ v∗− = −
√

∆ + (δβ − 1)
2δ

< 0,

∆ = (δβ + 1)2 − 4θδβ > 0, 0 ≤ θ < 1.

Proof. Since 0 < u < v∗, by substituting the explicit results of (37) into Theorem 3.4, we have

G0,θ(L) =
∫ L

0

β + u

−δu2 − (δβ − 1)u + (1− θ)β
du = K(L)−K(0),

and

C2(u) = −a

{
u−K(u)− θβ

δ

1
v∗ − v∗−

ln
v∗ − u

u− v∗−

}

+ρ

{
K(u) +

α

δ

1
v∗ − v∗−

[
ln

v∗ − u

u− v∗−
+ (β − α)

(
1

α + v∗
ln

v∗ − u

u + α
− 1

α + v∗−
ln

u− v∗−
u + α

)]}
,
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and also,

v∗ =
√

∆− δβ − 1
2δ

=

√
(δβ − 1)2 + 4(1− θ)δβ − (δβ − 1)

2δ
>

(δβ − 1)− (δβ − 1)
2δ

= 0;

−v∗− =
√

∆ +
δβ − 1

2δ
=

√
(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
≤ (δβ + 1) + (δβ − 1)

2δ
= β,

where v∗− = −β only when θ = 0.

Remark 4.4. We need to assume α 6= −v∗− in Theorem 4.2, since

−v∗− =

√
(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
,

and, for each θ ∈ [0, 1) we have the unique v∗−, where

−v∗− ∈
(

β − 1
δ
, β

]
.

Therefore, if α ∈ (
β − 1

δ , β
]
, there exists the unique θ ∈ [0, 1), such that α + v∗− = 0.

α = −v∗− is a very particular case, and we will not consider it here and assume α 6= −v∗− in the sequel.

Now we derive the probability P
{
NT = 0

∣∣λ0

}
in Corollary 4.1, and P

{
NT = 1

∣∣λ0

}
for case α 6= β

in Corollary 4.2, a discussion for the special case α = β is given in Remark 4.5.

Corollary 4.1. If both the externally excited and self-excited jumps follow exponential distributions,
i.e. the density functions are specified by (36), then the conditional probability of no jump given λ0 and
N0 = 0, under the condition δβ > 1, is given by

P
{
NT = 0

∣∣λ0

}
= e−(a+ ρ

1+δα )T e
a−λ0

δ (1−e−δT )
(

1− e−δT + δα

δα

) αρ
1+δα

.

Proof. By Theorem 4.2 and setting θ = 0, then, ∆ = (δβ + 1)2, v∗ = 1
δ , v∗− = −β,

G−1
0,0(T ) =

1
δ

(
1− e−δT

)
,

K(u) = −1
δ

ln(1− δu), 0 ≤ u <
1
δ
,

C2(u) = −au +
α(β − α)ρ

δ
(
α + v∗−

)
(α + v∗)

ln(u + α)− 1
δ(v∗ − v∗−)

(
a +

ρv∗

v∗ + α

)
(v∗ + β) ln (v∗ − u)

= −au− αρ

δα + 1
ln (u + α)− 1

δ

(
a +

ρ

δα + 1

)
ln

(
1
δ
− u

)
,

and the result follows.

Corollary 4.2. If both the externally excited and self-excited jumps follow exponential distributions, i.e.
the density functions are specified by (36) (α 6= β), then the conditional probability of exactly one jump
given λ0 and N0 = 0, under the condition δβ > 1, is given by

P
{
NT = 1

∣∣λ0

}
= P

{
NT = 0

∣∣λ0

}×
[

(HT + aδβ − ρ) QT − aβ
(
eδT − 1

)

+ρ
αβ

1 + δβ

(
ā ln

(
α + uT

α

)
− b̄ ln

(
β + uT

β

)
+ c̄T + d̄

(
eδT − 1

))]
,
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where

HT =
(

a +
ρ

δα + 1− e−δT

) (
1− e−δT

)
+ λ0e

−δT ,

QT =
β

1 + δβ

[
1

1 + δβ
ln

(
β + uT

β

)
+ δT +

(
eδT − 1

)]
,

uT =
1
δ

(
1− e−δT

)
,

ā =
1

1 + δβ

1
β − α

+
δ

1 + δα

(
1

1 + δβ
+

1
1 + δα

)
,

b̄ =
1

1 + δβ

1
β − α

,

c̄ =
δ2

1 + δα

(
1

1 + δβ
+

1
1 + δα

)
,

d̄ =
δ

1 + δα
.

Proof. By Corollary 3.4, and

1
(β + u)(1− δu)2

=
1

1 + δβ

[
1

1 + δβ

(
1

β + u
+

δ

1− δu

)
+

δ

(1− δu)2

]
,

we have QT by
∫ uT

0

ĝ(u)
(1− δu)2

du = β

∫ uT

0

1
(β + u)(1− δu)2

du

=
β

1 + δβ

{
1

1 + δβ

[
ln

(
β + uT

β

)
+ δT

]
+ eδT − 1

}
,

and ∫ uT

0

ĝ(u)u
(1− δu)2

du =
β

δ

(
eδT − 1

)− βQT ,

also, when α 6= β,

∫ uT

0

ĝ(u)ĥ(u)
(1− δu)2

du = αβ

∫ uT

0

1
(α + u)(β + u)(1− δu)2

du

=
αβ

1 + δβ

(
ā ln

(
α + uT

α

)
− b̄ ln

(
β + uT

β

)
+ c̄T + d̄

(
eδT − 1

))
,

then, the result follows.

Remark 4.5. In particular, if α = β, then,

P
{
NT = 1

∣∣λ0

}
= P

{
NT = 0

∣∣λ0

}×
{

(HT + aδβ − ρ)ZT − aβ
(
eδT − 1

)

+ρ

(
β

1 + δβ

)2 [
uT

β(β + uT )
+ δ

(
eδT − 1

)
+

2δ

δβ + 1

(
ln

(
β + uT

β

)
+ δT

)]}
,

where

HT =
(

a +
ρ

δβ + 1− e−δT

) (
1− e−δT

)
+ λ0e

−δT ,

QT =
β

1 + δβ

[
1

1 + δβ
ln

(
β + uT

β

)
+ δT +

(
eδT − 1

)]
.
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Note that, when α = β,
∫ uT

0

ĝ(u)ĥ(u)
(1− δu)2

du = β2

∫ uT

0

(
1

(β + u)(1− δu)

)2

du

=
(

β

1 + δβ

)2 [
uT

β(β + uT )
+ δ

(
eδT − 1

)
+

2δ

δβ + 1

(
ln

(
β + uT

β

)
+ δT

)]
.

Remark 4.6. For the Hawkes process, we have the conditional probability of no jump and exactly one
jump, by setting ρ = 0 in Corollary 4.1 and Corollary 4.2, respectively,

P
{
NT = 0

∣∣λ0

}
= e−aT e

a−λ0
δ (1−e−δT ),

P
{
NT = 1

∣∣λ0

}
= P

{
NT = 0

∣∣λ0

}

×β

[
a(1− e−δT + δβ) + λ0e

−δT

1 + δβ

(
1

1 + δβ
ln

(
β + uT

β

)
+ δT +

(
eδT − 1

))− a(eδT − 1)
]

.

We will state and prove the results for the size of clusters based on Theorem 3.5 for this exponential
distribution case as below.

Theorem 4.3. If both the externally excited and self-excited jumps follow exponential distributions, i.e.
the density functions are specified as (36), then for the size of a cluster generated by a point of any
generation, Ñt, under the condition δβ > 1, we have

E
[
θÑ∞

∣∣λ̃0

]
= exp

(
−

√
(δβ − 1)2 + 4δβ(1− θ)− (δβ − 1)

2δ
λ̃0

)
; (42)

and Ñ∞ conditional on λ̃0 actually follows a mixed Poisson distribution,

P
{

Ñ∞ = k
∣∣λ̃0

}
=

∫ ∞

0

vke−v

k!
m(v)dv, (k = 0, 1, 2, ...) (43)

where m(v) is the density function of the mixing distribution,

m(v) = e
δβ−1

2δ λ̃0e−( δβ−1
2δ )2 δ

β v

√
β
2δ λ̃0√
2πv

3
2
e−

β
2δ

λ̃2
0

2v , (44)

which is an inverse Gaussian distribution with parameters
(

β
δβ−1 λ̃0,

β
2δ λ̃2

0

)
.

Proof. By substituting the explicit exponential distribution functions of (37) and the constant v∗ of (41)
into Theorem 3.5, we obtain (42) immediately.

To prove that Ñ∞ follows a mixed Poisson distribution, we rewrite (42) by

E
[
θÑ∞

∣∣λ̃0

]
= e

δβ−1
2δ λ̃0e−

√
2ξλ̃0 ,

where

ξ =
1
2

(
δβ − 1

2δ

)2

+
β

2δ
(1− θ),

and identify that

e−
√

2ξλ̃0 = E
[
e−ξĨG

]
=

∫ ∞

0

e−ξu

(
λ̃2

0

) 1
2

√
2πu

3
2
e−

λ̃2
0

2u du,

where ĨG follows the (infinite mean) inverse Gaussian distribution with parameters
(
∞, λ̃2

0

)
, then, we

have

E
[
θÑ∞

∣∣λ̃0

]
= e

δβ−1
2δ λ̃0

∫ ∞

0

e−ξu

(
λ̃2

0

) 1
2

√
2πu

3
2
e−

λ̃2
0

2u du

=
∫ ∞

0

e
−

[
1
2 ( δβ−1

2δ )2
+ β

2δ (1−θ)
]
u
e

δβ−1
2δ λ̃0

(
λ̃2

0

) 1
2

√
2πu

3
2
e−

λ̃2
0

2u du,
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and let v = β
2δ u,

E
[
θÑ∞

∣∣λ̃0

]
=

∫ ∞

0

e−(1−θ)ve
δβ−1

2δ λ̃0e−( δβ−1
2δ )2 δ

β v

(
β
2δ λ̃2

0

) 1
2

√
2πv

3
2

e−
β
2δ

λ̃2
0

2v dv

=
∫ ∞

0

e−(1−θ)vm(v)dv = m̂(θ − 1),

where
m̂(u) =

∫ ∞

0

e−uvm(v)dv.

Hence, by the definition of the mixed Poisson distribution, we have (43) and (44); set u = 1− θ, we have

m̂(u) = exp

(
−

√
(δβ − 1)2 + 4δβu− (δβ − 1)

2δ
λ̃0

)

= exp




β
2δ λ̃2

0

β
δβ−1 λ̃0


1−

√√√√√1 + 2

(
β

2δ−1 λ̃0

)2

β
2δ λ̃2

0

u





 ,

which is exactly the Laplace transform of an inverse Gaussian distribution with parameters
(

β
δβ−1 λ̃0,

β
2δ λ̃2

0

)
.

Corollary 4.3. In particular, for a cluster generated by a point of generation 0, we have

E
[
θÑ∞

]
=

2δα

δ(2α− β) + 1 +
√

(δβ − 1)2 + 4δβ(1− θ)
; (45)

for a cluster generated by a point of subsequent generations, we have

E
[
θÑ∞

]
=

2δβ

1 +
√

1− 4δβ
(δβ+1)2 θ

, (46)

and

P
{

Ñ∞ = k
}

=
(δβ)k+1

(δβ + 1)2k

(2k)!
k!(k + 1)!

, k = 0, 1, .... (47)

Proof. By substituting the explicit exponential distribution functions of (37) and the constant v∗ of (41)
into Theorem 3.5, we obtain (45). In particular, by setting α = β in (42) and expanding explicitly, we
have (46) and (47).

Remark 4.7. We can also expand (42) explicitly for some other special cases. For instance, if 2δα +
(1− δβ) = 0, we have

P
{

Ñ∞ = k
}

=
δβ − 1
2
√

δβ

(2k)!

(k!2k)2

[
(δβ + 1)2

4δβ

]−(k+ 1
2 )

, k = 0, 1, . . . .

For the general case, we can expand (45) with respect to θ by Taylor expansion function in Matlab. An
example with the parameter setting (δ;α, β) = (2.0; 2.0, 1.5) for P{Ñ∞ = k} is given by Table 1.

The corresponding moments of λt and Nt based on exponential jump distributions are omitted as
they can be easily obtained using the results in Section 3.4.
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Table 1: Probability P{Ñ∞ = k} for k = 0, 1, 2, ...; (δ; α, β) = (2.0; 2.0, 1.5)

k 0 1 2 3 4 5 6 7 8 9 10 11 12

P{Ñ∞ = k} 80.0000% 12.0000% 4.0500% 1.7888% 0.9043% 0.4956% 0.2866% 0.1722% 0.1064% 0.0672% 0.0432% 0.0282% 0.0186%
k 13 14 15 16 17 18 19 20 21 22 23 24 25

P{Ñ∞ = k} 0.0124% 0.0083% 0.0056% 0.0039% 0.0026% 0.0018% 0.0013% 0.0009% 0.0006% 0.0004% 0.0003% 0.0002% 0.0001%

5 An Application in Credit Risk

Our motivation of applying the dynamic contagion process to model the credit risk is a combination of
Duffie and Singleton (1999) and Lando (1998). Duffie and Singleton (1999) introduced the affine processes
to model the default intensity. Lando (1998), the extension of Jarrow, Lando and Turnbull (1997), used
the state of credit ratings as an indicator of the likelihood of default, and modelled the underlying credit
rating migration driven by a probability transition matrix with Cox processes in a finite-state Markov
process framework. However, we go beyond this and model the bad events that can possibly lead to credit
default, and the number and the intensity of these events are modelled by the dynamic contagion process.

Based on this idea, we proceed with the following modification of the intensity models. We assume
that the final default or bankruptcy is caused by a number of bad events relating to the underlying
company. The bad events are not only restricted to the credit rating downgrades announced by rating
agencies, but also could be other bad news relevant to this company, such as bad corporate financial
reports. The frequency of these bad events is dependent both on the common bad news in the market
exogenously and the company’s bad events endogenously. Each company has a certain level of capability
or resistance to overcome some its bad events to avoid bankruptcy, for example, if we use the credit rating
system as the indicator to quantify this level, usually the higher rated companies have higher capability
level. We provide an application in credit risk for this idea by using the dynamic contagion process, based
on the explicit results obtained in Section 4 for the case of exponential jumps.

The point process Nt is to model the number of bad events released from the underlying company. It
is driven by a series of bad events {Zj}j=1,2,... from itself and the common bad events {Yi}i=1,2,... widely
in the whole market via its intensity process λt. The impact of each event decays exponentially with
constant rate δ. We assume each jump, or bad event, can result to default with a constant probability
d, 0 < d ≤ 1, which measures and quantifies the resistance level. Therefore, the survival probability
conditional on the (initial) current intensity λ0 at time T is Ps(T ) = E

[
(1− d)NT

∣∣λ0

]
, which can be

calculated simply by letting θ = 1 − d in the conditional probability generating function derived in
Theorem 4.2. By setting the parameters (a, ρ, δ;α, β;λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7), the term structure
of the survival probabilities ps(T ) based on d = 2%, 10%, 20% and 100% are shown in Figure 2, with the
corresponding numerical results in Table 2.
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Figure 2: Survival Probability Ps(T ); (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7)

Table 2: Survival Probability Ps(T ); (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7)

Time T 1 2 3 4 5 6
d = 2% 98.15% 95.92% 93.65% 91.40% 89.21% 87.06%
d = 10% 91.26% 81.78% 72.99% 65.07% 58.01% 51.70%
d = 20% 83.66% 67.91% 54.78% 44.13% 35.54% 28.63%
d = 100% 46.73% 21.10% 9.48% 4.26% 1.92% 0.86%

As in Lando (1998), we could consider different values of d correspond to different credit ratings, by
assuming these bad events are all related to the company’s credit ratings.

We also provide a comparison for the survival probabilities based on three main processes discussed
in this paper: dynamic contagion process, Hawkes process (by setting ρ = 0) and non-self-excited process
(by setting β = ∞), with the same parameter setting and fixed d = 10%. The results are shown in Figure
3, with numerical output in Table 3.
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Figure 3: Survival Probability Comparison for the Dynamic Contagion, Hawkes and Non-self-excited Processes
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Table 3: Survival Probability Comparison for the Dynamic Contagion, Hawkes and Non-self-excited Process

Time T 1 2 3 4 5 6
Dynamic Contagion Process 91.26% 81.78% 72.99% 65.07% 58.01% 51.70%

Hawkes Process 91.99% 83.68% 75.92% 68.84% 62.40% 56.57%
Non-self-excited Process 92.59% 85.34% 78.62% 72.41% 66.70% 61.72%

We can see that, the dynamic contagion process, as the most general case of the three processes,
generates the lowest survival probability, and the differences between the other two processes explain the
impact from the endogenous and exogenous factors respectively. This process is capable to capture more
aspects of the risk, which is particularly useful for modelling the risks during the economic downturn
involving more clusters of bad economic events.

For further industrial applications and statistical analysis, we also provide the simulation algo-
rithm below for one sample path of the general dynamic contagion process (Nt, λt), with m jump times
{T ∗1 , T ∗2 , ..., T ∗m} in the process λt.

Set the initial conditions T ∗0 = 0, λT∗+0
= λ0 > a and i ∈ {0, 1, 2, ..., m− 1}.

1. Simulate the (i + 1)th externally excited jump waiting time E∗
i+1 by

E∗
i+1 = −1

ρ
lnU, U ∼ U[0, 1].

2. Simulate the (i + 1)th self-excited jump waiting time S∗i+1 by

S∗i+1 =

{
S
∗(1)
i+1 ∧ S

∗(2)
i+1 (di+1 > 0)

S
∗(2)
i+1 (di+1 < 0)

,

where
di+1 = 1 +

δ lnU1

λT∗+i
− a

, U1 ∼ U[0, 1],

and
S
∗(1)
i+1 = −1

δ
ln di+1; S

∗(2)
i+1 = −1

a
lnU2, U2 ∼ U[0, 1].

3. Simulate the (i + 1)th jump time T ∗i+1 in the process λt by

T ∗i+1 = T ∗i + S∗i+1 ∧ E∗
i+1.

4. The change at the jump time T ∗i+1 in the process λt is given by

λT∗+i+1
=

{
λT∗−i+1

+ Zi+1, Zi+1 ∼ G(z)
(
S∗i+1 ∧ E∗

i+1 = S∗i+1

)

λT∗−i+1
+ Yi+1, Yi+1 ∼ H(y)

(
S∗i+1 ∧ E∗

i+1 = E∗
i+1

) ,

where
λT∗−i+1

=
(
λT∗+i

− a
)

e−δ(T∗i+1−T∗i ) + a.

5. The change at the jump time T ∗i+1 in the point process Nt is given by

NT∗+i+1
=

{
NT∗−i+1

+ 1
(
S∗i+1 ∧ E∗

i+1 = S∗i+1

)

NT∗−i+1

(
S∗i+1 ∧ E∗

i+1 = E∗
i+1

) .
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Note that, this simulation procedure applies to the general distribution assumption for jump sizes,
H(y) and G(z) for externally and self-excited jumps, respectively.

By using the same parameter setting under the exponential distribution assumption for the jump
sizes, we can regenerate the survival probabilities Ps(T ) in Table 4 based on 10000 simulated sample paths
(truncated at time T ), which are very close to the analytical results in Table 2. For instance, one simulated
sample path (Nt, λt) with T = 50 is provided in Figure 4. For comparison, the theoretical expectations
E[λt], E[λt|λ0] and E[Nt] (derived by Corollary 3.5, Theorem 3.6 and Theorem 3.8, respectively) are also
plotted.

Table 4: Survival Probability Ps(T ) by 10000 Simulated Sample Paths

Time T 1 2 3 4 5 6
d = 2% 98.13% 95.89% 93.60% 91.46% 89.18% 87.04%
d = 10% 91.18% 81.71% 72.97% 65.24% 58.00% 51.67%
d = 20% 83.65% 67.85% 54.83% 43.85% 35.26% 28.81%
d = 100% 46.66% 21.68% 9.98% 4.39% 1.77% 0.84%
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Figure 4: One Simulated Sample Path of the Dynamic Contagion Process (Nt, λt)

6 Conclusion

This paper produces a general mathematical framework for modelling the dependence structure of ar-
riving events with contagion dynamics, mainly based on generalising the Hawkes process and the Cox
process with shot noise intensity. The dynamic contagion process newly introduced here has been sys-
temically studied by analysing its various distributional properties, and has the significant potential to
be applicable to a variety of problems in economics, finance and insurance. Here, we only look at one
possible implementation in credit risk. However, other applications such as managing portfolio credit risk
and pricing credit derivatives could be the object of further research work.
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[4] Brémaud, P., Massoulié, L. (1996). Stability of Nonlinear Hawkes Processes. Annals of Proba-
bility. 24, 1563-1588.
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