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Chapter 1

Introduction

A graph G is perfect if for every induced subgraph G′ of G, the chromatic
number of G′ equals the cardinality of a largest clique in G′. The definition of
perfect graph is due to Berge [2]. Berge proposed two conjectures on perfect
graphs, that became known as the weak perfect graph conjecture (WPGC)
and the strong perfect graph conjecture (SPGC). The weak perfect graph
conjecture states that a graph is perfect if and only if its complement is, and
was settled by Lovász [61]. The strong perfect graph conjecture characterizes
perfect graphs in terms of minimal obstructions, by stating that a graph is
perfect if and only if it does not contain a chordless cycle of odd length at
least 5 (odd hole), or the complement of one such graph (odd antihole). Since
this property is closed under going to the complement, the SPGC implies the
WPGT. In May 2002, Chudnovsky, Robertson, Seymour and Thomas [13]
proved the strong perfect graph conjecture. The idea of the proof is showing
that every graph with no odd hole and no odd antihole either belongs to
some simple basic class of graphs that are known to be perfect, or it has
some structural fault, a decomposition, that cannot occur in a minimally
imperfect graph. The existence of a similar decomposition theorem had been
conjectured by Conforti, Cornuéjols and Vušković [28]. Special cases of this
decomposition theorem have been proved by Conforti, Cornuéjols, Vušković
and Zambelli [31][33], and they will be presented in Chapters 3 and 4. In
Chapter 2 we will survey some of the main results on perfect graphs and give
a brief outline of the proof of the SPGC by Chudnovsky et al. [13].

Perfect graphs are of particular interest in combinatorial optimization due
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to their relation with the set packing problem

max{wx |Ax ≤ 1, x ∈ {0, 1}n} (1.1)

where A is an m × n 0, 1 matrix, w an n-dimensional row vector, 1 is the
m-dimensional column vector of all ones, while x is an n-dimensional column
vector of variables of unknowns. This problem is NP-hard in general, but
it can be solved in polynomial time when the set packing polytope P (A) =
{x ∈ IRn |Ax ≤ 1, x ≥ 0} has only integral vertices, in which case the
matrix A is said to be perfect. Results of Fulkerson [49], Lovász [61] and
Chvátal [16] imply that A is perfect if and only if the undominated rows
of A are the incidence vectors of the maximal cliques of a perfect graph.
Thus, characterizing perfect graphs is equivalent to characterizing when the
set packing polytope is integral.

An important class of perfect matrices is the class of balanced matrices,
introduced by Berge [4], which consists of the 0,1 matrices that do not con-
tain any square submatrix of odd order with exactly two nonzero elements
per row and per column. This definition was later extended to 0,±1 matrices
by Truemper [75]. As mentioned above, 0, 1 balanced matrices are perfect, as
shown by Berge [4], who also showed that several other polytopes are integral
when the constraint matrix is balanced. Such polyhedral properties extend to
the 0,±1 case: particularly important examples of integral polytopes associ-
ated with balanced matrices are the generalized set packing, set covering and
set partitioning polytopes, which are defined, respectively, by the systems
{x ∈ IRn |Ax ≤ 1− n(A),0 ≤ x ≤ 1}, {x ∈ IRn |Ax ≥ 1− n(A),0 ≤ x ≤ 1}
and {x ∈ IRn |Ax = 1−n(A),0 ≤ x ≤ 1}, where A is an m×n 0,±1 matrix,
and n(A) is the m-dimensional vector whose ith entry is the number of −1s
in the ith row of A. All these polytopes are integral when A is balanced,
as proven by Berge [4] for the 0, 1 case, and by Conforti and Cornuéjols
[20] for 0,±1 matrices. More generally, Fulkerson, Hoffman and Oppenheim
[50], showed that the inequalities defining such polytopes form totally dual
integral systems whenever A is a 0, 1 balanced matrix, and an analogous
statement was proven by Conforti and Cornuéjols [20] for the 0,±1 case.

The problem of deciding whether or not a given matrix is balanced can
be solved in polynomial time, as shown by Conforti, Cornuéjols and Rao [26]
for 0, 1 matrices, and by Conforti, Cornuéjols, Kapoor and Vušković [23] for
the 0,±1 case. In Chapter 5 we will provide a new, simpler proof of this
theorem [80], by giving a new polynomial time algorithm. We will also give a

5



similar algorithm to solve the following problem. A 0, 1 matrix is balanceable
if it is the support matrix of a balanced matrix. Deciding if a given matrix
A is balanceable can be reduced to the problem of deciding if a certain 0,±1
matrix B obtained by A through a signing algorithm due to Camion [9] is
balanced. So far, this was the only known approach to solve the recognition
problem for balanceable matrices. On the other hand, Truemper [76] gave a
co-NP characterization of the class of balanceable matrices in terms of certain
well understood forbidden submatrices. We will present an algorithm, due
to Conforti and Zambelli [38], that uses Truemper’s characterization, rather
than relying on Camion’s algorithm.

Berge [3] and Conforti and Cornuéjols [20] characterized balanced matri-
ces in terms of bicolorings (special types of partitions) of the column sets
of their submatrices. This result is in the same spirit as Ghouila-Houri’s
classical characterization of totally unimodular matrices in terms of equi-
table bicolorings [52]. In Chapter 6 we will give a theorem, due to Con-
forti, Cornuéjols and Zambelli [32], that generalizes both results mentioned
above. The theorem offers a characterization of a certain class of 0,±1
matrices, named k-balanced matrices, introduced by Truemper and Chan-
drasekaran [77] and Conforti, Cornuéjols and Truemper [27], that generalize
balanced and totally unimodular matrices. Based on such a characterization,
we show that certain polyhedra arising from the 0, 1 matrices in this class
have the integer decomposition property [81].

In the remainder of this chapter we provide some definitions and notations
that will be needed later.

1.1 Notations and definitions

1.1.1 Graph Theory

A graph G is an ordered pair (V (G), E(G)), where V (G) is the set of nodes of
G and E(G) the set of edges of G, and both V (G) and E(G) are finite. For our
purposes, all graphs are undirected and simple, hence we will assume E(G) ⊆
{{u, v} |u, v ∈ V, u 6= v}. We will denote every element {u, v} ∈ E(G) by
uv. We refer to [79] for a more general definition of graph and for standard
definitions and terminology. Given u, v ∈ V (G), u and v are adjacent if there
exists e ∈ E such that e = uv, we say that u and v are the endnodes of e
and that v is a neighbor of u. Given u ∈ V (G), we denote by N(u) the set
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of neighbors of u. The degree of a node is the number of its neighbors. Two
edges are adjacent if the have a common endnode. The complement Ḡ of G is
defined by V (Ḡ) = V (G) and E(Ḡ) = {uv |u, v ∈ V (G), uv /∈ E(G), u 6= v}.

Two graphs G and G′ are isomorphic if there exists a graph isomorphism
between them, that is a bijection ϕ between V (G) and V (G′) with the prop-
erty that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(G′). With a slight abuse of
terminology, we will say that G is (equal to) G′.

A subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆
E(G). G′ is an induced subgraph of G if G′ is a subgraph of G and E(G′) =
{uv ∈ E(G) |u, v ∈ V (G′)}, and we say that G′ is induced by V (G′). Given
X ⊆ V (G), we denote by G[X] the subgraph of G induced by X, and by
G \ X the graph G[V (G) \ X]. If G′ is an induced subgraph of G, often we
write G \ G′ instead of G \ V (G′). Given a graph G′, when we say that G
contains G′ (or G′ is contained in G), we always mean that G′ is isomorphic
to some induced subgraph of G. Given X ⊆ V (G) and a graph G′, we say
that X induces G′ if G[X] is isomorphic to G′. Given an induced subgraph
G′ of G and a node x ∈ V (G), we denote by NG′(x) the set of neighbors of x
contained in V (G′). Given x, x′ ∈ V (G) and an induced subgraph G′ of G,
we say that x and x′ are twins w.r.t. G′ if NG′(x) = NG′(x′), where x and x′

are true twins if xx′ ∈ E(G), false twins otherwise.
Given an edge e ∈ E(G), we denote by G \ e the graph obtained by

deleting e, where V (G \ e) = V (G), E(G \ e) = E(G) \ {e}.
A cut of G is a subset of E(G) of the form (S, S̄) = {uv ∈ E(G) |u ∈

S, v /∈ S}, where S is a nonempty proper subset of V (G) and S̄ = V (G) \
S. A graph G is connected if every cut of G is nonempty. The connected
components of G are the maximal subsets of G inducing a connected graph.
A (node) cutset of G is a set X ⊆ V (G) such that G \X is not connected; if
u and v belong to distinct connected components of G \ X, we say that X
separates u and v. A graph G is k-connected if it does not have a cutset of
size strictly less than k.

We say that a graph G is anticonnected if Ḡ is connected, and the an-
ticonnected components of G are the connected components of Ḡ. A set
X ⊆ V (G) is connected if G[X] is connected, and X is anticonnected if G[X]
is anticonnected.

A path P is a connected graph such that every node has degree at most
2 and there exists a node of degree less than 2. It is immediate to check
that the elements of V (P ) = {v1, . . . , vk} can be ordered so that the only
edges of P are of the form vivi+1 for 1 ≤ i ≤ k − 1. We will denote P by
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the sequence of such nodes, that is P = v1, . . . , vk. Obviously, the only two
(possibly identical) nodes of P of degree less than 2 are v1 and vk, and they
are the endnodes of P . P is said to be a path between v1 and vk. The interior
of P is the set of nodes of degree 2 in P , which are called the intermediate
nodes of P . Given two nodes a and b of P , there exists a unique subpath of
P between a and b, and we denote such path by Pab.

A cycle C is a connected graph such that every node has degree exactly
2. It is immediate to check that V (C) = {v1, . . . , vk} can be ordered so that
the only edges of C are of the form vivi+1 for 1 ≤ i ≤ k, where v1 = vk+1.
We will use the notation C = v1, . . . , vk, v1 to specify the set of nodes and
edges of C. If Q is a path or a cycle, the length of Q, denoted by |Q|, is the
number of edges of Q. The parity of Q (odd or even) is defined as the parity
of |Q|.

If G is a graph and Q is a subgraph of G that is either a path or a cycle,
we say that Q is chordless if Q is induced in G. If Q is not chordless, the
edges of G in E(G) \E(Q) with both endnodes in V (Q) are the chords of Q.
A chordless cycle of length at least 4 is called a hole. Given two chordless
paths P and Q with endnodes a, b and b, c, respectively, such that no node
in P \ b belongs to or has a neighbor in Q \ b, we denote by a, P, b,Q, c the
chordless path between a and c induced by V (P ) ∪ V (Q).

Given two disjoint sets A,B ⊂ V (G), a direct connection between A and
B is a minimal chordless path (in term of its node set) P = x1, ..., xn such
that x1 has a neighbor in A and xn has a neighbor in B.

The complement of a path is an antipath, while the complement of a hole
is an antihole. If Q is an antipath or an antihole that is a subgraph of G, Q
is chordless if Q̄ is chordless in Ḡ.

A set K ⊆ V (G) is a clique if the nodes in K are pairwise adjacent.
We denote by Kn the graph on n nodes such that V (Kn) is a clique. A set
S ⊆ V (G) is a stable set if the nodes in S are pairwise nonadjacent.

A graph G is bipartite if V (G) can be partitioned into two stable sets A,B.
A,B is said the bipartition of G and A and B are the sides of the bipartition of
G. If G is bipartite, sometimes we use the notation G = (A,B; E) to indicate
that A,B is the bipartition of G, and E is the edge-set of G. G = (A,B; E)
is complete if every node in A is adjacent to every node in B. We denote by
Kn,m the complete bipartite graph G = (A,B; E) with |A| = n and B = |m|.

Given a graph H, the line graph L(H) of H is the graph G where V (G) =
E(H) and there is an edge between e, e′ ∈ V (G) if and only if e and e′ have
an endnode in common in H.
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Given a graph G and e = uv ∈ E(G), the graph G′ obtained by subdivid-
ing e is the graph defined by V (G′) = V (G)∪{w}, where w /∈ V (G) is a new
node, and E(G′) = E(G) \ e ∪ {uw,wv}. Given two graphs G and G′, G′ is
a subdivision of G if G′ can be obtained from G by iteratively subdividing
edges. We say that G′ is a bipartite subdivision of G if G′ is a bipartite graph
that is a subdivision of G.

Given a set S ⊂ V (G) and a node x /∈ S, we say that x is universal for
S if x is adjacent to every node of S. We say that an edge e = yz such that
y, z /∈ S sees S if both y and z are universal for S. Given a chordless path
or a hole P in G \ S, we denote by ES(P ) the set of edges in P that see S.

1.1.2 Polyhedra and Linear Programming

If x = (x1, . . . , xn), y = (y1, . . . yn) are vectors, we write x ≤ y if xi ≤ yi for
every i ∈ [n]. We denote by xy the scalar product of x and y. Also, when-
ever we have expressions involving matrix multiplications, scalar products,
identities or inequalities among vectors or matrices, we always assume that
the sizes of the matrices and vectors involved are compatible.

A matrix or a vector is integral if all its entries are integers. We use the
expression 0, 1 matrix (resp. vector) or 0,±1 matrix (resp. vector) to indicate
that all the entries of the matrix (resp. vector) are in {0, 1} or in {−1, 0, +1},
respectively. Given a matrix A, the support matrix of A is the 0, 1 matrix,
with the same number of rows and columns, such that an entry is 1 if and
only if the corresponding entry of A is nonzero. Given a real number k, we
denote by k the vector (of appropriate dimension, depending on the context)
whose components are all equal to k.

Given a matrix A, a column vector b and a column vector of unknowns
x, the expression

Ax ≤ b

is a system of linear inequalities. The matrix A is called the constraint matrix
of the system.

A set P of vectors in IRn is a (convex) polyhedron if

P = {x ∈ IRn |Ax ≤ b} (1.2)

for some matrix A and vector b. We say that P is rational if one can choose
A and b in (1.2) such that every entry of A and b is a rational number.
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Given sets X and Y of vectors in IRn, the convex hull of X is the minimal
convex set conv(X) containing X, while the cone generated by Y is the set
cone(Y ) = {λ1y1 + . . . + λkyk | k ∈ IN, λ1 . . . , λk ∈ IR+, and y1, . . . , yk ∈ Y }.

Theorem 1.1 (Minkowski’s Theorem) P ⊆ IRn is a convex polyhedron if
and only if there exist finite sets X,Y ⊂ IRn such that P = conv(X) +
cone(Y ).

If P is a polyhedron and X and Y are the (unique) minimal sets such that
P = conv(X) + cone(Y ), the vectors in X are the vertices of P , while the
vectors in Y are the extreme rays of P . A vertex of P is also called a basic
feasible solution.

Theorem 1.2 Given an m×n matrix A with rows ai, i ∈ [m], and a vector
b ∈ IRm, a vector x̄ in P = {x ∈ IRn |Ax ≤ b} is a vertex of P if and only
if there are n linearly independent rows ai1 , . . . , ain of A such that aij x̄ = bij

for every j ∈ [n].

A subset P of IRn is a polytope if and only if P = conv(X) for some finite
X ⊂ IRn. One can show that P is a polytope if and only if P is a bounded
polyhedron, i.e. if there exists M ∈ IR such that ||x|| ≤ M for every x ∈ P .
A rational polyhedron P (resp. polytope) is integral if all the vertices of P
are integral.

A linear program is the problem of maximizing a linear function over a
polyhedron. Given a linear program

max{cx |Ax ≤ b}, (1.3)

the dual of (1.3) is the linear program

min{yb | yA = c, y ≥ 0}. (1.4)

A vector x̃ satisfying Ax̃ ≤ b is a feasible solution for (1.3), and is said to be
an optimal feasible solution if the maximum in (1.3) is attained by cx̃.

Theorem 1.3 (Strong Duality Theorem) Given a matrix A and vectors b
and c,

max{cx |Ax ≤ b} = min{yb | yA = c, y ≥ 0} (1.5)

provided that both sets in (1.5) are nonempty.
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Theorem 1.4 If (1.3) has a finite optimum, then there exists an optimal
solution x̃ that is a vertex of P = {x |Ax ≤ b}.

If x̃ is a vertex of P = {x |Ax ≤ b} that is optimal for (1.3), we say that
x̃ is a basic optimum solution.
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Chapter 2

Perfect Graphs

2.1 Introduction

Let G = (V,E) be an undirected, simple graph. Given a positive integer k,
a k-coloring of G is a function

ϕ : V (G) → [k]

such that ϕ(u) 6= ϕ(v) for every uv ∈ E(G). The elements of [k] are referred
to as colors, and the maximal sets of nodes of G with the same color are
the color classes of ϕ. Equivalently, G has a k-coloring if its node-set can be
partitioned into k stable sets. The chromatic number of G, denoted by χ(G),
is the minimum k such that G has a k-coloring.

We denote by ω(G) the clique number of G, that is the cardinality of a
maximum-size clique in G. Obviously, chromatic number and clique number
are related by the following inequality

χ(G) ≥ ω(G).

We will denote with α(G) the stability number of G, that is the cardinality
of a maximum-size stable set of G.

Definition 2.1 A graph G is perfect if χ(G′) = ω(G′) for every induced
subgraph G′ of G.

Berge [2] made two conjectures about perfect graphs. The first, known as
the weak perfect graph conjecture, states that a graph is perfect if and only
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if its complement is, and was proven by Lovász [61]. The other, known as the
strong perfect graph conjecture, characterizes the class of perfect graphs in
terms of minimally imperfect graphs. A graph G is minimally imperfect if G
is not perfect but every proper induced subgraph of G is perfect. Berge ob-
served that odd holes and their complements were both minimally imperfect
and conjectured that, in fact, odd holes and odd antiholes are the only min-
imally imperfect graphs. Recently, Chudnovsky, Robertson, Seymour and
Thomas [13] proved the conjecture. In Section 2.5 we will briefly describe
some of the main ideas involved in this long and difficult proof.

Next, we make a simple, yet useful, observation. Let G be a minimally
imperfect graph and S a nonempty stable set. Obviously, ω(G \ S) ≤ ω(G).
On the other hand, if ω(G\S) ≤ ω(G)−1, then G\S is (ω(G)−1)-colorable,
since G \ S is perfect, thus G is ω(G)-colorable, as we can assign a single
new color to all the nodes in S. This contradicts the assumption that G is
minimally imperfect. We summarize this in the following.

Remark 2.2 If G is a minimally imperfect graph, and S is a stable set of
G, then S does not intersect all the cliques of size ω(G) in G.

2.2 The Perfect Graph Theorem

Lovász [60] proved also a theorem stronger than the weak perfect graph
theorem, which is commonly known as the perfect graph theorem. Here we
present a beautiful, simple proof of this result, due to Gasparyan [51].

Theorem 2.3 (Perfect Graph Theorem) (Lovász) A graph G is perfect
if and only if ω(G′)α(G′) ≥ |V (G′)| for every induced subgraph G′ of G.

Proof: One direction is trivial: if G is perfect, then, for every induced sub-
graph G′, V (G′) can be partitioned by ω(G′) stable sets of size at most α(G′),
hence ω(G′)α(G′) ≥ |V (G′)|. For the converse, since every graph that is not
perfect contains a minimally imperfect graph, it suffices to prove that, if G
is minimally imperfect, than |V (G)| ≥ ω(G)α(G) + 1. Let α = α(G) and
ω = ω(G). W.l.o.g., V (G) = [n], and S0 = [α] is a maximum-size stable set.
For every i ∈ S0, G \ i is perfect and, by Remark 2.2, ω(G \ i) = ω, hence
V (G) \ {i} can be partitioned into ω stable sets Sω(i−1)+1, . . . , Siω. Clearly,
each node of G is contained in exactly α of the sets S0, . . . , Sαω so defined.
By Remark 2.2, for every j, 0 ≤ j ≤ αω, there exists a clique Cj of size ω(G)
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not intersecting Sj. Since, for every i, j, 0 ≤ i, j ≤ αω, |Si ∩ Cj| ≤ 1 and
every node of Cj is contained in exactly α of the Si’s, then |Si ∩ Cj| = 1 if
i 6= j. Thus, if S is the (αω + 1) × n 0, 1 matrix where Sij = 1 if and only
if j ∈ Si, and C is the (αω + 1) × n 0, 1 matrix where Cij = 1 if and only
if j ∈ Ci, then SC⊺ = J − I, where J is the (αω + 1) × (αω + 1) matrix
with all 1 entries and I is the (αω + 1) × (αω + 1) identity. Since J − I is
nonsingular, then both S and C have rank αω + 1, thus n ≥ αω + 1. 2

Clearly, since α(G) = ω(Ḡ) and ω(G) = α(Ḡ), the perfect graph theorem
implies the weak perfect graph theorem. Lovász’s original proof of the weak
theorem was polyhedral, and it relied on previous work by Fulkerson [49],
who was able to show that the weak perfect graph theorem was equivalent
to the Replication Lemma (Lemma 2.4). Next we also report this proof, as
it bears important consequences in relating perfect graphs to certain integral
polyhedra.

Given a graph G and a node v ∈ V (G), a graph H is obtained from G
by replicating v, if H is obtained by adding a new node v′ to G, which is
adjacent to v and to all, and only, the neighbors of v.

Lemma 2.4 (Replication Lemma) (Lovász [61]) If G is a perfect graph
and H is obtained from G by replicating v ∈ V (G), then H is perfect.

Proof: By contradiction, suppose H ′ is an induced subgraph of H that is
minimally imperfect. Clearly, if H ′ does not contain both v and v′, then H ′

is isomorphic to an induced subgraph of G, hence it is perfect. So we may
assume v, v′ ∈ V (H ′). Let G′ = H ′ \ v′ and, given an ω(G′)-coloring of G′,
let S be the color class containing v. Note that either ω(H ′) = ω(G′) + 1
and v and v′ belong to all the maximum-size cliques in H ′, or ω(H ′) = ω(G′)
and the maximum-size cliques of H ′ are contained in G′ \ v. In both cases, S
intersects all the maximum-size cliques of H ′, contradicting Remark 2.2. 2

Given a graph G, the stable set polytope of G, STAB(G), is the convex
hull in IR|V (G)| of the node-incidence vectors of the stable sets of G. One can
readily verify that a vector in {0, 1}|V (G)| is the incidence vector of a stable
set if and only if it satisfies the following constraints:

∑

v∈K

xv ≤ 1 for every clique K in G (2.1)

xv ≥ 0 for every v ∈ V (G) (2.2)
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Theorem 2.5 Let G be a graph. The following are equivalent.

(i) G is perfect,

(ii) STAB(G) is determined by (2.1) and (2.2),

(iii) Ḡ is perfect.

Proof: (i)⇒(ii) Suppose G is perfect. Let x ∈ IR|V (G)| be a vector satisfy-
ing (2.1) and (2.2), and N be a positive integer such that y = Nx is integral.
Let Yv, v ∈ V (G), be pairwise disjoint sets such that |Yv| = yv, and let H be
the graph such that V (H) = ∪v∈V (G)Yv and such that a node in Yu is adjacent
to a node in Yv if and only if u = v or uv ∈ E(G). Thus H is obtained from G
by iteratively replicating nodes of an induced subgraph of G. So H is perfect.
Given a maximum-size clique K ′ of H, clearly K = {v ∈ V (G) |K ′∩Yv 6= ∅}
is a clique, thus ω(H) = |K ′| ≤

∑

v∈K |Yv| = N
∑

v∈K xv ≤ N . Then V (H)
can be partitioned into N stable sets. Let s1, . . . , sN be the incidence vectors
of such stable sets, then y =

∑N

i=1 si. Thus x = 1
N

∑N

i=1 si, so x is a convex
combination of incidence vectors of stable sets.
(ii)⇒(iii) One can verify that property (ii) is inherited by induced subgraphs,
therefore, by remark 2.2, one has only to verify that, if (ii) holds, then Ḡ
contains a stable set that intersects all maximum-size cliques. Consider the
face F of STAB(G) defined by

∑

v∈V (G) xv ≤ α(G). Then F is contained

in a facet of STAB(G) of the form
∑

v∈K xv ≤ 1 for some clique K of G.
But then K intersects all the maximum-size stable sets of G, therefore K is
a stable set of Ḡ intersecting every maximum-size clique of Ḡ.
(iii)⇒(i) Just apply (i)⇒(iii) to Ḡ. 2

2.3 Perfect graphs and set packing

Given an m × n 0, 1 matrix A = (aij) with at least a 1 in each column, the
set packing polytope is defined as

P (A) = {x ∈ IRn |Ax ≤ 1, x ≥ 0}. (2.3)

A 0, 1 matrix A is perfect if P (A) has integral vertices only. A row of A, say
row i, is said to be dominated if there exists another row, say row j, such that
aik ≤ ajk for every k ∈ [n]. Obviously, constraints of (2.3) corresponding to
dominated rows of A are redundant, hence we may assume that A has no
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dominated rows. Chvátal [16] showed that P (A) is an integral polytope if
and only if A is the clique-node incidence matrix of a perfect graph, where the
clique-node incidence matrix of a graph G is the 0, 1 matrix whose columns
are indexed by the nodes of G and whose rows are the incidence vectors of
the maximal cliques of G.

Theorem 2.6 Let A be a 0, 1 matrix with at least a 1 in each column and
containing no dominated rows. Then P (A) is integral if and only if A is the
clique-node incidence matrix of a perfect graph.

Proof: Let A = (aij) ba an m × n 0, 1 matrix. By Theorem 2.5, if A is the
clique-node incidence matrix of a graph G, then P (A) is integral if and only
if G is perfect. Hence we only need to prove that, if P (A) is integral, then
A is the clique-node incidence matrix of some graph. Let G be the graph
with node-set V (G) = [n] such that ij ∈ E(G) if and only if there exists
h ∈ [m] such that ahi = ahj = 1. Suppose, by contradiction, that A is not
the clique-node incidence matrix of G. Then there exists a clique K of G
such that, for every h ∈ [m], there exists k ∈ K such that ahk = 0. Let
q = |K|, then, by construction, q ≥ 3. Let x ∈ IRn be defined by xi = 1

q−1

if i ∈ K, and xi = 0 otherwise. Clearly x ∈ P (A). Let c be the incidence
vector of K, then cx = q

q−1
> 1, while cy ≤ 1 for every integral point in

P (A), contradicting the fact that P (A) is integral. 2

2.4 Algorithmic aspects of perfect graphs

Several NP-hard problems, such as determining the stability number of a
graph, or finding an optimal coloring, can be solved in polynomial time when
the graph is perfect.

Lovász’s Theta function and the maximum stable set

There are several equivalent definitions of Lovász’s Theta function. Given a
graph G, define MG to be the family of symmetric |V (G)|× |V (G)| matrices
such that, for every element M = (mij), mij = 0 for every ij ∈ E(G) and
the trace of M (i.e. the sum of the diagonal elements) is 1. Lovász’s Theta
function can be defined as

ϑ(G) = max{1⊺M1 |M ∈ MG positive semidefinite}. (2.4)
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Lovász [62] showed that, for any graph G,

α(G) ≤ ϑ(G) ≤ χ(Ḡ),

while Grötschel, Lovász and Schrijver [53][54] showed that ϑ(G) can be com-
puted in polynomial time using semidefinite programming. Hence, if G is
a perfect graph, then, by the Perfect Graph Theorem, α(G) = χ(Ḡ), hence
α(G) = ϑ(G). These facts immediately imply the following:

Theorem 2.7 There exists a polynomial time algorithm to compute the sta-
bility number of any perfect graph.

The previous theorem also provides a way to compute a maximum-size stable
set in a perfect graph as follows: let V (G) = {v1, . . . , vn} and let G0 := G.
For 0 ≤ i ≤ n− 1, if α(Gi \ {vi+1}) = α(G) then let Gi+1 := Gi \ {vi+1}, else
let Gi+1 := Gi. Obviously, S = V (Gn) is a maximum-size stable set.

Coloring perfect graphs

Theorem 2.7 implies that, given a perfect graph G, it is possible to find an
ω(G)-coloring of G.

Theorem 2.8 (Grötschel et Al. [54]) There exists a polynomial time algo-
rithm to find a minimum coloring in a perfect graph.

Proof: Let G be a perfect graph. We only need to show how to find a stable
set S intersecting all maximum-size cliques in G, since we can apply recursion
to G \ S.

Start with t = 0. At each iteration, we have a list of t maximum-size
cliques K1, . . . , Kt and we compute a set S that intersect every Ki, i ∈ [t]. If
S intersects all the maximum-size cliques then we are done, else we compute
a maximum-size clique Kt+1 that does not intersect S. The polynomiality of
the algorithm will follow from bounding the number of iterations by |V (G)|.

To compute a stable set intersecting every Ki, construct the following
graph H. For every v ∈ V (G), let yv = |{i | v ∈ Ki}|, and let Yv, v ∈ V (G),
be pairwise disjoint sets such that |Yv| = yv. Let H be the graph such that
V (H) = ∪v∈V (G)Yv and such that a node in Yu is adjacent to a node in Yv if
and only if u 6= v and uv ∈ E(G). Since G is perfect, H is perfect and so is H̄.
Compute a maximum-size stable set S ′ of H and let S = {v ∈ V |Yv∩S ′ 6= ∅}.
By construction, V (H) can be partitioned into t cliques of size ω(G). Since
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ω(H) = ω(G), then such a partition is optimal and, since H̄ is perfect,
|S ′| = t and S intersects every Ki, i ∈ [t].

If ω(G\S) < ω(G) then S intersects every maximum-size clique, otherwise
we can compute a maximum-size clique Kt+1 in G \ S. The number of
iterations is bounded by |V (G)|, since the dimension of the vector space Lt,
defined by the equations

∑

v∈Ki
xv = 1, i ∈ [t], drops at each iteration, as

the incidence vector of S belongs to Lt but not to Lt+1. 2

Theorems 2.7 and 2.8 together provide a polynomial algorithm that, given a
graph G, either finds an optimal coloring of G and a proof of the optimality
of such coloring, that is a clique of same cardinality as the number of colors,
or the proof that the graph is not perfect.

Recognizing perfect graphs

The problem of deciding in polynomial time whether a graph is perfect or not
has been solved recently in a series of three papers, providing two different
algorithms, by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković. The
first paper, joint by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [12],
describes a preprocessing technique that is needed in both algorithms. The
two papers describing the recognition algorithms are by Chudnovsky and
Seymour [15] and Cornuéjols, Liu and Vušković [41]. Interestingly, none
of the two algorithms uses the decomposition theorem for perfect graphs,
which will be discussed in Section 2.5.2 (but they do rely on the validity of
the Strong Perfect Graph Theorem). Prior to these papers, it was not known
whether the problem of deciding if a graph is perfect was in NP. While, by
the Strong Perfect Graph Theorem, deciding if a graph is perfect amounts to
determine if the graph contains an odd hole or an odd antihole, the problem
of deciding in polynomial time if a graph contains an odd hole is still open.
In this regard, Bienstock [6] showed that deciding if a graph contains an odd
hole going through a prescribed node is NP-complete.

2.5 The Strong Perfect Graph Theorem

Let us restate the strong perfect graph theorem, recently proved by Chud-
novsky, Robertson, Seymour and Thomas [13], in a more convenient form.

Definition 2.9 A graph G is Berge if G does not contain an odd hole or an
odd antihole as an induced subgraph.
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Theorem 2.10 (Strong Perfect Graph Theorem) Let G be a graph. G
is perfect if and only if G is Berge.

As mentioned in the introduction, the approach used to prove Theo-
rem 2.10 consists in showing that every Berge graph either belongs to some
basic class of perfect graphs, or has a decomposition that cannot occur in
a minimally imperfect graph. Next we define what these basic classes and
decompositions are.

2.5.1 Basic classes

A graph G is basic if and only if it belongs to one of the following five families
of graphs:

1. Bipartite graphs,

2. Line graphs of bipartite graphs,

3. Complements of bipartite graphs,

4. Complements of line graphs of bipartite graphs,

5. Doubled-split graphs,

where G is a doubled-split graph if V (G) can be partitioned into sets A and
B, each of cardinality at least 4, such that every node of A has degree 1 in
G[A], every node of B has degree 1 in Ḡ[B], and for every pair of adjacent
nodes a, a′ ∈ A, and for every pair of nonadjacent nodes b, b′ ∈ B, {a, a′, b, b′}
induces a chordless path of length 3.

Proposition 2.11 If G or G is bipartite or the line graph of a bipartite
graph, then G is perfect.

Proof: Note that every induced subgraph of G still belongs to the same basic
class as G, hence we only need to show that the chromatic number of G equals
its clique number. The statement is trivial if G is bipartite, so by the weak
perfect graph theorem also the complements of bipartite graphs are perfect.
If G is the line graph of some bipartite graph H, then ω(G) = ∆(H), where
∆(H) is the maximum degree of a node in H and χ(G) = χ′(H), where χ′(H)
is the minimum number of colors χ′(H) to be assigned to the edges of H so
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that no pair of adjacent edges have the same color. A theorem of König [59]
implies that χ′(H) = ∆(H), hence ω(G) = χ(G). As above, this implies that
also the complements of line graphs of bipartite graphs are perfect. 2

One can show that doubled-split graphs are perfect as well, but the class
is not closed under taking induced subgraphs. However, it is sufficient, for
proving the SPGC, to show the following weaker statement.

Proposition 2.12 No minimal imperfect graph is a doubled-split graph.

Proof: We only need to show that the clique number and the chromatic
number of G are equal. If G is a doubled-split graph and V (G) is partitioned
into sets A and B as in the definition, then ω(G) = |B|/2 + 1 and G can
be partitioned into ω(G) stable set as follows: given two nonadjacent nodes
b, b′ ∈ B, |B|/2 − 1 stable sets are of the form {β, β′} ⊂ B where {β, β′} 6=
{b, b′}, and the remaining two stable sets are b∪(A\N(b)) and b′∪(A\N(b′)).
2

2.5.2 Decompositions

We consider three types of decompositions: 2-joins, homogeneous pairs and
skew partitions.

2-Join

A graph G has a 2-join if V (G) can be partitioned into nonempty subsets V1

and V2 each of cardinality at least 3, with nonempty pairwise disjoint subsets
A1, B1 ⊂ V1 and A2, B2 ⊂ V2 such that every node in A1 is adjacent to every
node in A2, every node in B1 is adjacent to every node in B2, and there is
no other edge between V1 and V2.
The concept of 2-Join was introduced by Cornuéjols and Cunningham [40],
who proved the following.

Theorem 2.13 If a minimally imperfect graph G has a 2-join, then G is an
odd hole.
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Homogeneous Pair

Given a graph G, an homogeneous pair consists of two disjoint sets A1 and
A2, each nonempty, such that 3 ≤ |A1| + |A2| ≤ |V (G)| − 2 and, for every
v ∈ V (G) \ (A1 ∪ A2), if v is adjacent to a node in Ai, then it is adjacent to
every node in Ai, for i ∈ [2].

Homogeneous pairs where introduced by Chvátal and Sbihi [19], who
proved the following.

Theorem 2.14 No minimally imperfect graph has an homogeneous pair.

Skew Partition

A graph G has a skew partition if V (G) can be partitioned into nonempty
sets A,B,C,D such that every node in A is adjacent to every node in B
and no node in C has a neighbor in D. Skew partitions were introduced by
Chvátal [17], who conjectured that no minimally imperfect graph has a skew
partition. It is easy to verify that the strong perfect graph theorem implies
the skew partition conjecture, but there is no direct proof of it. However,
several weaker results were known in the literature, and we will present some
of them. To this purpose, we will provide a useful lemma, due to Hoáng [57].

Given a minimally imperfect graph G with a skew partition A,B,C,D,
let G1 = G \ D and G2 = G \ C. It is immediate to verify that every
maximum-size clique of G is contained in G1 or G2. Also, G1 and G2 are
both perfect.

Lemma 2.15 (Hoáng) Let ϕ1 and ϕ2 be, respectively, ω(G)-colorings of G1

and G2. Then |ϕ1(A)| 6= |ϕ2(A)|.

Proof: By contradiction, suppose that |ϕ1(A)| = |ϕ2(A)| = k. Then, w.l.o.g.
ϕ1(A) = ϕ2(A) = [k]. Let K be the subgraph of G induced by the nodes of
G that get a color in [k] in either of the two colorings and let H = G \ K.
Since every maximum-size clique of G is contained in G1 or in G2, ω(K) = k
and ω(H) = ω(G) − k. Since H and K are both perfect, their nodes can be
partitioned into, respectively, ω(G)−k and k stable sets, hence V (G) can be
partitioned into ω(G) stable sets, a contradiction. 2

If |A| = 1, then the set A ∪ B is called star cutset. Star cutsets were in-
troduced by Chvátal [17], who showed that they cannot occur in a minimally
imperfect graph. This last fact is obviously implied by the previous lemma.

21



Another important type of skew partition was introduced by Chudnovsky,
Robertson, Seymour and Thomas [13]: a skew partition A,B,C,D is balanced
if

(i) every chordless path of length at least 2 with endnodes in A ∪ B and
interior in C ∪ D has even length,

(ii) every chordless antipath of length at least 2 with endnodes in C ∪ D
and interior in A ∪ B has even length.

A counterexample (if any) to the Strong Perfect Graph Theorem that
has the smallest number of nodes, is said a Berge minimum imperfect graph.
In other words, a Berge minimum imperfect graph is a Berge graph that
is not perfect and has the smallest number of nodes among graphs with
this property. Clearly, a Berge minimum imperfect graph is also minimally
imperfect.

Theorem 2.16 (Chudnovsky, Robertson, Seymour and Thomas [13]) No
Berge minimum imperfect graph has a balanced skew partition.

Proof: Let G be a Berge minimum imperfect graph. Suppose that G has a
balanced skew partition A,B,C,D. By Lemma 2.15 applied to Ḡ, we may
assume |C|, |D| ≥ 2. Let G1 = G \ D and G2 = G \ C. For i ∈ [2], let G′

i be
obtained from Gi by adding a new node xi such that NG′

i
(xi) = A. Because

A,B,C,D is balanced, it is immediate to verify that G′
i is Berge. Also, G′

i has
fewer nodes than G, hence G′

i is perfect. Let G′′
i be the graph obtained from

G′
i by replacing xi with a clique Xi of cardinality ω(G) − ω(G[A]) whose

nodes are adjacent to every node in A and to no node of Gi \ A. By the
Replication Lemma 2.4, G′′

i is perfect. By construction, ω(G′′
i ) = ω(G). Let

ϕ′
i be an ω(G)-coloring of G′′

i . By construction, ϕ′
i(A) ∩ ϕ′

i(Xi) = ∅ and
|ϕ′

i(A)| + |ϕ′
i(Xi)| ≤ ω(G) = ω(G[A]) + ω(G[Xi]). Thus the restriction ϕi of

ϕ′
i to V (Gi) is an ω(G)-coloring of Gi with |ϕi(A)| = ω(G[A]), contradicting

Lemma 2.15. 2

The next lemma, due to Chudnovsky et Al. [13], provides, in several cases,
an easy way to prove that a graph that contains a skew partition contains, in
fact, a skew partition that is balanced. A skew partition A,B,C,D is loose
if either there exists u ∈ A ∪ B such that u has no neighbors in C or in D,
or there exists v ∈ C ∪D such that v is adjacent to every node in A or in B.
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Lemma 2.17 If G is a Berge graph containing a loose skew partition, then
G has a balanced skew partition.

We postpone the proof of Lemma 2.17 to the end of Section 2.5.4, since we
will need the Roussel-Rubio Lemma 2.27. Lemma 2.17 generalizes previous
results due to Hoàng, who showed that no minimally imperfect graph contains
a T-cutset (i.e. a skew cutset in which both C and D contain a node universal
for A) or a U-cutset (i.e. a skew cutset in which C contains a node universal
for A and a node universal for B).

Other types of skew-partitions have been considered in the literature.
For example, Cornuéjols and Reed [42] considered the case in which A ∪ B
induces a multi-partite graph, that is a graph in which every anticonnected
component is a stable set. In this case, A ∪ B is a multipartite cutset.

Theorem 2.18 (Cornuéjols and Reed [42]) No minimally imperfect graph
has a multipartite cutset.

The previous theorem was generalized by Roussel and Rubio [69], who showed
that no minimally imperfect graph can contain a skew-partition A,B,C,D
in which A is a stable set.

2.5.3 Decomposition of Berge graphs

Chudnovsky, Robertson, Seymour and Thomas [13] showed the following.

Theorem 2.19 (Decomposition Theorem) (Chudnovsky et Al.)
Let G be a Berge graph. Then either G is basic, or either G or Ḡ has a
2-join, a homogeneous pair or a balanced skew-partition.

The decomposition theorem easily implies the Strong Perfect Graph The-
orem. Suppose, indeed, that there exists a Berge graph that is not perfect,
and let G be one such graph with the minimum number of nodes. Clearly G
is minimally imperfect, and so is Ḡ. By Propositions 2.11 and 2.12, G is not
basic, hence either G or Ḡ has a 2-join, contradicting Theorem 2.13, or a ho-
mogeneous pair, contradicting Theorem 2.14, or a balanced skew-partition,
contradicting Theorem 2.16.

Conforti, Cornuéjols and Vušković [28] had conjectured that, for every
Berge graph G, either G or Ḡ is bipartite or the line graph of a bipartite
graph, or G or Ḡ has a 2-join or a skew partition. Chudnovsky [11] showed
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that Theorem 2.19 can be strengthened by using only 2-joins and balanced
skew partitions (and it is claimed in [14] that the proof of this fact is as hard
as the proof of Theorem 2.19 itself). Clearly, if G is a doubled split graph,
then V (G) can be partitioned into sets A,B, |A|, |B| ≥ 4, where every node
in A has degree one in G[A] and every node in B has degree one in Ḡ[B].
Hence G[A] is not connected, so B is a multipartite cutset. We summarize
this in the next remark.

Remark 2.20 Let G be a Berge graph. Then either G or Ḡ is bipartite, or
the line graph of a bipartite graph, or G or Ḡ has a 2-join, a balanced skew
partition or a multipartite cutset.

Since multipartite cutsets are special types of skew partitions, then the con-
jecture of Conforti et Al. mentioned above holds. Moreover, since the skew
partitions used cannot occur in a Berge minimum imperfect graph, it also
implies the strong perfect graph theorem.

Classes of graphs

The Decomposition Theorem 2.19 was known to hold for several classes of
Berge graphs. The decompositions used for these classes are all special cases
of the decompositions we discussed in Section 2.5.2. Here we list some of
them:

• Chordal (or triangulated) graphs: are the graphs that do not contain a
hole. Berge [2] in 1960 showed that chordal graphs are perfect, while
a result of Dirac [46] in 1961 implies that every chordal graph has a
clique-cutset, which is a special type of star cutset.

• Meyniel graphs: are the graphs such that every cycle of odd length
has at least 2 chords. Meyniel graphs are obviously Berge, and they
were shown to be perfect by Markosyan and Karapetyan [64] and by
Meyniel [66] in 1976. A very elegant variant of the Decomposition
Theorem was proven by Burlet and Fonlupt [7] for this class.

• Claw-free graphs: are the graphs that do not contain K1,3. In 1976,
Parthasarathy and Ravindra [68] showed the validity of the strong per-
fect graph conjecture for claw-free graphs, while Maffray and Reed [63]
in 1995 showed that every claw-free Berge graph either has a clique-
cutset, or is an augmentation of a flat edge (which is a special case both
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of 2-joins and homogeneous pairs) or belongs to the family of peculiar
graphs, which in turn can be easily decomposed into the basic classes
by using star cutsets.

• Weakly chordal (or weakly triangulated) graphs: graphs that do not
contain a hole or an antihole of length greater than 4. In 1985, Hay-
ward [55] showed that every weakly triangulated graph that is not basic
has a star cutset.

• Diamond-free graphs: are the graphs that do not contain a diamond,
that is the graph K4 minus an edge. The strong perfect graph conjec-
ture was proven to hold for such graphs by Tucker [78] in 1987, while
the Decomposition Theorem for Berge graphs in this class was shown
by Fonlupt and Zemirline [48] in 1987.

• Bull-free graphs: are the graphs that do not contain a bull, that is
the graph on five nodes a, b, c, d, e and edges ab, bc, bd, cd, ce. The
Decomposition Theorem for bull-free Berge graphs was proven in 1987
by Chvátal and Sbihi [19], where they also introduced the concept of
homogeneous pair.

• Dart-free graphs: are the graphs that do not contain a dart, that is
the graph on five nodes a, b, c, d, e and edges ab, bc, bd, be, ce, de. The
strong perfect graph conjecture was proven by Sun [74] for dart-free
Berge graphs in 1991, while the Decomposition Theorem was shown in
2000 by Chvátal, Fonlupt, Sun and Zemirline [18].

• Square-free graphs: are the graphs that do not contain a square, that
is a hole of length 4. The Decomposition Theorem for this class was
proven in 2001 by Conforti, Cornuéjols and Vušković [28], where they
showed that every Berge square-free graph is either basic or it has a
2-join or a star-cutset.

Outline of the proof of the Decomposition Theorem

We will now provide a brief overview of Chudnovsky, Robertson, Seymour
and Thomas’ proof of Theorem 2.19 [13]. Proofs of parts of it, discovered
independently by Conforti, Cornuéjols, Vuškcović and Zambelli [31] and by
Conforti, Cornuéjols, and Zambelli [33] will be given in Chapters 3 and 4.
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The proof can be roughly divided into two main parts: the first one con-
siders the case in which a Berge graph G contains some induced subgraph
L, that is the line graph of some “large” bipartite graph. The idea of the
proof is to show that some structural property of L can be extended to a
larger induced subgraph L′ of G, until either G = L′, in which case G is
basic, or one can show that there is a limited number of ways in which the
nodes of G \ L′ can attach to (i.e. have neighbors in) L′, in which case one
can prove that the graph has one of the decompositions in the statement of
Theorem 2.19.
The second part considers the case in which G is a Berge graph that does not
contain any “large” line graph of a bipartite graph as an induced subgraph.
Unlike the first part, in which the aim was to start from some basic induced
subgraph L of G and to maximally extend it into some basic induced sub-
graph L′ with certain properties, in this second part the idea is to show that
either G is basic, or it contains some non-basic induced subgraph G′ such
that G′ has a decomposition that can be extended to a decomposition of G
itself.

LINE GRAPHS

The first part of the proof of Chudnovsky et Al. [13] involves several steps.
The first one is summarized in the next theorem.

Theorem 2.21 Let G be a Berge graph. Let J be a 3-connected graph and H
be a bipartite subdivision of J . If G contains L(H) as an induced subgraph,
then either G or Ḡ is the line graph of a bipartite graph, or a doubled split
graph, or G or Ḡ has a 2-join or a balanced skew partition.

An example of line graph of a bipartite subdivision of a 3-connected graph
is depicted in Figure 2.1.

The technique used in proving Theorem 2.21 is reminiscent of a result in
the same spirit due to Conforti and Cornuéjols and contained in [21].

A long prism is the graph consisting of two disjoint triangles (cycles of
length 3) a1, a2, a3 and b1, b2, b3 and three pairwise node-disjoint chordless
paths P 1, P 2, P 3, not all of length one, such that, for every i ∈ [3], P i is
a path between ai and bi, and, for every 1 ≤ i < j ≤ 3, the only edges of
G with one endpoint in P i and the other in P j are aiaj and bibj. We will
denote such graph by 3PC(a1a2a3, b1b2b3).

It is easy to verify that Berge long prisms are line graphs of bipartite
graphs.
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Figure 2.1: A 3-connected graph J , a bipartite subdivision H of J and L(H).

Theorem 2.22 Let G be a Berge graph such that neither G nor Ḡ contains
the line graph of a bipartite subdivision of a 3-connected graph as an induced
subgraph. If G contains a long prism as an induced subgraph, then either
G or Ḡ is the line graph of a bipartite graph, or G or Ḡ has a 2 join, an
homogeneous pair or a balanced skew partition.

It is known that a subdivision of a 3-connected graph has a subgraph that
is a subdivision of K4. It is easy to verify that, if a line graph of a bipartite
subdivision of K4 does not contain a long prism, then it must contain the line
graph of K3,3 \ {e}, where K3,3 \ {e} is the graph obtained deleting an edge
e from the complete bipartite graph K3,3. Hence, in light of Theorems 2.21
and 2.22, one may assume, in the remainder of the proof, that G does not
contain a long prism or L(K3,3 \ {e}).

A double diamond is the graph with node-set {a1, a2, a3, a4, b1, b2, b3, b4}
such that the ai’s are pairwise adjacent, except a1, a2, the bi’s are pairwise
adjacent, except b1, b2, there is an edge aibi for every i ∈ [4], and these are
the only edges (see Figure 2.2).

Theorem 2.23 Let G be a Berge graph such that neither G nor Ḡ contains
a long prism or L(K3,3 \{e}). If G contains a double diamond as an induced
subgraph, then either G or Ḡ has a 2 join or a balanced skew partition.

WHEELS

The second part of the proof deals with the case in which G is a Berge graph
such that neither G nor Ḡ contains an induced subgraph isomorphic to a long
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Figure 2.2: A double diamond.

prism, L(K3,3 \{e}) or a double diamond. Chudnovsky et Al. [13] named the
graphs with such property bipartisan graphs.

A wheel, denoted by (H, v), is a graph induced by a hole H and a node
v /∈ V (H), called center, having at least three neighbors in H. A wheel (H, v)
is a twin wheel if v has exactly three neighbors in H and (H, v) contains
exactly two triangles; the neighbor of v in H that is adjacent to all the other
neighbors of v in H is said the twin of v in H. A wheel (H, v) is a line wheel
if v has exactly four neighbors in H and (H, v) contains exactly two triangles
and these two triangles have only the center v in common. A universal wheel
is a wheel (H, v) where the center v is adjacent to all the nodes of H. A
triangle-free wheel is a wheel containing no triangle. A proper wheel is a
wheel that is not any of the above four types.

A hub, denoted by (H,S), is the graph induced by a hole H of length at
least 6 and by an anticonnected set S ⊆ V (G) \ V (H), with the property
that there is a positive, even number of edges of H whose endnodes are both
universal for S. Given a hub (H,S), we say that (H,S) is good if the graph
G[Y ], induced by the set Y of nodes of H that are universal for S, has a
connected component that induces a path of odd length.

Here we should point out that this definition of wheel, first given by Con-
forti and Cornuéjols in [21], is somewhat different from that of Chudnovsky,
Robertson, Seymour and Thomas [13]. In particular, what we call good hub
is exactly what Chudnovsky et Al. call “odd wheel”.

Chudnovsky, Robertson, Seymour and Thomas [13], and independently
Conforti, Cornuéjols, Vušković and Zambelli [31] proved the following.

Theorem 2.24 Let G be a Berge graph such that neither G nor Ḡ contains
an induced subgraph isomorphic to a long prism or to L(K3,3 \ {e}). If G

28



contains a good hub, then G has a balanced skew partition.

The proof of Theorem 2.24 will be given in Chapter 3. There are only two
cases left to prove: the first one is the case in which G is a bipartisan graph
such that neither G nor Ḡ contains a good hub but G contains a wheel that
is not a triangle-free wheel or a twin wheel, and the last case is the case in
which G is a bipartisan graph such that G and Ḡ do not contain any wheel
except, possibly, twin wheels and triangle-free wheels. The first of these two
cases is disposed of by the next theorem, due to Chudnovsky et Al. [13].

Theorem 2.25 Let G be a bipartisan graph such that neither G nor Ḡ con-
tains a good hub as an induced subgraph. If G contains a wheel that is not a
triangle-free or a twin wheel, then G has a balanced skew partition.

Finally, the proof is concluded by the following theorem, proven indepen-
dently also by Conforti, Cornuéjols and Zambelli [33].

Theorem 2.26 Let G be a bipartisan graph such that neither G nor Ḡ con-
tains a wheel that is not a twin wheel or a triangle-free wheel. Then either
G or Ḡ is bipartite, or G has a balanced skew-partition.

We conclude this section presenting a useful tool in studying the structure
of Berge graphs.

2.5.4 The Roussel-Rubio Lemma

The following is a powerful result due to Roussel and Rubio [69] that is used
in several places both in [13] and in [31][33]. We remind the reader that,
given a set S ⊂ V (G) and a node x /∈ S, x is universal for S if x is adjacent
to every node of S and an edge e = yz, y, z /∈ S, sees S if both y and z are
universal for S. Given a chordless path (or a hole) P in G \ S, we denote by
ES(P ) the set of edges in P that see S.

Lemma 2.27 (Roussel and Rubio [69]) Let G be a Berge graph where
V (G) can be partitioned into an anticonnected set S and an odd chordless path
P = u, u′, . . . , v′, v of length at least 3 such that both u and v are universal
for S. Then one of the following holds:

(i) An odd number of edges of P see S.
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(ii) |P | = 3 and S ∪ {u′, v′} contains an odd chordless antipath between u′

and v′.

(iii) |P | ≥ 5 and there exist two nonadjacent nodes x, x′ in S such that
P \ {u, v} ∪ {x, x′} is a chordless path between x and x′.

Proof: The proof is by induction on |S|+ |P |. Note that, ∀x ∈ S, there is an
odd number of edges of P that see x, otherwise P ∪ x contains an odd hole.

Claim 1: Lemma 2.27 holds if |P | = 3.

If |P | = 3 and (i) does not hold, then both u′ and v′ have a nonneighbor
in S. Since S is anticonnected, S ∪ {u′, v′} contains a chordless antipath Q
between u′ and v′. Since u, v, u′, Q, v′, u is an antihole, Q has odd length.

We may assume, then, that |P | ≥ 5 and |S| ≥ 2.

Claim 2: For any anticonnected subset S ′ 6= ∅ of S, and any odd subpath
Pzz′ of P such that z, z′ are universal for S ′ and |S ′|+ |Pzz′ | < |S|+ |P |, we
may assume that ES′(Pzz′) has odd cardinality.

Otherwise, by induction, either S ′ contains two nonadjacent nodes x, x′ such
that P ′ = Pzz′ \ {z, z′} ∪ {x, x′} is a chordless path , or Pzz′ = z, y, y′, z′

for some y, y′ ∈ V (P ), and S ′ ∪ {y, y′} contains a chordless odd antipath Q
between y and y′. In the former case, either z = u and z′ = v and we are
done, or there exists w ∈ {u, v} with no neighbors in the interior of Pzz′ , so
w, x, P ′x′, w is an odd hole. In the second case, since |P | ≥ 5, there exists
w ∈ {u, v} nonadjacent to both y, y′, so w, y,Q, y′, w is an odd antihole.

Claim 3: We may assume that no node in the interior of P is universal for
S.

Suppose there is a node in the interior of P universal for S. Let u1, . . . , uk+1

be the nodes of P universal for S in the order they appear in P going from
u to v, and, ∀i ∈ [k], let Pi be the subpath of P between ui and ui+1. By
Claim 2, ∀i ∈ [k], if Pi is odd then it has length 1. Hence, since P is odd,
there is an odd number of edges of P that see S.

Let Q = s1, . . . , s2 be a longest chordless antipath contained in S. Let
Sh = S\sh, h = 1, 2. By the choice of s1 and s2, S1 and S2 are anticonnected.

Claim 4: Q has odd length.

By Claim 2, ESh
(P ) has odd cardinality, h = 1, 2, and, by Claim 3, no node

in the interior of P is universal for both S1 and S2. Since |P | ≥ 5, there exist
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two nonadjacent nodes z1 and z2 in the interior of P such that zh is universal
for Sh, h = 1, 2. So z1, s1, Q, s2, z2, z1 is an antihole and Q is odd.

Let u1, . . . , uk+1 be the nodes of P universal for S1 or S2 in the order they
appear in P going from u to v, and let Pi be the subpath of P between ui

and ui+1.

Claim 5: S is a stable set.

By Claim 2, ESh
(P ) has odd cardinality for h = 1, 2. By Claim 3, ES1

(P ) ∩
ES2

(P ) = ∅, so ES1
(P ) ∪ ES2

(P ) has even cardinality. Thus, since P is odd,
there exists j ∈ [k] such that Pj is odd and ujuj+1 is not an edge that sees
S1 or S2. If |Pj| > 1 and S is not stable, then |Q| ≥ 2 and, by Claim 2, there
is a node z in the interior of Pj that is universal for V (Q) \ {s1, s2}. But
then, by Claim 4, z, s1, Q, s2, z is an odd antihole. Hence we may assume
that |Pj| = 1. W.l.o.g., s1 is adjacent to uj but not uj+1 and s2 is adjacent
to uj+1 but not uj. Since |P | ≥ 5, there exists w ∈ {u, v} not adjacent to
any of uj and uj+1. By Claim 4, u, uj+1, s1, Q, s2, uj, u is an odd antihole, a
contradiction.

To conclude, let z1, . . . , zm+1 be the nodes of P that have a neighbor in S in
the order they appear in P going from u to v, and let Zi, i ∈ [m], be the
subpath of P between zi and zi+1.

Claim 6: We may assume that, ∀i ∈ [m], Zi has either even length or it is
an edge that sees some node in S.

Suppose Zi, i ∈ [k], contradicts the claim. No node s ∈ S is adjacent to
both zi and zi+1, else Zi must have odd length at least 3 and s, zi, Zi, zi+1, s
is an odd hole, hence there exists s1, s2 ∈ S such that s1 is adjacent to zi

and not zi+1 and s2 is adjacent to zi+1 and not zi. If zi = u′ and zi+1 = v′

then we are done, else there exists w ∈ {u, v} with no neighbors in Zi and
w, s1, zi, Zi, zi+1, s2, w is an odd hole, a contradiction.

Let δ = |{i ∈ [m] | |Zi| = 1}|. By Claim 6, a simple counting argument
implies

δ =

|S|
∑

i=1

(−1)i+1
∑

A⊆S, |A|=i

|EA(P )| .

Since |EA(P )| is odd for every proper subset A of S, then the parity of δ

equals the parity of
∑|S|−1

i=1

(

|S|
i

)

+ |ES(P )| which is equal to the parity of
|ES(P )|. By Claim 6 and because P is odd, δ is odd, hence |ES(P )| is odd
and we are done. 2
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The following is an easy consequence of Lemma 2.27.

Corollary 2.28 Assume G is a Berge graph containing an anticonnected set
S and an odd chordless path P = u, u′, . . . , v′, v disjoint from S of length at
least 3 such that u, v are both universal for the set S. Furthermore, assume
that G \ (S ∪ V (P )) contains a node w universal for S such that no node in
the interior of P is adjacent to w. Then an odd number of edges of P see S.

Proof: Assume not. Then, by Lemma 2.27, either |P | = 3 and S ∪ {u′, v′}
contains an odd anti-path Q between u′ and v′, or |P | ≥ 5 and there exist
two nonadjacent nodes x, x′ in S such that x, u′, Pu′v′ , v′, x′ is a chordless
path. In the first case, w, u′, Q, v′, w is an odd anti-hole, and in the other
case w, x, u′, Pu′v′ , v′, x′, w is an odd hole, a contradiction. 2

Now we have the necessary tools to prove Lemma 2.17.

Proof of Lemma 2.17:
Assume G has a loose skew partition A,B,C,D. Possibly by going to the
complement, we may assume that D contains a node v that is universal for
A. Define the deficiency of such skew partition as (|B|+ 2|D|)− (|A|+ |C|).
Assume that the deficiency of A,B,C,D is the largest possible. Then A
is anticonnected and C is connected, otherwise let A′ be an anticonnected
component of G[A] and C ′ be a connected component of G[C], let B′ =
A ∪ B \ A′ and D′ = C ∪ D \ C ′, then A′, B′, C ′, D′ is a skew partition with
v ∈ D′ universal for A′ and it has larger deficiency, a contradiction. Also,
either there is no node u ∈ C that is universal for A, or |C| = 1, otherwise
given C ′ = C \ {u} and B′ = B ∪ {u}, A,B′, C ′, D has larger deficiency.
Analogously, either every node in A has a neighbor in C or |A| = 1, and
either every node in B has a neighbor in C or |B| = 1, otherwise we could
find another loose skew partition of larger deficiency.

If there exists an odd chordless path P = x1, . . . , xk with endnodes in
A ∪ B and interior in C ∪ D, then, clearly, the interior of P is all contained
in C or D, while either x1, xk ∈ A or x1, xk ∈ B. Assume first that the
interior of P is contained in C. If x1, xk ∈ A, then H = v, x1, P, xk, v is
an odd hole, a contradiction. If x1, xk ∈ B, then A is an anticonnected set,
both endnodes of P are universal for A, v is universal for A and v does not
have any neighbor in the interior of P . By corollary 2.28, there must be a
node in the interior of P (which is contained in C) that is universal for A,
a contradiction. Hence the interior of P is contained in D. Since x1 and
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xk both have a neighbor in C and C is connected, there exists a path P ′

between x1 and xk with interior in C. By the previous argument, P ′ must
be even, therefore H = x1, P, xk, P

′, x1 is an odd hole, a contradiction.
If there exists an odd chordless antipath Q = y1, . . . , yk with endnodes

in C ∪ D and interior in A ∪ B, then the interior of Q is contained either
in A or in B, while either y1, yk ∈ C or y1, yk ∈ D. Furthermore, |Q| ≥ 5,
since every path of length 3 is also an antipath of length 3. Assume first that
y1, yk ∈ C. If the interior of Q is contained in A, then H = v, y1, Q, yk, v is an
odd antihole. Hence the interior of Q is contained in B. Since both y1 and
yk have a nonneighbor in A and A is anticonnected, there exists a chordless
antipath Q′ between y1 and yk with interior in A, which must be even by
the argument above, hence H = y1, Q, yk, Q

′, y1 is an odd antihole. Thus
y1, yk ∈ D. C is a connected set and y1, yk have no neighbors in C, so we can
apply Lemma 2.27 in the complement. Since |Q| ≥ 5, there are two possible
outcomes: either there is a node in the interior of Q (which is contained in
A∪B) which has no neighbor in C, contradicting our assumptions, or there
exist two adjacent nodes y′, y′′ ∈ C such that Q′ = y′, y2, Qy2yk−1

, yk−1, y
′′ is

an odd chordless antipath, which we already proved is not possible. 2

Lemma 2.29 Let G be a Berge graph. If G has a star-cutset, then G has a
balanced skew partition.

Proof: Trivially, if G has a star cutset then G has a loose skew partition. 2
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Chapter 3

About Berge Graphs
Containing Wheels

3.1 Introduction

Let G be a Berge graph and (H,S) be a hub in G. Observe that (H,S)
has a skew partition. Indeed, we can color the nodes of H Red or Blue so
that two nodes have distinct colors if and only if the subpaths of H between
them contain an odd number of edges with both endpoints universal for S.
If we let A = S, B be the set of Red nodes of H that are universal for A,
then A ∪ B is a cutset of (H,S), hence there are two nonempty disjoints
sets C and D of nodes of G \ (A ∪ B) such that there is no edge crossing
them, hence A,B,C,D is a skew partition of (H,S). If G is a Berge graph
and (H,S) is an induced subgraph of G, we want to investigate when such
a skew partition extends to G, that is when there exists a skew partition
A′, B′, C ′, D′ of G with A ⊆ A′. Obviously, if the skew partition of (H,S)
does not extend, then G contains a minimal obstruction, that is a minimal
path in G \ (V (H) ∪ A) joining the red nodes to the blue nodes but not
containing any node universal for A. In Section 3.4 we characterize all such
minimal obstructions. This characterization will allow us to identify two
cases in which the presence of a hub (H,S) in G with certain characteristics,
will imply the existence of a skew partition in the whole graph. The following
two theorems are the main results of this Chapter.

Theorem 3.1 Let G be a Berge graph such that neither G nor Ḡ contains
an induced subgraph isomorphic to a long prism or to L(K3,3 \ {e}). If G
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contains a good hub, then G has a balanced skew partition.

The proof of Theorem 3.1 is given in Section 3.6.
Given a hub (H,S) and an edge ab ∈ ES(H), an ear on ab (with respect

to (H,S)) is a chordless path P = x1, . . . , xn in G \ (V (H) ∪ S) such that
x1 is adjacent to a, xn is adjacent to b, xi is not adjacent to a if i ≥ 2, xi is
not adjacent to b if i ≤ n− 1, no node in V (H) \ {a, b} has a neighbor in P ,
and no node of P is universal for S. Given edge uv in ES(H), uv is isolated
if no other edge in ES(H) is adjacent to uv. In Section 3.5 we will show the
following.

Theorem 3.2 Let (H,S) be a hub of a Berge graph. If G contains an ear
P on an isolated edge uv of ES(H), then G has a balanced skew partition.

This last theorem, observed by Seymour [73] for the case in which H has
length 6, is not used in the proof of the Decomposition Theorem 2.19, but
it is interesting for its own sake. In fact, since no Berge minimum imperfect
graph has a balanced skew partition, then no Berge minimum imperfect
graph can contain a hub with an ear on an isolated edge. As we saw in the
previous chapter, in the literature there are many theorems of the form “if G
is a Berge graph that does not contain a graph in F as an induced subgraph,
then G is not minimally imperfect” (where F is some family of graphs), but,
before Theorems 2.21 and 3.2, no family of graphs F was known for which
one could prove that no Berge minimum imperfect graph contains an element
of F .

3.2 Finding odd holes and balanced skew par-

titions

Odd wheels and 3PC(∆, .): the following two graphs will play an impor-
tant role in the remainder of this chapter as well as in Chapter 4.

An odd wheel is a wheel that contain an odd number of triangles.
A 3PC(x1x2x3, y) is a graph induced by three chordless paths P 1 =

x1, . . . , y, P 2 = x2, . . . , y and P 3 = x3, . . . , y, having no common nodes
other than y and such that the only adjacencies between nodes of P i \ y and
P j \ y, for i, j ∈ {1, 2, 3} distinct, are the edges of the clique of size three
induced by {x1, x2, x3}. Also, at most one of the paths P 1, P 2, P 3 is an edge.
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We say that a graph G contains a 3PC(∆, .) if it contains a 3PC(x1x2x3, y)
for some x1, x2, x3, y ∈ V (G).

The next easy remark will be used several times in the remainder of this
chapter and in Chapter 4.

Remark 3.3 Every odd wheel and every 3PC(∆, ·) contain an odd hole.
Therefore, no Berge graph contains one of these graphs as an induced sub-
graph.

Finding balanced skew partitions: proving that certain Berge graphs
contain a skew partition is not sufficient in order to prove the Strong Perfect
Graph Theorem. Given a skew partition in a Berge graph G, one needs to
prove that G contains a skew partition that is balanced. In order to do this,
Chudnovsky et Al. [13] provided several criteria that one can apply.

Lemma 3.4 Let G be a Berge graph containing a skew partition A,B,C,D.
If A∪B contains two nonadjacent nodes joined by an even chordless path and
by an odd chordless path both with interior in C ∪ D, then G has a balanced
skew partition.

Proof: By Lemma 2.17, we only need to show that G has loose skew partition.
Let u and v be two nonadjacent nodes of A ∪ B, and P , Q be two paths
between u and v with interior in C∪D and lengths of distinct parity. W.l.o.g.,
u, v ∈ A and V (P ) ⊆ A∪C. Then the interior of Q is contained in C as well,
otherwise H = u, P, v,Q, u is an odd hole. Let D′ be a connected component
of D. If both u and v have a neighbor in D′, then there exists a chordless
path R between u and v with interior in D′, and either P and R or Q and
R have different parities, a contradiction. Hence, w.l.o.g., u has no neighbor
in D′ and, given C ′ = C ∪ D \ D′, A,B,C ′, D′ is a loose skew partition. 2

Given a skew partition A,B,C,D, a kernel for it is an anticonnected set
W ⊆ A ∪ B such that there exists a connected component of C ∪ D that
contains no node universal for W .

Lemma 3.5 Let G be a Berge graph containing a skew partition A,B,C,D
and let W be a kernel for it. If there exists a connected component X of
C ∪ D such that every pair of nonadjacent nodes of W with neighbors in
X is joined by an even chordless path with interior in X, and every pair of
adjacent nodes of X with nonneighbors in W is joined by an even chordless
antipath with interior in W , then G has a balanced skew-partition.
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Proof: Suppose, by contradiction, that G has no balanced skew-partition.
Thus by Lemma 2.17 A,B,C,D is not loose, so every node in C ∪ D has a
nonneighbor in every anticonnected component of A ∪ B, and every node in
A ∪ B has a neighbor in every connected component of C ∪ D. Thus every
pair of nonadjacent nodes of W is joined by an even antipath with interior
in X. By Lemma 3.4, this implies the following.

Claim 1: Every chordless path of length greater then one with endnodes in
W and interior in C ∪ D has even length.

Claim 2: Every chordless antipath of length greater then one with endnodes
in C ∪ D and interior in W has even length.

Proof of Claim 2: if there is an odd chordless antipath Q = u, . . . , v of length
at least 2 with endnodes in C ∪ D and interior in W , then u, v /∈ X, else,
by assumption, there is an even chordless antipath between u and v with
interior in W , and by Lemma 3.4 G has a balanced skew partition. Thus
u, v /∈ X have no neighbors in X. Since every node in A ∪ B has a neighbor
in X, then by Lemma 2.27 applied to Q and X in Ḡ, either there exists an
odd chordless antipath with interior in W and endnodes in X, which is not
possible by the previous argument, or an odd chordless path with endnodes
in W and interior in X, contradicting Claim 1. This proves Claim 2.

Since W is a kernel, then, by Claims 1 and 2, we may choose X to be a
connected component of C ∪D such that every node in X has a nonneighbor
in W . Thus every pair of adjacent nodes in X is joined by an even chordless
antipath with interior in W . Lemma 3.4 implies the following.

Claim 3: Every chordless antipath of length greater then one with endnodes
in X and interior in A ∪ B has even length.

Let U be any anticonnected component of A ∪ B not containing W .

Claim 4: Every pair of nonadjacent nodes of U with neighbors in X is joined
by an even chordless path with interior in X.

Proof of Claim 4: assume u, v ∈ U are nonadjacent and both have neighbors
in X. Since X is connected, there exists a path P between u and v with
interior in X. If P is odd, then by Lemma 2.27 applied to P and W , since
X has no node universal for W , either there is an odd chordless antipath
of length greater then one with endnodes in X and interior in W , or there
exists an odd chordless path of length greater then one with endnodes in W
and interior in X, contradicting Claim 1 or 2. This proves Claim 4.
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Since A,B,C,D is not loose, then U is a kernel. Claims 3 and 4 imply
that every pair of nonadjacent nodes of U with neighbors in X is joined by
an even chordless path with interior in X and every pair of adjacent nodes
of X with nonneighbors in U is joined by an even chordless antipath with
interior in U . Let U ′ be the anticonnected component of A ∪ B containing
W . By Claims 1 and 2 applied to U instead of W , for every possible choice
of U , we conclude that every chordless path between two nonadjacent nodes
of (A ∪ B) \ U ′ with interior in C ∪ D is even, and every chordless antipath
between two adjacent nodes of C∪D with interior in (A∪B)\U ′ is even. Since
we could have chosen U instead of W at the beginning, then by symmetry
we conclude that every chordless path between two nonadjacent nodes of
(A∪B) with interior in C ∪D is even, and every chordless antipath between
two adjacent nodes of C ∪D with interior in (A∪B) is even, thus A,B,C,D
is balanced. 2

3.3 Hubs

Theorem 3.6 Let G be a Berge graph consisting of a hole H of length at
least 6 and an anticonnected set S of nodes disjoint from V (H). If an odd
number of edges of H see S, then S sees exactly one edge uv of H and one
of the following holds:

(1) S contains a node x with exactly two neighbors in H.

(2) S contains nonadjacent nodes x, y such that V (H) \ {u, v} ∪ {x, y}
induces a chordless path.

Proof: Suppose S sees an od number of edges of H and let uv ∈ ES(H).
Then u and v are the only nodes of H universal for S. Suppose not, then,
since H has even length, H contains an odd chordless subpath P of length
at least 3 such that both endnodes of P are universal for S, no node in the
interior of P is universal for S and there exists w ∈ {u, v} such that w has
no neighbors in the interior of P , but this contradicts Corollary 2.28.

Let G′ = G \ uv. If G′ is Berge, then Lemma 2.27 applied to the path
H \ uv (of length at least 5) and the set S implies that (2) holds. If G′ is
not Berge, then G′ contains an induced subgraph C which is either an odd
hole or an odd antihole. In both cases C must contain both u and v. If C
is an odd hole, then C contains exactly one node x in S, since every node in
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S is adjacent to both u and v, hence C = H ∪ x \ uv, and x satisfies (1). If
C is an odd antihole, then C does not contain any other node in H except
u, v and at most one of the neighbors of u or v in H \ uv. But then, since
u and v are universal for S, either u or v has only one nonneighbor in C, a
contradiction. 2

Note that an edge set C of H of even cardinality induces a Red and Blue
bicoloring of the nodes of H: two nodes of H are colored with distinct colors
if and only if the subpaths of H connecting them contain an odd number of
edges in C.

Definition 3.7 A hub, denoted by (H,S), is the graph induced by a hole H
of length at least 6 and by an anticonnected set S ⊆ V (G) \ V (H), with the
property that there is a positive, even number of edges of H whose endnodes
are both universal for S.
A sector of a hub (H,S) is a maximal subpath of H containing no edge of
ES(H).

Remark 3.8 Let G be a Berge graph and (H,S) a hub of G. Then the
endnodes of a sector are endnodes of edges of ES(H) and every sector of
(H,S) has even length.

Proof: By maximality in the definition of sector, every endnode of a sector
must be an endnode of an edge in ES(H). Assume there exists a sector
P = x1, . . . , xn of (H,S) of odd length. Let w be the endnode of some edge
in ES(H) distinct from x1 and xn. Since both x1 and xn are universal for S
and P has length at least 3, then by Corollary 2.28 applied to S, P and w,
there is an odd number of edges of P that sees S, a contradiction. 2

Corollary 3.9 Let G be a Berge graph and (H,S) be a hub of G. Let y ∈
V (G) \ (V (H)∪S) be a node that sees an odd number of edges in a sector of
(H,S). Assume S ∪ y is anticonnected. Then

(i) y has exactly two neighbors in H and they are adjacent or

(ii) There exists x ∈ S not adjacent to y such that (H, x) and (H, y) are
twin wheels and exactly one edge of H sees both x and y or

(iii) S contains a node x not adjacent to y such that (H, y) and (H, x) are
both line wheels and no edge of H sees both x and y or
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(iv) |H| = 6, (H, y) is a line wheel and S ∪ y contains an odd chordless
anti-path Q of length at least 3 between y and a node x such that (H, x)
is a line wheel, no edge of H sees both x and y and every intermediate
node of Q is adjacent to every node in H.

Proof: If y has exactly two neighbors in H then conclusion (i) holds. Assume
then that y has at least 3 neighbors in H. If ES∪y(H) has odd cardinality,
then, by Theorem 3.6, conclusion (ii) holds. So ES∪y(H) has even cardinality.
Since there is an even number of edges of H that see y, and y sees an odd
number of edges in some sector of (H,S), then there are at least 2 sectors
P = x1, . . . , xh and P ′ = x′

1, . . . , x
′
k of (H,S) such that an odd number of

edges of P and P ′, respectively, see y. Let y1, y2, (resp. y′
1, y

′
2) be the neigh-

bors of y in P (resp. P ′) closest to x1 and xh (resp. x′
1 and x′

k) respectively.
Since an odd number of edges of P see y, then Px1y1

and Py2xh
have length

of distinct parity. We can therefore assume that Px1y1
has odd length and

Py2xh
has even length. Analogously, assume that P ′

x′

1
y′

1

has odd length and

P ′
y′

2
x′

k
has even length.

If y1 and y2 are nonadjacent, then F = x1, Px1y1
, y1, y, y2, Py2xh

, xh is an odd
path so, by Corollary 2.28 applied to S, F and x′

1, F has an odd number of
edges that see S, contradicting either the definition of sector or the assump-
tion that S ∪ y is anticonnected. Hence y1y2 is an edge and, analogously,
y′

1y
′
2 is an edge. Let now F = x1, Px1y1

, y1, y, y′
2, P

′
y′

2
x′

k
, x′

k. If F is a chordless

path then F is odd and by Corollary 2.28 applied to S, F and x′
1, F has

an odd number of edges that see S, a contradiction. Therefore F is not a
chordless path, but then x1 must be adjacent to x′

k. By symmetry, xh must
be adjacent to x′

1.
Suppose |H| > 6. Then, w.l.o.g., H ′ = x′

1, P
′
x′

1
y′

1

, y′
1, y, y2, Py2xh

, xh, x
′
1 is a

hole of length at least 6. Since ES(H ′) = {x′
1xh}, Theorem 3.6 applies. If

conclusion (1) of Theorem 3.6 holds, then there exists a node x in S such
that the only neighbors of x in H ′ are xh and x′

1. Since x sees an odd number
of edges in a sector of (H, y), then, by the previous argument, (H, x) is an L-
wheel and (iii) holds. If conclusion (2) of Theorem 3.6 holds, then there exists
two nonadjacent nodes x and x′ in S such that F = H ′ \ {xh, x

′
1} ∪ {x, x′}

is a chordless path. Since F has odd length, x1, x, F, x′, x1 is an odd hole, a
contradiction.

Hence we may assume that |H| = 6, therefore y2 = xh and y′
2 = x′

k.
Since y1 and y′

1 are not universal for S and S ∪ y is anticonnected, let Q be a
shortest anti-path in S∪y from y to a node x that is not adjacent to both y1
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and y′
1. Assume, w.l.o.g., that x is not adjacent to y1, then y,Q, x, y1, x

′
1, y

is an anti-hole, therefore Q must be an odd anti-path. If x is adjacent to
y′

1, then y,Q, x, y1, y
′
1, x1, y is an odd anti-hole, a contradiction. Therefore

(H, x) is a line wheel. If Q has length 1 then (iii) holds, else (iv) holds. 2

3.4 Connections from blue to red sectors of

a hub

Let G be a Berge graph and (H,S) be a hub in G. Let P be a connected
subgraph of G \ (H ∪ S). The attachments of P to H are the nodes of H
adjacent to at least one node of P . In this section we study the minimal
connected sets of G \ (H ∪S) that contain no nodes universal for S and have
attachments of distinct colors.

The following graph will appear in this analysis: connected diamonds
consist of two node disjoint sets {a1, . . . , a4} and {b1, . . . , b4} each of which
induces a diamond (the graph on four nodes with five edges) such that a1a4

and b1b4 are not edges, together with four chordless paths P 1, . . . , P 4 such
that for i = 1, . . . , 4, P i is a path between ai and bi. Paths P 1, . . . , P 4 are
node disjoint and the only adjacencies between them are the edges of the two
diamonds.

Let H be a hole and N ⊆ V (H). We say that two nodes of N are
consecutive if at least one of the two subpaths of H joining them contains no
node of N in its interior.

Theorem 3.10 Let (H,S) be a hub of a Berge graph G. Let P = x1, . . . , xn

be a minimal chordless path in G \ (V (H) ∪ S) containing no node that is
universal for S, such that x1 has a blue neighbor in H and xn has a red
neighbor in H, w.r.t. the bicoloring induced by ES(H) (n = 1 is allowed).
If there exist consecutive attachments of P with distinct colors that are not
adjacent, then one of the following holds.

(a) There exists y ∈ S such that V (H)∪V (P )∪{y} induces the line graph
of a bipartite subdivision of K4.

(b) n = 1, |H| = 6, (H, x1) is a line wheel and S ∪ x1 contains a chordless
odd anti-path Q of length at least 3 between x1 and a node y ∈ S such
that (H, y) is a line wheel, no edge of H sees both x1 and y and every
intermediate node of Q is adjacent to every node in H.
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(c) There exists y ∈ S such that V (H) ∪ V (P ) ∪ {y} induces connected
diamonds.

(d) n = 1 and there exists y ∈ S nonadjacent to x1 such that (H, x1) and
(H, y) are twin wheels and exactly one edge of H sees both x1 and y.

(e) There exists y ∈ S such that (H, y) is a twin wheel, no node of P is a
neighbor of y, x1 is adjacent to the twin of y in H and no other node
in H while xn is not adjacent to both red neighbors of y in H.

(f) n = 1, H contains a subpath u, z, w, z′, u′ such that ES(H) = {wz,wz′},
x1 is adjacent to u, w and u′ but not z and z′, S∪x1 contains a chordless
odd anti-path Q of length at least 3 between x1 and a node y ∈ S such
that y is nonadjacent to u and u′ and every intermediate node of Q is
adjacent to both u and u′.

(g) n = 1, H contains a subpath w, z, u, z′, w′ such that wz and w′z′ are
edges of ES(H), x1 is adjacent to u, w and w′ but not z and z′, S ∪ x1

contains an even anti-path Q between x1 and a node y ∈ S such that
y is nonadjacent to u and every intermediate node of Q is adjacent to
u. Furthermore, every node in V (H) \ {z, z′} that is universal for S is
adjacent to x1.

(h) n > 1, H contains a subpath w, z, u, z′, w′ such that wz and w′z′ are
edges of ES(H), x1 is adjacent w and w′ but not u, z and z′, while
xn is adjacent to u but not w, z, w′ and z′. Furthermore S contains
two nonadjacent nodes y and y′ such that the only neighbors of y in
V (P ) ∪ {w, z, u, z′, w′} are u, z, z′, w, w′ while the only neighbors of
y′ in V (P ) ∪ {w, z, u, z′, w′} are x1, z, z′, w, w′.

(k) n > 1, H = v, w, z, u, z′, w′, v, ES(H) = {wz,w′z′}, x1 is adjacent only
to v in H and xn is adjacent only to u in H. Furthermore, S contains
two nonadjacent nodes y and y′ such that y and y′ are adjacent to every
node in H except v and u, respectively, and no node in P is adjacent
to y or y′.

Proof: Note that, by the minimality assumption on P , no intermediate node
of P has a neighbor in H.

Case 1: x1 or xn sees an odd number of edges in some sector of (H,S).
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Assume, w.l.o.g., that x1 sees an odd number of edges in some sector
of (H,S): then conclusion (i), (ii), (iii) or (iv) of Corollary 3.9 holds. If
conclusion (ii) of Corollary 3.9 holds, then (d) holds. If conclusion (iii) of
Corollary 3.9 holds, n = 1 and there exists y in S nonadjacent to x1 such
that (H, x1) and (H, y) are line wheels and no edge in H sees both x1 and y,
but then one can verify that V (H) ∪ {x1, y} is the line graph of a bipartite
subdivision of K4, so (a) holds. If conclusion (iv) of Corollary 3.9 holds,
then (b) holds. Therefore we can assume that conclusion (i) of Corollary 3.9
holds and x1 has exactly two neighbors u, u′ in H, u and u′ are adjacent
and they are both blue. If xn has exactly one neighbor t in H, then there is
a 3PC(x1uu′, t). If xn has two neighbors in H that are not adjacent, then
there is a 3PC(x1uu′, xn). Hence xn has exactly two neighbors v and v′ in
H and they are adjacent and both red. Assume that u and v are consecutive
attachments of P and u′, v′ are consecutive attachments of P . W.l.o.g., u
and v are nonadjacent. Let Huv and Hu′v′ be the disjoint paths contained
in H between u and v, and between u′ and v′, respectively. Since u and v
are nonadjacent, then H ′ = u,Huv, v, xn, P, x1, u is a hole of length at least
6 and, since u and v have distinct colors and no node in P is universal for
S, an odd number of edges of H ′ see S. Also H ′′ = u′, Hu′v′ , v′, xn, P, x1, u

′ is
a hole (possibly of length 4) and an odd number of edges of H ′′ sees S. By
Theorem 3.6, exactly one edge wz of H ′ and one edge of w′z′ of H ′′ sees S
and one of the following cases holds.

Case 1.1: There exists y ∈ S such that y has only two neighbors in H ′.

But then y sees an odd number of edges in Hu′v′ , so y must see exactly
one edge in Hu′v′ , otherwise (H ′′, y) would be an odd wheel. But then (H, y)
is a line wheel and one can verify that V (H) ∪ V (P ) ∪ {y} induces the line
graph of a bipartite subdivision of K4, hence (a) holds.

Case 1.2: There exist nonadjacent nodes y, y′ ∈ S such that V (H ′) \
{w, z} ∪ {y, y′} induces a chordless path.

Let t and t′ be the neighbors of y and y′, respectively, in V (H ′) \ {w, z}.
If u′ and v′ are nonadjacent, then at least one node among w′ and z′ has
no neighbor in P , say w′, but then V (H ′) ∪ {w′, y, y′} \ {w, z} induces an
odd hole, a contradiction. So u′v′ is an edge, and t = u and t′ = v, else
(H, y) or (H, y′) is an odd wheel. Since H ′ is even, P must be odd, therefore
y, u, x1, P, xn, v′, y is an odd hole, a contradiction.

Case 2: Both x1 and xn see an even number of edges in every sector of
(H,S).
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Let u and v be two consecutive, nonadjacent attachments of P with dis-
tinct colors in the bicoloring of H induced by ES(H). Assume, w.l.o.g., v is
adjacent to x1 and u to xn. Let Huv be a subpath of H between u and v
containing no attachments of P except u and v. Since u and v have distinct
colors, Huv contains an odd number of edges of ES(H), therefore the hole
H ′ = x1, P, xn, u,Huv, v, x1 has an odd number of edges that see S, other-
wise P would contain some node universal for S. By Theorem 3.6, H ′ must
contain a unique edge of ES(H), say edge zw, and no node universal for S
except z and w. Assume, w.l.o.g., that z is one endnode of the sector Z
containing u, and let z′ be the other endnode of Z. Let w′ be the neighbor
of z′ in V (H) \ V (Z); hence z′w′ ∈ ES(H). Since H ′ is an even hole, Huv

has length of the same parity as P . Since u and v are nonadjacent, we may
assume, w.l.o.g, that u and z are distinct. Let Huz be the path between u
and z in Huv and Hwv be the path between w and v in Huv.

Case 2.1: w = w′.

Then w = w′ = v and ES(H) = {wz,wz′}.

Case 2.1.1: There exists a node y ∈ S whose only neighbors in H ′ are
w and z.

If (H, y) is a twin wheel, then case (e) applies. If (H, y) is not a twin
wheel, y has at least a neighbor in V (H)\{w, z, z′}. If u is the only neighbor
of xn in Z, then G contains a 3PC(zwy, u), hence xn has a neighbor in Z
distinct from u. Furthermore, since xn sees an even number of edges in Z,
xn has a neighbor in Z that is not adjacent to u. If y has a neighbor in Z
that is not adjacent to u, then there is a 3PC(zwy, xn), hence y has a unique
neighbor t in Z and t is adjacent to u. Furthermore, t is adjacent to xn,
else there is a 3PC(zwy, u). Let u′ be the neighbor of xn in Z closest to z′,
then u′ 6= t. If u′ is not adjacent to t, then there is a 3PC(xntu, y). So u′ is
adjacent to t and hence V (H)∪ V (P )∪ {y} induces connected diamonds, so
conclusion (c) holds.

Case 2.1.2: Every node in S has at least 3 neighbors in H ′.

If |H ′| ≥ 6 then, by Theorem 3.6, S contains two nonadjacent nodes y
and y′ such that (H ′, y) and (H ′, y′) are twin wheels and wz is the only edge
of H ′ that sees both y and y′. But then (V (H ′) ∪ {y, y′}) \ {w, z} induces
an odd path R between y and y′ and z′, y, R, y′, z′ is an odd hole unless z′ is
adjacent to xn. But then, since xn sees an even number of edges in Z, Hzu

must have even length. W.l.o.g. assume that y is not adjacent to x1, then
(V (Huz) ∪ {y, z′, xn}) \ {z} induces an odd hole, a contradiction.
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Hence |H ′| = 4, so u is adjacent to z and n = 1. Let u′ be the neighbor
of x1 in Z closest to z′. Then, since x1 sees an even number of edges in Z
and u is adjacent to z, u′ and z′ have odd distance in H. By repeating the
previous argument on the hole H ′′ containing w, u′ and x1 in V (Z)∪{x1, w}
instead of H ′, we argue that u′ and z′ must be adjacent. Since u and u′ are
not universal for S, let Q be a shortest possible anti-path in S ∪ x1 between
x1 and a node y not adjacent to both u and u′. Assume, w.l.o.g, that y is
not adjacent to u. Q must have odd length, or else x1, Q, y, u, z′, x1 is an odd
anti-hole. Moreover, since every node in S has at least 3 neighbors in H ′, Q
has length at least 3. Finally, if u′ is adjacent to y, then x1, Q, y, u, u′, z, x1

is an odd anti-hole, a contradiction. Hence conclusion (f) holds.

Case 2.2: w 6= w′.

Note that, since w′ is universal for S and distinct from w and z, then w′ is
not in Huv. Let s be the neighbor of xn in Z closest to z′ and let Hsz′ be the
path between s and z′ in Z. Since xn sees an even number of edges in Z and
Hzu has length of the same parity as Hsz′ . Let F = w,Hwv, v, x1, P, s,Hsz′ , z

′.
Since H ′ is an even hole and Hzu has the same length as Hsz′ , F is an odd
path between w and z′. If z is not adjacent to s then, by Corollary 2.28
applied to S, F and z, an odd number of edges of F see S, a contradiction.
Hence u is the unique neighbor of xn in Z and it is adjacent to z. Also, given
any node t in V (H) \ {z, z′, w} universal for S, if t has no neighbors in the
interior of F then, by Corollary 2.28 applied to S, F and t, an odd number
of edges of F see S, a contradiction. In particular, w′ must be adjacent to
x1 or to v.

If w′ is adjacent to v then F ′ = w′, v, x1, P, xn, u, z is an odd path, there-
fore, by a similar argument, z′ is adjacent to u and w is also adjacent to v
(since x1 sees an even number of edges in every sector, hence w cannot be
adjacent to x1). Therefore |H| = 6 and, since F ′ must have length at least 5,
by Lemma 2.27 there exists two nonadjacent nodes y and y′ in S such that
y is adjacent to every node in H except v, y′ is adjacent to every node in H
except u and neither y nor y′ has a neighbor in P , hence (k) holds.

If w′ is adjacent to x1 then F ′ = w′, x1, P, xn, u, z is an odd path, therefore,
by the usual argument, z′ is adjacent to u and w is adjacent to x1. If |F ′| = 3,
then n = 1 and, by Lemma 2.27, there exists an odd anti-path x1, Q, y, u
between x1 and u in S ∪ {u, x1}, hence case (g) holds. If |F ′| ≥ 5, then
by Lemma 2.27 S contains two nonadjacent nodes y and y′ such that y is
adjacent to x1, z, z′, w, w′ an no other node in V (P )∪ {w, z, u, z′, w′} while
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y′ is adjacent to u, z, z′, w, w′ an no other node in V (P ) ∪ {w, z, u, z′, w′},
hence case (h) holds.

2

Theorem 3.11 Let (H,S) be a hub of a Berge graph G where S is maximal
with the property that (H,S) is a hub. Let P = x1, . . . , xn be a minimal
chordless path in G \ (H ∪ S) containing no node universal for S such that
x1 has a blue neighbor in H and xn has a red neighbor (n = 1 is allowed). If
every pair of consecutive attachments of P with distinct colors are adjacent,
then one of the following holds.

(a) P is an ear on some edge of ES(H).

(b) n > 1, there exist two adjacent edges ab, bc of ES(H) such that b is
the only neighbor of x1 in H and xn is adjacent to a, c and not to b.
Moreover, if ES(H) % {ab, bc}, then no node of P has a neighbor in
V (H) \ {a, b, c}.

(c) n > 1, ES(H) contains at least two nonadjacent edges, x1 is adjacent
to all the blue endnodes of the edges of H that see S (and possibly to
other blue nodes of H), xn is adjacent to all the red endnodes of the
edges of H that see S (and possibly to other red nodes of H). If n > 2,
then there exist nonadjacent y, z ∈ S such that y is adjacent to x1 and
to no other node of P , and z is adjacent to xn and to no other node
of P . If n = 2, then S ∪ {x1, x2} contains an odd anti-path between x1

and x2.

Proof: Note that, by the minimality assumption on P , no intermediate node
of P has a neighbor in H. Let a and b be two consecutive attachments
of P with distinct colors. Then, by assumption, a and b are adjacent and
ab ∈ ES(H). Assume, w.l.o.g., that a is adjacent to xn and b is adjacent to x1.
Let c be the neighbor of b in V (H)\{a}. If P has no neighbor in V (H)\{a, b},
then P is an ear of ab and (a) occurs. Therefore we may assume, w.l.o.g., that
xn has a neighbor in V (H) \ {a, b}. Note that n > 1, otherwise either S ∪ x1

sees a positive even number of edges of H, contradicting the maximality of S,
or ab is the only edge of H that sees S ∪x1, and by Theorem 3.6 there exists
y ∈ S nonadjacent to x1 such that (H, x1) and (H, y) are twin wheels and
exactly one edge of H sees both x1 and y, thus contradicting the assumption
that every two consecutive attachments of P with distinct colors are adjacent.
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Therefore x1 has only blue neighbors and xn has only red neighbors. If xn

sees an odd number of edges in some sector of (H,S) then, by Corollary 3.9,
the only neighbors of xn in H are a and the neighbor d of a in V (H) \ {b}.
If x1 has no neighbor in V (H) \ {b}, then G contains a 3PC(xnad, b). If
x1 has two nonadjacent neighbors in H, then G contains a 3PC(xnad, x1).
Therefore x1 is adjacent to b, c and no other node in H. But then c and
d are consecutive, nonadjacent attachments of P with distinct colors in the
bicoloring of H induced by ES(H), a contradiction. Therefore xn sees an
even number of edges in every sector of (H,S) and, by the same argument,
also x1 sees an even number of edges in every sector of (H,S).

We may assume that xn has at least as many neighbors in H as x1 does.
If ES(H) = {ab, bc} then (b) holds. Next we show that if xn has no neighbor
in H \ {a, c}, then (b) holds. Suppose that xn has no neighbor in H \ {a, c}.
Then xn is adjacent to c. If x1 has no neighbors in H \ b then (b) holds.
Otherwise , x1 has exactly two neighbors in H, b and say d. Since all pairs
of consecutive attachments of P having distinct colors are adjacent, then
a, d and c, d are adjacent, hence |H| = 4, contradicting the assumption that
(H,S) is a hub. Now we may assume that (b) does not hold, hence there
exists a red sector Z = z1, . . . , zk of (H,S) such that {a, c} 6= {z1, zk} and
such that xn has a neighbor in V (Z)\{a, c}. Assume, w.l.o.g, that z1 /∈ {a, c}
and xn has a neighbor in V (Z) \ {zk}. Let zi be the neighbor of xn of lowest
index in Z, and let Hz1zi

be the subpath between z1 and zi in Z. Note that
i < k. Since xn sees an even number of edges in every sector of (H,S) and xn

has only red neighbors in H, then Hz1zi
has even length (since xn is adjacent

to a) and also zk and zi have even distance in Z, hence they are not adjacent.
Moreover, H ′ = a, b, x1, P, xn, a is an even hole, therefore P is an odd path.
But then F = b, x1, P, xn, zi, Hz1zi

, z1 is an odd chordless path. If there exists
a node w universal for S in V (H) \ {a, b, z1} that has no neighbor in the
interior of F , then Corollary 2.28 applied to S, F and w implies that there
exists an odd number of edges in F that see S, a contradiction. Therefore
every node universal for S in V (H) \ {a, b, z1} is adjacent either to x1 or to
xn. Let t be the unique blue neighbor of z1 in H. Note that t is adjacent to
x1. Since t and zi are consecutive attachments of P , they must be adjacent.
So xn is adjacent to z1. Hence every node of H that is universal for S must be
adjacent to x1 or xn. In particular, x1 is adjacent to all the blue endnodes of
the edges of H that see S, xn is adjacent to all the red endnodes of the edges
of H that see S. If n > 2, then F has length at least 5 and by Lemma 2.27
there exist nonadjacent y, z ∈ S such that y is adjacent to x1 and to no other
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node of P , and z is adjacent to xn and to no other node of P . If n = 1, then
|F | = 3 and, by Lemma 2.27, S∪{x1, x2} contains an odd anti-path between
x1 and x2. So conclusion (c) holds. 2

In the bicoloring of H induced by ES(H), we say that a node u of H is
an inner blue (resp. red) node if both neighbors of u in H are blue (resp.
red).

Theorem 3.12 Let (H,S) be the hub of a Berge graph G. Assume that S
is a maximal set such that (H,S) is a hub with the further property that S
does not contain any center of a twin wheel w.r.t. H. Let P = x1, . . . , xn

be a minimal chordless path in G \ (V (H)∪ S) containing no node universal
for S such that x1 has a red neighbor, no other node of P has a red neighbor
and xn has a blue neighbor b in H so that neither of the neighbors of b in H
is a red neighbor of x1. Then one of the following holds:

(a) P has two consecutive attachments of different colors that are nonad-
jacent, and P is of one of the types in Theorem 3.10 (a)-(c) or (f)-(k).

(b) There exist two adjacent edges ab1, ab2 of ES(H) such that a is the
only red neighbor of x1 in H and at least one node of P is adjacent to
both b1 and b2. If ES(H) % {ab1, ab2} or if S contains a node s with no
neighbors in P , then the path Q = a, x1, . . . , xn contains an odd number
of edges that see both b1 and b2.

(c) n > 1, ES(H) contains at least two nonadjacent edges, x1 is adjacent
to all the red endnodes of the edges of H that see S and the node xj

of lowest index adjacent to some blue node is adjacent to all the blue
endnodes of the edges of H that see S. If j > 2, then S contains two
nonadjacent nodes y and z such that y is adjacent to x1 and to no other
node of Px1xj

, and z is adjacent to xj and to no other node of Px1xj
.

If j = 2, then S ∪ {x1, x2} contains an odd chordless anti-path between
x1 and x2.

Note that every path P = x1, . . . , xn such that x1 has a red neighbor and
xn has an inner blue neighbor contains a subpath as in the hypothesis of
Theorem 3.12.
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Proof: Let xj be the node of P of lowest index having a blue neighbor. If
the path Px1xj

has consecutive attachments of distinct colors that are not
adjacent, then Px1xj

satisfies the hypothesis of Theorem 3.10, hence one the
cases (a)-(c) or (f)-(k) of Theorem 3.10 apply (cases (d) and (e) cannot occur
since S does not contain any center of a twin wheel w.r.t. H). Since in any
of these cases xj has a blue neighbor that is not adjacent to any red neighbor
of x1 in H, then j = n and case (a) holds .

Hence we may assume that every pair of consecutive attachments with
distinct colors of Px1xj

are adjacent, so case (a)-(c) of Theorem 3.11 occur. If
case (c) occurs, then case (c) of Theorem 3.12 holds and we are done. Hence
we may assume that case (a) or (b) of Theorem 3.11 holds. In particular, x1

has a unique red neighbor, say a and, given b1 and b2 the two neighbors of a
in H, ab1 sees S and xj is adjacent to b1. Since xn has a blue neighbor in H
neither of whose neighbors in H is a red neighbor of x1, n > 1.

Claim 1 ab2 sees S and b2 has a neighbor in P .

Let t be the attachment of P in V (H) \ {a, b1} that is closest to a in the
path induced by V (H) \ {b1}. Since a is the unique red attachment of P ,
then t is blue. If t = b2 then ab2 sees S and we are done. Assume then that
t 6= b2, hence no neighbor of t in H is a red neighbor of x1 so t is adjacent
to xn and no other node in P . Let Hb2t be the path between b2 and t in the
graph induced by V (H) \ {b1}, and let H ′ = a, x1, P, xn, t, Hb2t, b2, a. Then
H ′ is an hole of length at least 6 and, since a and t have distinct colors in
the bicoloring of H induced by ES(H) and no node in P is universal for S,
an odd number of edges of H ′ sees S, therefore, by Theorem 3.6, exactly one
edge of H ′ sees S and no node of H ′ is universal for S except the endnodes
of such edge. Since a is universal for S, then the unique edge in H ′ that sees
S must be ab2. Also, by Theorem 3.6, we have two possibilities.

Case 1: There exists a node y ∈ S such that the only neighbors of y in
H ′ are a and b2.

Then t is not adjacent to b1, otherwise (H, y) would be a twin wheel. Let
Z = z1, . . . , zk be the path induced by V (H) \ (V (Hb2t) ∪ {a, b1}), where z1

is adjacent to t and zk is adjacent to b1. Since (H, y) is not a twin wheel,
then y has a neighbor in Z. If xn does not have a neighbor in Z, then there
is a 3PC(yab2, t). If both y and xn have a neighbor in Z distinct from z1,
then there is a 3PC(yab2, xn). Note that b1 has a neighbor in V (P ) \ {x1},
otherwise y, b1, x1, P, xn, t, Hb2t, b2, y is an odd hole.

If xn has no neighbor in Z except z1, then t and z1 are the only neighbors
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of xn in H, otherwise (H, xn) is an odd wheel. Since b1 has a neighbor in
V (P ) \ {x1}, then there is a 3PC(xntz1, b1).

Hence xn has a neighbor in V (Z)\{z1}, therefore the only neighbor of y in
Z is z1. Also xn is adjacent to z1 otherwise there is a 3PC(yab2, t). Consider
now the hole H ′′ = z1, y, a, x1, P, xn, z1. Since b1 sees at least one edge in
H ′′ and b1 has at least one neighbor in V (P ) \ {x1}, then either (H ′, b1) or
(H ′′, b1) is an odd wheel since b1 sees in H ′′ exactly one edge more than in
H ′.

Case 2: S contains two nonadjacent nodes y and z such that the only
neighbors of y in H ′ are a, b2 and x1 and the only neighbors of z in H ′ are
a, b2 and the node c 6= a adjacent to b2 in H ′ .

Then t is not adjacent to b1, otherwise (H, y) would be a twin wheel. Let
Z = z1, . . . , zk be the path induced by V (H)\ (V (Hb2t)∪{a, b1}), where z1 is
adjacent to t and zk is adjacent to b1. Since (H, y) is not a twin wheel, then
y has a neighbor in Z. Also, since (H, z) is not an odd wheel, also z has a
neighbor in Z. Let p and q be two neighbors in Z of y and z respectively
with minimum distance in Z. Let Zpq be the path between p and q in Z. Zpq

is an even path, otherwise a, y, p, Zpq, q, z, a would be an odd hole. If b1 has
a neighbor in P \x1, then (P \x1)∪Hb2t∪{y, z, b1} contains a 3PC(b2zc, b1).
So x1 is the unique neighbor of b1 in P . If xn has no neighbors in Z, then
H ∪ P induces a 3PC(x1ab1, t). If z1 is not the unique neighbor of xn in Z,
then H ∪P contains a 3PC(x1ab1, xn). So z1 is the unique neighbor of xn in
Z. If Zpq contains z1, then V (Zpq)∪V (P )∪{y, z, a} induces a 3PC(x1ay, z1).
Otherwise, V (P ) ∪ (V (Hb2t) \ b2) ∪ V (Zpq) ∪ {y, z} induces an odd hole.

Claim 2 There exists a node in P that is adjacent to both b1 and b2.

Assume not. Let xk be the node of P of lowest index that is adjacent to
b2. Since we assumed that the node xj of lowest index in P adjacent to some
blue node is adjacent to b1, then k > j.

Case 1: x1 is the unique neighbor of b1 in Px1xk
.

Then xk must be adjacent to the neighbor c of b2 in V (H) \ {a} and to
no other node in V (H) \ {b2, c}, or else there is either a 3PC(ab1x1, b2) or a
3PC(ab1x1, xk). Let F = b1, x1, Px1xk

, xk, b2. F is an odd path and b1 and b2

are universal for S. Since P does not contain any node universal for S, then
conclusion (ii) or (iii) of Lemma 2.27 holds.

If conclusion (ii) holds, then F has length 3 and S ∪ {x1, x2} contains an
odd anti-path Q between x1 and x2. Since no node of V (H) \ {a, b1, b2, c} is
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adjacent to x1 or x2 and a is universal for all intermediate nodes of Q, then
we can apply Corollary 2.28 in Ḡ to the set V (H) \ {a, b1, b2, c}, the path Q
and the node a. Therefore there must exists an intermediate node y of Q
with no neighbors in V (H) \ {a, b1, b2, c}. But then the only neighbors of y
in H are a, b1 and b2 and (H, y) is a twin wheel, a contradiction.

If conclusion (iii) holds, then S contains two nonadjacent nodes y and z
such that y is adjacent to x1 and no other node of Px1xk

while z is adjacent
to xk and no other node of Px1xk

. Since S does not contain any center of twin
wheels w.r.t. H, then y and z must have neighbors in V (H) \ {a, b1, b2, c}.
Let p and q be two neighbors of y and z, respectively, that are closest pos-
sible in V (H) \ {a, b1, b2, c} and let Z be the path between p and q in the
graph induced by V (H) \ {a, b1, b2, c}. Z must have even length otherwise
a, y, p, Z, q, z, a is an odd hole, but then y, x1, Px1xk

, xk, z, q, Z, p, y is an odd
hole, a contradiction.

Case 2: b1 has a neighbor in Px2xk
.

Then k > 2 and H ′ = a, x1, Px1xk
, xk, b2, a is a hole of length at least

6. The only edge of H ′ that sees S is ab2 hence conclusion (2) or (3) of
Theorem 3.6 holds.

If conclusion (2) holds, then S contains two nonadjacent nodes y and z
such that y is adjacent to x1 and no other node of Px1xk

while z is adjacent
to xk and no other node of Px1xk

, but then there exists a 3PC(zb2xk, b1).
If conclusion (3) holds, then S contains a node y whose only neighbors in

H ′ are a and b2. Let P ′ be the shortest path between x1 and y in the graph
induced by (V (P ) ∪ V (H) ∪ {y}) \ {a, b1, b2}. Then H ′′ = a, x1, P

′, y, a is a
hole. Both b1 and b2 see the edge ay of H ′′, both b1 and b2 have a neighbor
in Px1xj

and y is not adjacent to xk, therefore by Theorem 3.6 b1 and b2 see
an even number of edges in H ′′, but then there exists a node of P that is
adjacent to both b1 and b2.

Claim 3 If ES(H) % {ab1, ab2} then the path Q = a, x1, . . . , xn contains an
odd number of edges that see both b1 and b2.

Assume that ES(H) % {ab1, ab2}. Suppose it is not the case that an odd
number of edges of Q see both b1 and b2. Let xℓ be the node of highest index
that is adjacent to both b1 and b2. Then ℓ > 1. Suppose ℓ is odd. Then F =
a, x1, Px1xℓ

, xℓ is an odd path and hence by Lemma 2.27 applied to F and set
{b1, b2}, b1 is adjacent to x1, xℓ and no other node in Px1xℓ

while b2 is adjacent
to xℓ−1, xℓ and no other node in Px1xℓ

. But then (V (H) ∪ V (Px1xℓ−1
)) \ {a}

induces an odd hole, a contradiction. Therefore ℓ is even. Let xh and xk
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be the nodes of highest index adjacent to, respectively, b1 and b2. W.l.o.g.,
h ≤ k. We want to show that Pxℓxh

has even length. Assume not, then ℓ < h,
therefore, by definition of ℓ, h and k, h < k. Since Pxℓxh

has odd length, then
b1 must see an odd number of edges of Pxℓxh

. Let ℓ = k1 ≤ . . . ≤ km = k be
all the indexes between ℓ and k such that b2 is adjacent to xki

. Then there
exists i, 1 ≤ i ≤ m− 1 such that b1 sees an odd number of edges in Pxki

xki+1
.

But then Pxki
xki+1

has length at least 2 and C = b2, xki
, Pxki

xki+1
, xki+1

, b2 is

an hole, therefore b1 sees exactly one edge uv in C, and V (C)∪{a, b1} induces
a 3PC(b1uv, b2), a contradiction. Hence we have proven that a, x1, Px1xh

, xh

has even length.

Case 1: xn sees an odd number of edges in some sector of (H,S).

Since xn has only blue neighbors in H, by Corollary 3.9, xn has exactly two
neighbors u and v in H and they are adjacent. Suppose xn is not adjacent
to b2. If h < k then there is a 3PC(xnuv, b2). If h = k then there is a
3PC(xnuv, xk). So xn is adjacent to b2. Pxhxn

has odd length, else (V (H) ∪
V (Pxhxn

)) \ {a, b2} induces an odd hole. Let c be the neighbor of b2 in H \ a.
Then c is adjacent to xn. Let z be the endnode distinct from b2 of the
sector Z of (H,S) containing c, and let F be the path between c and z in
Z. Since ES(H) % {ab1, ab2}, then z 6= b1. Moreover F has odd length,
therefore R = a, x1, P, xn, c, F, z has odd length. Let w be the neighbor of z
in V (H) \ V (Z), then zw ∈ ES(H) and, by Corollary 2.28 applied to S, R
and w, there is an odd number of edges of R that sees S, a contradiction.

Case 2: xn sees an even number of edges in every sector of (H,S).
Let u be the neighbor of xn closest to b1 in the graph induced by V (H) \

{a, b2} and Hub1 be the path between u and b1 in the graph induced by
V (H) \ {a, b2}. We want to show that Pxhxn

has length of the same par-
ity as the length of Hub1 . If not then u 6= b1 and xh 6= xn, but then
b1, xh, Pxhxn

, xn, u,Hub1 , b1 is an odd hole. Let z be the endnode distinct
from b1 and b2 of the sector Z of (H,S) containing u (the existence of such
a node is guaranteed by the hypothesis ES(H) % {ab1, ab2}). Let u′ be the
neighbor of xn closest to z in Z and let F be the path between u′ and z in Z.
Since xn sees an even number of edges in Z, then Hub1 and F have lengths of
the same parity, therefore R = a, x1, P, xn, u′, F, z has odd length. Let w be
the neighbor of z in V (H) \ V (Z), then zw ∈ ES(H) and, by Corollary 2.28
applied to S, R and w, there is an odd number of edges of R that sees S, a
contradiction.

Claim 4 If S contains a node s with no neighbors in P , then the path Q =
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a, x1, . . . , xn contains an odd number of edges that see both b1 and b2.

Let F be the shortest path between x1 and s in the graph induced by
(V (H)∪ V (P )∪ {s}) \ {a, b1, b2}. Then H ′ = s, a, x1, F, s is a hole. Since as
sees both b1 and b2 and there exists a further node in P that is adjacent to
both b1 and b2 then, by Theorem 3.6, H ′ contains an even number of edges
that see both b1 and b2, but then Q = a, x1, P, xn has an odd number of edges
that see both b1 and b2. 2

3.5 Ears on isolated edges of a hub

The objective of this section is to prove Theorem 3.2.

Lemma 3.13 Let (H,S) be a hub of a Berge graph G such that H contains
an edge uv in ES(H) that is isolated. Assume that S is maximal with such a
property. Let P = x1, ..., xn be an ear on uv. Let R = r1, . . . , rℓ be a path in
G \ (V (H)∪ V (P )∪ S) that does not contain any node universal for S, such
that r1 has a neighbor in P , no node in R \ r1 has a neighbor in P and rℓ

has a neighbor in H distinct from u. Let s be the neighbor of rℓ closest to v
in H \u, and assume that no node in R \ rℓ has a neighbor in H \u closer to
v than s, except, possibly, v itself. Then s and v have the same color w.r.t.
the bicoloring induced on H by ES(H).

Proof: By contradiction, assume s and v have distinct colors, then s 6= v.
Let w and w′ be the endnodes of the sector Z of (H,S) containing s and
assume w is closer to v in V (H) \ {u} than w′. Clearly w 6= v, and w is
nonadjacent to v since uv is isolated. Let F be the shortest path between
w and v in Z ∪ R ∪ P ∪ v and F ′ be the path between v and w in H \ u.
Since H ′ = v, F ′, w, F, v is a hole, then F and F ′ have length of the same
parity. Since w and v have distinct colors in the bicoloring of H induced by
ES(H), then F ′ has odd length, therefore F is an odd chordless path. Since
|F ′| ≥ 3 then the interior of F ′ contains a node t that is universal for S.
Corollary 2.28 applied to S, F and t implies that F contains an odd number
of edges that see S, a contradiction. 2

Lemma 3.14 Let (H,S) be a hub of a Berge graph G such that H contains
an edge uv in ES(H) that is isolated. Assume that S is maximal with such a
property. Let P = x1, ..., xn be an ear on uv. Let R = r1, . . . , rℓ be a minimal
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path in G \ (V (H)∪V (P )∪S) such that r1 has a neighbor in P and rℓ has a
neighbor in H \ {u, v}. Then, either R has a node universal for S, or there
exist st ∈ ES(H) and x ∈ V (P ∪R), such that s and t are the only neighbors
of rℓ in H, v and s are in the same connected component of H \ {u, r} and
they have the same color, x is adjacent to u and v, and H ∪ P ∪ R contains
a 3PC(uvx, tsrℓ).

Proof: Let R = r1, . . . , rℓ be a minimal path in G \ (V (H) ∪ V (P ) ∪ S) such
that r1 has a neighbor in P , rℓ has a neighbor in H \ {u, v} and no node
of R is universal for S. Note that we only need to prove the statement in
the case in which R does not contain any node whose only neighbors in H
are u and v. In fact, if R contains such a node and ri is the node of highest
index whose only neighbors are u and v, then P ′ = ri is an ear on uv and
R′ = ri+1, Rri+1rℓ

, rℓ is a path such that ri+1 has a neighbor in P ′, rℓ has a
neighbor in H \ {u, v}, and no node of R′ is adjacent to u, v and no other
node of H.

Claim 1: No node in R is adjacent to both u and v.

Assume there exists i, 1 ≤ i ≤ m, such that ri is adjacent to u and v.
Since ri is not universal for S, then S∪ri is anticonnected. By the maximality
of S, (H,S ∪ yi) is not a hub, hence uv is the only edge of H that sees S ∪ yi.
Since uv is isolated, S does not contain any center of a twin wheel w.r.t. H,
hence, by Theorem 3.6, ri is adjacent only to u and v in H, a contradiction.

Let s be the neighbor of rℓ closest to v in H \ u and t be the neighbor of
rℓ closest to u in H \ v. To conclude, we shall prove that st is an edge of H
that sees S and st 6= uv. Furthermore, P = x1 and no node in Qy1yj−1

has a
neighbor in H. By Lemma 3.13, s has the same color of v and t has the same
color of u in the bicoloring induced on H by ES(H). By Claim 1, either s 6= v
or t 6= u. Assume, w.l.o.g., that u 6= t. Assume s and t are nonadjacent.
Then s and t are consecutive neighbors of rℓ with distinct colors in H that
are nonadjacent, therefore we can apply Theorem 3.10 to the path consisting
of rℓ. Since ES(H) contains an isolated edge, then conclusion (a), (b) or (g)
of Theorem 3.10 holds.

Case 1: Case (a) or (b) of Theorem 3.10 holds.

Then ES(H) consists of two nonadjacent edges uv and u′v′ while (H, rℓ)
is a line wheel. Assume v and v′ have the same color. By symmetry, we may
assume that u 6= t and v′ is not adjacent to rℓ. Let F be the shortest path
between u and rℓ in P ∪R∪u and let F ′ be the path between u and t in H \v.
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Since u 6= t, H ′ = u, F ′, t, rℓ, F, u is a hole, hence F ′ has distinct parity from
F . But then, since rℓ sees an odd number of edges in the sector of (H,S) with
endnodes u and u′, the shortest path F ′′ from u to u′ in H ∪P ∪F \ {v, v′, t}
has odd length. By Corollary 2.28 applied to S, F ′′ and v′, an odd number
of edges of F ′′ see S, a contradiction.

Case 2: Case (g) of Theorem 3.10 holds.

Then s = v, u and t are adjacent and H contains a path v, u, t, u′, v′

where u′v′ sees S and rℓ is adjacent to v, t, v′ but not to u or u′. Let F be
the shortest path between u and rℓ in P ∪ R ∪ u. Since H ′ = u, t, rℓ, F, u is
a hole, F has even parity, but then u, F, rℓ, v

′ is an odd chordless path and
Corollary 2.28 applied to S, u, F, rℓ, v

′ and u′, implies that an odd number
of edges of F see S, a contradiction.

Therefore s and t must be adjacent and, since they have distinct colors,
st sees S. To conclude, let F = v1, ..., vk be a shortest path in R ∪ P such
that vk = rℓ and v1 is adjacent to u or v . If v1 is not adjacent to both u and
v, say v1 is not adjacent to v, then H ∪F is a 3PC(styj, u), a contradiction.
Therefore P = x1, v1 = x1 and no node in R \ rℓ has a neighbor in H.

2

Lemma 3.15 Let (H,S) be a hub of a Berge graph G such that H contains
an edge uv in ES(H) that is isolated. Assume that S is maximal with such a
property. Let P = x1, ..., xn be an ear on uv. Let Q = y1, ..., ym be a minimal
path in G \ (V (H)∪ V (P )∪ S) such that y1 has a neighbor in P and ym has
a neighbor in the interior of some sector of (H,S). Then Q contains a node
that is universal for S.

Proof: By contradiction, assume Q = y1, ..., ym is a minimal path in G \
(V (H) ∪ V (P ) ∪ S) such that y1 has a neighbor in P , ym has a neighbor in
the interior of some sector of (H,S) and no node in Q is universal for S. We
may assume that Q does not contain any node whose only neighbors in H
are u and v, otherwise, if yi is the node of highest index whose only neighbors
are u and v, then P ′ = yi is an ear on uv and Q′ = yi+1, Qyi+1ym

, ym is a path
such that yi+1 has a neighbor in P ′ and ym has a neighbor in the interior of
some sector of (H,S) but no node of Q′ is adjacent to u, v and no other node
of H. Also, by the same argument as in Claim 1 of the proof of Lemma 3.14,
no node in Q is adjacent to both u and v.

Let yj be the node of Q of lowest index such that yj has a neighbor in H
distinct from u and v. Let s be the neighbor of yj closest to v in H \ u and
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t be the neighbor of yj closest to u in H \ v. By Lemma 3.14, st is an edge
of H that sees S and st 6= uv. Furthermore, P = x1, no node in Qy1yj−1

has
a neighbor in H and s and u have the same color. Let Hut be the path in
V (H) \ {v} between u and t and Hvs be the path in V (H) \ {u} between v
and s. Note that Hut and Hvs have both even length. Let yk be the node of
lowest index in Q such that k > j and yk has a neighbor in V (H) \ {s, t}.

Claim 1: yk has a neighbor both in V (Hut) \ {t} and in V (Hvs) \ {s}.

Assume, w.l.o.g, that yk has a neighbor in Hut distinct from t and let p
be the neighbor of yk closest to u in Hut (possibly u = p). By Lemma 3.13, p
and u must have the same color. Let F be the shortest path between p and
s in V (Qyjyk

) ∪ {p, s} and let F ′ be the path between u and p in Hut. If yk

has no neighbors in V (Hvs) \ {s}, then H ′ = u, F ′, p, F, s,Hvs, v, u is a hole,
then R = u, F ′, p, F, s is an odd path so, by Corollary 2.28 applied to S, R
and v, R contains an odd number of edges that see S. Since u and p have
the same color, then S sees an even number of edges of F ′, therefore S must
see an odd number of edges of F , a contradiction.

Let p be the neighbor of yk closest to u in Hut and let q be the neighbor
of yk closest to v in Hvs. By Claim 4 and since yk is not adjacent to both u
and v, p and q are nonadjacent and, by Lemma 3.13, p has the same color of
u and q has the same color of v. We can also assume, w.l.o.g., that u 6= p.

Then p and q are consecutive neighbors of yk with distinct colors in H that
are nonadjacent, therefore we can apply Theorem 3.10 to the path consisting
of yk. Since ES(H) contains an isolated edge, then conclusion (a), (b) or (g)
of Theorem 3.10 holds.

Case 1: Case (a) or (b) of Theorem 3.10 holds.

Then ES(H) consists only of uv and st. Note that st is an isolated edge
of ES(H), P ′ = yj is an ear of st and S is maximal with this property.
Moreover Q′ = Qyj+1yk

is a path in G\ (V (H)∪V (P ′)∪S) such that yi+1 has
a neighbor in P ′ and yk has a neighbor in the interior of a sector of (H,S).
But now P ′ and Q′ contradict Lemma 3.14.

Case 2: Case (g) of Theorem 3.10 holds.

Then q = v, u and p are adjacent and H contains a path v, u, p, u′, v′

where u′v′ sees S and yj is adjacent to v, p, v′ but not to u or u′.
We have two cases:
Case 2.1: u′v′ 6= st.
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Then u′v′ is not adjacent to st, since v′ is in Hut and v′ and t have distinct
colors. Let F be the shortest path between u and yk in V (P )∪V (Qy1yk

)∪{u}.
Since H ′ = u, p, yk, F, u is a hole, then F is even, but then u, F, yk, v

′ is an
odd chordless path and Corollary 2.28 applied to S, u, F, yk, v

′ and u′, implies
that an odd number of edges of F see S, a contradiction.

Case 2.2: u′v′ = st.
Then u′ = t and v′ = s. Let F be the shortest path between t and yk in

V (Qyjyk
) ∪ {t}. Since H ′ = t, p, yk, F, t is a hole, then F is even, but then

t, F, yk, v is an odd chordless path and Corollary 2.28 applied to S, t, F, yk, v
and u, implies that an odd number of edges of F see S, a contradiction. 2

Proof of Theorem 3.2:
Let A be a maximal set containing S such that (H,A) is a hub and uv

sees A. Let B be the set containing all nodes of G that are universal for A.
Let B′ = B \ V (H) ∪ {u, v}.

If G \ (A ∪ B′) is not connected, then G has a skew-partition which is
loose since G \ (A∪B′) contains the endnode w of an edge in EA(H) \ {uv}.
We may assume, then, that G \ (A ∪ B′) is connected, thus there exists a
minimal path R = r1, . . . , rℓ in G\ (V (H)∪V (P )∪A∪B′) such that r1 has a
neighbor in P and rℓ has a neighbor in H \ {u, v}. By Lemma 3.14, the only
neighbors of rℓ in H are the endpoints s and t of an edge that sees A, and
there exists x ∈ V (P ∪R) adjacent to u and v such that H ∪P ∪R contains
a 3PC(uvx, tsrℓ), where v and s have the same color w.r.t. the bicoloring
of H induced by A. Note that the shortest path R′ between x and rℓ with
interior in R has even length. If G\(A∪B) is not connected, then G contains
a skew-partition. Assume that G \ (A ∪ B) is connected, then there exists
a minimal path Q = y1, ..., ym in G \ (V (H) ∪ V (P ) ∪ A ∪ B) such that y1

has a neighbor in P and ym has a neighbor in the interior of some sector of
(H,A), but such a path would contradict Lemma 3.15.

We shall now show that G has a balanced skew partition. Let W =
{u, v, s, t}. W is a kernel, since by definition every node in G that is universal
for W is either in A or it is universal for A, hence it is in B. Let C be the
connected component of G \ (A∪B) containing the path R. Note that every
pair of nonadjacent nodes w ∈ {u, v} and w′ ∈ {s, t} is joined in C by the
even path w, x,R′, rk, w

′. Suppose there exist two adjacent nodes y and y′ in
C joined by an odd antipath F with interior in W , then F has length exactly
3 (since Ḡ[W ] has diameter 2), hence F = y, w, w′, y′ for some w,w′ ∈ W
and w, y′, y, w′ is an odd path between w and w′ so, by Lemma 3.4, G has
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a balanced skew partition. Therefore we may assume that every pair of
adjacent nodes in C with nonneighbors in W is joined by an even antipath
with interior in W , but then, by Lemma 3.5, G has a balanced skew partition.
2

Corollary 3.16 No Berge minimum imperfect graph contains a hub (H,S)
with an ear on an isolated edge of ES(H).

Proof: Follows from Theorems 2.16 and 3.2. 2

3.6 Hubs in graphs containing no “large” line

graphs

Throughout this section, we will assume that G is a Berge graph such that
G and Ḡ contain no long prism and no L(K3,3 \{e}). As already observed in
Section 2.5, this condition implies that G cannot contain the line graph of a
bipartite subdivision of a 3-connected graph.

Lemma 3.17 Let (H,S) be a hub of a Berge graph G such that G and Ḡ
contain no long prism and no L(K3,3 \{e}). Let P = x1, . . . , xn be a minimal
chordless path in G \ (V (H)∪ S) containing no node that is universal for S,
such that x1 has a blue neighbor in H and xn has a red neighbor (n = 1 is
allowed). If there exist consecutive attachments of P with distinct colors that
are not adjacent, then one of the following holds.

(a) |H| = 6, n = 1 and there exists y ∈ S such that V (H)∪{x1, y} induces
a double diamond.

(b) n = 1 and there exists y ∈ S nonadjacent to x1 such that (H, x1) and
(H, y) are twin wheels and exactly one edge of H sees both x1 and y.

(c) There exists y ∈ S such that (H, y) is a twin wheel, no node of P is a
neighbor of y, x1 is adjacent to the twin of y in H and no other node
in H while xn is not adjacent to both the other neighbors of y in H.

Proof: Assume not, then P is of one of the types (a)-(c) or (f)-(k) of Theo-
rem 3.10. If P is of type (c), then V (H)∪ V (P )∪ {y} contains a long prism
unless n = 1 and |H| = 6, so case (a) of Lemma 3.17 holds. P cannot be
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of type (a) by assumption. If P is of type (b), then n = 1, |H| = 6, (H, x1)
is a line wheel and S ∪ x1 contains an odd chordless anti-path Q of length
at least 3 between x1 and a node y ∈ S such that (H, y) is a line wheel, no
edge of H sees both x1 and y and every intermediate node of Q is adjacent
to every node in H. One can verify that Ḡ[V (H) ∪ V (Q)] is the line graph
of a bipartite subdivision of a 3-connected graph. If P is of type (f), then
n = 1, H contains a subpath u, z, w, z′, u′ such that ES(H) = {wz,wz′}, x1

is adjacent to u, w and u′ but not z and z′, S ∪ x1 contains an odd chordless
anti-path Q of length at least 3 between x1 and a node y ∈ S such that y is
nonadjacent to u and u′ and every intermediate node of Q is adjacent to both
u and u′. One can verify that, since |Q| ≥ 3, then Ḡ[V (Q) ∪ {u, z, z′, u′}] is
a long prism 3PC(uu′y, z′zx1). If P is of type (g), then n = 1, H contains
a subpath w, z, u, z′, w′ such that wz and w′z′ are edges of ES(H), x1 is ad-
jacent to u, w and w′ but not z and z′, S ∪ x1 contains an even chordless
anti-path Q between x1 and a node y ∈ S such that y is nonadjacent to
u and every intermediate node of Q is adjacent to u. One can verify that,
since Q has positive even length, Ḡ[V (Q) ∪ {w, z, u, z′, w′}] is a long prism
3PC(ww′u, z′zx1). If P is of type (h), then n > 1, H contains a subpath
w, z, u, z′, w′ such that wz and w′z′ are edges of ES(H), x1 is adjacent w
and w′ but not u, z and z′, while xn is adjacent to u but not w, z, w′ and
z′. Furthermore S contains two nodes y and y′ such that the only neighbors
of y in V (P ) ∪ {w, z, u, z′, w′} are u, z, z′, w, w′ while the only neighbors
of y′ in V (P ) ∪ {w, z, u, z′, w′} are x1, z, z′, w, w′. One can verify that
G[V (P ) ∪ {y, y′, u, z, w′}] is a long prism 3PC(uyz, x1w

′y′. If P is of type
(k), then H = v, w, z, u, z′, w′, v, ES(H) = {wz,w′z′}, x1 is adjacent only
to v in H and xn is adjacent only to u in H. Furthermore, S contains two
nonadjacent nodes y and y′ such that y and y′ are adjacent to every node in
H except v and u, respectively, and no node in P is adjacent to y or y′. One
can verify that G[V (P ) ∪ {y, y′, u, v, z, w′}] is a long prism 3PC(uyz, vw′y′).
2

Lemma 3.18 Let (H,S) be the hub of a Berge graph G such that G and Ḡ
contain no long prism and no L(K3,3 \{e}). Assume that S is a maximal set
such that (H,S) is a hub with the further property that S does not contain any
center of a twin wheel w.r.t. H. Let P = x1, . . . , xn be a minimal chordless
path in G \ (V (H) ∪ S) containing no node universal for S such that x1 has
a red neighbor, no other node of P has a red neighbor and xn has a blue
neighbor whose neighbors in H are not red neighbors of x1. Then one of the
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following holds:

(1) There exist two adjacent edges ab1, ab2 of ES(H) such that a is the
only red neighbor of x1 in H and at least one node of P is adjacent to
both b1 and b2. If ES(H) % {ab1, ab2} or if S contains a node s with no
neighbors in P , then the path Q = a, x1, . . . , xn contains an odd number
of edges that see both b1 and b2.

(2) |H| = 6, n = 1 and there exists y ∈ S such that V (H)∪{x1, y} induces
a double diamond.

Proof: Obviously, one of the conclusions of Theorem 3.12 must occur. If
conclusion (a) of Theorem 3.12 holds, then by Lemma 3.17 conclusion (2)
holds (since S does not contain any center of a twin wheel) and we are done.
If conclusion (b) holds, then conclusion (1) holds and we are done.

So we may assume that conclusion (c) of Theorem 3.12 holds. Then
n > 1, ES(H) contains at least two nonadjacent edges, x1 is adjacent to all
the red endnodes of the edges of H that see S and the node xj of lowest
index adjacent to some blue node is adjacent to all the blue endnodes of the
edges of H that see S. If j > 2, then S contains two nonadjacent nodes y
and z such that y is adjacent to x1 and to no other node of Px1xj

, and z is
adjacent to xj and to no other node of Px1xj

. If j = 2, then S ∪ {x1, x2}
contains an odd chordless anti-path between x1 and x2.

Let uv and u′v′ be two nonadjacent edges of ES(H) and assume, w.l.o.g.,
that x1 is adjacent to u and u′ and xj is adjacent to v and v′. If j > 2 then
G[V (Px1xj

) ∪ {y, z, u, v′}] is a long prism 3PC(x1yu, xjv
′z). If j = 2 then

Ḡ[V (Q) ∪ {u, u′, v, v′}] is a long prism 3PC(x1vv′, x2u
′u). 2

We say that a hub (H,S) is good if H has an inner blue node and an
inner red node w.r.t. the bicoloring induced on H by ES(H). Equivalently,
given the maximal paths P 1, . . . , P k induced by the endnodes of the edges
of ES(H), (H,S) is a good hub if and only if there exists i, 1 ≤ i ≤ k, such
that P i has odd length.

Lemma 3.19 Let (H,S) be a good hub of a Berge graph G such that G and
Ḡ contain no long prism and no L(K3,3 \ {e}). Let y ∈ G \ (V (H) ∪ S)
be a node such that (H,S ∪ y) is a hub. Then either (H,S ∪ y) is a good
hub or V (H) ∪ y contains a hole H ′ such that (H ′, S) is a good hub with
ES(H ′) $ ES(H).
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Proof: Since (H,S) is a good hub, by Lemma 3.17 every pair of consecutive
neighbors of y in H with distinct colors are adjacent. Assume (H,S ∪ y)
is not a good hub. Let P 1, . . . , P k be the maximal paths induced by the
endnodes of the edges of ES(H) and assume, w.l.o.g, that P 1 = y1, ..., ym

has odd length. If y has no neighbor in P 1, then P 1 is contained in a sector
Q = s, ..., t of (H, y), therefore, given H ′ = y, s,Q, t, y, (H ′, S) is a good hub
and ES(H ′) $ ES(H). Therefore we may assume that y has a neighbor in
P 1. Let r be the neighbor of y closest to y1 in P 1 and s be the neighbor
of y closest to ym in P 1 (possibly r = s). Since (H,S ∪ y) is not a good
hub, then y sees an even number of edges of P 1, therefore P 1

rs has even
length. Since P 1 has odd length, we can assume, w.l.o.g., that P 1

sym
has odd

length. Let Q = s, ..., t be the sector of (H, y) containing P 1
sym

, then, given
H ′ = y, s,Q, t, y, (H ′, S) is a good hub and ES(H ′) $ ES(H) (since (H,S∪y)
is a hub). 2

Proof of Theorem 3.1:
Assume that, among all the good hubs contained in G, (H,S) is chosen

so that ES(H) is minimal (i.e. there is no good hub (H ′, S ′) such that
ES′(H ′) $ ES(H)). Let A be a maximal set containing S such that (H,A) is
a hub. Then, by Lemma 3.19 and by the minimality assumption on ES(H),
(H,A) is a good hub and EA(H) = ES(H). Let B be the set containing
all the nodes that are universal for A in G \ (V (H) ∪ A) and all the blue
endnodes of the edges in ES(H). If in G \ (A ∪ B) the red nodes of H are
in distinct connected components than the blue nodes of H, then G has a
skew partition. Otherwise there exists a chordless path P = x1, ..., xn in
G \ (V (H) ∪ A) containing no node universal for S such that x1 is adjacent
to a red node of H, no other node of P has a red node of H and xn is
adjacent to an inner blue node of H. Let xj be the node of P with lowest
index that is adjacent to a blue node b in H so that neither of the neighbors
of b in H is a red neighbor of x1. Then either conclusion (1) or (2) of
Lemma 3.18 holds for Px1xj

. Conclusion (2) cannot hold since (H,A) is a
good hub. Hence conclusion (1) holds, so there exist two adjacent edges ab1,
ab2 of EA(H) such that a is the only red neighbor of x1 in H and at least
one node of Px1xj

is adjacent to both b1 and b2. Since (H,A) is a good hub,
EA(H) % {ab1, ab2} so by Lemma 3.18 the path Q = a, x1, . . . , xj contains
an odd number of edges that see both b1 and b2. If j = 1, then (H,A∪x1) is
a hub, contradicting the maximality of A. Therefore j > 1 and there exists a
node xi, i < j, adjacent to b1 and b2 and to no other node in V (H)\{a, b1, b2}.
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Thus (V (H) ∪ {xi}) \ {a} induces a hole H ′ and (H ′, A) is a good hub with
EA(H ′) $ ES(H), contradicting the minimality of ES(H).

Hence G contains a skew partition A,B,C,D where C contains all the
red nodes of H and D contains all the inner blue nodes of H (w.r.t. the
bicoloring induced on H by EA(H)). Let u be any red endpoint of some edge
in EA(H), then u ∈ C and u is universal for A, hence A,B,C,D is a loose
skew partition. 2
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Chapter 4

Decomposition of Berge
Graphs containing no proper
wheels, long prisms or their
complements

4.1 Introduction

In this chapter we will prove Theorem 2.26. In fact, we will prove the fol-
lowing, slightly stronger statement.

Theorem 4.1 Let G be a Berge graph such that neither G nor Ḡ contains a
proper wheel or a long prism. Then either G is a bipartite graph, or the line
graph of a bipartite graph, or G has a loose skew partition.

Observe that, if G does not contain a long prism, then the following
strengthening of the Roussel-Rubio Lemma 2.27 holds.

Lemma 4.2 (Roussel and Rubio [69]) Let G be a Berge graph such that G
does not contain a long prism. Furthermore, V (G) can be partitioned into an
anticonnected set S and an odd chordless path P = u, u′, . . . , v′, v of length at
least 3 such that u and v are both universal for S. Then one of the following
holds:

(i) An odd number of edges of P see S.
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(ii) |P | = 3 and S ∪ {u′, v′} contains an odd chordless antipath between u′

and v′.

Proof: If P has length at least 5 and there exist two nonadjacent nodes x,
x′ in S such that (V (P ) \ {u, v}) ∪ {x, x′} induces a chordless path, then
V (P ) ∪ {x, x′} induces a long prism. 2

4.2 Proof of Theorem 4.1

Let G be a Berge graph such that neither G nor Ḡ contains a proper wheel
or a long prism.

Given a wheel (H, v) in G, we will say that (H, v) is big if |H| ≥ 6.

4.2.1 Line graphs of K3,3 \ {e}

Lemma 4.3 If G contains L(K3,3 \{e}) as an induced subgraph, then either
G is the line graph of a bipartite graph or it contains a loose skew partition.

Proof:
Note that L(K3,3 \ {e}) is the graph consisting of nodes {a1, ..., a6, u, v}

where H = a1, ..., a6, a1 is a hole, u is adjacent to a1, a2, a4 and a5 and v
is adjacent to a2, a3, a5 and a6. We call this graph a double L-wheel, and
denote it by (H, u, v), as (H, u) and (H, v) are both line wheels. Let H ′ =
a1, u, a4, a3, v, a6, a1, Q = a1, v, u, a6, a2, a5, a1 and Q′ = a2, a5, a3, u, v, a4, a2.
Then H ′ is a 6-hole and (H ′, a2, a5) is a double L-wheel, while Q and Q′ are
both 6-antiholes and (Q, a3, a4) (Q′, a1, a6) are both double L-wheels in G.

For x ∈ V \ (V (H) ∪ {u, v}), we examine the adjacencies between x and
(H, u, v). Since, as we just observed, the complement of a double line wheel
is a double line wheel, then, by going to the complement, we can assume that
x has at most four neighbors in (H, u, v).

Claim 1: If x has at most four neighbors in (H, u, v), then one of the fol-
lowing holds, up to the symmetries of (H, u, v):

(i) x has no neighbor in (H, u, v);
(ii) x is true or false twin of one of the nodes in (H, u, v) w.r.t.
(H, u, v);
(iii) The only neighbors of x in (H, u, v) are a1, a3, a4 and a6;
(iv) The only neighbors of x in (H, u, v) are a1 and a6;
(v) The only neighbors of x in (H, u, v) are a1, a2 and u.

(4.1)
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Proof of Claim 1: Since G does not contain any proper wheel, then (H, x)
can be a universal wheel, a twin wheel, a line wheel or V (H) ∪ x induces
a triangle-free-graph or a cap. If (H, x) is a universal wheel, then x has
more than four neighbors in (H, u, v). Assume that (H, x) is a twin wheel
and let NH(x) = {ai−1, ai, ai+1}. Then x is adjacent to u if and only if ai

is a neighbor of u, otherwise, if C is the hole obtained from H by replacing
ai with x, then (C, u) is a proper wheel or an odd wheel. Similarly, x is
adjacent to v if and only if ai is a neighbor of v. But then x is a twin of ai

w.r.t. (H, u, v).
Assume now that (H, x) is a line wheel. Since x has already four neighbors
in (H, u, v), either x is a false twin of u or v or (iv) holds.
Assume next that V (H) ∪ x induces a cap. By symmetry, we can assume
that x is adjacent to a1. Assume first that x is adjacent to a1 and a6. If x is
adjacent to both u, v, then (Q′, x) is an odd wheel in G. If x is adjacent to
exactly one of u, v, say u, then x, u, a2, v, a6 induces a 5-hole. So (iv) must
hold. Assume now that x is adjacent to a1 and a2. Then (v) must hold since,
otherwise, (Q′, x) is a proper wheel in G.
Finally, assume that V (H) ∪ x induces a triangle-free graph. By symmetry
we can assume that V (H ′)∪ x also induces a triangle-free graph. If x has no
neighbor in (H, u, v), (i) holds. Thus, by symmetry, we can assume that x is
either adjacent to a1 or to a2. If x is adjacent to a1, then x is not adjacent to
a2, a6 and u, and (Q, x) must be a twin wheel in G, hence x is a twin of a6

w.r.t. (H, u, v). Assume then that x is adjacent to a2 and, by symmetry and
by the previous case, assume x is not adjacent to a1, a3, a4 and a6. Also, x
is not adjacent to a5, else there is a 5-hole a1, a2, x, a5, a6, a1. Hence (Q, x)
must be a line wheel in G, so x is adjacent to v but not to u, but now (Q′, x)
is a proper wheel in G. This completes the proof of Claim 1.

We say that a graph G′ is an extended multi line wheel if G′ can be
partitioned into sets A1, ..., A6, U , V and W with the property that every
node in Ai is adjacent to every node in Ai+1 (where the indices are taken
modulo 6), every node in U (resp. V ) (resp. W ) is adjacent to every node in
A1, A2, A4 and A5 (resp. A2, A3, A5, A6) (resp. A1, A3, A4, A6) and these
are the only edges with endnodes in different sets of the partition. All the
sets, except at most W , are nonempty.

Since G contains a double line wheel (H, u, v), then G contains an ex-
tended multi line wheel G′ such that ai ∈ Ai, u ∈ U and v ∈ V . Assume G′
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is maximal (in terms of its node set) with this property.

Claim 2:

• Every node of Type (4.1)(iii) w.r.t. (H, u, v) belongs to W .

• If a node x of Type (4.1)(ii) w.r.t. (H, u, v) does not belongs to G′, then
x is a true twin of a node of degree 3 in (H, u, v), say a1, and x is
of Type (v) w.r.t. (H∗, u, v) for some 6-hole H∗ obtained from H by
replacing a6 by a node a∗

6 ∈ A6.

• If a node x is of Type (4.1)(iv) w.r.t. (H, u, v), adjacent to a1 and a6,
then x is universal for A1 ∪ A6 and has no neighbor in G′ \ A1 ∪ A6.

• If a node x is of Type (4.1)(v) w.r.t. (H, u, v), adjacent to a1, a2 and u,
then x is universal for A1 ∪ A2 ∪ U and has no neighbor in A3 ∪ A4 ∪
A5 ∪ V .

Proof of Claim 2: By construction, every node of G′ must be a twin of a node
of (H, u, v) w.r.t. (H, u, v) or must be of Type (4.1)(iii). Suppose that some
node x of Type (4.1)(iii) does not belong to W . Then either x is not adjacent
to some node y in A1, A3, A4 or A6 or x is adjacent to some node y in A2, A5,
U or V . Let (H∗, u∗, v∗) be the double line wheel obtained by adding y and
removing the corresponding node of (H, u, v). Now x contradicts Claim 1
in (H∗, u∗, v∗) or in its complement. So the first part of Claim 2 holds.
Now suppose that some node x of Type (4.1)(ii) does not belong to G′. By
symmetry we can assume that x is a twin of a1 or a2 w.r.t. (H, u, v). If x is
a twin of a1, then either x is not adjacent to some node y in A2, A6 or U or
x is adjacent to some node y in A3, A4, A5 or V . Constructing (H∗, u∗, v∗)
as above, we obtain a contradiction of Claim 1 unless y is in A6. If x is a
twin of a2, constructing (H∗, u∗, v∗) as above, we obtain a contradiction of
Claim 1 in all cases. The last two statements of Claim 2 follow similarly.
This completes the proof of Claim 2.

By Claim 2, the nodes of G \ G′ partition into two sets X and Y as
follows: X contains the nodes of G \ G′ that have no neighbor in V (G′) or
are of Type (4.1)(iv) or (v) w.r.t. at least one double line wheel (H∗, u∗, v∗)
where H∗ = a∗

1, . . . , a
∗
6, a

∗
1 with a∗

i ∈ Ai, u∗ ∈ U , v∗ ∈ V . The set Y contains
the remaining nodes of G \ G′. In the complement graph G, the nodes of
Y have either no neighbor in V (G′) or are of Type (4.1)(iv) or (v) w.r.t.
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at least one double line wheel (Q∗, a∗
3, a

∗
4) where Q∗ = a∗

1, v
∗, u∗, a∗

6, a
∗
2, a

∗
5, a

∗
1

with a∗
i ∈ Ai, u∗ ∈ U , v∗ ∈ V .

Claim 3: Let X1,2 be the set of nodes of X that are universal for A1∪A2∪U
and possibly adjacent to nodes of A6 but to no other nodes of G′. Then there
exists a node of A6 that has no neighbor in X1,2.

Proof of Claim 3: Suppose not. Since every node of A6 has a neighbor in X1,2

and every node of X1,2 has a non-neighbor in A6, there must exist r, s ∈ A6

and t, z ∈ X1,2 such that rt and sz are edges but rz and st are not. Indeed,
it is immediate to verify that the statement is true if |A6| ≤ 2 or |X1,2| ≤ 2.
By induction on |A6|+ |X1,2|, given z ∈ X1,2, either we are done by applying
the inductive hypothesis to A6 and X1,2 \ z, or A6 contains a node s with no
neighbors in X1,2 \ z so z and s are adjacent. Let r be a non-neighbor of z
in A6 and t be a neighbor of r in X1,2, then rt and sz are edges but rz and
st are not.

If neither rs nor zt is an edge, consider the 6-hole L = r, t, a2, z, s, a5, r.
Then (L, u) is a proper wheel. If exactly one of rs and zt is an edge, there is
a 5-hole r, t, a2, z, s, r or r, t, z, s, a5, r. If both rs and zt are edges, the nodes
in {r, s, t, z, a2, a3, a4, a5} induce a long prism. This proves Claim 3.

Claim 4: If xi, xj ∈ X are universal for Ai, Ai+1 and for Aj, Aj+1, respec-
tively, where 1 ≤ i < j ≤ 5, and possibly to other nodes of G′, then xi and
xj are in different connected components of G[X].

Proof of Claim 4: Suppose not. Choose a pair xi, xj ∈ X, i < j, with a
shortest path P connecting them in G[X]. By the choice of P , the internal
nodes of P have no neighbor in G′. By Claim 2, there exists a double line
wheel (H∗, u∗, v∗) where H∗ = a∗

1, . . . , a
∗
6, a

∗
1 with a∗

i ∈ Ai, u∗ ∈ U , v∗ ∈ V ,
such that xi and xj are both of Type (4.1)(iv) or (v) w.r.t. (H∗, u∗, v∗). If
j− i ≥ 2, the nodes of H ∪P induce a long prism. If j = i+1, it is sufficient
to consider the cases j = 2 and j = 3 by symmetry. If j = 2, the nodes
of V (P ) ∪ {a2, a3, a4, a5, u, v} induce a long prism. If j = 3, the nodes of
V (P ) ∪ {a2, a4, a5, u, v} induce a long prism. This proves Claim 4.

Assume that Y is nonempty. By symmetry Y contains a node y universal
for A2 ∪ A3 ∪ A5 ∪ A6. Furthermore, if y is of Type (4.1)(iv) in G, we can
assume that, in G, y is universal for A1 ∪ A4 and has no neighbor in U ∪ V .
If y is of Type (4.1)(v) in G, we can assume that, in G, y has no neighbor in
A1 ∪ A4 ∪ V . Finally, if all the nodes of Y are universal for G′, choose y to
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be any node of Y . Let A be the co-connected component of Y containing y
and let B be the set of nodes A2 ∪ A3 ∪ A5 ∪ A6 together with the nodes of
G \ G′ that are universal for A. By Claim 4 applied to G, A is universal for
A2 ∪ A3 ∪ A5 ∪ A6. Clearly, A is universal for Y \ A. Therefore, by Claim 4
applied to G, A ∪ B is a skew cutset separating V from A1 ∪ A4 ∪ U . By
Claim 3 applied to G, if y is of Type (4.1)(v) in G, at least one node of U is
universal for A. And if y is not of Type (4.1)(v) in G, the nodes of A1 are
universal for A. So A ∪ B is a good skew cutset.

By the argument above applied to G, if X is nonempty then G has a good
skew partition. Hence we may assume that X and Y are both empty. If any
of the sets A1, ..., A6, U , V , W has cardinality greater than one, then G has
a star cutset. So, if G has no good skew partition, G′ is a multi line wheel.
2

By Lemma 4.3, we may assume that neither G nor Ḡ contains a long
prism or L(K3,3 \ {e}) as an induced subgraph. By Theorem 2.24, we may
assume that neither G nor Ḡ contains a good hub. In particular, neither G
nor Ḡ contains a line wheel, hence, since we are assuming that there are no
proper wheels in G or in Ḡ, the only wheels that might be contained in G
or Ḡ are universal wheels, twin wheels or triangle free wheels. Next we will
show that, whenever G has a big universal wheel, G has a skew partition.

4.2.2 Big universal wheels

Lemma 4.4 If G contains a big universal wheel, then G has a T-cutset.

Proof: Assume G contains a universal wheel (H, x) and let A be a maximal
co-connected set of G\V (H) such that every node in A is universal for V (H).
Consider a bicoloring of the nodes of H obtained by coloring the nodes of H
red and blue in such a way that two nodes have the same color if and only
if they have even distance in H. Let y be a node in G \ (V (H) ∪ A) that
is not universal for A such that y has two nonadjacent neighbors in H. We
will show that (H, y) is a triangle-free wheel and y is universal for either the
red or the blue nodes of H. Let u be a node in A that is not adjacent to
y. By the maximality of A, y is not universal for V (H), hence y has two
consecutive nonadjacent neighbors s and t in H. Let Hst be a path between s
and t in H containing no neighbors of y. Then s and t have distance 2 in Hst,
otherwise H ′ = y, s,Hst, t, y is a big hole and (H ′, u) is a proper wheel (since
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u is adjacent to every node but y in H ′). Hence (H, y) is not a twin wheel,
so H ∪ y is a triangle-free graph in which every pair of consecutive neighbors
of y in H has distance two in H. Hence y is either universal for the red or for
the blue nodes of H. So we can partition the nodes in G \ (V (H) ∪ A) that
have two nonadjacent neighbors in H and that are not universal for A into
sets ∆R and ∆B, where every node in ∆R (resp. ∆B) is universal for the red
(resp. blue) nodes of H and has no blue (resp. red) neighbor in H. Next, we
will show that either ∆R or ∆B is empty. Assume not and let r and b be two
nodes in ∆R and ∆B respectively. Let st and s′t′ be two nonadjacent edges
of H where s, s′ are red and t, t′ are blue. If r and b are not adjacent, then
H ′ = r, s, t, b, t′, s′, r is a 6-hole and (H ′, u) is a proper wheel or a line wheel
for every node u in A that is not adjacent to r or b. So r and b are adjacent
and, since neither of them is universal for A, then G[A ∪ {r, b}] contains a
chordless path Q between r and b. G[V (Q) ∪ {s, s′, t, t′}] is a long prism,
namely a 3PC(rtt′, bs′s), a contradiction.

Therefore we may assume, w.l.o.g., that every node in G \ (V (H) ∪ A)
that has two nonadjacent neighbors in H and that is not universal for A is
universal for the blue nodes of H and has no red neighbor in H. Let a be a red
node of H and let b1 and b2 be its neighbors in H. Let B be the set of all nodes
in G\(A∪V (H))∪{b1, b2} that are universal for A. If a and V (H)\{a, b1, b2}
lie in distinct connected components of G \ (A ∪ B), let C be the connected
component of G \ (A ∪B) containing a and D = V (G) \ (A ∪B ∪C). Then
A,B,C,D is a skew partition and, given a node t in V (H) \ {a, b1, b2}, then
t ∈ D and both a and t are universal for A, hence A ∪ B is a T-cutset.
Hence we may assume that there exists a chordless path P = x1, . . . , xn

in G \ (A ∪ B ∪ V (H)) such that x1 is adjacent to a, xn has a neighbor in
V (H)\{a, b1, b2} and no intermediate node has a neighbor in V (H)\{b1, b2}.
Note that x1 does not have two nonadjacent neighbors in H, hence n > 1.
Also, no node in P \ xn has two nonadjacent neighbors in H. Note that
b1 and b2 cannot both have neighbors in P \ xn, otherwise let xi and xj be
neighbors of b1 and b2, respectively, in P \ xn such that xi and xj are closest
possible in P \ xn. Then H ′ = H \ a ∪ V (Pxixj

) is a hole and, for any node
u ∈ A that is not universal for Pxixj

, (H ′, u) is a proper wheel. Thus we may
assume that b1 has no neighbors in P \ xn.

If xn has only blue neighbors in H, then let t be the closest neighbor of
xn to b1 and Hb1t be the chordless path between b1 and t in H \ a. H ′ =
a, x1, P, xn, t, Hb1t, b1, a is a hole of even length, hence, since t and a have odd
distance, P is an odd path. Let s be a neighbor of xn distinct from b1 and b2.
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Then F = a, x1, P, xn, s is an odd chordless path and F \{a, s} does not have
any node universal for A. By Lemma 4.2, F has length 3 and A ∪ {x1, x2}
contains an odd chordless co-path Q between x1 and x2. Let w be a red node
distinct from a. Then C = a, x1, Q, x2, a is an odd anti-hole, a contradiction.

So xn has a red neighbor in H, therefore xn does not have two nonadjacent
neighbors in H. Let t be the unique red neighbor of xn in H. Since |H| ≥ 6, t
is not adjacent to b1 or b2, say bi for i = 1 or 2. Let Hbit be the path between
bi and t in H \ a. Since t and bi have distinct colors, Hbit has odd length, so
|Hbit| ≥ 3. If xn has no neighbors in Hbit, then let u be a node of A that is not
adjacent xn. If bi has no neighbors in P , then H ′ = t,Hbit, bi, a, x1, P, xn, t
is a big hole and (H ′, u) is a proper wheel. Otherwise let xj be the node of
highest index in P adjacent to bi. Then H ′′ = t,Hbit, bi, xj, Pxjxn

, xn, t is a
big hole and (H ′′, u) is a proper wheel. So xn has exactly two neighbors s
and t in H, s and t are adjacent and s is in Hbit, so s 6= b1, b2. So s and t have
no neighbor in P \ xn. Let xj be a node of highest index with a neighbor in
{a, b2}. We already observed that xj cannot have two nonadjacent neighbors
in H. If xj has a unique neighbor v in {a, b2}, then there is a 3PC(xnst, v).
So j = 1 and x1 is adjacent to b2 and there is a long prism 3PC(x1ab2, xnts),
a contradiction. 2

4.2.3 Caps

By Lemmas 4.3 and 4.4, we may assume G and Ḡ do not contain any long
prism or any big wheel except twin wheels and triangle-free wheels.

A cap (H, v) consists of a hole H and a node v not in H that has exactly
two neighbors a and b in H, and a and b are adjacent. We say that v is the
tip of (H, v) while a and b are the attachments of v in H. If |H| ≥ 6 then
(H, v) is big else (H, v) is small.

Lemma 4.5 If G contains a big cap, then G has a loose skew-partition.

Before proving Lemma 4.5, we shall prove the following three lemmas.

Lemma 4.6 Let Γ be a Berge graph. If Γ and Γ do not contain any big
wheel (H, x) where x has more than |H|/2 neighbors in H, then Γ does not
contain both a big hole and a big antihole.

Proof: Assume, by contradiction, that Γ contains a hole H and an antihole
A, where n = |H| ≥ 6 and m = |A| ≥ 6.
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Assume first that V (H)∩V (A) 6= ∅. It is immediate to verify that |V (H)∩
V (A)| ≤ 4 and V (H)∩ V (A) induces a chordless path or the complement of
a chordless path. W.l.o.g., assume P = Γ[V (H) ∩ V (A)] is a chordless path,
and let k = |V (H) ∩ V (A)|.

By assumption, every node in V (A) \V (H) has at most n/2 neighbors in
H, hence there are at most (m−k)n/2 edges between V (H) and V (A)\V (H).
Since P has k nodes and k− 1 edges, and every node in A has exactly m− 3
neighbors in A, then between V (A) ∩ V (H) and V (A) \ V (H) there are
exactly k(m − 3) − 2(k − 1) = km − 5k + 2 edges, hence there are at most
(m − k)n/2− (km− 5k + 2) edges between V (A) \ V (H) and V (H) \ V (A).

Analogously, every node in V (H) \ V (A) has at least m/2 neighbors in
V (A), hence there are at least (n − k)m/2 edges between V (H) \ V (A) and
V (A). Also, there are exactly 2 edges between V (A)∩V (H) and V (H)\V (A),
hence there are at least (n − k)m/2 − 2 edges between V (A) \ V (H) and
V (H) \ V (A). Therefore

(n − k)m

2
− 2 ≤

(m − k)n

2
− km + 5k − 2

implying n + m ≤ 10, that is a contradiction since n,m ≥ 6.
Hence we may assume that A and H are node disjoint. Every node in

A has at most n/2 neighbors in H, hence there are at most mn/2 edges
between V (A) and V (H). Every node in H has at least m/2 neighbors in
A, hence there are at least mn/2 edges between V (A) and V (H), therefore
there are exactly mn/2 edges between V (A) and V (H), every node in V (A)
has exactly n/2 neighbors in V (H) and every node in V (H) has exactly m/2
neighbors in V (A). Let x be a node of A. If (H, x) is not a triangle-free
wheel, then H ∪ x contains a hole H ′ of length at least 6 containing x, but
H ′ and A have one node in common and we already showed that this is not
possible. Hence, for every x ∈ V (A), (H, x) is a triangle-free wheel. Let X
and Y be the two stable sets of size n/2 partitioning V (H), then for every
x ∈ V (A) either x is universal for X and has no neighbors in Y , or vice-versa.
Since every node in H has neighbors in A and A is anticonnected, there exist
two nonadjacent nodes x and y in A such that x is universal for X and has
no neighbors in Y while y is universal for Y and has no neighbors in X. Let
x′y′ and x′′y′′ be two nonadjacent edges of H with x′, x′′ ∈ X and y′, y′′ ∈ Y ,
then H ′ = x, x′, y′, y, y′′, x′′, x is a 6-hole and H ′ and A have two nodes in
common, a contradiction. 2
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Note that, since G and Ḡ do not contain any big wheel except twin wheels
and triangle-free wheels, then neither G nor Ḡ contains a big wheel (H, x)
where x has more than |H|/2 neighbors in H. Hence, by Lemma 4.6, we may
assume, w.l.o.g., that G contains no big antihole.

Lemma 4.7 Assume G contains a cap (H, x) with attachments a, b. Let
P = x1, . . . , xn be a direct connection between x and V (H) \ {a, b} contained
in G \ H such that no node of P is adjacent to a. Then x1 is adjacent to b
and no other neighbor of P is adjacent to b.

Proof: Assume first that b has no neighbors in P . If xn has a unique neighbor
t in H, then there is a 3PC(abx, t). If xn has two nonadjacent neighbors in
H, then there is a 3PC(abx, xn). Hence xn has exactly two neighbors t
and t′ in H and they are adjacent, but then either G contains a long prism
3PC(abx, tt′xn), or |H| = 4, n = 1 and V (H) ∪ {x, x1} induces an antihole
of length 6. Therefore b has a neighbor in P . If n = 1 we are done, hence
we may assume n ≥ 2. Let t be the closest neighbor of xn to a in H and Hta

be the path between a and t in H \ b, let H ′ = x, x1, P, xn, t, Hta, a, x. Since
n ≥ 2, H ′ has length at least 6 and b is adjacent to a, x and some other node
of P , so (H ′, b) is a big wheel that is not triangle-free, hence it must be a
twin wheel, therefore b must be adjacent to x1 and no other node of P . 2

Lemma 4.8 Assume G contains a connected set S, a chordless antipath
Q = y1, ..., yn disjoint from S such that y1 and yn have no neighbors in S and
for every i, 2 ≤ i ≤ n − 1, yi has a neighbor in S. Then n ≤ 4.

Proof: Assume, by contradiction, that n ≥ 5. Since y2 and y3 have at
least a neighbor in S and S is connected, there exists a chordless path P =
y2, p1, . . . , pm, y3 between y2 and y3 whose interior is contained in S. P has
even length, otherwise yn, y2, P, y3, yn is an odd hole, and P has length at
least 4, otherwise P = y2, p1, y3 and, given h the smallest index such that yh

is nonadjacent to p1 (h is well defined since yn has no neighbors in S), then
y1, Qy1yh

, yh, p1, y1 is an antihole of length at least 6, a contradiction. Hence
P ′ = y2, P, y3, y1 is an odd path of length at least 5 and X = V (Q)\{y1, y2, y3}
is an anticonnected set universal for y1 and y2. By Lemma 4.2, the interior
of P ′ must contain a node universal for X, a contradiction since yn has no
neighbors in the interior of P and y3 is not adjacent to y4. 2
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Proof of Lemma 4.5:
Consider a big cap (H, v) and let a, b be the attachments of x in H. Let

a0 = a, P 0 be the path induced by V (H)\ b, A0 = {a0} and S0 = V (P 0)\a0.
Let P 0, . . . , P k be a sequence of chordless paths in G, where P i = xi

1, . . . , x
i
li
.

For every i, 1 ≤ i ≤ k, let ai = xi
1, Ai = Ai−1 ∪ ai and Si = Si−1 ∪V (P i) \ ai.

Assume that the sequence P 0, . . . , P k satisfies the following properties:

1. P i is a direct connection between x and Si−1 contained in G\(Ai−1∪{b})
such that no node in P i is universal for Ai−1,

2. For every i, 0 ≤ i ≤ k, ai is adjacent to b.

We will prove that, if P = x1, ..., xn is a direct connection between x and
Sk contained in G \ (Ak ∪ b) such that no node in P is universal for Ak, then
x1 is adjacent to b.

Note that this implies Lemma 4.5: obviously, P 0 is a sequence satisfying
properties 1 and 2 above, hence we can consider a sequence P 0, . . . , P k (k ≥
0), that is the longest possible. Let A = Ak and B be the set of all nodes in
V \ x that are universal for A. If A∪B is not a skew cutset that separates x
from Sk, then there exists a direct connection P = x1, ..., xn between x and
Sk contained in G\ (Ak ∪ b) such that no node in P is universal for Ak. Since
x1 is adjacent to b, we can choose P k+1 = P . Now P 0, . . . , P k+1 is a sequence
satisfying properties 1 and 2, contradicting the maximality of k. Hence A∪B
is a skew cutset that separates x from Sk. Let C be the connected component
of G \ (A∪B) containing x and D = V (G) \ (A∪B ∪C). Then A,B,C,D is
a skew partition and x is universal for A, hence it is a good skew partition.

Observe that, by construction, for every 0 ≤ i ≤ k, Ai is a co-connected
set and Si is connected. Moreover, x has no neighbors in Sk and every node
in Ai has a neighbor in Si.

Claim 1: For every j, 1 ≤ j ≤ k, and for every node y ∈ Sj, if y is universal
for Aj−1, then y is the only neighbor of a0 in H \ b.

Proof of Claim 1: By construction, for every i such that 1 ≤ i ≤ j, no node
in P i is universal for Aj−1, hence y must be the node in P 0 adjacent to a0.

Claim 2: For every i, 0 ≤ i ≤ k, b does not see any edge of P i.

Proof of Claim 2: The statement is trivial for i = 0 and it follows immedi-
ately by Lemma 4.7 for i = 1. Hence we may assume i ≥ 2. Assume, by
contradiction, that b sees an edge xi

jx
i
j+1 of P i. We will show that every node
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of Ai−1 is adjacent to xi
j or xi

j+1. Assume not, then there exists ah ∈ Ai−1

such that ah is not adjacent to xi
j and xi

j+1. Let y be the neighbor of ah

in the chordless path x, xi
1, P

i
xi
1
xi

j−1

, xi
j−1 closest to xi

j in P i (y is well defined

since every node in Ak is adjacent to x) and let F be the path from y to
xi

j in x, xi
1, P

i
xi
1
xi

j

, xi
j. Let F ′ be a chordless path between ah and xi

j+1 in the

graph induced by Si−1 ∪ (ah ∪ V (P i
xi

j+1
xi

li

). By construction, no node in P i

except xi
li

has a neighbor in Si−1, hence C = ah, y, F, xi
j, x

i
j+1, F

′, ah is a big
hole and b is adjacent to ah, xi

j and xi
j+1 in C, hence (C, b) is a big wheel

that is neither a triangle-free nor a twin wheel, a contradiction.
Hence every node in Ai−1 is adjacent to xi

j or xi
j+1 but no node in P i is uni-

versal for Ai−1, so there exists a chordless co-path Q = y1, . . . , ym in G[Ai−1]
such that y1 is adjacent to xi

j but not xi
j+1, ym is adjacent to xi

j+1 but not xi
j

and all the intermediate neighbors of Q are adjacent to both xi
j and xi

j+1. If
j > 1, then xi

j and xi
j+1 are not adjacent to x, hence (x, xi

j+1, y1, Q, ym, xi
j, x

is a big anti-hole. Therefore j = 1, and Q′ = x, xi
2, y1, Q, ym, xi

1 is a co-path
of length at least 4. Let S = Si−1 ∪ V (P i)) \ {xi

1, x
i
2}. S is connected and

neither x nor xi
1 have neighbors in S, while, by construction, every interme-

diate node of Q′ has a neighbor in S. Now Q′ and S contradict Lemma 4.8.
This completes the proof of Claim 2.

We will prove Lemma 4.5 by induction on k. If k = 0, then we are done
by Lemma 4.7. Let us now assume, by induction, that the statement is
satisfied for every big cap (H, x), and for every sequence P0, ..., Pj satisfying
properties 1 and 2, whenever j ≤ k − 1. Note that P must contain a node
that is universal for Ak−1, otherwise (V (P ) ∪ V (P k)) \ ak contains a direct
connection P ′ from x to Sk−1 and no node in P ′ is universal for Ak−1 so, by
induction, the first node of P ′, which is x1, is adjacent to b and we are done.
Let us assume, by contradiction, that x1 is not adjacent to b.

Claim 3: No node of P is adjacent to ak.

Proof of Claim 3: Assume, by contradiction, that ak has a neighbor in P .
Then, since by the argument above P contains a node universal for Ak−1,
every node in Ak has a neighbor in P . For every 0 ≤ i ≤ k, let h(i) be the
minimum index such that ai is adjacent to xh(i) and let h = max0≤i≤k h(i).
Since no node of P is universal for Ak, h ≥ 2. If h = 2, then every node in
Ak is adjacent to x1 or x2 but neither x1 or x2 are universal for Ak, hence Ak

contains a chordless co-path Q = y1, . . . , ym such that y1 is adjacent to x1
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but not to x2, ym is adjacent to x2 but not x1 and every intermediate node
of Q is adjacent to both x1 and x2. Therefore Q′ = x, x2, y1, Q, ym, x1 is a
co-path of length at least 4. Let S = Sk ∪ (V (P )\{x1, x2}). S is a connected
set and neither x1 nor x has a neighbor in S, while every intermediate node
of Q′ has a neighbor in S. Therefore Q′ and S contradict Lemma 4.8. Hence
we can assume h ≥ 3. Let aj ∈ Ak be such that h(j) = h. Then C =
aj, x, x1, Px1xh

, xh, aj is a big hole. Since b is adjacent to both x and aj, then
(C, b) is either a cap or a twin wheel. If (C, b) is a cap, let F be a shortest
path between xh and b in Sk∪V (Pxhxn

)∪b, then C ′ = x, x1, Px1xh
, xh, F, b, x is

a hole and aj is adjacent to x, b and xh in C ′, therefore (C ′, ah) is a big wheel
that is neither a triangle-free wheel nor a twin wheel. Hence (C, b) must be
a twin wheel so b is adjacent either to x1 or to xh. In the former case we are
done. Now assume that b is adjacent to xh. C ′ = x, x1, Px1xh

, xh, b, x is a big
hole. Since every node in Ak has a neighbor in Px1xh

, then (C ′, ai) must be a
twin wheel for every ai ∈ Ak, hence every node in Ak is adjacent to x1 or xh.
Since no node in P is universal for Ak and Ak is co-connected, there exists
two nonadjacent nodes as and at in Ak such that as is adjacent to x1 and not
to xh, and at is adjacent to xh and not to x1. C ′′ = x, x1, Px1xh

, xh, at, x is a
big hole and (C ′′, as) is a cap where x, x1 are the attachments of as in C ′′.
By construction Sk contains a direct connection F form as to C ′′ \ {x1, x},
but no node in Sk is adjacent to x or to x1, hence F contradicts Lemma 4.7.
This completes the proof of Claim 3.

Claim 4: b does not have any neighbor in P .

Proof of Claim 4: Assume by contradiction that xj, for some 1 ≤ j ≤ n, is
adjacent to b. Let F be a chordless path between ak and x1 in Sk ∪ V (P ).
Since ak has no neighbor in P , then P is a subpath of F and C = x, x1, F, ak, x
is a hole, b is adjacent to x, ak and xj in P but xj is not adjacent to x
(otherwise j = 1 and b is adjacent to x1) and xj is not adjacent to ak

(because, by Claim 3, ak has no neighbors in P ), hence (C, b) is a big wheel
that is neither a twin wheel nor a triangle-free wheel, a contradiction.

Claim 5: Sk ∪ V (P ) contains a chordless path F = y1, . . . , ym+1 between
x1 and b such that ak is adjacent to ym, and no other node in F and y1 is
universal for Ak−1.

Proof of Claim 5: Let F = y1, . . . , ym+1 be a chordless path between x1 and b
in Sk ∪V (P ), where y1 = x1 and ym+1 = b. Note that, since b is not adjacent
to x1, then C = x, x1, F, b, x is a hole. Since b has no neighbor in P , then P
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is a subpath of F and ym is in Sk. By Claim 1, ym is not universal for Ak−1

since ym is adjacent to b.
Since P contains a node xj universal for Ak−1 and (C, ai) is a wheel that

is not triangle-free for each ai ∈ Ak−1, every node in Ak−1 must be adjacent
to x1. If ym is adjacent to ak we are done. Otherwise (C, ak) is a cap
where x, b are the attachments of ak in C. Let Z = z1, . . . , zl be a direct
connection form ak to V (C) \ {x, b}, contained in Sk \ V (F ). Since no node
in Z is adjacent to x, then by Lemma 4.7 z1 is adjacent to b and no node in
Z \ z1 is adjacent to b. Hence, given y the closest neighbor of zl to x1 in F ,
F ′ = x1, Fx1y, zl, Z, z1, b is a chordless path between x1 and b in Sk ∪ V (P ).
Note that F ′ = y′

1, . . . , y
′
m′+1, where y′

1 = x1 and y′
m′+1 = b and ak is adjacent

to y′
m′ and no other node in F ′. Thus F ′ satisfies the statement of Claim 5.

Let j, 0 ≤ j ≤ k, be the index such that ym ∈ V (P j). Note that, since
ym and b are adjacent to ak, then, by Claim 2, ym 6= xk

2, hence j < k. This
implies that P k consists of only one node, namely ak.

Claim 6: ak is universal for Ak−2 and ak is not adjacent to ak−1.

Proof of Claim 6: If ak is universal for Ak−2, then by construction ak is
not adjacent to ak−1. Assume, by contradiction, that ak is not universal
for Ak−2. Then (V (P k) ∪ V (P k−1)) \ {ak−1} contains a direct connection
P̃ k−1 = x̃k−1

1 , . . . , x̃k−1
l′
k−1

from x to Sk−2 such that no node in P̃ k−1 is universal

for Ak−2 (obviously, P̃ k−1 contains P k = ak and x̃k−1
1 = ak). Let ãk−1 = x̃k−1

1 ,
Ãk−1 = Ak−2 ∪ {ãk−1} and S̃k−1 = Sk−2 ∪ V (P̃ k−1). Let P̃ = x̃1, . . . , x̃n′ be
a direct connection contained in (V (P ) ∪ V (P k−1)) \ (S̃k−1 ∪ {ak−1}) from x
to S̃k−1. By Claim 3 and by construction of P k−1, P̃ does not contain any
node universal for Ãk−1. But x̃1 = x1, x1 is not adjacent to b, contradicting
the inductive hypothesis. This proves Claim 6.

Let h be the lowest index such that 2 ≤ h ≤ lj such that xj
h is adjacent

to b (one such index exists since ym ∈ V (P j) \ aj ).

Claim 7: h ≥ 5 and every node in Aj−1 has a neighbor in P j

x
j
2
x

j
h

.

Proof of Claim 7: By Claim 2, h ≥ 3, hence H̃ = b, xj
1, P

j

x
j
1
x

j
h

, xj
h, b is a hole.

We first show that every node in Aj−1 has a neighbor in P j

x
j
2
x

j
h

. Assume not,

then there exists q, 0 ≤ q ≤ j − 1, such that aq has no neighbor in P j

x
j
2
x

j
h

.

Let Z be a shortest path between aq and xj
h in Sj−1 ∪ V (P j

x
j
h
x

j
lj

). Then by
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construction no node in P j

x
j
2
x

j
h−1

has a neighbor in Z and xj
1 has no neighbor

in Z \aq. If aq is not adjacent to aj, then C = x, aj, P
j

x
j
1
x

j
h

, xj
h, Z, aq, x is a big

hole, otherwise C ′ = aj, P
j

x
j
1
x

j
h

, xj
h, Z, aq, aj is a big hole. In both cases, either

(C, b) or (C ′, b) is a big wheel that is neither a twin wheel nor a triangle-free
wheel, a contradiction. To conclude the proof of Claim 6, we have only to
show that h ≥ 5. Note that h must be odd, otherwise H̃ is an odd hole.
Assume then, by contradiction, that h = 3. Then, since every node in Aj−1

is adjacent to xj
2 or xj

3 but no node in P j is universal for Aj−1, Aj−1 contains
a chordless co-path Q = q1, . . . , qs such that q1 is adjacent to xj

2 but not
xj

3, qs is adjacent to xj
3 but not xj

2, and every intermediate node of Q is
adjacent to both xj

2 and xj
3. But then x, xj

3, q1, Q, qs, x
j
2, x is a big anti-hole,

a contradiction. This completes the proof of Claim 7.

Let H̃ = b, xj
1, P

j

x
j
1
x

j
h

, xj
h, b. By Claim 7, H̃ is a big hole.

Claim 8: j < k − 1.

Proof of Claim 8: We already observed that j < k. Assume, by contradiction,
that j = k − 1. Let P̃ 0 = H̃ \ b and ã0 = xj

1. Let P̃ 1 = x̃1
1, . . . , x̃

1
l be a direct

connection between x and V (P̃ 0) \ {ã0} contained in {ak} ∪ V (P j

x
j
h
ym

). By

construction, ã0 has no neighbors in P̃ 1. Let ã1 = x̃1
1 = ak. Therefore

the sequence P̃ 0, P̃ 1 satisfies properties 1 and 2 at the beginning of the
proof. Let P̃ = x̃1, . . . , x̃n′ be a direct connection between x and (V (P̃ 0) ∪
V (P̃ 1)) \ {ã0, ã1} contained in V (F ) ∪ V (P j

x
j
h
ym

), where F is the path found

in Claim 5. Obviously, x̃1 = x1, no node in P̃ is universal for {ã0, ã1} and
x̃1 is not adjacent to b. If k > 1, then x̃1 not adjacent to b contradicts
the inductive hypothesis on k. So k = 1 and ã0 = a0, H̃ = H, P̃ 0 = P 0,
ã1 = a1, P̃ 1 = P 1 = a1 and P̃ = P . Then, by Claims 3 and 4, a1 and b
have no neighbors in P , by Claim 5 S2 ∪ V (P ) contains a chordless path
F = y1, . . . , ym+1 between x1 and b such that a1 is adjacent to ym and no
other node in F , y1 = x1 is adjacent to a0 and no node other node in F \ y1.
Hence ym must be the neighbor of b in H \a0, so a1 is adjacent in H to b and
ym but not to a0. If a1 has no further neighbors in H, then x, a0, P

0, ym, a1, x
is an odd hole, therefore (H, a1) must be a twin wheel and a1 is adjacent to
the neighbor c of ym in H \ b. Since ym is the only neighbor of a1 in F , then
c is not a node of F , hence xn is adjacent to ym. H ′ = x, x1, P, xn, ym, a1, x
is a hole and (H ′, a0) is a cap where x, x1 are the attachments of a0 in H ′.
H\{a, b} contains a direct connection P ′ from x to V (H ′)\{x, x1} whose first
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node, that is the neighbor of a in H \ b, is not adjacent to x. By Lemma 4.7
the first node of P ′ must be adjacent to x1, hence n = 1 and x1 is adjacent
in H to a, ym and the neighbor of a in H \ b. Therefore (H, x1) is a big wheel
that is neither a triangle-free wheel nor a twin wheel, a contradiction. This
completes the proof of Claim 8.

Claim 9: j > 0.

Proof of Claim 9: Assume j = 0, then ym is the neighbor of b in H \ a.
By Claim 8, j < k − 1, so by Claim 6 ak is adjacent to a0. Hence, in H,
ak is adjacent to a0, b and ym, so (H, ak) is a twin wheel. Let b′ = ak,
H ′ = H ∪ b′ \ b is a big hole. (H ′, x) is a cap where the attachments of x
in H ′ are a and b′. Note that P 0 = H ′ \ b′ and, by Claim 6, for every i,
0 ≤ i ≤ k − 2, ai is adjacent to b′. Now P k−1 is a direct connection from x
to Sk−2 in G \ (Ak−2 ∪ {b′}) such that no node in P k−1 is universal for Ak−2,
but ak−1 = xk−1

1 is not adjacent to b′, contradicting the inductive hypothesis.
This completes the proof of Claim 9.

Assume that (H, x), P 0, . . . , P k, P and F are chosen so that j is largest
possible, where the sequence P 0, . . . , P k satisfies properties 1 and 2, P is a
direct connection between x and Sk contained in G \ (Ak ∪ b) such that no
node in P is universal for Ak and x1 is not adjacent to b, and F satisfies
Claim 5.

By Claim 7, the hole H̃ has length at least 6 and every node in Aj−1 has
a neighbor in H̃ \ {aj, b}. Let ã0 = aj, P̃ 0 = H̃ \ b, S̃0 = V (P̃ 0) \ b and
Ã0 = {a0}. Since Aj−1 is co-connected, there exists a bijection σ between
{1, . . . , j} and {0, . . . , j − 1} such that, if we define ãi = aσ(i) for every i,

1 ≤ i ≤ j, and, for every 1 ≤ q ≤ j, Ãq = {ãi | 0 ≤ i ≤ q}, then for every q,
1 ≤ q ≤ j, ãq is not universal for Ãq−1. Note that Ãj = Aj and every node in
Ãj has a neighbor in S̃0. For every i such that 1 ≤ i ≤ j, we define S̃i = S̃0

and P̃ i = ãi.
For every i such that j < i ≤ k, let ãi = ai, Ãi = Ai and define recursively,

for i = j + 1 to k, the path P̃ i and the set S̃i has follows: P̃ i = x̃i
1, . . . , x̃

i
l′i

is a direct connection between x and S̃i−1 contained in V (P i) ∪ Si−1, while
S̃i = S̃i−1∪V (P̃ i))\{x̃i

1}. By construction, S̃i ⊆ Si, P i is a subpath of P̃ i and
x̃i

1 = ãi is adjacent to b. Moreover, since P̃ i is contained in V (P i) ∪ Si−1, no
node in P̃ i is universal for Ãi−1. Let P̃ = x̃1, . . . , x̃n′ be a direct connection
from x to S̃k contained in V (P ) ∪ Sk. Since S̃k ⊆ Sk, P is a subpath of
P̃ . Therefore x̃1 = x1 is not adjacent to b. Finally, since P̃ is contained in
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V (P ) ∪ Sk, no node in P̃ is universal for Ãk. By Claims 3 and 4, ãk and b
have no neighbors in P̃ and by Claim 5 S̃k ∪ V (P̃ ) contains a chordless path
F̃ = ỹ1, . . . , ỹm′+1 between x̃1 and b such that ãk is adjacent to ỹm′ and no
other node in F̃ and ỹ1 is universal for Ak−1. Let j′, 0 ≤ j′ ≤ k, be the index
such that ỹm′ ∈ V (P̃ j′). By Claims 6-9, 1 ≤ j′ ≤ k − 2. On the other hand,
since S̃j = S̃0, j′ > j contradicting our choice of (H, x), P 0, . . . , P k, P and
F so that j is largest possible. 2

By Lemmas 4.3-4.5, we can assume that G does not contain any big cap,
any big antihole or any big wheel except twin wheels and triangle-free wheels.

Lemma 4.9 If G contains a small cap, then G has a T-cutset.

Proof:
Claim 1: Let (H, x) be a small cap where a, b denote the attachments of x
in H, and let P = x1, . . . , xn be a direct connection from x to V (H)\{a, b} in
G \ (V (H)∪ {x}). If a has no neighbors in P , then n = 1 and x1 is adjacent
to both neighbors of a in H.

Proof of Claim 1: By Lemma 4.7 x1 is adjacent to b and no other node
in P is adjacent to b. Let a′ and b′ be, respectively, the neighbors of a
in H \ b and the neighbor of b in H \ a. If xn is not adjacent to a′, then
H ′ = x, x1, P, xn, b′, a′, a, x is a big hole and (H ′, b) is a proper wheel. So a′

is adjacent to xn. If n = 1 we are done, hence we may assume n > 1. If xn

is adjacent to b′, then H ′′ = x, x1, P, xn, a′, a, x is a big hole and (H ′′, b′) is a
big cap. So xn is not adjacent to b′, C = b, x1, P, xn, a′, b′, b is a big hole and
(C, x) is a big cap, a contradiction. This proves Claim 1.

Let Q = y1, . . . , ym be the longest chordless path in G. Note that the
complement of a small cap is a chordless path on 5 nodes, so, if G contains
a small cap, then Q has at least 5 nodes (i.e. m ≥ 5). Let (H, y3) be
the cap induced by {yi | 1 ≤ i ≤ 5}, where H = y1, y5, y2, y4 and y1, y5

are the attachments of y3 in H. Define A to be a maximal co-connected
set contained in G \ {yi | 2 ≤ i ≤ 5} such that y1 ∈ A with the property
that every node in A is adjacent to y3, y4, y5 but not y2. Note that, for
every y ∈ A, Q \ y1 ∪ y is a chordless co-path. Otherwise, there exists j,
6 ≤ j ≤ m, such that yj is not adjacent to y. Assume j is the lowest such
index. Then C = y, y2, Qx2xj

, yj, y is a big anti hole, a contradiction. Let B
be the set of all nodes in V (G)\{y3, y4} that are universal for A. If A∪B is a
cutset separating y3 and {y2, y4}, then let C be the connected component of
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G \ (A∪B) containing y3 and let D = V (G) \ (A∪B ∪C). Then A,B,C,D
is a skew-partition, y3 ∈ C is universal for A and y4 ∈ D is universal for A,
hence A ∪ B is a T-cutset.

Next we will show that A ∪ B is a cutset separating y3 and {y2, y4}. As-
sume not. Then there exists a direct connection P = x1, . . . , xn in G\(A∪B)
between y3 and {y2, y4}. If there exists a node y ∈ A with no neighbors in
P , then consider H ′ = H ∪ y \ y1. H ′ is a hole of length 4 and (H ′, y3) is
a small cap. By Claim 1, n = 1 and x1 is adjacent to y4 and y5. If x1 is
adjacent to y2, then x1, y, y2, Qy2y5

, y5 is a path in G. Since Q is the longest
path in G, then Q \ y1 ∪ {x1, y} is not a chordless path. Therefore x1 has a
neighbor (in G) in Q \ y1. Let j be the lowest index such that x1 is adjacent
to yj in G. Then 6 ≤ j and C = x1, y, y2, Qy2yj

, yj, x1 is a big anti-hole in G,
a contradiction. Hence x1 is not adjacent to y2, so A ∪ x1 is a co-connected
set, x1 is adjacent to y3, y4 and y5 but not y2, contradicting the maximality
of A.
So every node in A must have a neighbor in P . For every y ∈ A let
h(y) be the minimum index such that y is adjacent to xh(y), and let h =
maxy∈A h(y). If h > 2, then let x ∈ A be such that h = h(x) and let
H ′ = x, y3, x1, Px1xh

, xh, x. H ′ is a big hole and y5 is adjacent to x and y3 in
H ′. Since (H ′, y5) is not a big cap, then (H ′, y5) must be a twin wheel, hence
y5 is adjacent to either x1 or xh. If y5 is adjacent to x1, then let F be a shortest
path from y5 to xh in V (Pxhxn

)∪{y2, y4, y5}, then H ′′ = y5, x1, Px1xh
, xh, F, y5

is a big hole and (H ′′, y3) is a big cap. If y5 is adjacent to xh, then let
H ′′ = H ′ ∪ y5 \ x. Since, by definition of h, every node of A has a neigh-
bor in Px1xh

and every node in A is adjacent to y3 and y5, then (H ′′, y) is
a twin wheel for every y ∈ A. Since no node in P is universal for A and A
is co-connected, then there exists two nonadjacent nodes u and v in A such
that u is adjacent to x1 and not to xh, and v is adjacent to xh and not to x1.
Therefore V (H)∪{u, v} \ {y5} induces a big cap, a contradiction. Therefore
h ≤ 2 and, since no node in P is universal for A, h = 2 and every node in
A is adjacent to x1 or x2. Since x1 and x2 are not universal for A and A
is co-connected, there exists a chordless co-path Z = z1, . . . , zk contained in
A such that z1 is adjacent to x1 but not x2, zk is adjacent to x2 but not x1

and all the intermediate nodes of Z are adjacent to both x1 and x2. If x2 is
not adjacent to y4, then y4, x2, z1, Z, zk, x1, y4 is a big anti-hole. Then x2 is
adjacent to y4, so y4, y3, x2, z1, Z, zk, x1, y4 is a big anti-hole, a contradiction.
2

80



4.2.4 Meyniel graphs

Lemmas 4.3, 4.4, 4.5 and 4.9 imply that, if G and Ḡ do not contain a proper
wheel or a long prism, then, if G contains a cap, G has a loose skew-partition.
Next we have to address the case in which G does not contain any cap. Note
that the class of Berge graphs containing no caps coincide with the class of
Meyniel graphs (see Section 2.5.2), that is the class of graphs in which every
odd cycle has at least 2 chords. As we already mentioned, Burlet and Fonlupt
[7] showed that Meyniel graphs are either bipartite or can be decomposed
by amalgams and clique cutsets, and both this decompositions imply the
presence of a star cutset. Hoàng [57], gave a short proof of a weaker result,
namely:

Theorem 4.10 If G is a Meyniel graph, then either G is bipartite or Ḡ
contains a star-cutset or a U-cutset.

For the sake of completeness, we give a proof of Theorem 4.10, essentially
following [57].

Proof: If G is not bipartite, then, since G is Berge, G contains three pairwise
adjacent nodes u, v and w. Let U and V be, respectively, the set of neighbors
of u and v in Ḡ, and let S be the connected component of Ḡ \ (U ∪ V )
containing w. Let U ′, V ′ and X be, respectively, the set of nodes in U \ V ,
V \ U and U ∩ V that are adjacent to some node of S in Ḡ. Note that,
if U ′ = ∅ or V ′ = ∅, then {v} ∪ V ′ ∪ X or {u} ∪ U ′ ∪ X, is a star cutset
of Ḡ centered, respectively, at v or u. Hence we may assume U ′ 6= ∅ and
V ′ 6= ∅. Next we show that, in Ḡ, every node in U ′ is adjacent to every
node in V ′. Assume not and let u′ ∈ U ′ and v′ ∈ V ′ be nonadjacent in
Ḡ and let xu and xv be, respectively, neighbors (in Ḡ) of u′ and v′ in S at
minimum distance in Ḡ[S]. Let Q be a shortest path between xu and xv

in Ḡ[S]. Then u, u′, xu, Q, xv, v
′, v is a chordless path containing at least 5

nodes, hence G[V (Q)∪{u, u′, v, v′}] contains a small cap, a contradiction. If
no connected component of G[U ′∪V ′∪X] intersects both U ′ and V ′, then let
A be the union of all connected components of G[U ′∪V ′∪X] intersecting U ′

and let B = (U ′∪V ′∪X)\A. Then A∪B is a cutset separating S and {u, v}
in Ḡ, u is universal for A while v is universal for B, so A ∪ B is a U-cutset.
Hence we can assume that there are nodes u′ ∈ U ′ and v′ ∈ V ′ such that
there exists a chordless path P between u′ and v′ in G[X ∪{u′, v′}]. Since, in
G, u′ is not adjacent to v′, P has length at least two, so H = v, u′, P, v′, u, v
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is a big hole. S is an anticonnected set (in G) and, by definition of U ′, V ′

and X, no node in P is universal for S (in G). But then S sees exactly one
edge in H, namely uv. Since G contains no caps, then every node in S has a
neighbor in H \ {u, v}. By Theorem 3.6, there exist two nonadjacent nodes
x and y in S such that (H, x) and (H, y) are twin wheels and the only edge
of H that sees both x and y is uv. As one can readily verify, H ∪ {x, y}
contains a big cap, a contradiction. 2
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Chapter 5

Recognizing Balanced and
Balanceable Matrices

5.1 Introduction

A 0,±1 matrix is balanced if it does not contain a square submatrix with ex-
actly two nonzero elements in each row and in each column such that the sum
of all entries equals 2 modulo 4. This notion was introduced by Berge [3] for
0, 1 matrices, and generalized to 0,±1 matrices by Truemper [75]. Berge [4]
proved that balanced 0, 1 matrices are perfect: indeed, as we shall see, a
stronger property holds, as several polyhedra are integral whenever the con-
straint matrix is balanced. The question if there exists a polynomial-time
algorithm to decide whether or not a given 0,±1 matrix is balanced, has been
settled by Conforti, Cornuéjols and Rao [26] for the 0, 1 case, and by Conforti,
Cornuéjols, Kapoor and Vušković [23] for the general case. The proof of this
fact is based on a decomposition theorem for the class of balanced matrices,
very much in the same spirit as the decomposition theorem for Berge graphs
discussed in Chapter 2. Unfortunately, the proof of this theorem is long and
difficult. In this chapter we will provide a simpler, self contained polynomial-
time algorithm to recognize balanced matrices, which does not rely on the
decomposition theorem for balanced matrices [80]. The algorithm uses ideas
from Conforti, Cornuéjols and Rao [26], Conforti, Cornuéjols, Kapoor and
Vušković [23] and Chudnovsky and Seymour [15]. Interestingly, Kapoor [58]
showed that deciding if a matrix contains a minimally unbalanced submatrix
intersecting a prescribed column is NP-complete.
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A 0, 1 matrix A is said to be balanceable if its nonzero entries can be
signed +1 or −1 so that the resulting 0,±1 matrix A′ is balanced. The
problem of deciding if a given 0, 1 matrix is balanceable can be reduced to
that of deciding if a 0,±1 matrix A is balanced using a signing algorithm
due to Camion [9], that will be described in section 5.1.2. In fact, Camion’s
algorithm assigns values ±1 to the nonzero entries of A in such a way that, if
A is balanceable, the resulting matrix A′ is balanced. Therefore, one can just
apply Camion’s algorithm to A, and then test if A′ is balanced. This was the
only approach known so far to solve the recognition problem for balanceable
matrices. On the other hand, Truemper [76] gave a co-NP characterization
for this class of matrices by showing that, if a matrix is not balanceable, then
it must contain some special submatrix, whose structure is well described in
terms of its bipartite representation. This indicates that one could try to
recognize balanceable matrices by looking for these forbidden submatrices.
An algorithm that does precisely was given by Conforti and Zambelli [38],
and it will be described in this chapter.

5.1.1 Notations and definitions

Often, it will be convenient to work with the bipartite representation of
a matrix. Given a 0, 1 matrix A, the bipartite representation of A is the
bipartite graph G where the two sides of the bipartition are the sets R and
C of rows and columns of A, respectively, and there is an edge between
i ∈ R and j ∈ C if and only if aij = 1. Clearly, A is balanced if and only
if its bipartite representation does not contain a hole of length 2 modulo 4
as an induced subgraph (a hole is a chordless cycle). A bipartite graph is
balanced if it does not contain any hole of length 2 modulo 4. For general
0,±1, matrices, the most convenient setting to work with, is their signed
bipartite representation. A signed bipartite graph is a pair (G, σ) where G is
a bipartite graph and σ is a signing of the edges, that is a function from E(G)
to {1,−1}. Given a 0,±1 matrix A, the signed bipartite representation of A
is the signed bipartite graph (G, σ) where G is the bipartite representation
of the support matrix of A and σ is defined, for each edge ij, by σ(ij) = aij.
For any subgraph F of G, we define

σ(F ) =
∑

e∈E(F )

σ(e).
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It is immediate to verify that a 0 ± 1 matrix A is balanced if and only if its
signed bipartite representation does not contain a hole H such that σ(H) ≡
2 mod 4 as an induced subgraph. We will say that such a hole is unbalanced,
and a signed bipartite graph is balanced if it contains no unbalanced hole.
Observe that, given a cut (S, S̄) of G (where S is a subset of the nodes of
G), if we define a signing σ′ by

σ′(ij) =

{

σ(ij) if ij /∈ (S, S̄)
−σ(ij) if ij ∈ (S, S̄)

,

it is easy to see that (G, σ) is balanced if and only if (G, σ′) is balanced (since,
for any hole H, σ(H) ≡ σ′(H) mod 4). We call this operation scaling along
the cut (S, S̄).

In the remainder of the chapter, G will always be a bipartite graph. Given
a graph F and two nodes x and y of F , dF (x, y) denotes the length of the
shortest path between x and y contained in F .

The following two graphs will play an important role in the remainder
of the paper. Given two nonadjacent nodes a and b in distinct sides of the
bipartition, a 3-path configuration between a and b is a graph consisting
of three chordless paths P 1, P 2, P 3 between a and b such that, for every
1 ≤ i < j ≤ 3, no node in the interior of P i belongs to or has a neighbor in
the interior of P j. We say that P 1, P 2, P 3 form a 3-path configuration.
A wheel consists of a hole H and a node v outside H with at least 3 distinct
neighbors in H, and is denoted by (H, v). The node v is called the center of
the wheel. A wheel (H, v) for which v has k neighbors in H is said a k-wheel.
(H, v) is an odd wheel if it is a wheel and v has an odd number of neighbors
in H.

It is easy to see that if G contains a 3-path configuration or an odd wheel,
then G is not balanceable. In fact, if F is a 3-path configuration or an odd
wheel contained in G, then F contains an odd number of edges, and each
edge is contained in exactly 2 holes. Denote by H the family of all holes in
F . For any signing σ of F ,

∑

H∈H σ(H) = 2σ(F ) ≡ 2 mod 4, therefore there
exists a hole H such that σ(H) ≡ 2 mod 4.

Truemper showed that the converse is also true.

Theorem 5.1 (Truemper [76]) A bipartite graph G is balanceable if and only
if it does not contain a 3-path configuration or an odd wheel
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a

b

P       P            P1               2                       3

Figure 5.1: A 3-path configuration and a wheel.

Thus, deciding if a graph G is balanceable is equivalent to determining if G
contains a 3-path configuration or an odd wheel. A nice proof of Theorem 5.1
can be found in [34].

5.1.2 Camion’s Signing Algorithm

As we already mentioned, Camion [9] gave a polynomial time algorithm to
sign the nonzero entries of a 0, 1 matrix A so that the resulting matrix A′ is
balanced if A is balanceable. Here we describe such an algorithm. Observe
that, given a set S of rows an columns of A′, then multiplying the rows and
columns of A′ in S by −1 corresponds to scaling along (S, S̄) in the bipartite
representation G of A′. Given a maximal forest F of G and an edge e of
F , there exists a cut (S, S̄) of G such that E(F ) ∩ (S, S̄) = {e}. Thus, one
can multiply some of the rows and columns of A′ so that the entries in A′′

corresponding to the edges in F have an arbitrarily fixed sign. This simple
observation is central to the algorithm of Camion.

Claim 5.2 There exists a polynomial time algorithm with the following spec-
ifications:

• Input A balanceable 0, 1 matrix A = (aij), a maximal forest F of its
bipartite representation G, and a signing σ of F .
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• Output The unique balanced matrix A′ = (a′
ij) such that |a′

ij| = aij,
and a′

ij = σ(ij) for every ij ∈ E(F ).

Camion’s Algorithm: Let G0 = F , n = |E(G)|.
For i = 0, . . . , n − |E(F )| − 1, do the following:

1. Choose an edge ei ∈ E(G) \E(Gi) and a path Pi in Gi between its two
endnodes so that |Pi| is minimum over all possible choices of ei and Pi;

2. Define σ(ei) ≡ −σ(Pi) mod 4, and Gi+1 = (V (G), E(Gi) ∪ {ei}).

Define A′
ij = σ(ij) for every ij ∈ E(G), 0 otherwise.

Correctness: At each iteration, the edge ei and the path Pi form a hole
Hi of Gi+1 which, by the choice of ei and Pi, is also a hole in G. The only
way to extend the signing constructed so far so that σ(Hi) ≡ 0 mod 4 is to
assign σ(ei) ≡ −σ(Pi) mod 4. Since we know that there exists a balanced
signing of G which extends the signing of F , then the signing produced by
the algorithm is the only possible. 2

We already observed that testing if a matrix is balanceable can be re-
duced, via Camion’s algorithm, to testing if a matrix is balanceable. The
converse is also true. Suppose we have a polynomial time algorithm to test
if a matrix is balanceable, and we wish to test if a given 0,±1 matrix A is
balanced. Let B be the support matrix of A. Test if B is balanceable. If it
is not, then output that A is not balanced. Else, let F be a maximal forest
in the bipartite representation of B and let σ(ij) = aij for every ij ∈ E(F ).
Apply Camion’s algorithm to B, F , and σ, to obtain a balanced matrix B′.
Since B′ is unique, then A is balanced if and only if A = B′.

5.1.3 Overview

In section 5.2 we will discuss some polyhedral properties of balanced matri-
ces related to the classical models of set packing and set covering. In the
reminder of the chapter we will provide two algorithms: one to recognize
balanced signed bipartite graphs, and one to test if a given bipartite graph
is balanceable. In Section 5.3 we will provide an algorithm to recognize
whether a bipartite graph has a 3-path configuration, while in Section 5.4 an
algorithm is presented, to recognize if a bipartite graph not containing any
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3-path configuration, contains a detectable 3-wheel (which is a special type
of odd wheel). By Theorem 5.1, if G contains any of these graphs, then G is
not balanceable, so (G, σ) is not balanced for any signing σ.

In Section 5.5 we study some properties of the odd wheels of minimum
cardinality in a bipartite graph. Understanding what are the possible adja-
cencies between smallest odd wheels and the remaining nodes of the graph
will be fundamental for the remainder development of the algorithm. Fi-
nally, in sections 5.6 and 5.7 we give the algorithms for recognizing balanced
and balanceable matrices, respectively. Both algorithms have running time
O(|V (G)|9).

5.2 Properties of balanced matrices

The following theorem has been proved by Berge [4] for 0, 1 matrices, and by
Conforti and Cornuéjols [20] for the general case. If A is a 0,±1 matrix, we
denote by ni(A) the number of −1’s in the ith row of A.

Theorem 5.3 Let A be an m×n balanced 0,±1 matrix with rows ai, i ∈ [m],
and let S1, S2, S3 be a partition of [m]. Then

R(A) = {x ∈ IRn : aix ≤ 1 − ni(A) for i ∈ S1

aix = 1 − ni(A) for i ∈ S2

aix ≥ 1 − ni(A) for i ∈ S3

0 ≤ x ≤ 1}

is an integral polytope.

A proof of a more general result will be given in Chapter 6. Note that,
if A has only nonnegative entries and S2, S3 = ∅, then Theorem 5.3 implies
that 0, 1 balanced matrices are perfect. This can be easily seen also as a
consequence of Theorem 2.6 and the Strong Perfect Graph Theorem 2.10,
as if a 0, 1 matrix A does not contain a 3 × 3 unbalanced matrix, then
the undominated rows of A form the node-clique incidence matrix of some
graph G, and if G contains an odd hole of length k then A contains a k × k
unbalanced submatrix, while if G contains an odd antihole, then A contains
a 5×5 unbalanced submatrix; hence, if A is balanced, then G is perfect, thus
A is perfect. Indeed, balanced matrices have an even stronger property.
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A linear system Ax ≤ b is totally dual integral (TDI) if the linear program
max{cx |Ax ≤ b} has an optimal dual solution y for every integral vector c
for which the linear program has a finite optimum. Edmonds and Giles [47]
showed that, if Ax ≤ b is TDI and b is integral, then P = {x |Ax ≤ b} is a
integral polyhedron.

Theorem 5.4 Let A be an m×n balanced 0,±1 matrix with rows ai, i ∈ [m],
and let S1, S2, S3 be a partition of [m]. Then the system















aix ≤ 1 − n(ai) for i ∈ S1

aix = 1 − n(ai) for i ∈ S2

aix ≥ 1 − n(ai) for i ∈ S3

0 ≤ x ≤ 1}

is totally dual integral.

Theorem 5.4 was proven by Fulkerson, Hoffman and Oppenheim [50] for
the 0, 1 case, and by Conforti and Cornuéjols [20] in the general case.
We refer the reader to [30] for a survey on balanced matrices.

5.3 Detecting a 3-path configuration

We say that a 3-path configuration is smallest in G if it contains the minimum
number of nodes among all 3-path configurations in G.

Claim 5.5 Let Π be a smallest 3-path configuration in G = (R,C; E). As-
sume Π is formed by the paths P i = a, ai, . . . , bi, b, i ∈ [3], where a ∈ R,
b ∈ C. For every i ∈ [3], let mi be a node of P i such that |dP i(ai,mi) −
dP i(bi,mi)| ≤ 1. Let X be the set of nodes of G with no neighbors in
{a, b, a2, a3, b2, b3}, and P be a shortest path between a1 and m1 in G[X ∪
{a1,m1}]. Then Q1 = a, a1, P,m1, P

1
m1b1

, b1, b is a chordless path and Q1, P 2, P 3

form a smallest 3-path configuration.
Symmetrically, analogous statements hold for every P i, i ∈ [3], and all

possible pairs ai,mi and mi, bi

Proof: Let P = p1, . . . , pk where a1 = p1 and m1 = pk. If a1 = m1 or a1

is adjacent to m1, then the statement holds trivially, hence we may assume
|P 1| ≥ 5 and m1 6= b1, therefore m1 has no neighbors in P 2 or P 3.
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If no node in the interior of P belongs to or has a neighbor in P 2 or P 3

then, given Q1 the shortest path between a and b with interior in V (P ∪
P 1

m1b1
), Q1, P 2, P 3 form a 3-path configuration between a and b which, by

the minimality of Π and the choice of P , must have the same cardinality as
Π, hence Q1 = a, a1, P,m1, P

1
m1b1

, b1, b and we are done.
Assume, then, that there exists h, 2 ≤ h ≤ k − 1, such that ph belongs

to or has a neighbor in P 2 or P 3, and let h be maximum with this property.
Note that, by definition, ph does not belong to P 2 or P 3.
Suppose ph has at least two distinct neighbors in P 2 ∪ P 3. If ph ∈ R, let Q1

be the shortest path between ph and b in Pphpk
∪P 1

m1b, let Q2 be the (unique)
shortest path between ph and b in (ph ∪P 2 ∪P 3) \ b3 and Q3 be the (unique)
shortest path between ph and b in (ph∪P 2∪P 3)\b2. Then Q1, Q2, Q3 form a
3-path configuration between ph and b which is strictly shorter than Π since
|Q1| < |P 1| and |Q2| + |Q3| ≤ |P 2| + |P 3|. Similarly, if ph ∈ C, let Q1 be
the shortest path between a and ph in Pphpk

∪ P 1
am1

, let Q2 be the (unique)
shortest path between a and ph in (ph ∪P 2 ∪P 3)\a3 and Q3 be the (unique)
shortest path between a and ph in (ph ∪P 2 ∪P 3) \ a2. Then Q1, Q2, Q3 form
a 3-path configuration Π′ between a and ph. Since |P 1

a1m1
| ≤ |P 1

b1m1
| + 1 and

h ≥ 2, then

|Q1| ≤ |P | − 1 + |P 1
am1

| ≤ |P 1
am1

| + |P 1
a1m1

| − 1

≤ |P 1
am1

| + |P 1
m1b1

| < |P 1|. (5.1)

Furthermore, |Q2| + |Q3| ≤ |P 2| + |P 3|, hence Π′ has cardinality strictly
smaller than Π, a contradiction.
Therefore, we may assume that ph has a unique neighbor x in P 2 ∪ P 3, say
x ∈ V (P 2). If x ∈ R, then let Q1 be the shortest path between x and b in
x∪Pphm1

∪P 1
m1b, let Q2 = x, P 2

xb, b and Q3 = x, P 2
xa, a, P 3, b. Then Q1, Q2, Q3

form a 3-path configuration between x and b which has cardinality strictly
smaller than Π since |Q2| + |Q3| = |P 2| + |P 3| and

|Q1| ≤ |P | − 1 + |P 1
m1b| + 1 ≤ |P 1

a1m1
| + |P 1

m1b| < |P 1|.

If x ∈ C, then let Q1 be the shortest path between x and a in x∪Pphm1
∪P 1

am1
,

let Q2 = a, P 2
ax, x and Q3 = a, P 3, b, P 2

bx, x. Then Q1, Q2, Q3 form a 3-path
configuration Π′ between x and a. If h = 2, then |Q1| = 3 < |P 1|, otherwise
h ≥ 3 and |Q1| ≤ |P | + |P 1

am1
| − 1 < |P 1|. Since |Q2| + |Q3| = |P 2| + |P 3|,

then Π′ has cardinality strictly smaller than Π, a contradiction. 2

90



Claim 5.6 There exists a O(|V (G)|9) algorithm with the following specifica-
tions:

• Input A bipartite graph G.

• Output Either:

1. a 3-path configuration Π, or

2. it determines that G does not contain any 3-path configurations.

Algorithm:

For every 6 tuple a1, a2, a3, b1, b2, b3 such that:

• ai ∈ R, bi ∈ C for every i ∈ [3],

• ai is nonadjacent to bj for every i 6= j,

• there exist nonadjacent nodes x and y such that x is adjacent to
a1, a2, a3 and y is adjacent to b1, b2, b3;

do the following:

1. For i = 1, 2, 3, compute the set X(i) of nodes that are not adjacent to
any of x, y, aj or bj for j 6= i.

2. For i = 1, 2, 3, for every node m ∈ X(i), compute the paths Qi(m) and
Ri(m) (if they exist), where Qi(m) is the shortest path between ai and
m in G[X(i) ∪ ai] and Ri(m) is the shortest path between bi and m in
G[X(i) ∪ bi].

3. For i = 1, 2, 3, for every node m ∈ X(i)∪ai, define P i(m) as follows: if
ai is adjacent to bi, then P i(ai) = ai, bi and P i(m) is undefined for every
m ∈ X(i); else P i(ai) is undefined and for every m ∈ X(i) satisfying
the following

(i) Qi(m) and Ri(m) both exist

(ii) No node in Qi(m), except m, belongs to or has a neighbor in
Ri(m)

let P i(m) = x, ai, Q
i(m),m,Ri(m), bi, y, else, if Qi(m) and Ri(m) do

not satisfy (i) and (ii), P i(m) is undefined.
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4. For every m ∈ X(i) ∪ ai such that P i(m) is defined, compute the set
Yi(m) of nodes that do not belong or have a neighbor in the interior of
P i(m).

5. For every 1 ≤ i < j ≤ 3, and for every mi ∈ X(i) ∪ ai and every
mj ∈ X(j) ∪ aj, verify that the interior of P j(mj) is contained in
Yi(mi). If this is the case, say that the pair mi,mj is (i, j)-good.

6. Verify if there exists a triple m1,m2,m3 such that mi ∈ X(i)∪ai for i ∈
[3] and such that mi,mj is (i, j)-good for every 1 ≤ i < j ≤ 3. If such
a triple exist, output the graph Π induced by P 1(m1), P

2(m2), P
3(m3)

and stop.

Otherwise output the fact that G contains no 3-path configuration.

Correctness: It takes time O(|V (G)|)8 to compute all possible 6-tuples a1,
a2, a3, b1, b2, b3 as above, and there are O(|V (G)|)6 of them. For each 6-
tuple, each step from 1 through 6 takes time O(|V (G)|)3, therefore the total
running time is O(|V (G)|)9.
If for some 6-tuple, in step 6 the algorithm outputs a graph Π induced by
P 1(m1), P 2(m2), P 3(m3), then Π is a 3-path configuration between x and y,
since step 3 ensures that P i(mi) is a chordless path between x and y for every
i ∈ 3, while steps 5 and 6 guarantee that no node in the interior of P i(mi)
belongs to or has a neighbor in the interior of P j(mj) for every 1 ≤ i < j ≤ 3.
We only need to verify that, if G contains some 3-path configuration, then
the algorithm will detect one. Let Π̃ be a smallest 3-path configuration in
G. Let P̃1, P̃2, P̃3 be the 3-paths inducing Π̃, where P̃i = a, ai, . . . , bi, b. Then
there exist nonadjacent nodes x and y such that x is adjacent to ai and y
is adjacent to bi for every i ∈ [3] (since x = a and y = b would satisfy such
condition). For i = 1, 2, 3, let P i be the shortest path between x and y
with interior contained in the interior of P̃i. Then P 1, P 2, P 3 form a 3-path
configuration Π with at most as many nodes as Π̃, hence Π and Π̃ must have
the same cardinality and P i = x, ai, . . . , bi, y. For every i ∈ [3], let mi be
a node of P i such that |dP i(ai,mi) − dP i(bi,mi)| ≤ 1, in particular we may
assume that, when ai and bi are adjacent, mi = ai. Then, by 5.5, given Q1 =
x, a1, Q

1(m1),m1, P
1
m1b1

, b1, x, where Q1(m1) is the path computed in step 2 of
the algorithm, Q1, P 2, P 3 forms a 3-path configuration between x and y. By
repeating the argument, we conclude that the paths P 1(m1), P

2(m2), P
3(m3)

computed by the algorithm form a 3-path configuration between x and y,
hence the algorithm would have output the correct answer. 2
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5.4 Detectable 3-wheels

A 3-wheel (H, v) is detectable if two of the neighbors of v in H have distance
two in H. If (H, v) has the minimum number of nodes among all possible
detectable 3-wheels, we say that (H, v) is a smallest detectable 3-wheel.

Claim 5.7 Let G = (R,C; E) be a bipartite graph containing no 3-path con-
figurations. Let (H, v) be a smallest detectable 3-wheel in G. Let u, v1 and
v2 be the neighbors of v in H, where v1 and v2 are both adjacent to a node
w in H. Let u1 and u2 be the two neighbors of u in H such that the two
maximal paths P 1 and P 2 in H \ {u,w} have endpoints u1, v1 and u2, v2,
respectively. Let s be the neighbor of u1 in P 1. Let X be the set of nodes with
no neighbors in {u, v, w, u2, v2}. Let P be a shortest path between v1 and s in
G[X ∪{v1, s}]. Then H ′ = v1, P, s, u1, u, u2, P

2, v2, w, v1 is a hole and (H ′, v)
is a smallest detectable 3-wheel.

Proof: Let P = p1, . . . , pk, where p1 = v1 and pk = s. W.l.o.g., v ∈ R
and u ∈ C. If no node in the interior of P belongs to or has a neighbor in
P 2, then H ′ = v1, P, s, u1, u, u2, P

2, v2, w, v1 is a hole, hence by construction
(H ′, v) is a detectable 3-wheel which is smallest since |P | ≤ |P 1| − 1. We
may therefore assume that there exists h, 2 ≤ h ≤ k − 1, such that ph

belongs to or has a neighbor in P 2. Assume h is the highest such index.
Then ph does not belong to P 2. Suppose ph has exactly one neighbor in
P 2, say x. If x ∈ R, then let Q1 be the shortest path between x and u
in Pphpk

∪ x, u1, u, let Q2 = x, P 2
xv2

, v2, v, u and Q3 = x, P 2
xu2

, u2, u. Then
|Qi| ≥ 3 and Q1, Q2, Q3 form a 3-path configuration between x and u, a
contradiction. If x ∈ C, then let Q1 be the shortest path between x and v in
Pphpk

∪ P 1
sv1

∪ {v, x}, Q2 = x, P 2
xv2

, v2, v and Q3 = x, P 2
xu2

, u2, u, v. Q1, Q2, Q3

form a 3-path configuration between x and v. Hence we may assume that
ph has at least 2 neighbors in P 2. Let x and y be the neighbors of ph in P 2

that are closest, respectively, to v2 and u2. If ph ∈ R, let Q1 be the shortest
path between ph and u in Pphpk

∪ u1, u, let Q2 = ph, x, P 2xv2, v2, v, u and
Q3 = ph, y, P 2

yu2
, u2, u. Then Q1, Q2, Q3 form a 3-path configuration between

ph and u. If ph ∈ C, then let Q1 be the shortest path between ph and v in
Pphpk

∪P 1
sv1

∪v, Q2 = ph, x, P 2
xv2

, v2, v and Q3 = ph, y, P 2
yu2

, u2, u, v. Q1, Q2, Q3

form a 3-path configuration between x and v, a contradiction. 2

Claim 5.8 There exists a O(|V (G)|9) algorithm with the following specifica-
tions:
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• Input A bipartite graph G containing no 3-path configuration.

• Output Either:

1. a detectable 3-wheel, or

2. it determines that G does not contain any detectable 3-wheel.

Algorithm:

For every 7 tuple u1, u2, v, v1, v2, w, s such that:

• v and w are both adjacent to v1 and v2

• there exists a node x such that x is adjacent to v, u1, u2 but not to w

• s is adjacent to u1

• either s = v1, or s has no neighbors in {u2, v, v2, x, w}.

do the following:

1. Compute the set X of nodes that do not belong to or have a neighbor
in {u2, v, v2, x, w}.

2. Compute the shortest path P , if any, between v1 and s in G[X ∪{v1}].

3. Verify that the only neighbor of u1 in P is s, if this is the case let
P 1 = v1, P, s, u1, otherwise P 1 is undefined.

4. If P 1 is not undefined, compute the set Y of all nodes that do not
belong to or have a neighbor in P 1 ∪ {w, x}.

5. Compute, if one exists, a chordless path P 2 between u2 and v2 with
interior contained in Y . If P 2 exists, then let

H = w, v1, P
1, u1, x, u2, P

2, v2, w;

output (H, v) and stop.

Otherwise output the fact that G does not contain any detectable 3-wheel.

Correctness: It takes time O(|V (G)|)8 to compute all possible 7-tuples u1,
u2, v, v1, v2, w, s as above, and there are O(|V (G)|)7 of them. For every
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7-tuple, step 4 takes time O(|V (G)|2), while all other steps take linear time,
thus the overall running time is O(|V (G)|)9.
Obviously, when the algorithm outputs a graph (H, v), such graph is a de-
tectable 3-wheel.
Suppose that G contains some detectable 3-wheel. We want to show that
the algorithm will output one. Let (H̃, v) be a smallest detectable 3-wheel
in G. Let u, v1 and v2 be the neighbors of v in H̃, where v1 and v2 are both
adjacent to a node w in H̃. Let u1 and u2 be the two neighbors of u in H̃
such that the two maximal paths P̃1 and P̃2 in H̃ \ {u,w} have endpoints
u1, v1 and u2, v2, respectively. Let s be the neighbor of u1 in P̃1. Then the
7-tuple u1, u2, v, v1, v2, w, s satisfies the properties described in the algorithm,
hence at some stage the algorithm will examine it. Let x be a node adjacent
to v, u1, u2 but not to w or s (such a node exists since x = u satisfies such
condition). Let u′

1 and u′
2 be neighbors of x in H̃, such that u′

i is closest
possible to vi in P̃i, i = 1, 2, and let Qi be the path between vi and u′

i in P̃i.
Then H ′ = w, v1, Q

1, u′
1, x, u′

2, Q
2, v2, w is a hole and (H ′, v) is a detectable

3-wheel with at most as many nodes as (H̃, v), therefore Qi = P̃i, for i = 1, 2.
Let P be the shortest path between v1 and s in G[X∪v1] computed by the al-
gorithm in step 2. Then, by 5.7, P 1 = v1, P, s, u1 is a path and the algorithm
will verify this in step 3. Finally, there exists a chordless path P 2 between
u2 an v2 with interior in the set Y computed at step 5 of the algorithm, since
P̃2 is such a path, therefore H = w, v1, P

1, u1, x, u2, P
2, v2, w is a hole and

(H, v) is detectable 3-wheel. 2

5.5 Major nodes on a smallest odd wheel

We say that (H, x) is a smallest odd wheel in G, if (H, x) is an odd wheel in
G with the minimum number of nodes. Given a hole H, we say that a vertex
v ∈ V (G) \ V (H) is major for H if NH(v) is not contained in a subpath of
H of length 2, and denote by M(H) the set of major nodes for H.

In this section, we are interested in deriving some properties of the nodes
that are major for a given hole H, such that (H, x) is a smallest odd wheel for
some node x. Given a chordless path or a hole Q and a set X ⊆ V (G) with
at least two distinct elements in Q, an X-sector of Q is a maximal subpath
of Q whose interior does not contain an element in X.

Claim 5.9 Let (H, x) be a smallest odd wheel in G, and let y be a major
node for H nonadjacent to x. Let Q = q1, ..., qk be a proper subpath of H,
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and let u, v ∈ {x, y}, u 6= v, such that q1, qk ∈ N(u), and v has an odd
number of neighbors in Q. Then one of the following holds:

(i) G contains a 3-path configuration Π such that the three holes in Π have
length smaller then H.

(ii) Q contains an odd number of N(u)-sectors in which v has exactly one
neighbor, while all other N(u)-sectors of Q contain an even number of
neighbors of v. Furthermore, if x and y are in the same side of the
bipartition, and S = s1, . . . , sh is an N(u)-sector of Q where v has
exactly one neighbor, then v is adjacent to s1 or sh.

Proof: Since v has an odd number of neighbors in H, there is an odd number
of N(u)-sectors of Q containing an odd number of neighbors of v. Let S =
s1, . . . , sh be such a sector. If v has at least 3 neighbors in S, then V (S) ∪
{u, v} induces an odd wheel (H ′, v), and (H ′, v) has less nodes than (H, x)
since x and y are both major nodes. Therefore v has exactly one neighbor
si, 1 ≤ i ≤ h, in S. Assume that x and y are in the same side of the
bipartition. If i = 1 or i = h we are done, hence we may assume 3 ≤
i ≤ h − 2. Suppose u and v both have neighbors in V (H) \ V (S). Then
there exists a path P between u and v with interior in V (H) \ V (S). Then
P 1 = si, v, P, u, P 2 = si, Ssish

, sh, u, P 3 = si, Ss1si
, s1, u induce a 3-path

configuration between si and x, and |Pi| + |Pj| < |H|, for 1 ≤ i < j ≤ 3.
Since v is major, v has at least one neighbor in V (H) \ V (S), therefore u
has exactly two neighbors in H, so u = y, v = x and S = Q. Let x′,
x′′ be the neighbors of x closest to q1 and qk, respectively, in the path Q′

induced by V (H) \ {q2, . . . , qk−1}. Let P ′ and P ′′ be the unique paths in
Q′ between q1 and x′, and qk and x′′, respectively. Then P 1 = x, x′, P ′, q1,
P 2 = x, si, Qsiq1

, q1 and P 3 = x, x′′, P ′′, qk, y, q1 induce a 3-path configuration
between x and q1, and |Pi| + |Pj| < |H|, for 1 ≤ i < j ≤ 3. 2

Claim 5.10 Let (H, x) be a smallest odd wheel in G and y be a major node
for H. One of the following holds:

(i) G contains a 3-path configuration Π such that the three holes in Π have
length smaller then H.

(ii) y has an odd number of neighbors in H.
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Proof: Suppose, by contradiction, that (i) and (ii) do not hold. In particular,
y has an even number of neighbors in H. Let X = NH(x) and Y = NH(y).

Case 1: x and y are in distinct sides of the bipartition.

Assume x and y are adjacent. One can easily verify that there exists u, v ∈
{x, y}, u 6= v, such that u has a positive even number of neighbors in some
NH(v)-sector S = s1, . . . , sk of H. Thus, given H ′ = v, s1, S, sk, v, (H ′, u) is
an odd wheel, and |H ′| < |H| since x and y are major, a contradiction.

Henceforth we may assume that x and y are nonadjacent. Since x has
an odd number of neighbors in H, then there exists a Y -sector S = s1, ..., sk

of H containing an odd number of neighbors of x. By 5.9, x has exactly
one neighbor, say si, in S. Let z′, z′′ ∈ V (H) \ V (S) be the nodes in X ∪ Y
that are closer to s1 and sk, respectively, in the path Q induced by V (H) \
{s2, . . . , sk−1}. Let P ′ and P ′′ be the unique paths in Q between z′ and s1,
and z′′ and sk, respectively.

(5.10.1) At least one of z′ and z′′ is adjacent to y.

Suppose z′ and z′′ are adjacent to x. If i ≥ 3 or i ≤ k − 2, say i ≤ k − 2,
then there is a 3-path configuration induced by the paths P 1 = si, Ssisk

, sk,
P 2 = si, x, z′′, P ′′, sk, P 3 = si, Ssis1

, s1, y, sk, and |Pi| + |Pj| < |H|, for 1 ≤
i < j ≤ 3. So S = s1, s2, s3 and i = 2. Let H ′ = x, z′, P ′, s1, y, s3, P

′′, z′′, x;
(H ′, si) is an odd wheel with at most as many nodes as (H, a). Thus |H ′| =
|H|, since (H, a) is a smallest odd wheel, and z′, z′′ have a common neighbor
in Q. Since y has an even number of neighbors in H, then s1, s3 are the only
neighbors of y in H, a contradiction since y is major for H. This concludes
the proof of (5.10.1).

Thus we may assume, w.l.o.g., that z′ is adjacent to y. Let S ′ be the
X-sector containing s1 and z′, and let x′ be the endnode of S ′ distinct from
si. Since y has at least two neighbors in S ′, then by 5.9 y must have an
even number of neighbors in S ′. Therefore, since x has an odd number of
neighbors in H and y as an even number of neighbors in H, both x and y
have neighbors in V (H) \ (V (S ′) ∪ V (S)), so there exists a path P between
x and y with interior in V (H) \ (V (S) ∪ V (S ′)). Let y′ be the neighbor of
y closest to x′ in S ′. Consider the paths P 1 = x, P, y, P 2 = x, si, Ssis1

, s1, y,
P 3 = x, x′, S ′

x′y′ , y′, y. Then |Pi| + |Pj| < |H|, for 1 ≤ i < j ≤ 3, and P 1, P 2,
P 3 induce a 3-path configuration unless the neighbor y′′ of y in P is adjacent
to x′. Therefore y′′ is the only neighbor of y in V (H) \ (V (S)∪ V (S ′)), so sk

and y′′ are the endnodes of a Y -sector S ′′ of H containing an odd number of
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neighbors of x. Thus S ′′ contains exactly one neighbor of x. Now si and x′

are the nodes of (V (H) \V (S ′′))∩ (X ∪Y ) closest to sk and y′′, respectively,
in the subpath induced by V (H) minus the interior of S ′′; but s′i and x′ are
both adjacent to x, contradicting (5.10.1).

Case 2: x and y are in the same side of the bipartition.

Since x has an odd number of neighbors in H, there exists an odd number
of Y -sectors where x has an odd number of neighbors. By 5.9, each of these
sectors contains exactly one neighbor of x, and such neighbor is an endpoint
of the sector. Thus X∩Y 6= ∅. Suppose |X∩Y | = 1, and let z ∈ X∩Y . Then
there exists a unique Y -sector S where x has an odd number of neighbors,
and z ∈ S. Let S ′ be the Y -sector, distinct from S, containing z. Then x
has an even number of neighbors in S ′. Let z′, z′′ be the endnodes of S and
S ′, respectively, distinct from z, and Q be the subpath of H between z′ and
z′′ that does not contain z. Then x has an odd number of neighbors in Q, so
there exists a Y -sector of Q, which is also a Y sector of H distinct from S,
where x has an odd number of neighbors, a contradiction.

Therefore |X ∩ Y | ≥ 2. Notice that |(X ∪ Y ) \ (X ∩ Y )| is odd, thus
there exists an X ∩ Y -sector Q = q1, ..., qk of H containing an odd number
of elements of |(X ∪ Y ) \ (X ∩ Y )|. So there exists u, v ∈ {x, y} such that
u has an even number of neighbors in Q, v has an odd number of neighbors
in Q, and both endnodes of Q are adjacent to u. By 5.9, Q contains an odd
number of N(u)-sectors where the only neighbor of v is one of the endnodes,
and all other N(u)-sectors contain an even number of neighbors of v. Since
the only common neighbors of u and v in Q are q1 and qk, then there is
exactly one N(u)-sector of Q containing an odd number of neighbors of v,
and it has q1 or qk as an endnode, say q1. Let 2 ≤ i ≤ j ≤ k − 1 be the
minimum and maximum index, respectively, such that qi, qj ∈ X ∪ Y . Then
qi is adjacent to u and qj is adjacent to v, so the path Q′ = Qq1qj

has both
endnodes adjacent to v, and u has an odd number of neighbors in Q′. By
5.9, there exists an N(v)-sector of Q′ where the only neighbor of u is one of
the endnodes, which is impossible since q1 is the only common neighbor of u
and v in Q′ and qi is adjacent to u. 2

Claim 5.11 Let (H, x) be a smallest odd wheel in G. One of the following
holds:

(i) G contains a 3-path configuration Π such that the three holes in Π have
length smaller then H.
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(ii) There exist a ∈ V (H)∩R and b ∈ V (H)∩C such that N(a) ⊃ M(H)∩C
and N(b) ⊃ M(H) ∩ R.

Proof: Assume that (i) does not hold. The statement is obvious if |H| ≤ 6,
hence we may assume |H| ≥ 8. By symmetry, we only need to prove the
statement for M(H) ∩ C. We will procede by induction on |M(H) ∩ C|.

(5.11.1) 5.11 holds if |M(H) ∩ C| ≤ 2.

The statement is trivial if |M(H) ∩ C| ≤ 1. Let {x, y} = M(H) ∩ C. By
5.10, x has an odd number number of elements in H, thus there exists an
NH(y) sector of H where x has an odd number of neighbors, so by 5.9 this
sector contains a common neighbor of x and y. This concludes the proof of
(5.11.1).

Assume |M(H)∩C| = 3 and let {x, y, z} = M(H)∩C. Let X = NH(x),
Y = NH(Y ) and Z = NH(z). By contradiction, suppose that there is no
node in X ∩ Y ∩ Z.

(5.11.2) Let Q = q1, ..., qn be a subpath of H such that q1, qk ∈ X ∪ Y , and
z has an odd number of neighbors in Q. Then there exists an odd number of
X∪Y -sectors of Q containing an odd number of neighbors of z. Furthermore,
if z has an odd number of neighbors in an X ∪ Y -sector S = s1, ...sh of Q,
then s1 and sh are either both in X or both in Y , and NS(z) ⊂ {s1, sh}.

Clearly, there exists an odd number of X ∪Y -sectors of Q containing an odd
number of neighbors of z. Let S = s1, ...sh be such a sector. If s1, sh ∈ X or
s1, sh ∈ Y , then the claim follows from 5.9. Thus we may assume s1 ∈ X \Y
and sh ∈ Y \ X. By (5.11.1), there exists a node t ∈ V (H) adjacent to
both x and y, therefore t /∈ V (S) and H ′ = t, x, s1, S, sh, y, t is a hole of
length smaller than H. Since z is not adjacent to t, then z has an odd
number of neighbors in H ′, so z must have exactly one neighbor in H ′, say
si, 1 ≤ i ≤ h. We may assume, w.l.o.g., that i > 1. By (5.11.1), there
exists a node r ∈ V (H) adjacent to both x and z, therefore r /∈ V (S) and
r 6= t. The paths P 1 = x, s1, Ss1si, si, P 2 = x, r, z, si, P 3 = x, t, y, sk, Ssksi

, si

induce a 3-path configuration, and |Pi| + |Pj| < |H|, for 1 ≤ i < j ≤ 3, a
contradiction. This concludes the proof of (5.11.2).

By (5.11.1), the sets X ∩ Y , X ∩ Z and Y ∩ Z are all nonempty. Let
W = (X ∩ Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z). Notice that |X| + |Y | + |Z| = |(X ∪
Y ∪Z) \W |+ 2|W |, and |X|, |Y |, |Z| are all odd, thus (X ∪ Y ∪Z) \W has
odd cardinality. So there exists a W -sector Q = q1, ..., qk of H that contains

99



an odd number of elements of (X ∪ Y ∪ Z) \ W . It is easy to see that at
an odd number of nodes in {x, y, z} has an odd number of neighbors in Q.
We may assume, w.l.o.g., that z has an odd number of neighbors in Q, while
|X ∩ V (Q)| and |Y ∩ V (Q)| have the same parity. Clearly q1, qk ∈ X ∪ Y .
Since the only nodes in Q that are adjacent to both z and either one of x or y
are q1 and qk, then, by (5.11.2), there is exactly one X∪Y -sector S of Q such
that z has an odd number of neighbors in S, and such a sector must contain
either q1 or qk. We may assume, w.l.o.g., that S = Sq1qi

, i < k, q1 ∈ X ∩ Z
and qi ∈ X. Let j < k be the maximum index such that qj ∈ X ∪ Y ∪ Z.

(5.11.3) qk /∈ Z.

Suppose qk ∈ Z. If qj ∈ X∪Y , then Qqjqk
is an X∪Y -sector of Q distinct

from S containing an odd number of neighbors of z, a contradiction. Thus
qj ∈ Z. Since the number of neighbors of x and y in Q have the same parity,
and they are not both adjacent to qk, then either x or y has an odd number
of neighbors in Q′ = Qq1qj

. Let u, v ∈ {x, y}, u 6= v such that u has an odd
number of neighbors in Q′. Since q1, qj ∈ Z ∪ N(v), then by (5.11.2), there
exists a Z ∪ N(v)-sector S ′ of Q′ such that u has a unique neighbor in S ′,
and such neighbor is an endnode of S ′. Thus S ′ must contain q1, so u = x,
but qi ∈ V (S ′) is adjacent to x, a contradiction. This concludes the proof of
(5.11.3).

By (5.11.3), qk ∈ X ∩ Y . Also, by (5.11.3) and by symmetry, we may
assume that x has an even number of neighbors in Q, thus y has an even
number of neighbors in Q as well. Note that q1, qk ∈ X ∪Z, and there are an
even number of X ∪Z-sectors of Q where y has an odd number of neighbors.
Since the only node in Q that is adjacent to y and to either x or z is qk, then,
by (5.11.2), there are no X ∪ Z-sectors of Q where y has an odd number of
neighbors. Thus qj ∈ Y , x has an odd number of neighbors in Q′ = q1, . . . qj,
and q1, qj ∈ Y ∪ Z. By (5.11.2), there exists a Y ∪ Z-sector S ′ of Q′ such
that x has a unique neighbor in S ′, and such neighbor is an endnode of S ′.
Thus S ′ must contain q1, but qi ∈ V (S ′) is adjacent to x, a contradiction.

Henceforth we may assume |M(H)∩C| ≥ 4. Let x1, x2, x3, x4 ∈ M(H)∩
C. By induction, there exist nodes s1, s2, s3 ∈ V (H) such that si is ad-
jacent to every node in M(H) ∩ C except xi, i = 1, 2, 3. Thus H ′ =
x1, s2, x3, s1, x2, s3, x1 is a hole of length 6 and (H ′, x4) is an odd wheel (since
x4 is adjacent to s1, s2, s3), a contradiction. 2
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5.6 Recognizing balanced graphs

In this section we show how to decide if a signed bipartite graph (G, σ)
contains an unbalanced hole. In 5.6.1 we show how to generate a polynomial-
size family of induced subgraphs of G with the property that, if G is not
balanced, then one member of this family contains an unbalanced hole of
minimum size that has no major nodes. In 5.6.2 we show that a smallest
unbalanced hole with this property can be detected easily. Finally, in 5.6.3,
we give the complete description of the algorithm.

5.6.1 Cleaning a smallest unbalanced hole

Given a signed graph (G, σ), an unbalanced hole H is smallest if it has
minimum length among all unbalanced holes. We say that H is clean if there
is no major node for H in G. A cleaner for H is a subset X of V (G) \ V (H)
that contains all major nodes for H (i.e. H is clean in G \ X). We say that
(G, σ) is clean if either G is balanced, or G contains a smallest unbalanced
hole that is clean.

We will provide an algorithm running in time O(n7) which will constructs
a family C of subsets of V (G) containing O(n6) elements such that if H is
a smallest unbalanced hole in (G, σ), then C contains a cleaner for H. The
following is due to Conforti and Rao [35].

Claim 5.12 Let H be a smallest unbalanced hole in (G, σ), and x ∈ V (G) \
V (H) be a major node for H. Then (H, x) is a smallest odd wheel.

Proof: If not then the graph F induced by V (H) ∪ {x} has an even number
of edges, and each edge is contained in 2 holes of F . Let H be the family of
holes in F . Then H ∈ H and |C| < |H| for every C ∈ H (since x is major).
Thus

∑

C∈H σ(C) = 2σ(F ) ≡ 0 mod 4, and, since σ(H) ≡ 2 mod 4, there
exists C ∈ H such that σ(C) ≡ 2 mod 4, a contradiction. 2

The following was proven by Conforti and Rao [35], but only in the un-
signed case (or, equivalently, the case in which σ(e) = 1 for every e ∈ E(G)).

Claim 5.13 Let H be a smallest unbalanced hole in (G, σ). There exist
a ∈ V (H) ∩ R and b ∈ V (H) ∩ C such that N(a) ⊃ M(H) ∩ C and N(b) ⊃
M(H) ∩ R.
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Proof: If M(H) is empty then the statement holds trivially. Otherwise,
by 5.12, (H, x) is a smallest odd wheel for every x ∈ M(H). Since H is the
smallest unbalanced hole, than G does not contain a 3-path configuration
in which the three holes have each length smaller then |H|. Hence case (ii)
of 5.11 holds. 2

This provides the following cleaning algorithm.

Claim 5.14 There exists a O(|V (G)|7) algorithm with the following specifi-
cations:

• Input A signed bipartite graph (G, σ).

• Output A family C of O(|V (G)|6) subsets of V (G) such that, if H is
a smallest unbalanced hole in G, then there exists an element of C that
is a cleaner for H.

Algorithm:

For every 6-tuple of nodes u1, . . . , u6, such that u1, u2, u3 and u4, u5, u6 induce
paths, and u2 ∈ C, u5 ∈ R, compute

X(u1, . . . , u6) = N(u2) ∪ N(u5) \ {u1, u2, u3, u4, u5, u6}.

Let C be the family containing X(u1, . . . , u6) for every possible choice of
u1, . . . , u6.

Correctness: The running time of the algorithm is obviously O(|V (G)|7)
and C has O(|V (G)|6) elements. We only need to show that, if (G, σ) contains
a smallest unbalanced hole H, then C contains a cleaner for H. By 5.13, there
exist two nodes u2 ∈ V (H) ∩ C, u5 ∈ V (H) ∩ R, such that every node in
M(H) ∩ R is adjacent to u2 and every node in M(H) ∩ C is adjacent to
u5. Let u1, u3 be the neighbors of u2 in H and u4, u6 be the neighbors of
u5 in H. Then the algorithm will examine the 6-uple u1, . . . , u6, and clearly
X(u1, . . . , u6) is a cleaner for H. 2

5.6.2 Detecting a clean smallest unbalanced hole

Claim 5.15 Let (G, σ) be a signed bipartite graph containing no 3-path con-
figuration and no detectable 3-wheel. Let H be a clean smallest unbalanced
hole of (G, σ), u and v be two nonadjacent nodes of H and P 1, P 2 be the two
internally node-disjoint subpaths of H between u and v, where |P 1| ≤ |P 2|.
Let P be a shortest path between u and v in G. Then the following hold:
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(i) |P | = |P 1|

(ii) Either H ′ = u, P, v, P 2, u is a clean smallest unbalanced hole, or |P 1| =
|P 2| and H ′′ = u, P, v, P 1, u is a clean smallest unbalanced hole.

Proof: The statement is obvious if H is an unbalanced hole of length 4, hence
we may assume |H| ≥ 6. Let H = h1, . . . , h2s, (h2s+1 = h1) where h1 = u,

s ≥ 3. Let
−→
H be the directed cycle obtained by orienting the edges of H

from hi to hi+1 for every 1 ≤ i ≤ h2s. For any two distinct nodes x and y
in H, let Hxy be the underlaying graph of the directed path from x to y in
−→
H . W.l.o.g., P 1 = Huv and P 2 = Hvu, and v = hm for some 3 ≤ m ≤ s + 1.
Let P = p0, . . . , pk+1, where p0 = u and pk+1 = v. We will prove 5.15 by
induction on k.

If k = 1, then p1 has exactly two neighbors in H, namely u and v (since H
is clean), and they are contained in a subpath of H of length 2, say u,w, v.
Hence, by 5.10, H ′ = u, p1, v, P 2, u is a an unbalanced hole of the same length
as H. We only need to prove that H ′ is clean. Assume not and let x be a
major node for H ′. Since x is not major for H, then x is adjacent to p1 but
not to w, x has exactly 2 neighbors in P 2 and they are contained in a path
of length 2. But then (H ′, x) is a detectable 3-wheel, a contradiction. Hence
we may assume k ≥ 2.

(5.15.1) Either:

(i) no node of Pp1pk
belongs to or has a neighbor in Hhm+1h2s

, or

(ii) |P | = |Huv| = |Hvu| = s, σ(P ) = σ(Hvu) and no node of Pp1pk
belongs

to or has a neighbor in Hh2hm−1
.

Assume that there is a node of Pp1pk
that belongs to or has a neighbor in

Hhm+1h2s
, then there exists a j, m+1 ≤ j ≤ 2s, such that there are chordless

paths Q1 and Q2 between hj and u and hj and v, respectively, with interior
contained in the interior of P . Therefore

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 ≤ 2s + 3 − m = (2s + 2 − j) + (j − m + 1)

≤ (|Hhju| + 1) + (|Hvhj
| + 1).

Since |Q1| has the same parity as |Hhju| and |Q2| has the same parity as
|Hvhj

|, then, by symmetry, we may assume |Q1| ≤ |Hhju|. We can also
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argue that either |Q1| < |P | and j < 2s, or |Q2| ≤ |Hvhj
|, |Q2| < |P |

and j > m + 1. In fact, if |Q1| = |P |, then Q1 = u, p1, . . . , pk, hj and
Q2 = hj, pk, v, hence |Q2| ≤ |Hvhj

| and |Q2| < |P |. Furthermore, if j = 2s,
then |Q2| < |P | ≤ |Hvhj

| + 1 (since u cannot be adjacent to both h1 and p1)
and j > m+1. Thus, by symmetry, we may assume |Q1| ≤ |Hhju|, |Q

1| < |P |
and j < 2s. By inductive hypothesis,

dG(hj, u) = dH(hj, u) = min(2s + 1 − j, j − 1)

and dG(hj, u) ≤ |Q1| < |P | ≤ m − 1 < j − 1, hence dG(hj, u) = 2s + 1 − j =
|Q1| < s. By induction, σ(Q1) = σ(Hhju) and H ′ = u,Huhj

, hj, Q
1, u is a

clean smallest unbalanced hole. We obtain a directed cycle
−→
H ′ by orienting

the edges of H ′ to agree with the orientation of the edges in Huhj
, and define

H ′
xy for every x, y in H as before.

Let u′ be the neighbor of hj in Q1. Then there exists a subpath P ′ of
P between u′ and v of length k + 2 − |Q1| = k + j + 1 − 2s < k + 1.
By induction, |H ′

u′v| ≤ k + j + 1 − 2s or |H ′
vu′| ≤ k + j + 1 − 2s. But

|H ′
u′v| > |Huv| ≥ k + 1 > |P ′|, hence |H ′

vu′| ≤ k + j + 1 − 2s. This implies
j−m+1 ≤ k+ j +1−2s, so 2s ≤ k+m, but m ≤ s+1 and k ≤ s−1, hence
m = s + 1, k = s − 1, dG(u′v) = dH′(u′, v) = |P ′| and σ(P ′) = σ(H ′

vu′). By
induction, H ′′ = u′, H ′

u′v, v, P ′, u′ is a clean smallest unbalanced hole. Since
Huv is contained in H ′

u′v, then no node in the interior of P ′ belongs to or has
a neighbor in Hh2hm−1

. Since every node in Pp1pk
is either a node of P 1 or a

node of P ′, then no node of Pp1pk
belongs to or has a neighbor in Hh2hm−1

.
Finally

σ(P ) = σ(Puu′) + σ(Pu′v) = σ(Q1) − σ(u′hj) + σ(P ′)

= σ(Hhju) − σ(u′hj) + σ(H ′
vu′)

= σ(Hhju) − σ(u′hj) + σ(Hvhj
) + σ(u′hj)

= σ(Hvu) (5.2)

This concludes the proof of 5.15.1.

By 5.15.1 and symmetry, we may assume that no node of Pp1pk
belongs

to or has a neighbor in Hhm+1h2s
.

(5.15.2) Either

(i) |Huv| = |P | and σ(Huv) = σ(P ), or

104



(ii) |P | = |Huv| = |Hvu| = s, σ(P ) = σ(Hvu) and no node of Pp1pk
belongs

to or has a neighbor in Hh2hm−1
.

Clearly, if σ(Huv) = σ(P ), then H ′ = u, P, v,Hvu, u is an unbalanced hole of
length at most |H|, hence |P | = |Huv| and 5.15.2 holds. Suppose then that
σ(Huv) 6= σ(P ). If no node in Pp1pk

belongs to or has a neighbor in Hh2hm−1
,

then u and v must be on the same side of the bipartition, else Huv, Hvu, P
would induce a 3-path configuration between u and v. Thus P has even
length and H ′′ = u,Huv, v, P, u is an unbalanced hole strictly smaller than H
unless |P | = |Huv| = |Hvu| = s, thus case (ii) holds. Therefore there exists
j, 2 ≤ j ≤ m − 1, such that there are chordless paths Q1 and Q2 between
hj and u and hj and v, respectively, with interior contained in the interior of
P . By 5.15.1 and symmetry, we may assume m ≤ s. We have

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 = j + (m + 1 − j) = (|Huhj
| + 1) + (|Hhjv| + 1)

and, by the same argument as in 5.15.1, we may assume |Q1| ≤ j − 1,
|Q1| < |P | and j > 2. By induction, |Q1| = dG(u, hj) = dH(u, hj) = j − 1,
σ(Q1) = σ(Huhj

and H ′ = u,Q1, hj, Hhju, u is a clean smallest unbalanced
hole.
Let u′ be the neighbor of hj in Q1 and let P ′ be the path between u′ and v
in P . Then

|P ′| = k + 2 − |Q1| = k − j + 3

thus, by induction, σ(P ′) = σ(H ′
u′v). Finally, with a calculation very similar

to the one in (5.2),

σ(P ) = σ(Puu′) + σ(Pu′v)

= σ(Huhj
) − σ(u′hj) + σ(Hhjv) + σ(u′hj)

= σ(Huv).

This completes the proof of 5.15.2.

By 5.15.1, 5.15.2 and by symmetry, we may assume that H ′ = u, P, v,Hvu, u
is a smallest unbalanced hole. To conclude the proof of 5.15 we only need
to show that H ′ is clean. Suppose, by contradiction, that H ′ is not clean,
and let x be a major vertex for H ′. If x has at least two neighbors in Hvu,
then such neighbors are contained in a subpath of H of length 2, thus x is
adjacent to hi and hi+2 for some m ≤ i ≤ 4s + 1 and has no other neighbors
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in H. Thus H ′′ = hi, x, hi+2, Hhi+2hi
, hi is a clean smallest unbalanced hole

and the interior of P contains a neighbor of x, whence, by 5.15.1 applied to
H ′′ and P , it must be the case that |P | = s, σ(P ) = σ(H ′

vu) = σ(Hvu) and
no node of Pp1pk

belongs to or has a neighbor in H ′
h2hm−1

= Hh2hm−1
. Since

σ(H) ≡ 2 mod 4, and σ(Huv) = σ(P ) = σ(Hvu), then u and v are in distinct
sides of the bipartition and Huv, Hvu, P induce a 3-path configuration between
u and v. Thus x has at most one neighbor in Hvu and at least 2 neighbors
in the interior of P . Let pi and pj be the neighbors of x in P of lowest and
highest index, respectively. Then j = i + 2, else u, Pupi

, pi, x, pj, Ppjv, v is
a path between u and v strictly shorter than P . But then x has exactly 3
neighbors in H ′, and two of these neighbors have distance 2 in H ′, so (H ′, x)
is a detectable 3 wheel, a contradiction. 2

Claim 5.16 There exists a O(|V (G)|4) algorithm with the following specifi-
cations:

• Input A clean signed bipartite graph (G, σ) containing no 3-path con-
figuration and no detectable 3-wheel.

• Output Either

(i) An unbalanced hole H,

(ii) Determines that (G, σ) is balanced.

Algorithm:

For every possible pair of nodes u1, u2, do the following:

1. compute the shortest path P between u1 and u2.

2. compute the set X of nodes that do not belong to or have a neighbor
in the interior of P .

3. for every node u3 in X at distance 2 from u1 in G[X ∪ {u1}], compute
the shortest paths P 1(u3) and P 2(u3) between u1 and u3 in G[X∪{u1}]
and between u2 and u3 in G[X ∪ {u2}] (if one exists), respectively.

4. for every such u3 ∈ X, verify that no node in P 1(u3) \ u3 belongs to or
has a neighbor in P 2(u3) \ u3. If this is the case, define

H(u1, u2, u3) = u1, P, u2, P
2(u3), u3, P

1(u3), u1;

otherwise let H(u1, u2, u3) be undefined.
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5. If σ(H(u1, u2, u3)) ≡ 2 mod 4, then output the unbalanced hole H =
H(u1, u2, u3) and stop.

Otherwise output that G is balanced.

Correctness: checking if (G, σ) has an unbalanced hole of length 4 takes
time O(|V (G)|4. For every possible pair u1 and u2, the running time of step
1 is linear while step 2 through 4 take time O(|V (G)|2) (in fact, step 4 takes
linear time for every choice of u3 since P 1(u3), by definition, has constant
length 2). Hence the overall running time is O(|V (G)|4). Obviously, when
the algorithm outputs an unbalanced hole it is correct. We need to verify that
the algorithm is always correct when it outputs that G is balanced. Assume
G is not balanced. Since G is clean, there exists a clean smallest unbalanced
hole H, with |H| = 2s, and s ≥ 3 since |H| ≥ 6. Let u1, u2, u3 be three
nodes in H such that dH(u1, u3) = 2, while dH(u1, u2) = dH(u2, u3) = s − 1.
Let P , P 1(u3), P 2(u3) be the paths computed by the algorithm for the triple
u1, u2, u3. Let Q1 and Q2 be the subpaths of H between u1 and u2 such
that Q1 does not contain u3 and Q2 contains u3. Then, by our choice of
u1, u2, u3, |Q

1| < |Q2|, hence, by 5.15, H ′ = u1, P, u2, Q
2, u1 is a clean smallest

unbalanced hole. By repeating the same argument for P 1(u3) and P 2(u3), we
argue that H(u1, u2, u3) = u1, P, u2, P

2(u3), u3, P
1(u3), u1 is a clean smallest

unbalanced hole, hence the algorithm would have output it correctly. 2

5.6.3 The recognition algorithm

At this point we are ready to give the complete description of the O(|V (G)|9

algorithm to decide if a signed bipartite graph is balanced. For the sake of
clarity, let us first describe a slightly simpler algorithm, with running time
O(|V (G)|10): run first algorithm 5.6 and then algorithm 5.8 to determine if
a graph has a 3-path configuration or a detectable 3-wheel. If so, stop and
output that (G, σ) is not balanced. Otherwise, apply algorithm 5.14 to obtain
a family C of subsets of V (G), and finally apply algorithm 5.16 to G \X for
every X ∈ C. If for some X the algorithm detects an unbalanced hole, then
output the fact that (G, σ) is not balanced. Otherwise, output the fact the
(G, σ) is balanced. Notice that, in this case, the output is correct, otherwise
G would contain a smallest unbalanced hole H, but C would contain cleaner
X for H and the algorithm would output an unbalanced hole in G \ X.

In order to achieve the running time O(|V (G)|9, we need to perform
cleaning and look for a smallest unbalanced hole at the same time.
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Theorem 5.17 There exists a O(|V (G)|9) algorithm with the following spec-
ifications:

• Input A signed bipartite graph (G, σ).

• Output Determines whether (G, σ) is balanced or not.

Algorithm:

1. Apply the algorithm 5.6. If G contains a 3-path configuration, then
output the fact that (G, σ) is not balanced and stop.

2. Apply the algorithm 5.8. If G contains a detectable 3-wheel, then
output the fact that (G, σ) is not balanced and stop.

3. For every 7-tuple of nodes u1, . . . , u7, such that u1, u2, u3 and u4, u5, u6

induce a path, u2 ∈ C, u5 ∈ R, u7 is nonadjacent to u2, do the following

(a) Compute X(u1, . . . , u6) = N(u2) ∪ N(u5) \ {u1, u2, u3, u4, u5, u6}.

(b) Compute the shortest paths P1(u1, . . . , u7) and P2(u1, . . . , u7) be-
tween u1 and u7 and u3 and u7 in G \X(u1, . . . , u6), respectively.

(c) If no node in the interior of P1(u1, . . . , u7) belongs to or has a
neighbor in P2(u1, . . . , u7), define:

H(u1, . . . , u7) = u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1;

(d) Compute σ(H(u1, . . . , u7)). If σ(H(u1, . . . , u7)) ≡ 2 mod 4, out-
put that G is not balanced and stop.

Otherwise output that G is balanced.

Correctness: Both step 1 and step 2 take time O(|V (G)|9). Step 3 performs
computations (a)-(d) at most |V (G)|7 times. Steps (a), (b), and (d) can
be performed in time O(|V (G)|), while step (c) can be performed in time
O(|V (G)|2), thus the running time is O(|V (G)|9) as claimed.

We need to show that the algorithm is correct. If G contains a 3-path
configuration or a detectable 3-wheel, then by 5.6 and 5.8 the algorithm will
output correctly that (G, σ) is not balanced. We only need to prove that,
if G does not contain a 3-path configuration or a detectable 3-wheel, but
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G contains an unbalanced hole, then step 3 will output that (G, σ) is not
balanced. Let H be a smallest unbalanced hole in G. Then by 5.13 there
exist two subpaths u1, u2, u3 and u4, u5, u6 of H such that every major node
for H is adjacent to u2 or u5. The set X(u1, ..., u6) computed in step (a) is a
cleaner for H, as shown in the proof of 5.14. Let u7 be the node at distance
|H|/2 from u2 in H. Clearly, the paths Q1 and Q2 between u1 and u7 and
between u3 and u7 in H, respectively, have length strictly less then |H|/2,
thus, by an argument similar to the one in the proof of 5.16, H(u1, . . . , u7) =
u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1 is a smallest unbalanced hole,
where P1(u1, . . . , u7) and P2(u1, . . . , u7) are the paths computed in step (b).
Thus step (d) will output that (G, σ) is not balanced. 2

5.6.4 Refinements

For unsigned graphs, the problem of detecting an unbalanced hole when 3-
path configurations and detectable 3-wheels are not present can be solved
faster, in time O(|V (G)|7). Notice that this does not improve the total
running time in the general case, since algorithms 5.6 and 5.8 run in time
O(|V (G)|9). The speedup is allowed by the following.

Claim 5.18 Let G be a bipartite graph and H be a smallest unbalanced hole
in G. Then one of the following holds:

(i) Every node in M(H) ∩ R is adjacent to every node in M(H) ∩ C.

(ii) There exist two adjacent nodes a and b in H such that every major
node for H is adjacent to a or b.

Proof: If |H| = 6, case (ii) must always occur, hence we may assume |H| ≥
10. Assume that there exist a ∈ M(H) ∩ R and b ∈ M(H) ∩ C such that
a and b are not adjacent. Fix an orientation on H and let a1, . . . , ak be the
neighbors of a in H in the order they appear according to such orientation
starting from a1. For 1 ≤ i ≤ k let Ak be the subpath of H between ai and
ai+1 (where ak+1 = a1) containing no neighbors of a in its interior.

(5.18.1) Up to symmetry, b is adjacent to the neighbor of a1 in A1, say b1,
all neighbors of b distinct from b1 are contained in Ak and the neighbor of b
closest to ak in Ak has distance 3 modulo 4 from ak.

Let I be the family of all maximal subpaths of H with no neighbor of a or b in
the interior. By definition the endnodes of every element I in I are neighbors
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of a and b. Since every major node for H has an odd number of neighbors in
H, then I has an even number of elements. Every path in I of even length
has both endnodes adjacent either to a or b and it must have length 2 modulo
4 (else either I ∪ a or I ∪ b induce an unbalanced hole strictly smaller than
H). Since H has length 2 modulo 4, then there must be an even number of
paths in I with odd length, and the sum of all lengths of such paths must be
2 modulo 4. Obviously, every odd path must have one endnode adjacent to
a and the other adjacent to b. Suppose there are exactly 2 odd paths in I,
say I ′ and I ′′ with endnodes a′ ∈ N(a), b′ ∈ N(b) and a′ ∈ N(a), b′ ∈ N(b)
respectively. Then a′, b′, a′′, b′′ are all distinct otherwise, w.l.o.g., a′ = a′′

and the subpath of H between b′ and b′′ not containing a′ contains at least
one neighbor of a, therefore there exists another path in I of odd length.
Also, a′ and b′′ are not adjacent, otherwise a′, b′′ would be an odd path in I.
Analogously a′′ and b′ are not adjacent, hence H ′ = a, a′, I ′, b′, b, b′′, I ′′, a′′, a
is an unbalanced hole smaller than H. Thus there are at least 4 paths of odd
length in I. Furthermore there exist 3 paths I1, I2, I3 in I each of length q
modulo 4 for some q ∈ {1, 3} (since either I contains at least 6 odd paths, or
I contains exactly 4 odd paths whose total length must be 2 modulo 4). Since
I contains at least 6 elements, we may assume that I2 and I3 have no node
in common. If no node in I2 is adjacent to a node in I3, then I2 ∪ I3 ∪ {a, b}
induces an unbalanced hole strictly smaller than H. Thus an endnode of I2,
say a1 w.l.o.g., is adjacent to an endnode of I3, say b1. This implies that I2

and I3 have length 1 modulo 4, I1 = a1, b1 and there are no other paths in I
of length 1. This argument also show that there exists a unique path I4 in I
of length 3 modulo 4, therefore we may assume that b1 is in A1, all neighbors
of b distinct from b1 are in Ak, and I4 is the shortest path in Ak between ak

and a neighbor of b. This proves 5.18.1.

If every major node for H is adjacent to a1 or b1, then we are done. Hence
we may assume that there exists x ∈ M(H) ∩ C nonadjacent to b1.

(5.18.2) x and b are both adjacent to the neighbor of a1 in Ak, say b2, and
|A1| > 2.

By 5.11 there exists a node b′ in H adjacent to both b and x. Assume first that
x is adjacent to a, then b′ = b2, else a, x, b′, b, b1, a1, a is a 6-hole. If x has no
neighbors in A1, then H ′ = a, a2, A1(a2, b1), b1, b, b2, x, a is an unbalanced hole
strictly smaller than H, as one can readily verify. Hence x′ has a neighbor
in A1, distinct from b1 by assumption, therefore |A1| > 2. Hence we may
assume that x is not adjacent to a. Since b′ 6= b1 and all neighbors of b in
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H distinct from b1 are contained in Ak, then b′ ∈ Ak. Since a and x are not
adjacent, then by 5.18.1 we have two cases.
Case (1): every neighbor of x in H except one, say b′′, is contained in Ak,
and b′′ is either the neighbor of a1 in A1 or the neighbor of ak in Ak−1. Since
b′′ 6= b1 by assumption, then b′′ is the neighbor of ak in Ak−1, but then, given
I the path between b1 and b′′ in H \ Ak, b, b1, I, b′′, x, b′, x is an unbalanced
hole strictly smaller than H, a contradiction.
Case (2): b′ is the only neighbor of x in Ak−1. In this case, either b′ = b2 and
all neighbors of x in H distinct from b2 are contained in A1, hence |A1| > 2
and we are done, or b′ is the neighbor of ak in Ak−1, contradicting 5.18.1,
since b′ is also adjacent to b and the neighbor of b closest to ak in Ak has
distance 3 modulo 4 from ak itself.
This conclude the proof of 5.18.2.

By 5.18.2, every node in M(H)∩C is adjacent to b1 or b2. If there exists
y ∈ M(H)∩C such that y is not adjacent to b2, then by 5.11, x and y have a
common neighbor b′ in H and x, b′, y, b1, a1, b2, x is a 6 hole, a contradiction.
Thus b2 is adjacent to every node of M(H) ∩ C. If a1 is adjacent to every
node of M(H) ∩ R then we are done, therefore, by 5.18.2 and by symmetry,
every node in M(H)∩R is adjacent to the neighbor of b1 in H distinct from
a1, say a′. In particular a′ = a2 and |A1| = 2, contradicting 5.18.2. 2

For signed graphs, the previous statement does not hold.

Claim 5.19 There exists a O(|V (G)|5) algorithm with the following specifi-
cations:

• Input A bipartite graph G.

• Output A family C of O(|V (G)|4) subsets of V (G) such that, if H is
a smallest unbalanced hole in G, then there exists an element of C that
is a cleaner for H.

Algorithm:

1. For every chordless path P of length 3, P = u1, u2, u3, u4 define
X(P ) = (N(u2) ∪ N(u3)) \ V (P ) and
Y (P ) = (N(u1) ∩ N(u3)) ∪ (N(u2) ∩ N(u4)).

2. Let C be the family containing X(P ) and Y (P ) for every chordless path
P of length 3.

111



Correctness: The running time of the algorithm is obviously O(|V (G)|5)
and C has O(|V (G)|4) elements. We only need to show that, if G contains a
smallest unbalanced hole H, then C contains a cleaner for H. If H contains
two adjacent nodes u2 and u3 such that every major node for H is adjacent
to u2 or u3, then let u1 be the neighbor of u2 in H distinct from u3, and u4

be the neighbor of u3 in H distinct from u2. X(u1, u2, u3, u4) is obviously a
cleaner for H.
Otherwise, by 5.18, every node in M(H) ∩ R is adjacent to every node in
M(H) ∩ C. By 5.11, there exist nodes u1 and u4 in H such that u1 is
adjacent to every node in M(H) ∩ R and u4 is adjacent to every node in
M(H)∩C. Let a′, a′′ be the neighbors of u1 in H and b′, b′′ the neighbors of
u4 in H. Then there exists x′, x′′ ∈ M(H) ∩ R such that x′ is not adjacent
to a′ and x′′ is not adjacent to a′′. If x′ 6= x′′, then u4, x

′, a′′, u1, a
′, x′′, u4 is a

6-hole, a contradiction. Let u2 = x′ = x′′. Analogously, there exists a node
u3 ∈ M(H) ∩ C that is nonadjacent to both b′ and b′′. It is immediate to
verify that Y (u1, u2, u3, u4) is a cleaner for H. 2

Notice that, if G does not contain 3-path configuration or a detectable 3-
wheel, then we can run algorithm 5.19 to obtain a family C with O(|V (G)|4)
subsets of V (G), and the run algorithm 5.16 on G \X for every X ∈ C. The
total running time is O(|V (G)|8). The running time of O(|V (G)|7) can be
achieved by performing 5.19 and 5.16 together. Namely, when we examine
a 4-tuple u1, . . . , u4 to generate X(P ) and Y (P ), we can now examine a 5th
node u5. Eventually, if there is a smallest unbalanced holes, either X = X(P )
or X = Y (P ) is a cleaner for H, and u5 has distance less then |H|/2 from
both u1 and u4. If we compute the shortest paths in G \ X between every
pair of nodes among u1, u4, and u5, then, by an argument similar to the one
in 5.16, these three paths induce an unbalanced hole. So, for each 5-tuple,
we need to compute 3-shortest paths, in time O(|V (G)|), and to check that
we obtained an unbalanced hole, in time O(|V (G)|2). thus the total running
time is O(|V (G)|7).

5.7 Recognizing balanceable graphs

In this section we will describe an algorithm that, given a bipartite graph G,
decides whether or not G contains a 3-path configuration or an odd wheel.
By 5.1, this is equivalent to decide if G is balanceable.
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First, we will prove a technical lemma that is the analogue of 5.15 for
odd wheels. Given a smallest odd wheel (H, x), a cleaner for H is a subset of
V (G) \ V (H) that contains all major nodes for H. Given two smallest odd
wheels (H, x) and (H ′, y), we say that (H, x) dominates (H ′, y) (or (H ′, y) is
dominated by (H, x)) if M(H ′) ⊆ M(H). In particular, if X is a cleaner for
(H, x) disjoint from H ′, then it is also a cleaner for H ′.

Claim 5.20 Let G be a bipartite graph containing no 3-path configuration
and no detectable 3-wheel. Let (H, x) be a smallest odd wheel of G, u and v be
two nonadjacent nodes of H and P 1, P 2 be the two internally node-disjoint
subpaths of H between u and v, where |P 1| ≤ |P 2|. Let P be a shortest path
between u and v in G′ = G \ M(H). Then the following hold:

(i) |P | = |P 1|

(ii) Either H ′ = u, P, v, P 2, u is a hole, and (H ′, x) is a smallest odd wheel
dominated by (H, x); or |P 1| = |P 2|, H ′′ = u, P, v, P 1, u is a hole, and
(H ′′, x) is a smallest odd wheel dominated by (H, x).

Proof: Let H = h1, . . . , h2s, (h2s+1 = h1) where h1 = u, s ≥ 3. Let
−→
H be

the directed cycle obtained by orienting the edges of H from hi to hi+1 for
every 1 ≤ i ≤ 2s. For any two distinct nodes a and b in H, let H(a, b)

be the underlaying graph of the directed path from a to b in
−→
H . W.l.o.g.,

P 1 = H(u, v) and P 2 = H(v, u), and v = hm for some 3 ≤ m ≤ s + 1.
Let P = p0, . . . , pk+1, where p0 = u and pk+1 = v. We will prove 5.15 by
induction on k.

If k = 1, then p1 has exactly two neighbors in H, namely u and v (since
p1 /∈ M(H)), and they are contained in a subpath of H of length 2, say u,w, v.
Hence H ′ = u, p1, v, P 2, u is a hole of the same length as H. Suppose (H ′, x) is
not an odd wheel, then x is adjacent to exactly one node y ∈ {p1, w}. Let z ∈
{p1, w}, z 6= y, and let u′, v′ be the neighbors of x distinct from u, v, closest
to u and v in P 2, respectively. Then C = u, z, v,H(v, v′), v′, x, u′, H(u′, u), u
is a hole and (C, y) is a detectable 3-wheel, a contradiction. We only need to
prove that (H ′, x) is dominated by (H, x). Assume not and let y 6= x be a
major node for H ′ that is not major for H. Since y is not major for H, then
y is adjacent to p1 but not to w, y has exactly 2 neighbors in P 2 and they
are contained in a path of length 2. But then (H ′, y) is a detectable 3-wheel,
a contradiction. Hence we may assume k ≥ 2.

(5.15.1) Either:
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(i) no node of Pp1pk
belongs to or has a neighbor in H(hm+1, h2s), or

(ii) H ′′ = u, P, v, P 1, u is a hole, and (H ′′, x) is a smallest odd wheel.

Assume that there is a node of Pp1pk
that belongs to or has a neighbor in

H(hm+1, h2s), then there exists a j, m + 1 ≤ j ≤ 2s, such that there are
chordless paths Q1 and Q2 between hj and u and hj and v, respectively, with
interior contained in the interior of P . Therefore

|Q1| + |Q2| ≤ k + 3 ≤ m + 1 ≤ 2s + 3 − m = (2s + 2 − j) + (j − m + 1)

≤ (|H(hj, u)| + 1) + (|H(v, hj)| + 1).

Since |Q1| has the same parity as |H(hj, u)| and |Q2| has the same parity
as |H(v, hj)|, then, by symmetry, we may assume |Q1| ≤ |H(hj, u)|. We
can also argue that either |Q1| < |P | and j < 2s, or |Q2| ≤ |H(v, hj)|,
|Q2| < |P | and j > m + 1. In fact, if |Q1| = |P |, then Q1 = u, p1, . . . , pk, hj

and Q2 = hj, pk, v, hence |Q2| ≤ |H(v, hj)| and |Q2| < |P |. Furthermore, if
|Q1| < |P | and j = 2s, then |Q2| < |P | ≤ |H(v, hj)| + 1 (since hj cannot be
adjacent to both h1 and p1) and j > m + 1. Thus, by symmetry, we may
assume |Q1| ≤ |H(hj, u)|, |Q1| < |P | and j < 2s. By inductive hypothesis,

dG′(hj, u) = dH(hj, u) = min(2s + 1 − j, j − 1)

and dG′(hj, u) ≤ |Q1| < |P | ≤ m − 1 < j − 1, hence dG′(hj, u) = 2s +
1 − j = |Q1| < s. Since V (Q1) ⊆ V (G) \ M(H), then by induction C =
u,H(u, hj), hj, Q

1, u is a hole and (C, x) is a smallest odd wheel dominated

by (H, x). We obtain a directed cycle
−→
C by orienting the edges of C to agree

with the orientation of the edges in H(u, hj), and define C(a, b) for every a, b
in C as before.
Let u′ be the neighbor of hj in Q1. Then P ′ = Pu′v is a path between
u′ and v of length k + 2 − |Q1| = k + j + 1 − 2s < k + 1, and V (P ′) ⊆
V (G) \ M(H) ⊆ V (G) \ M(C). By induction, |C(u′, v)| ≤ k + j + 1 − 2s
or |C(v, u′)| ≤ k + j + 1 − 2s. But |C(u′, v)| > |H(u, v)| ≥ k + 1 > |P ′|,
hence |C(v, u′)| ≤ k + j + 1 − 2s. This implies j − m + 1 ≤ k + j + 1 − 2s,
so 2s ≤ k + m, but m ≤ s + 1 and k ≤ s − 1, hence m = s + 1, k = s − 1,
dG′(u′v) = dC(u′, v) = |P ′|. By induction, C ′ = u′, C(u′, v), v, P ′, u′ is a
hole, and (C, x) is a smallest odd wheel. Clearly, C ′ = H ′′, where H ′′ =
u, P, v, P 1, u. This concludes the proof of 5.15.1.
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By 5.15.1 and symmetry, we may assume that no node of Pp1pk
belongs

to or has a neighbor in H(hm+1, h2s).

(5.15.2) Either

(i) H ′ = u, P, v, P 2, u is a hole, and (H ′, x) is a smallest odd wheel; or

(ii) |P 1| = |P 2|, H ′′ = u, P, v, P 1, u is a hole, and (H ′′, x) is a smallest odd
wheel.

Assume that no node in Pp1pk
belongs to or has a neighbor in H(h2, hm−1),

then u and v must be on the same side of the bipartition, else H(u, v),
H(v, u), and P would induce a 3-path configuration between u and v. If
(H ′′, x) is an odd wheel, then it is a smallest one, since |H ′′| ≤ |H|, and
case (ii) occurs. Thus V (Pi) ∪ V (P ), i = 1, 2, contains either exactly one
neighbor of x, or an even number of neighbors of x. We may assume that x
is nonadjacent to both u and v, otherwise the number of neighbors of x in
H(u, v) and in H(v, u) have distinct parities, so either (H ′, x) or (H ′′, x) is
an odd wheel. Thus we may assume x and v are nonadjacent. If x is adjacent
to u, we may assume that either H(u, v) \ u and H(v, u) \ u both contain
neighbors of x, or P \u contains a neighbor of x, otherwise all neighbors of x
in H are contained in H(u, v) or H(v, u), and no neighbor of x is contained
in P \ u, but then either (H ′, x) or (H ′′, x) is a smallest odd wheel. Thus,
if u1, u2, u3 are the neighbors of x closest to v in H(u, v), H(v, u) and P ,
respectively, then u1, u2, u3 are pairwise distinct, thus Q1 = x, u1, H(u1, v), v,
Q2 = x, u2H(v, u2), v and Q3 = x, u3, Pu3v, v induce a 3-path configuration
(since x and v are in distinct sides of the bipartition, because x and u are
adjacent). Thus we may assume that both u and v are nonadjacent to x.
This implies that the number of neighbors of x in H(u, v) and in H(v, u)
have distinct parities, so x has an odd number of neighbors on the hole C,
where C = H ′ or C = H ′′. This implies that x has exactly one neighbor, say
x′ in C, while x has at least 2 neighbors in the chordless path P ′ contained
in H whose interior is disjoint from C. Let u′ and v′ be the neighbors of x in
P ′ closest to u and v, respectively. Clearly u, v, u′, v′ are pairwise distinct.
Let Q and Q′ be the two distinct subpaths of C between x′ and u such that
v is in Q′. If u and x are in distinct sides of the bipartition, then the paths
Q1 = u,Q, x′, x, Q2 = u, Puu′ , u′, x and Q3 = u,Q′(u, v), v, Pvv′ , v′, x form a
3-path configuration, a contradiction. Thus x′ and u are in distinct sides of
the bipartition. Since |H(u, v)|, |H(v, u)|, |P | ≥ 3, then x′ is not adjacent
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to both u and v, say, w.l.o.g., x′ is nonadjacent to u. The paths Q, Q′,
Q′′ = u, Puu′ , x, x′ induce a 3-path configuration.

Therefore we may assume there exists j, 2 ≤ j ≤ m − 1, such that there
are chordless paths Q1 and Q2 between hj and u and hj and v, respectively,
with interior contained in the interior of P . By 5.15.1 and symmetry, we may
assume m ≤ s. We have

|Q1|+|Q2| ≤ k+3 ≤ m+1 = j+(m+1−j) = (|H(u, hj)|+1)+(|H(hj, v)|+1)

and, by the same argument as in 5.15.1, we may assume |Q1| ≤ j − 1,
|Q1| < |P | and j > 2. By induction, |Q1| = dG′(u, hj) = dH(u, hj) =
j − 1, C = u,Q1, hj, H(hj, u), u is a hole and (C, x) is a smallest odd wheel
dominated by (H, x).
Let u′ be the neighbor of hj in Q1 and let P ′ be the path between u′ and v
in P . Then

|P ′| = k + 2 − |Q1| = k − j + 3 ≤ |C(u′, v)|

thus, by induction, C ′ = u′, P ′, v, C(v, u′), u′ is a hole and (C ′, x) is a smallest
odd wheel. Clearly, C ′ = H ′. This concludes the proof of 5.15.2.

By 5.15.2 and by symmetry, we may assume that (H ′, x) is a smallest
odd wheel. To conclude the proof of 5.15 we only need to show that (H ′, x)
is dominated by (H, x). Suppose there exists a major node y for H ′ that is
not major for H. Then the neighbors of y in H are contained in a subpath
of H of length 2. Also, the neighbors of y in P are contained in a subpath
of P of length 2, otherwise let i, j, 0 ≤ i < j ≤ k + 1 be the minimum
and maximum index, respectively, such that pi and pj are adjacent to y;
then P ′ = u, Pupi

, pi, y, pj, Ppjv, v is a path in G′ strictly shorter then P , a
contradiction. Therefore y has at most 3 neighbors in H ′, and two of them
are contained in a subpath of H ′ of length 2. Thus (H ′, y) is a detectable
3-wheel, a contradiction. 2

Claim 5.21 There exists a O(|V (G)|9) algorithm with the following specifi-
cations:

• Input A bipartite graph G.

• Output Determines whether G is balanceable or not.

Algorithm:
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1. Apply the algorithm in 5.6. If G contains a 3-path configuration, then
output the fact that G is not balanceable and stop.

2. Apply the algorithm in 5.8. If G contains a detectable 3-wheel, then
output the fact that G is not balanceable and stop.

3. For every 7-tuple of nodes u1, . . . , u7, such that u1, u2, u3 and u4, u5, u6

induce a path, u2 ∈ C, u5 ∈ R, u7 is nonadjacent to u2, do the following

(a) Compute X(u1, . . . , u6) = N(u2) ∪ N(u5) \ {u1, u2, u3, u4, u5, u6}.

(b) Compute the shortest paths P1(u1, . . . , u7) and P2(u1, . . . , u7) be-
tween u1 and u7 and u3 and u7 in G \X(u1, . . . , u6), respectively.

(c) If no node in the interior of P1(u1, . . . , u7) belongs to or has a
neighbor in P2(u1, . . . , u7), define:

H(u1, . . . , u7) = u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1;

(d) For each x ∈ X(u1, . . . , u6) check if (H(u1, . . . , u7), x) is an odd
wheel. If it is, output that G is not balanceable and stop.

Otherwise output that G is balanceable.

Correctness: Both step 1 and step 2 take time O(|V (G)|9). Step 3 per-
forms computations (a)-(d) at most |V (G)|7 times. Steps (a) and (b) can be
performed in time O(|V (G)|), while steps (c) and (d) can be performed in
time O(|V (G)|2), thus the running time is O(|V (G)|9) as claimed.

We need to show that the algorithm is correct. If G contains a 3-path
configuration or a detectable 3-wheel, then by 5.6 and 5.8 the algorithm will
output correctly that G is not balanceable. We only need to prove that,
if G does not contain a 3-path configuration or a detectable 3-wheel, but G
contains an odd wheel, then step 3 will output that G is not balanceable. Let
(H, x) be a smallest odd wheel in G. Then by 5.11 there exist two subpaths
u1, u2, u3 and u4, u5, u6 of H such that every major node for H is adjacent
to u2 or u5. The set X(u1, ..., u6) computed in step (a) is a cleaner for H,
by an argument similar to the one in 5.19. Let u7 be the node at distance
|H|/2 from u2 in H. Clearly, the paths Q1 and Q2 between u1 and u7 and
between u3 and u7 in H, respectively, have length strictly less then |H|/2,
thus, by an argument similar to the one in the proof of 5.16, H(u1, . . . , u7) =
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u1, P1(u1, . . . , u7), u7, P2(u1, . . . , u7), u3, u2, u1 is a hole and (H(u1, . . . , u7), x)
is a smallest odd wheel, where P1(u1, . . . , u7) and P2(u1, . . . , u7) are the paths
computed in step (b). Since x ∈ X(u1, . . . , u6), then step (d) will output that
G is not balanceable. 2
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Chapter 6

Bicolorings and equitable
bicolorings of matrices

6.1 Introduction

A real matrix is totally unimodular (t.u.) if every nonsingular square sub-
matrix has determinant ±1 (note that every t.u. matrix must be a 0,±1
matrix). A 0,±1 matrix which is not totally unimodular but whose subma-
trices are all totally unimodular is said almost totally unimodular. Camion
[9] proved the following:

Theorem 6.1 (Camion [9] and Gomory [cited in [9]]) Let A be an almost
totally unimodular 0,±1 matrix. Then A is square, det A = ±2, and A−1 has
only ±1

2
entries. Furthermore, each row and each column of A has an even

number of nonzero entries and the sum of all entries in A equals 2 modulo 4.

For any positive integer k, we say that a 0,±1 matrix A is k-balanced if it
does not contain any almost totally unimodular submatrix with at most 2k
nonzero entries in each row. Obviously, an m×n 0,±1 matrix A is balanced
if and only if it is 1-balanced, while A is totally unimodular if and only if A is
k-balanced for some k ≥ ⌊n/2⌋. The class of k-balanced matrices was intro-
duced by Truemper and Chandrasekaran [77] in the 0, 1 case and generalized
by Conforti, Cornuéjols and Truemper in [27], who also showed that several
polyhedral properties of balanced and totally unimodular matrices extend to
the class of k-balanced matrices. In Section 6.3 we characterize the class of
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k-balanced matrices in terms of k-equitable bicolorings, that are special par-
titions of the columns of a 0,±1 matrix. This characterization generalizes
results of Ghouila-Houri [52] for totally unimodular matrices, and Berge [4]
and Conforti and Cornuéjols [20] for balanced matrices. In section 6.4, we
further discuss some coloring properties of the class of k-balanced matrices.
Finally, we will use such properties to prove that certain polyhedra arising
from k-balanced 0, 1 matrices have the integer decomposition property.

6.2 k-balanced matrices and integral polyhe-

dra

The following is a classical result of Hoffman and Kruskal.

Theorem 6.2 (Hoffman and Kruskal [56]) Let A be an m × n totally uni-
modular matrix. Then {x ∈ IRn |Ax ≤ b} is an integral polyhedron for every
b ∈ ZZ

m.

The next Theorem, proved by Conforti, Cornuéjols and Truemper, pro-
vides a generalization of Theorem 6.2, as we shall explain later. Given an
m × n 0,±1 matrix, denote by n(A) the vector with m components whose
ith component ni(A) is the number of −1’s in the ith row of A, and let
p(A) = n(−A).

Theorem 6.3 (Conforti, Cornuéjols and Truemper [27]) Let A be an m×n
k-balanced 0,±1 matrix with rows ai, i ∈ [m], b be a vector with entries bi,
i ∈ [m], and let S = S1, S2, S3 be a partition of [m]. Then

P (A, b,S) = {x ∈ IRn : aix ≤ bi for i ∈ S1

aix = bi for i ∈ S2

aix ≥ bi for i ∈ S3

0 ≤ x ≤ 1} (6.1)

is an integral polytope for all integral vectors b such that −n(A) ≤ b ≤
k − n(A).

Proof: Suppose not and let A be a counterexample with the minimum number
of rows and columns, and x̄ be a fractional vertex of P (A, b,S). We may
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assume that, for some 1 ≤ k ≤ n, x̄1, . . . , x̄k are all fractional and x̄k+1, . . . , x̄n

are all 0, 1. Since x̄ is a vertex, then there exists a k×n row submatrix A′ of
A, such that A′x = b′, where b′ is the corresponding subvector of b, and such
that the submatrix C = (cij) of A′ formed by the columns of A′ with index
at most k is nonsingular. Let A′ = (C,D), where D = (dij) is a k × (n − k)
matrix, and assume, w.l.o.g., that the rows of A′ are indexed by [k]. Define a
vector b̄ ∈ ZZ

k by b̄i = bi −
∑n

j=k+1 dijx̄j, for i ∈ [k]. Then b̄i ≥ −ni(C), since

bi =
∑k

j=1 cijx̄i +
∑n

j=k+1 dijx̄j ≥ −ni(C)+
∑n

j=k+1 dijx̄j, and b̄i ≤ k−ni(C),
since bi ≤ k − ni(A) = k − ni(C)− ni(D) ≤ k − ni(C) +

∑n

j=k+1 dijx̄j. Since

(x̄1, . . . , x̄k) is a fractional vertex of {x ∈ IRk |Cx = b̄,0 ≤ x ≤ 1}, then, by
the minimality of A, A = C.

Thus x̄ has only fractional entries, and A is square and nonsingular.
Let i ∈ [n], and let Ā be the submatrix of A obtained by deleting row i,
and b̄ be the corespondent subvector of b. Then, by the minimality of A,
P̄ = {x ∈ IRn | Āx = b̄,0 ≤ x ≤ 1} is integral, and it is nonempty since
x̄ ∈ P̄ . P̄ has dimension 1, hence it has only two vertices z1 and z2, so
x̄ = λz1 + (1 − λ)z2 for some 0 < λ < 1. Since 0 < xi < 1 for every i ∈ [n],
then z1 + z2 = 1, thus

p(Ā) − n(Ā) = Ā1 = Ā(z1 + z2) = 2b̄ ≤ 2k − 2n(Ā).

Thus the total number of nonzero elements in row j of Ā is pj(Ā) + nj(Ā) ≤
2k. By repeating the previous argument for a different choice of i ∈ [n], we
conclude that every row of A has at most 2k nonzero elements per row and per
column. Also, by Theorem 6.2, A is not totally unimodular, hence it contains
an almost t.u. submatrix, contradicting the fact that A is k-balanced. 2

Notice that a totally unimodular matrix is k-balanced for every positive
integer k. In fact, Theorem 6.3 generalizes Hoffman and Kruskal’s charac-
terization of total unimodular matrices. Let b be an integral vector and x̄ be
a vertex of Q(A, b) = {x ∈ IRn |Ax ≤ b}. Let A′ be the matrix obtained by
replicating the ith column of A ⌈|x̄i|⌉ times, and multiplying such column by
x̄i/|x̄i|. Let Ci be the set of indices of columns of A′ that correspond to the
ith column of A. Consider the vector ȳ, with as many entries as the number
of columns of A′, defined as follows: for every i ∈ [n], fix to 1 ⌊|x̄i|⌋ of the
entries of ȳ with index in Ci, and fix to |xi| − ⌊|x̄i|⌋ the remaining entry (if
any). Let S = S1, S2, S3, where S1 = {i ∈ [m] | bi ≥ 0}, S2 = ∅, S3 = [m]\S1.
It is immediate to verify that ȳ is a vertex of P (A′, b,S), and ȳ is integral
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if and only if x̄ is integral. Since A is totally unimodular, then A′ is totally
unimodular as well, thus, by Theorem 2.16, P (A′, b,S) is integral, so Q(A, b)
is integral.

Also, when k = 1, Theorem 6.3 is equivalent to Theorem 5.3. It is
not known whether the system defined by the constraints in (6.1) is totally
dual integral. Clearly, by Theorem 5.4 such system is TDI if −n(A) ≤ b ≤
1−n(A). Next we observe that the system is TDI also for k = 2 if the matrix
A has only nonnegative entries.

Proposition 6.4 Let A be an m × n 2-balanced 0, 1 matrix with rows ai,
i ∈ [m], b be a vector with entries bi, i ∈ [m], and let S = S1, S2, S3 be a
partition of [m]. Then the system

aix ≤ bi for i ∈ S1

aix = bi for i ∈ S2

aix ≥ bi for i ∈ S3

x ≥ 0

(6.2)

is totally dual integral for every integral vector b such that 0 ≤ b ≤ 2.

Proof: Let c ∈ ZZ
n such that the linear program min{cx |x satisfies (6.2)}

has a finite optimum. The dual is

max ub
uA ≤ c
ui ≤ 0 i ∈ S1

ui ≥ 0 i ∈ S3

(6.3)

We need to show that (6.3) has an optimal solution with integer components.
The proof is by induction on the number of rows of A. We may assume that
bℓ ≤ 1 for some ℓ ∈ [m], otherwise b = 2 and we may consider the problem
max{u1 |uA ≤ c, ui ≤ 0 for i ∈ S1, ui ≥ 0 for i ∈ S3} that has the same
optimal solutions as (6.3). Let ū be an optimal solution for (6.3). Let Aℓ

be the matrix obtained from A by removing row aℓ, and uℓ be the vector
obtained from u by removing the entry uℓ. By the inductive hypothesis, the
system

max
∑m

i=1,i6=ℓ biui

uℓAℓ ≤ c − aℓ⌊ūℓ⌋
ui ≤ 0 i ∈ S1 \ {ℓ}
ui ≥ 0 i ∈ S3 \ {ℓ}

(6.4)
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has an integral optimal solution ũ (since ūℓ is a feasible solution). By Theo-
rem 6.3,

∑m

i=1 biūi is integer, thus

m
∑

i=1,i6=ℓ

biũi ≥

⌈

m
∑

i=1,i6=ℓ

biūi

⌉

=
m

∑

i=1

biūi − ⌊bℓūℓ⌋ =
m

∑

i=1

biūi − bℓ⌊ūℓ⌋

since bℓ ≤ 1. Thus (ũ1, . . . , ũℓ−1, ⌊ūℓ⌋, ũℓ+1, . . . , ũm) is an integral optimal
solution for (6.3). 2

6.3 k-equitable bicolorings

A 0,±1 matrix A has an equitable bicoloring if its columns can be partitioned
into red and blue columns so that, for every row of A, the sum of the entries
in the red columns differs by at most one from the sum of the entries in the
blue columns. Ghouila-Houri [52] gave the following characterization of the
class of totally unimodular matrices.

Theorem 6.5 (Ghouila-Houri [52]) A 0,±1 matrix A is totally unimodular
if and only if every submatrix of A has an equitable bicoloring.

An analogous of Theorem 6.5 holds for balanced matrices. A 0,±1 matrix
is bicolorable if its columns can be partitioned into blue columns and red
columns so that every row with at least two nonzero entries contains either
two nonzero entries of opposite sign in columns of the same color or two
nonzero entries of the same sign in columns of different colors. A partition
with this property is a bicoloring of A. Berge [4] showed that a 0, 1 matrix A
is balanced if and only if every submatrix of A is bicolorable. Conforti and
Cornuéjols [20] extended this result to 0,±1 matrices.

Theorem 6.6 A 0,±1 matrix A is balanced if and only if every submatrix
of A has a bicoloring.

Given a 0,±1 matrix A with rows ai, i ∈ [m], let αi := min
(

⌊pi(A)+ni(A)
2

⌋, k
)

.

We say that A has a k-equitable bicoloring if its columns can be partitioned
into blue columns and red columns so that the matrix A′, obtained from A
by multiplying its blue columns by −1, has at least αi positive entries and
at least αi negative entries in row ai, for every i ∈ [m].
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One can readily verify that an m×n 0,±1 matrix A is bicolorable if and
only if A has a 1-equitable bicoloring, while A has an equitable bicoloring
if and only if A has a k-equitable bicoloring for k ≥ ⌊n/2⌋. The following
theorem provides a characterization of the class of k-balanced matrices, which
is a generalization of both Theorems 6.5 and 6.6.

Theorem 6.7 (Conforti, Cornuéjols, Zambelli [32]) A 0,±1 matrix A is k-
balanced if and only if every submatrix of A has a k-equitable bicoloring.

Proof: Assume first that A is k-balanced and let B be any submatrix of A.
Assume, up to row permutation, that

B =

(

B′

B′′

)

where B′ is the row submatrix of B determined by the rows of B with 2k or
fewer nonzero entries. Consider the system

B′x ≥

⌊

B′1

2

⌋

−B′x ≥ −

⌈

B′1

2

⌉

B′′x ≥ k − n(B′′) (6.5)

−B′′x ≥ k − n(−B′′)

0 ≤ x ≤ 1

Since B is k-balanced, also

(

B
−B

)

is k-balanced. Therefore the con-

straint matrix of system (6.5) above is k-balanced. One can readily verify
that −n(B′) ≤

⌊

B′
1

2

⌋

≤ k − n(B′) and −n(−B′) ≤ −
⌈

B′
1

2

⌉

≤ k − n(−B′).
Therefore, by Theorem 6.3 applied with S1 = S2 = ∅, system (6.5) defines
an integral polytope. Since the vector (1

2
, ..., 1

2
) is a solution for (6.5), the

polytope is nonempty and contains a 0, 1 point x̄. Color a column i of B
blue if x̄i = 1, red otherwise. It can be easily verified that such a bicoloring
is, in fact, k-equitable.

Conversely, assume that A is not k-balanced. Then A contains an almost
totally unimodular matrix B with at most 2k nonzero elements per row.
Suppose that B has a k-equitable bicoloring, then such a bicoloring must be
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equitable since each row has, at most, 2k nonzero elements. By Theorem 6.1,
B has an even number of nonzero elements in each row. Therefore the sum of
the columns colored blue equals the sum of the columns colored red, therefore
B is a singular matrix, a contradiction. 2

Given a 0/±1 matrix A and positive integer k, one can find in polynomial
time a k-equitable bicoloring of A or a certificate that A is not k-balanced
as follows:

Find a basic feasible solution of (6.5). If the solution is not integral, A
is not k-balanced by Theorem 6.3. If the solution is a 0,1 vector, it yields a
k-equitable bicoloring as in the proof of Theorem 6.7.

A basic feasible solution can to (6.5) can be found in polynomial time
using an algorithm of Megiddo [65] that, given optimal solutions for both
the primal and the dual, determines basic optimum solutions both for the
primal and for the dual. In fact, given a feasible solution x̄ for some system of
constraints A ≤ x, x ≥ 0, x̄ is obviously optimal for the problem max{0 |A ≤
x, x ≥ 0} and ȳ = 0 is optimal for the dual min{by | y⊺A ≥ 0, y ≥ 0},
hence an optimal basic feasible solution can be computed using Megiddo’s
algorithm. Since the vector (1

2
, ..., 1

2
) is a feasible solution of (6.5), a basic

feasible solution of (6.5) can be derived in strongly polynomial time.

6.4 λ-colorings

Given a matrix A and an integer λ ≥ 2, a λ-coloring of A is a partition of
the columns of A into λ sets (colors) I1, . . . , Iλ (some of the colors may be
empty).

Let A be a 0, 1 matrix and ai, i ∈ [m], be the rows of A. We say that color
h occurs in row ai if there exists j ∈ Ih such that ai

j = 1. We say that a 0, 1
matrix A is λ-colorable if there exists a λ-coloring of A such that, for every
i ∈ [m], the number of colors occurring in ai is min(pi(A), λ). Obviously,
this is the maximum number of colors that can occur in ai. We call such a
λ-coloring a good λ-coloring. It is immediate to verify that the definition of
good 2-coloring is equivalent to the definition of bicoloring we gave in the
previous section when restricted to 0, 1 matrices. The following was proven
by Berge [5]:

Theorem 6.8 (Berge) A 0, 1 matrix A is balanced if and only if every sub-
matrix of A is λ-colorable for every integer λ ≥ 2.
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Observe that I1, . . . , Iλ is a λ-coloring of A if and only if Ij, Ih is a bi-
coloring of the matrix AIjIh

induced by the columns in Ij ∪ Ih for every
1 ≤ j < h ≤ λ. Thus one may extend the definition of λ-coloring to 0,±1
matrices by saying that a 0,±1 matrix A is λ-colorable if and only if there
exists a λ-coloring I1, . . . , Iλ of A such that Ij, Ih is a bicoloring of AIjIh

for
every 1 ≤ j < h ≤ λ. It was conjecture by Conforti and Zambelli that a
statement analogous to 6.8 should hold for 0 ± 1 matrices:

Conjecture 6.9 A 0,±1 matrix A is balanced if and only if every submatrix
of A is λ-colorable for every integer λ ≥ 2.

A weaker definition of λ-colorability was given by De Werra [45]. Such
definition has the same requirement as the definition above in the rows in
which all entries are either all nonnegative or all non-positive, while in the
other rows it only demands that a +1 and a −1 receive the same color. De
Werra showed that every 0,±1 balanced matrix satisfies this condition.

A result in the spirit of Conjecture 6.9 holds for totally unimodular ma-
trices. We say that a 0 ± 1 matrix A has an equitable λ-coloring if there
exists a λ-coloring I1, . . . , Iλ so that, for each row ai and for every color Ih,
⌊pi(A)/λ⌋ ≤

∑

j∈Is
ai

j ≤ ⌈pi(A)/λ⌉. Equivalently, I1, . . . , Iλ is an equitable
λ-coloring if Ij, Ih is an equitable bicoloring of AIjIh

for every 1 ≤ j < h ≤ λ.
De Werra [43] showed that totally unimodular matrices can be characterized
in terms of equitable λ-colorings.

Theorem 6.10 (De Werra) A matrix A is totally unimodular if and only if
every submatrix of A has an equitable λ-coloring for every integer λ ≥ 2.

Proof: Necessity follows immediately from Theorem 6.7 (in fact, we only
need to consider 2-colorings). For the other direction, consider the system

⌊A1/λ⌋ ≤ Ax ≤ ⌈A1/λ⌉
0 ≤ x ≤ 1

(6.6)

Since A is totally unimodular, (6.6) defines an integral polytope, which is
nonempty since λ−11 is a solution. Thus (6.6) has an integral solution x̄. Let
Ā be the matrix induced by the columns corresponding to the zero entries of
x̄. By induction on λ, Ā has an equitable (λ − 1)-coloring I1, . . . , Iλ−1. Let
Iλ be the set of columns corresponding to the positive entries of x̄. Then
I1, . . . , Iλ is an equitable λ-coloring. 2
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We give a common generalization of good and equitable λ-colorings as
follows. Given a 0,±1 matrix A and integers k and λ, a k-equitable λ-
coloring of A is a λ-coloring I1, . . . , Iλ of A such that Ij, Ih is a k-equitable
bicoloring of AIjIh

for every 1 ≤ j < h ≤ λ. Clearly, a good 1-equitable
λ-coloring is a good λ-coloring, while an ⌊n/λ⌋-equitable λ-coloring is an
equitable λ-coloring (where n is the number of columns).

Next, we show that k-balanced 0, 1 matrices have a k-equitable λ-coloring
for every λ. Notice that, in the 0, 1 case, a k-equitable λ-coloring is a λ
coloring such that, in the ith row, the number of ones of each color is at least
k if pi(A) ≥ kλ, and it is either ⌊pi(A)/λ⌋ or ⌈pi(A)/λ⌉ otherwise.

Theorem 6.11 A 0, 1 matrix A is k-balanced if and only if every submatrix
of A has a k-equitable λ-coloring for every integer λ ≥ 2.

Proof: If λ = 2, then the statement is equivalent to Theorem 6.7. We only
need to show that, given an m × n 0, 1 matrix A, A has a k-equitable λ-
coloring. Assume λ ≥ 3. Let S1 ⊆ [m] be the set of indices such that ai

has less than kλ nonzero entries for each i ∈ S1, and S2 = [m] \ S1. Given
a partition I1, . . . , Iλ of the columns of A, let, for every i ∈ [m], j ∈ [λ],
nij = |{h ∈ [n] | ai

h = 1, h ∈ Ij}|. Define

µij =

{

max(nij − ⌈pi(A)/λ⌉, ⌊pi(A)/λ⌋ − nij) for i ∈ S1

max(0, k − nij) for i ∈ S2
.

Choose I1, . . . Iλ minimizing µ =
∑n

i=1

∑λ

j=1 µij. Observe that I1, . . . , Iλ is a
k-equitable λ-coloring if and only if µ = 0. Suppose µst > 0 for some s ∈ [m],
t ∈ [λ]. Clearly, there exists t′ ∈ [λ] with the following property:

• If s ∈ S1 and nst < ⌊pi(A)/λ⌋, than nst′ > ⌊ps(A)/λ⌋;

• If s ∈ S1 and nst > ⌈ps(A)/λ⌉, than nst′ < ⌈ps(A)/λ⌉;

• If s ∈ S2, than nst′ > k.

W.l.o.g., t = 1, t′ = 2. By Theorem 6.7, AI1I2 admits a k-equitable bicoloring
I ′
1, I ′

2. For i ∈ [n] and j = 1, 2, let n′
ij = |{h ∈ [n] | ai

h = 1, h ∈ I ′
j}|, and

µ′
ij = max(n′

ij − ⌈pi(A)/λ⌉, ⌊pi(A)/λ⌋ − n′
ij) for i ∈ S1, µ′

ij = max(0, k −
n′

ij) for i ∈ S2. Clearly, n′
i1 + n′

i2 = ni1 + ni2.

Claim: µ′
i1 + µ′

i2 ≤ µi1 + µi2 for every i ∈ [m], and µ′
s1 + µ′

s2 < µs1 + µs2.
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Let i ∈ S1. If 2⌊pi(A)/λ⌋ ≤ ni1 + ni2 ≤ 2⌈pi(A)/λ⌉ , then ⌊pi(A)/λ⌋ ≤ nij ≤
⌈pi(A)/λ⌉ for j = 1, 2, so µ′

i1 + µ′
i2 = 0 ≤ µi1 + µi2 (where the inequality

is strict if i = s). If ni1 + ni2 > 2⌈pi(A)/λ⌉, then n′
ij ≥ ⌈pi(A)/λ⌉ for

j = 1, 2 (since ⌈pi(A)/λ⌉ ≤ k), so µ′
i1 + µ′

i2 = (n′
i1 − ⌈pi(A)/λ⌉) + (n′

i2 −
⌈pi(A)/λ⌉) = (ni1 − ⌈pi(A)/λ⌉) + (ni2 − ⌈pi(A)/λ⌉) ≤ µi1 + µi2. If i = s, the
inequality is strict since, by the choice of t and t′, there exists j ∈ [2] such that
nij−⌈pi(A)/λ⌉ < 0 ≤ µsj. If ni1+ni2 < 2⌊pi(A)/λ⌋, then n′

ij ≤ ⌊pi(A)/λ⌋ for
j = 1, 2, thus µ′

i1+µ′
i2 = (⌊pi(A)/λ⌋−n′

i1)+(⌊pi(A)/λ⌋−n′
i2) = (⌊pi(A)/λ⌋−

ni1)+ (⌊pi(A)/λ⌋−ni2) ≤ µi1 +µi2. If i = s, the inequality is strict since, by
the choice of t and t′, there exists j ∈ [2] such that ⌊pi(A)/λ⌋−nij < 0 ≤ µsj.
Let i ∈ S2. If ni1 + ni2 < 2k, then n′

ij ≤ k for j = 1, 2, thus µ′
i1 + µ′

i2 =
(k−n′

i1)+(k−n′
i1) = (k−ni1)+(k−ni1) ≤ µi1 +µi2. If i = s, the inequality

is strict since k − ns2 < 0 = µs2. If ni1 + ni2 ≥ 2k, then n′
ij ≥ k for j = 1, 2,

thus µ′
i1 + µ′

i2 = 0 ≤ µi1 + µi2 (where the inequality is strict if i = s). This
concludes the proof of the claim.

For i ∈ [m] and 3 ≤ j ≤ λ, let µ′
ij = µij. By the previous Claim,

µ′ =
∑n

i=1

∑λ

j=1 µ′
ij <

∑n

i=1

∑λ

j=1 µij = µ, thus I ′
1, I

′
2, I3, . . . , Iλ contradicts

the choice of I1, . . . , Iλ. 2

Clearly, Theorem 6.11 implies Theorem 6.8, and it also implies Theo-
rem 6.10 for 0, 1 matrices. A natural question is whether or not every k-
balanced 0,±1 matrix has a k-equitable λ-coloring for every λ ≥ 2. If true,
this would obviously imply also Conjecture 6.9.

Observe that the proof of Theorem 6.11 can be turned into a polynomial
time algorithm to find such a k-equitable λ-coloring as follows: start from
an arbitrary partition I1, I2, I3, . . . , Iλ and compute the corresponding µ. At
each iteration, if µ = 0 then stop, else find a new partition with a smaller
value of µ by computing a k-equitable bicoloring of AItIt′

for some appropriate
choice of t, t′ ∈ [λ]. Since computing a k-equitable bicoloring can be done in
polynomial time, as we observed in section 6.3, and µ ≤ nm for any possible
partition, then the above algorithm is polynomial.

Theorem 6.11 has polyhedral consequences. A rational polyhedron P
is said to have the integer decomposition property if and only if, for every
positive integer h and for every integral vector y ∈ hP := {hx |x ∈ P}, there
exist h integral vectors x1, . . . , xh ∈ P such that y = x1 + . . . + xh. This
notion was introduced by Baum and Trotter [1]. We show the following [81].
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Theorem 6.12 Let A be an m × n k-balanced 0, 1 matrix with rows ai,
i ∈ [m], and let S = S1, S2 be a partition of [m]. Then the polyhedron

P = {x ∈ IRn | aix ≤ bi for i ∈ S1

aix ≥ bi for i ∈ S2

x ≥ 0}
(6.7)

has the integer decomposition property for every integral vector b such that
0 ≤ b ≤ k.

Proof: Let h ≥ 2 be an integer, and let y be and integral vector in hP .
Consider the matrix A′ obtained from A by replicating yj times the jth
column of A for every j ∈ [n] (in particular, if yj = 0, we remove the corre-
sponding column). For each j ∈ [n], let Cj be the set of indices of columns
of A′ that are a copy of column j of A (thus |Cj| = yj). Clearly, A′ is
also k-balanced, so by Theorem 6.11 there exists a k-equitable h-coloring
I1 . . . , Ih of A′. Let z1, . . . , zh be the characteristic vectors of I1, . . . , Ih, re-
spectively. Let x1, . . . , xh be the vectors in ZZ

n defined by xs
j =

∑

t∈Cj
zs

t

for s ∈ [h]. Clearly, y = x1 + . . . + xh. We only need to show that
xs ∈ P for every s ∈ [h]. Observe that pi(A

′) = aiy for every i ∈ [m].
Thus, if i ∈ S1, then aixs = a′

iz
s ≤ ⌈pi(A

′)/h⌉ ≤ bi. If i ∈ S2, then
aixs = a′

iz
s ≥ min(⌊pi(A

′)/h⌋, k) ≥ bi. 2

It is known that the class of polyhedra defined in (6.1) has the integer
decomposition property whenever k = 1 (De Werra [44]) or k ≥ ⌊n/2⌋ (Baum
and Trotter [1]). Thus Theorem 6.12 generalizes both results whenever the
matrix A is a 0, 1 matrix. Does the class of polytopes defined by (6.1) have
the integer decomposition property?
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