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Abstract

Recently, it has been shown that minimal inequalities for a continuous relaxation of
mixed integer linear programs are associated with maximal lattice-free convex sets. In this
paper, we show how to lift these inequalities for integral nonbasic variables by considering
maximal lattice-free convex sets in a higher-dimensional space. We apply this approach
to several examples. In particular, we identify cases where the lifting is unique.

1 Introduction

A classical topic in integer programming is that of lifting, introduced by Padberg [17]: given
mixed integer sets Q ⊂ ℝ

n and R ⊂ ℝ
n+p such that Q is the restriction of R obtained

by setting the last p variables to 0, and given a valid inequality
∑n

i=1 ajxj ≤ b for Q, find
coefficients an+1, . . . , an+p such that

∑n+p
i=1 ajxj ≤ b is valid for R. Current state-of-the-art

integer programming solvers routinely use lifted knapsack covers, lifted flow covers and other
liftings. The lifting coefficients an+1, . . . , an+p may be computed sequentially, choosing the
best possible value at each step. However, different orderings of the variables usually lead
to different answers. An aspect of liftings that has received attention is that of sequence-
independent lifting (Wolsey [18], Gu, Nemhauser, Savelsberg [15], Atamtürk[2]). In this
paper, we revisit liftings from a geometric perspective, building on recent work relating
minimal inequalities to maximal lattice-free convex sets. Our results are best described in
the context of an infinite model which we present next.

Let S be the set of integral points in some rational polyhedron in ℝ
n such that dim(conv(S)) =

n (for example S could be the set of nonnegative integral points), and let f ∈ conv(S) ∖ ℤn.
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We consider the following semi-infinite model.

x = f +
∑

r∈ℝn

rsr +
∑

r∈ℝn

ryr

x ∈ S

sr ≥ 0, r ∈ ℝ
n (1)

yr ≥ 0, yr ∈ ℤ, r ∈ ℝ
n

s, y have finite support.

The infinite vectors s and y having finite support means that they are nonzero only in a finite
number of entries. Given two functions  and � from ℝ

n to ℝ, the inequality
∑

r∈ℝn

 (r)sr +
∑

r∈ℝn

�(r)yr ≥ 1 (2)

is valid for (1) if it holds for every (x, s, y) satisfying (1). If (2) is valid, we say that the
function ( , �) is valid for (1). A valid function ( , �) is minimal if there is no valid function
( ′, �′) distinct from ( , �) such that  ′(r) ≤  (r), �′(r) ≤ �(r) for all r ∈ ℝ

n.
Model (1) is a natural abstraction of the simplex tableau. Indeed, setting all but a finite

number of the sr and yr variables to zero reduces (1) to a problem in tableau form with
right-hand-side f , where x are the basic variables, and the sr and yr variables not set to zero
are the nonbasic ones. Therefore, information about valid inequalities for (1) automatically
transfers to the problem of cutting-off a fractional basic solution of the linear programming
relaxation. Most cutting planes used in practice (Gomory mixed integer cuts, Mixed Integer
Rounding inequalities, knapsack covers, flow covers, lift-and-project cuts and many other)
are valid for Gomory’s corner polyhedron, which is the convex hull of solutions to (1) where
S = ℤ

n and all but a finite number of the variables sr and yr are set to 0.

One of the most effective cutting planes used in solvers are the Gomory Mixed Integer
cuts, which correspond to valid functions for (1) when n = 1 and S = ℤ. It is well known
that, among all cutting planes derived from a single equation, Gomory Mixed Integer cuts
have the best possible coefficients (i.e. the smallest) on the nonbasic continuous variables.
To transfer this notion to the general setting of (1), Dey and Wolsey [13] proposed to study
the following simpler model, where the integer variables yr are all set to zero.

x = f +
∑

r∈ℝn

rsr

x ∈ S

sr ≥ 0, r ∈ ℝ
n (3)

s has finite support.

We refer to this model as the continuous semi-infinite relaxation relative to f . Given a
valid function  for (3), the function � is a lifting of  if ( , �) is valid for (1). If  is a
minimal valid function for (3) and � is a lifting of  such that ( , �) is minimal, we say that
� is a minimal lifting of  .

Minimal valid inequalities for (3) are well understood in terms of maximal S-free convex
sets. We are interested in characterizing liftings of minimal valid inequalities for (3).
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We remark that, given any valid function  for (3) and a lifting � of  , the function �′

defined by �′(r) = min{ (r), �(r)} is also a lifting of  . Indeed, given (s̄, ȳ) satisfying (1),
we show that

∑

r∈ℝn  (r)s̄r+
∑

r∈ℝn �′(r)ȳr ≥ 1. Let (s̃, ỹ) be defined by s̃r = s̄r, ỹr = ȳr for
every r ∈ ℝ

n such that �(r) ≤  (r), and s̃r = s̄r+ȳr, ỹr = 0 for every r ∈ ℝ
n such that  (r) <

�(r). One can readily verify that (s̃, ỹ) satisfies (1), hence
∑

r∈ℝn  (r)s̃r+
∑

r∈ℝn �(r)ỹr ≥ 1.
Furthermore,

∑

r∈ℝn  (r)s̄r +
∑

r∈ℝn �′(r)ȳr =
∑

r∈ℝn  (r)s̃r +
∑

r∈ℝn �(r)ỹr ≥ 1

In particular, if  is a minimal valid function for (3) and � is a minimal lifting of  , then
� ≤  .

We first concentrate on deriving the best possible lifting coefficient of one single integer
variable. Namely, given d ∈ ℝ

n, we consider the model

x = f +
∑

r∈ℝn

rsr + dz

x ∈ S

sr ≥ 0, r ∈ ℝ
n (4)

z ≥ 0, z ∈ ℤ,

s has finite support.

Given a minimal valid function  for (3), let �ℓ(d) be the minimum scalar � such that
the inequality

∑

r∈ℝn

 (r)sr + �z ≥ 1

is valid for (4).
By definition, �ℓ ≤ � for every lifting � of  . In general, the function ( , �ℓ) is not valid

for (1). However, when ( , �ℓ) is valid, �ℓ can be viewed as a trivial sequence-independent
lifting of  :

Proposition 1. Let  be a minimal valid function for (3). When ( , �ℓ) is valid for (1), �ℓ
is the unique minimal lifting of  .

In this paper we give a geometric characterization of the function �ℓ, and use this char-
acterization to analyze specific minimal valid functions  for which �ℓ is the unique minimal
lifting.

A valid function ( , �) is extreme for (1) if there do not exist distinct valid functions
( 1, �1), ( 2, �2) such that ( , �) = 1

2( 
1, �1) + 1

2 ( 
2, �2). Note that if  is extreme for (3),

then  is minimal.

Remark 2. If  is extreme for (3) and ( , �ℓ) is valid for (1), then ( , �ℓ) is extreme for (1).

Indeed, given valid functions ( 1, �1), ( 2, �2) such that ( , �) = 1
2( 

1, �1) + 1
2 ( 

2, �2),
then  1 =  2 =  , since  is extreme for (3), and �1 = �2 = �ℓ since �1 ≥ �ℓ and �2 ≥ �ℓ.
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2 Lifting and S-free convex sets

We observe that (4) is equivalent to the following
(

x
xn+1

)

=

(

f
0

)

+
∑

r∈ℝn

(

r
0

)

sr +

(

d
1

)

z

(x, xn+1) ∈ S × ℤ+

sr ≥ 0, r ∈ ℝ
n (5)

z ≥ 0,

s has finite support.

Indeed (x, s, z) is a solution for (4) if and only if (x, xn+1, s, z) is a solution to (5) by set-
ting xn+1 = z. Note that the above is obtained from the continuous semi-infinite relaxation
relative to

(

f
0

)

by setting to 0 all variables relative to rays with nonzero (n + 1)-th compo-

nent, except for
(

d
1

)

. Therefore, given any valid function  ̄ for the continuous semi-infinite

relaxation relative to
(

f
0

)

, then if we let  (r) =  ̄
(

r
0

)

for r ∈ ℝ
n and � =  ̄

(

d
1

)

, the inequality
∑

r∈ℝn  (r)sr + �z ≥ 1 is valid for (5) and for (4).

A convex set is S-free if it does not contain any point of S in its interior. Maximal S-free
convex sets were characterized in [7], where it was also shown that there is a one-to-one
correspondence between minimal valid functions for (3) and maximal S-free convex sets with
f in their interior.

Theorem 3. [7] A full-dimensional convex set B is a maximal S-free convex set if and only
if it is a polyhedron such that B does not contain any point of S in its interior and each facet
of B contains a point of S in its relative interior. Furthermore if B ∩ conv(S) has nonempty
interior, lin(B) contains rec(B ∩ conv(S)).

We explain how minimal valid inequalities for (3) arise from maximal S-free convex sets.
Let B a polyhedron with f in its interior, and let a1, . . . , at ∈ ℝ

q such that B = {x ∈
ℝ
n ∣ ai(x− f) ≤ 1, i = 1 . . . , t}. We define the function  B : ℝn → ℝ by

 B(r) = max
i=1,...,t

air.

Note that the function  B is convex, subadditive, i.e.  B(r) +  B(r
′) ≥  B(r + r′), and

positively homogeneous, i.e.  B(�r) = � B(r) for every � ≥ 0.
We claim that, if B is a maximal S-free convex set, then

∑

r∈ℝn

 B(r)sr ≥ 1 is valid for (3). (6)

Indeed, let (x, s) be a solution of (3). Note that x ∈ S, thus x /∈ int(B). Then
∑

r∈ℝn

 B(r)sr =
∑

r∈ℝn

 B(rsr) ≥  B(
∑

r∈ℝn

rsr) =  B(x− f) ≥ 1,

where the first equation follows from positive homogeneity, the first inequality follows from
subadditivity of  B and the last one follows from the fact that x /∈ int(B).
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The above functions are minimal [7],[13]. It was proved in [7] that the converse is also
true, namely that every minimal function valid for (3) is of the form  B where B is a maximal
S-free convex set with f in its interior.

Example. We consider problem (1) when n = 1, 0 < f < 1 and S = ℤ. In this case the
only maximal S-free convex set containing f is the interval B = [0, 1]. Thus B = {x ∈
ℝ ∣ − f−1(x− f) ≤ 1, (1− f)−1(x− f) ≤ 1} and  B(r) = max{−f−1r, (1 − f)−1r}.

Let  be a minimal valid function for (3), and let B = {x ∈ ℝ
n ∣ ai(x−f) ≤ 1, i = 1, . . . , t}

be a maximal S-free convex set with f in its interior such that  =  B . We define the set
B(�) ⊂ ℝ

n+1 as follows

B(�) = {
(

x, xn+1

)

∈ ℝ
n+1 ∣ ai(x− f) + (�− aid)xn+1 ≤ 1, i = 1, . . . , t}. (7)

Theorem 4. The inequality
∑

r∈ℝn  (r)sr + �z ≥ 1 is valid for (4) if and only if B(�) is
(S × ℤ+)-free.

Proof. Let  ̄ =  B(�). By construction,  ̄
(

r
0

)

=  (r) for all r ∈ ℝ
n, while  ̄

(

d
1

)

= �.

We show the “if” part of the statement. Given � such that B(�) is (S × ℤ+)-free, it
follows by claim (6) that the function  ̄ is valid for the continuous semi-infinite relaxation
relative to

(

f
0

)

. This implies that
∑

r∈ℝn  (r)sr + �z ≥ 1 is valid for (4).

We now prove the “only if” part. Let � be such that
∑

r∈ℝn  (r)sr + �z ≥ 1 is valid
for (4). Given a point

(

x̄
x̄n+1

)

∈ S × ℤ+, we show that such point is not in the interior of

B(�). Indeed, let r̄ = x̄− x̄n+1d− f , z̄ = x̄n+1, and (s̄r)r∈ℝn be defined by

s̄r =

{

1 if r = r̄,
0 otherwise .

Note that f +
∑

r∈ℝn rs̄r + dz̄ = f + r̄+ x̄n+1d = x̄. Since x̄ ∈ S and
∑

r∈ℝn  (r)sr + �z ≥ 1
is valid for (4), we have

1 ≤
∑

r∈ℝn

 (r)s̄r + �z̄ =  (r̄) + �x̄n+1 = max
i=1,...,t

air̄ + �x̄n+1

= max
i=1,...,t

[ai(x̄− f) + (�− aid)x̄n+1].

Thus there exists i ∈ {1, . . . , t} such that ai(x̄ − f) + (� − aid)x̄n+1 ≥ 1. This shows that
(

x̄
x̄n+1

)

is not in the interior of B(�).

Theorem 4 implies that �ℓ(d) is the minimum value of � such that B(�) is (S ×ℤ+)-free.

Example (continued). In the previous example, let d ∈ ℝ and � ∈ ℝ. If � ∕= 0, then the
set B(�) is the 2-dimensional polyhedron with two facets, containing the points

(

0
0

)

and
(

1
0

)

respectively and with one vertex, namely
(

f
0

)

+ �−1
(

d
1

)

. If � = 0, then B(�) is the split set

[0, 1] + ⟨
(

d
1

)

⟩. It is immediate to verify that, for � < 0, the interior of B(�) contains one of

the integral points
(⌊d⌋

1

)

or
(⌈d⌉

1

)

.
For example, let f = 1

4 . For d = 3
2 ,  B(d) = 2. One can readily verify that B(�) is ℤ×ℤ+-free

if and only if � ≥ 2
3 , otherwise it contains the point

(

2
1

)

. Hence �ℓ(d) =
2
3 .

For d = 1,  B(d) =
4
3 . It is immediate that B(�) is ℤ × ℤ+-free if and only if � ≥ 0, hence

�ℓ(d) = 0.
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Figure 1: Example: f = 1
4 . Left: d = 3

2 . Right: d = 1.

Theorem 5. Let  be a minimal valid function for (3) and � be a minimal lifting of  .
Then there exists " > 0 such that  , � and �ℓ coincide on the ball of radius " centered at the
origin.

Proof. Since  is a minimal valid function for (3), there exists a maximal S-free convex set
B = {x ∈ ℝ

n ∣ ai(x− f) ≤ 1, i = 1, . . . , t} such that  =  B .
Let

� = max
1≤i,j≤t

max
∥r∥=1

(ai − aj)r

Since B is a maximal S-free convex set, every facet of B contains a point of S in its
relative interior. Hence, for i = 1, . . . , t, there exists xi ∈ S such that ai(x

i − f) = 1 and
aj(x

i − f) ≤ 1− i, j ∕= i, for some positive i. Let " > 0 such that "� ≤ i for i = 1, . . . , t.

Let d ∈ ℝ
n such that ∥d∥ ≤ ". We will show that, for every � <  (d), B(�) contains

a point of S × ℤ+ in its interior. By Theorem 4, this implies that �ℓ(d) ≥  (d). Since
�ℓ ≤ � ≤  , this implies �ℓ(d) = �(d) =  (d).

Let i, 1 ≤ i ≤ t, such that  (d) = aid. Let � =  (d) − � for some � > 0. We show that

B(�) contains the point
(

xi

1

)

in its interior. Indeed, by (7), B(�) is the set of points in ℝ
n+1

satisfying the inequalities

aj(x− f) + [(ai − aj)d− �]xn+1 ≤ 1, j = 1, . . . , t.

Substituting
(

xi

1

)

we obtain

ai(x
i − f) − � < 1,

aj(x
i − f) + (ai − aj)d− � < 1, j = 1, . . . , t, j ∕= i,

where the first inequality follows from ai(x
i−f) = 1, while the second follows from aj(x

i−f) ≤
1− i, ∥d∥ ≤ ", and (ai − aj)(d/∥d∥) ≤ � by our choice of �.

Thus
(

xi

1

)

is in the interior of B(�).

Example (continued). From the previous example where n = 1, 0 < f < 1 and S = ℤ, note
that �ℓ(d) =  B(d) for every d ∈ [−f, 1 − f ]. Indeed, if d < 0, then B(�) contains

(0
1

)

for

6



all � <  B(d), while if d ≥ 0 then B(�) contains
(1
1

)

for all � <  B(d). Furthermore, for

� =  B(d), if d < 0 the facet of B(�) containing
(0
0

)

is vertical and contains the point
(0
1

)

, if

d ≥ 0 then the facet of B(�) containing
(

1
0

)

is vertical and contains the point
(

1
1

)

.

Theorem 5 implies that, for every minimal valid function  for (3), there exists a region
R ⊆ ℝ

n containing the origin in its interior such that  and � coincide in R for every
minimal lifting � of  for (1). Since  is piecewise linear, it follows that � is piecewise linear
around the origin. This is in contrast with extreme functions � for the pure integer semi-
infinite relaxation (i.e. the set (1) where all the sr are set to 0) which need not be piecewise
linear [5].

Lemma 6. Let  be a minimal valid function, and � be a minimal lifting of  . Then
i) For every r ∈ ℝ

n and w ∈ ℤ
n ∩ lin(conv(S)), �(r) = �(r +w).

ii) For every r ∈ ℝ
n such that r+w ∈ R for some w ∈ ℤ

n ∩ lin(conv(S)), �(r) =  (r+w).

Proof. i) Let r̄ ∈ ℝ
n and w ∈ ℤ

n ∩ lin(conv(S)). Suppose �(r̄) ∕= �(r̄ + w). Since −w ∈
ℤ
n ∩ lin(conv(S)), we may assume �(r̄) > �(r̄ + w). Since w ∈ ℤ

n ∩ lin(conv(S)), then a
point x ∈ ℝ

n is in S if and only if x + w ∈ S. Thus a point (x̄, s̄, ȳ) satisfies (1) if and
only if (x̄ + wȳr̄, s̄, ỹ) satisfies (1), where ỹr̄ = 0, ỹr̄+w = ȳr̄+w + ȳr̄, and ỹr = ȳr for every
r ∈ ℝ

n ∖{r̄, r̄+w}. This shows that the function �′ defined by �′(r̄) = �(r̄+w), �′(r) = �(r)
for every r ∈ ℝ

n ∖ {r̄} is a lifting of  , contradicting the minimality of �.

ii) It follows from i) that �(r) = �(r+w). By definition of R , �(r+w) =  (r+w).

This lemma is closely related to a result of Balas and Jeroslow [3]. It implies the following
property.

Theorem 7. If for every r ∈ ℝ
n there exists wr ∈ ℤ

n∩lin(conv(S)) such that r+w ∈ R , then
there exists a unique minimal lifting of  , namely the function � defined by �(r) =  (r+wr).
Furthermore � = �ℓ.

Note that, if for some r ∈ R there exists w ∈ ℤ
n ∩ lin(conv(S)) such that r + w ∈ R ,

then  (r + w) =  (r).

Example (continued). From the previous example where n = 1, 0 < f < 1 and S = ℤ,
we have shown that  (r) = �ℓ(r) for every r ∈ [−f, 1 − f ]. Note that, for every r ∈ ℝ,
r − ⌊r + f⌋ ∈ [−f, 1 − f ]. Thus �ℓ(r) =  (r − ⌊r + f⌋) for all r ∈ ℝ, and �ℓ is the unique
minimal lifting of  . Thus �ℓ(r) = max{−f−1(r − ⌊r + f⌋), (1 − f)−1(r − ⌊r + f⌋)}. More

explicitly, if r − ⌊r⌋ < 1− f , then �ℓ(r) =
r−⌊r⌋
1−f , while if r − ⌊r⌋ ≥ 1− f , �ℓ(r) =

⌈r⌉−r
f

.

Given a tableau row x = f +
∑ℎ

i=1 p
isi +

∑k
j=1 q

jyj, where si ≥ 0, i = 1, . . . , ℎ, and yj ≥ 0

and integer, j = 1, . . . , ℎ, the inequality
∑ℎ

i=1  (p
i)si +

∑k
j=1 �ℓ(q

j)yj ≥ 1 is

ℎ
∑

i=1
pi≥0

pi

1− f
si +

ℎ
∑

i=1
pi<0

−
pi

f
si +

k
∑

j=1

qj−⌊qj⌋<1−f

qj − ⌊qj⌋

1− f
yj +

k
∑

j=1

qj−⌊qj⌋≥1−f

⌈qj⌉ − qj

f
yj ≥ 1,

which is the Gomory Mixed Integer Cut associated with the tableau row.
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3 Applications

We illustrated in Section 2 how our geometric approach can be used to derive Gomory’s
mixed integer cuts. In this section, we give three examples of how it can be applied to the
multi-row case.

3.1 Wedge inequalities

We consider the problem (1) where n = 2 and S = ℤ× ℤ+. We focus on inequalities arising
from maximal S-free convex sets with 2 sides and one vertex. We call such sets wedges.

Figure 2: Wedges and corresponding region R + {f} shaded in gray. The inequality corre-
sponding to the wedge on the right has a unique minimal lifting.

Let B = {x ∈ ℝ
2 ∣ ai(x− f) ≤ 1, i = 1, 2} be such a maximal S-free convex set. Since B

is S-free, its only vertex must be in the interior of conv(S), rec(B) has dimension 2 and for
every nonzero element r ∈ rec(B), r2 < 0.

Note that rec(conv(S)) = ℝ × ℝ+ and B has empty lineality space. By Theorem 3,
lin(B) ⊇ rec(B∩conv(S)), hence rec(B)∩conv(S) = ∅. In particular, (ℝ×{0})∩ rec(B) = ∅,
thus by symmetry we may assume a1

(1
0

)

< 0 and a2
(1
0

)

> 0, that is a11 < 0 and a21 > 0.
Let r̂ be a nonzero vector such that a1r̂ = a2r̂. Clearly the second coordinate of r̂ is

nonzero. Note that any point x ∈ ℝ
2 can be uniquely written as x = f + �xr̂ + �x

(1
0

)

where
�x, �x ∈ ℝ. Let x̄ ∈ S be a point in the relative interior of one of the two facets of B, say
aℎ(x̄−f) = 1, ak(x̄−f) < 1. Note that 0 > (ak−aℎ)(x̄−f) = �x̄(ak1−aℎ1), hence �

x̄ < 0 if
ℎ = 1 and �x̄ > 0 if ℎ = 2. Let x1 be a point of S in the relative interior of the facet defined
by a1(x − f) ≤ 1 such that �x

1

is largest possible, and x2 be a point of S in the relative
interior of the facet defined by a2(x− f) ≤ 1 such that �x

2

is smallest possible. Let �i = �x
i

.
Note that �1 < 0 < �2. We define the region R = [�1, �2] + ⟨r̂⟩. (See Figure 2.)

Lemma 8. For every d ∈ R, �ℓ(d) =  B(d).

Proof. Let d ∈ R, that is d = �r̂ + �
(

1
0

)

, for some � ∈ ℝ and � ∈ [�1, �2]. We consider the
case � ≤ 0. The case � ≥ 0 is similar.
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Note that (a1−a2)d = �(a1−a2)r̂+�(a11−a21) ≥ 0 since (a1−a2)r̂ = 0, � ≤ 0, a11 < 0
and a21 > 0. Hence  B(d) = max{a1d, a2d} = a1d.

We will show that, for every � <  B(d), the set B(�) defined in (7) contains the point
(

x1

1

)

in its interior. By Theorem 4, this will imply �ℓ(d) ≥  B(d), and thus �ℓ(d) =  B(d).
Let � =  B(d)− � for some � > 0. Then B(�) is the set of x ∈ ℝ

3 satisfying

a1(x− f) − �x3 ≤ 1,
a2(x− f) + (a1 − a2)dx3 − �x3 ≤ 1.

Substituting
(

x1

1

)

in the first inequality, we obtain a1(x
1−f)−� = 1−� < 1. Substituting

in the second inequality, we obtain

a2(x
1 − f) + (a1 − a2)d− � = �x

1

a2r̂ + �1a21 + �(a1 − a2)r̂ + �(a11 − a21)− �

= �x
1

a1r̂ + �1a11 + (� − �1)(a11 − a21)− �

≤ a1(x
1 − f)− � = 1− � < 1

where the first inequality in the last row follows from �1 ≤ �, a11 < 0, a21 > 0. Thus
(

x1

1

)

is
in the interior of B(�).

Let y1 and y2 be the intersection of the facets defined by a1(x−f) ≤ 1 and a2(x−f) ≤ 1,
respectively, with the axis x2 = 0. That is a1(y

1 − f) = 1, y12 = 0, and a2(y
2 − f) = 1,

y22 = 0. Since B is S-free, y21 − y11 ≤ 1, where equality holds if and only if y1, y2 are integral.
Furthermore, it is not difficult to show that �2 − �1 ≤ y21 − y11. Thus �2 − �1 = 1 if and only
if y1, y2 are integral vectors. In this case, for every r ∈ ℝ

2 there exists wr ∈ ℤ × {0} such
that r + wr ∈ R. Since lin(conv(S)) = ℝ× {0}, by Theorem 7, �ℓ(r) is the unique minimal
lifting of  B , and �ℓ(r) =  B(r + wr) for every r ∈ ℝ

2.

Dey and Wolsey [13] show that  B is extreme for (3) if and only if B contains at least
three points of S. Thus Remark 2 implies the following:

Theorem 9. If B contains at least three points of S and B ∩ (ℝ × {0}) is an interval of
length one, then ( B , �ℓ) is a valid extreme inequality for (1).

Example. Let f =
(

2

3
1

3

)

and S = ℤ× ℤ+. Consider the wedge

W = {x ∈ ℝ
2 ∣ − 3(x1 −

2

3
) + 3(x2 −

1

3
) ≤ 1,

12

5
(x1 −

2

3
)−

3

5
(x2 −

1

3
) ≤ 1}.

The set W is a maximal S-free convex set, as one may easily see from Figure 3.
The corresponding minimal inequality is given by

 (r) = max{−3r1 + 3r2 ,
12

5
r1 −

3

5
r2}.

One can easily verify that the vector r̂ =
(2
3

)

satisfies −3r̂1 + 3r̂2 = 12
5 r̂1 −

3
5 r̂2, and that

the region R is thus given by R = [−4
9 ,

5
9 ] +

(

2
3

)

. This can be written as

R = {r ∈ ℝ
2 ∣ −

4

9
≤ r1 −

2

3
r2 ≤

5

9
}.

9



Figure 3: Set W in the example and corresponding region R+ {f} shaded in gray.

For every r ∈ R2, define the integral vector wr by wr1 = −⌊r1 −
2
3r2 −

4
9⌋, w

r
2 = 0. Note

that wr ∈ lin(S) ∩ ℤ
2 and r + wr ∈ R for all r ∈ ℝ

2. The unique minimal lifting for  is
therefore the function � defined by �(r) =  (r + wr). The explicit formula is given by

�(r) = max{−3(r1 − ⌊r1 −
2

3
r2 −

4

9
⌋) + 3r2 ,

12

5
(r1 − ⌊r1 −

2

3
r2 −

4

9
⌋)−

3

5
r2}.

Suppose now we are given the following two rows of the optimal simplex tableau for the
linear relaxation of a mixed integer program.

x1 = 2
3+ x3+ x4 − x6−

4
5x7

x2 = 1
3+

3
2x3− 2x4−

7
3x5+ x6−

4
5x7

x1, x2, x3, x4, x5, x6, x7 ≥ 0
x1, x2, x4, x6 ∈ ℤ

The lifted inequality determined by the wedgeW is  (r1)x3+�(r
2)x4+ (r

3)x5+�(r
4)x6+

 (r5)x7 ≥ 1, where r1 =
(1

3

2

)

, r2 =
( 1
−2

)

, r3 =
( 0
− 7

3

)

, r4 =
(−1

1

)

, r5 =
(− 4

5

− 4

5

)

. This gives the

inequality
3

2
x3 −

6

5
x4 +

7

5
x5 +

9

5
x6 ≥ 1.

Note that the non-lifted inequality (that is, the inequality obtained from W if we ignored the
integrality conditions on x4 and x6) is

3

2
x3 +

18

5
x4 +

7

5
x5 + 6x6 ≥ 1.
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3.2 Simplicial polytopes

In this section we focus on valid inequalities for (3) arising from maximal lattice-free simplicial
polytopes, in the case where S = ℤ

n. Recall that a polytope is simplicial if each of its facets
is a simplex.

Let B = {x ∈ ℝ
n ∣ ai(x − f) ≤ 1, i = 1, . . . , t} be an n-dimensional maximal lattice-free

simplicial polytope and let v1, . . . , vp be its vertices. For i = 1, . . . , t, let Vi ⊂ {1, . . . , p} be
the set of indices of vertices of the facet defined by ai(x− f) ≤ 1, that is ai(v

j − f) = 1 for
all j ∈ Vi. Let r

i = vi − f , i = 1, . . . , p. Note that, since B is simplicial, {rj ∣ j ∈ Vi} consists
of n linearly independent vectors, for i = 1, . . . , t, and air

j = 1 for all j ∈ Vi, while air
j < 1

for all j /∈ Vi.
Let x̄ be an integral point in the relative interior of the facet defined by ai(x−f) ≤ 1, that

is ai(x̄− f) = 1, aj(x̄− f) < 1, j ∕= i. Then x̄ can be uniquely written as x̄ = f +
∑

j∈Vi
�̄jr

j,

where
∑

j∈Vi
�̄j = 1, �̄j ≥ 0, j ∈ Vi. Let R(x̄) = {

∑

j∈Vi
�jr

j ∣ 0 ≤ �j ≤ �̄j , j ∈ Vi}.
Let us denote by ℐ the set of all points x̄ in ℤ

n such that x̄ is contained in the relative
interior of some facet of B. Let R = ∪x̄∈ℐR(x̄).

Lemma 10. For every d ∈ R, �ℓ(d) =  B(d).

Proof. We only need to show that, given x̄ ∈ ℐ and d ∈ R(x̄), �ℓ(d) =  B(d). By symmetry
we may assume that x̄ is in the relative interior of the facet defined by a1(x̄−f) ≤ 1, and that
V1 = {1, . . . , n}. Let �̄1, . . . , �̄n nonnegative such that

∑n
j=1 �̄j = 1 and x̄ = f +

∑n
j=1 �̄jr

j.

Since d ∈ R(x̄), there exist �1, . . . , �n such that d =
∑n

j=1 �jr
j and 0 ≤ �j ≤ �̄j, j = 1, . . . , n.

Note that, for i = 1, . . . , t, (a1 − ai)d =
∑n

j=1 �j(a1 − ai)r
j ≥ 0. Thus  B(d) = a1d.

We will show that, for every � <  B(d), the set B(�) defined as in (7) contains the point
(

x̄
1

)

in its interior. By Theorem 4, this will imply �ℓ(d) ≥  B(d), and thus �ℓ(d) =  B(d).
Let � =  B(d)− � for some � > 0. Then B(�) is the set of x ∈ ℝ

n+1 satisfying

a1(x− f) − �xn+1 ≤ 1,
ai(x− f) + (a1 − ai)dxn+1 − �xn+1 ≤ 1, i = 2, . . . , t.

Substituting
(

x̄
1

)

in the first inequality, we obtain a1(x̄− f)− � = 1− � < 1. Substituting
in the ith inequality, i = 2, . . . , n+ 1, we obtain

ai(x̄− f) + (a1 − ai)d− � =

n
∑

j=1

�̄jair
j +

n
∑

j=1

�j(a1 − ai)r
j − �

=

n
∑

j=1

�̄j −
n
∑

j=1

�̄j(1− air
j) +

n
∑

j=1

�j(1− air
j)− �

= 1−
n
∑

j=1

(�̄j − �j)(1− air
j)− �

≤ 1− � < 1

where the equality in the second line follows from air
j = 1 for j = 1, . . . , n, the equality on

the third line follows from
∑n

j=1 �̄j = 1, while the first inequality on the last line follows from

�j ≤ �̄j and air
j ≤ 1.
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In light of Theorem 7, we are interested in cases where for every r ∈ ℝ
n there exists

wr ∈ ℤ
n such that r + wr ∈ R, since in this case �ℓ is the unique minimal lifting.

Dey and Wolsey [11] studied the case n = 2. In this case maximal lattice free polytopes
are either triangles or quadrilaterals [16]. Dey and Wolsey show that the above property
holds if and only if B is a triangle containing at least four integral points (see Figure 4),
while it does not hold if B is a triangle containing exactly three integral points or if B is a
quadrilateral. They also show that, when B is a triangle with at least four integral points,
( B , �ℓ) is extreme for (1). This fact also follows from Remark 2 and from the fact that  B
is extreme for (3) whenever B is a maximal lattice-free triangle [10].

Figure 4: Lattice free triangles giving inequalities with a unique minimal lifting. Region
R+ {f} is shaded.

We next show that the above property holds when B is the n-dimensional simplex
conv{0, ne1, . . . , nen}, where ei denotes the ith unit vector. We assume that f is in the
interior of B. The picture on the left in Figure 4 shows the case n = 2.
Note that B = {x ∈ ℝ

n ∣
∑n

i=1 xi ≤ n, xi ≥ 0, i = 1, . . . , n}. The point e − ei, where e
denotes the vector of all ones, is the unique integral point in the relative interior of the facet
of B defined by xi ≥ 0 and e is the unique integral point in the relative interior of the facet
of B defined by

∑n
i=1 xi ≤ n. Thus ℐ = {e, e− e1, . . . , e− en}.

Let d1, . . . , dn+1 be defined as follows: di = ei −
1
n
f , i = 1, . . . , n and dn+1 = − 1

n
f .

Then R(e) = {
∑n

j=1 �jd
j ∣ 0 ≤ �i ≤ 1, i = 1, . . . , n} and R(e − ei) = {

∑n+1
j=1 �jd

j ∣ 0 ≤ �k ≤

1, k = 1, . . . , n + 1, �i = 0}. Therefore R = {
∑n+1

j=1 �jd
j ∣ 0 ≤ �i ≤ 1, i = 1, . . . , n + 1, �i =

0 for some i, 1 ≤ i ≤ n+ 1}

Lemma 11. Let B = conv{0, ne1, . . . , nen}. For every r ∈ ℝ
n, there exists w ∈ ℤ

n such that
r + w ∈ R.

Proof. Note that, for 1 ≤ i, j ≤ n+ 1, di − dj ∈ ℤ
n.

Let Ci = cone{dj ∣ j ∕= i, 1 ≤ j ≤ n + 1}, i = 1, . . . , n + 1. Note that ∪n+1
i=1 Ci = ℝ

n and
Ci ∩ Ck = cone{dj ∣ j ∕= i, k, 1 ≤ j ≤ n+ 1}. Furthermore, −di ∈ Ci for i = 1, . . . , n+ 1.

Claim: Let r ∈ ℝ
n and let i such that r ∈ Ci. There exists a unique � ∈ ℝ

n+1 such that
r =

∑n+1
j=1 �jd

j and �i = 0. Furthermore, � is nonnegative and �j ≤ �′
j for every nonnegative

�′ ∈ ℝ
n+1 such that r =

∑n+1
j=1 �

′
jd
j .
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We prove the claim. Since Ci is generated by n linearly independent vectors, r can be
uniquely written as r =

∑n+1
j=1 �jd

j such that �i = 0, and � must be nonnegative since r ∈ Ci.

Given a nonnegative �′ ∈ ℝ
n+1 such that r =

∑n+1
j=1 �

′
jd
j distinct from �, then �′

i > 0. Hence

−di = (�′
i)
−1

n+1
∑

j=1
j ∕=i

(�′
j − �j)d

j

thus �′
j − �j ≥ 0 since −di ∈ Ci, hence by the above argument −di can be uniquely written

as a linear combination of the extreme rays of Ci, and such combination is nonnegative. This
proves the claim.

Let us now consider r ∈ ℝ
n. Let i be such that r ∈ Ci, 1 ≤ i ≤ n + 1. Let � ∈ ℝ

n+1

such that r =
∑n+1

j=1 �jd
j and �i = 0. By the above claim � is nonnegative. Let �̄ =

maxj=1,...,n+1 �j . If �̄ ≤ 1, then r ∈ R. If not, �k = �̄ > 1 for some 1 ≤ k ≤ n+ 1.
Let r′ = r + (ei − ek) = r + (di − dk). Then r′ =

∑

j ∕=i,k �jd
j + di + (�k − 1)dk. Let

ℎ be such that r′ ∈ Cℎ, 1 ≤ ℎ ≤ n + 1 and let �′ ∈ ℝ
n+1 be the unique vector such that

r′ =
∑n+1

j=1 �
′
jd
j and �′

ℎ = 0. By the previous claim, �′ satisfies the following properties

▪ r′ − r ∈ ℤ
n and �′

ℎ = 0,
▪ 0 ≤ �′

j ≤ �j , j ∕= i, 1 ≤ j ≤ n+ 1,
▪ 0 ≤ �′

i ≤ 1, 0 ≤ �′
k ≤ �k − 1.

Thus, either maxj=1,...,n+1 �
′
j ≤ �̄ − 1, or the number of indices j such that �′

j = �̄ is
smaller than the number of indices j such that �j = �̄. This implies the statement of the
lemma.

It can be shown that, in this case, R is a polytope with
(

n+1
2

)

pairs of parallel facets, and
that R has volume 1. Thus, by Lemma 11, all possible translations of R by integral vectors
form a tiling of ℝn. Therefore for every d ∈ ℝ

n, there exists wd ∈ ℤ
n such that d+ wd ∈ R.

By Theorem 7, the function �ℓ defined by �ℓ(d) =  B(d + wd) is the unique minimal lifting
of  B.

Whenever B is a maximal lattice-free simplex,  B is extreme for (3). Indeed, if v1, . . . , vn+1

are the vertices of B and we define rj = vj − f , j = 1, . . . , n+1,  B is extreme for (3) if and
only if

∑n+1
j=1  B(r

j)sj ≥ 1 is extreme for the convex hull of the set Rf (r
1, . . . , rn+1) defined

as the set of all s ∈ ℝ
n+1 such that f+

∑n+1
j=1 r

jsj ∈ ℤ
n and s ≥ 0 (see [13]). In this case, since

each facet of B contains an integral point, for i = 1, . . . , n + 1 there exists si ∈ ℝ
n+1 such

that sij > 0 for all j ∕= i, 1 ≤ j ≤ n + 1, sii = 0 and
∑n+1

j=1 s
i
jr
j ∈ ℤ

n. Hence s1, . . . , sn+1 are

linearly independent points of Rf (r
1, . . . , rn+1), and

∑n+1
j=1  B(r

j)sij = 1 for i = 1, . . . , n+ 1.

This shows that
∑n+1

j=1  B(r
j)sj ≥ 1 defines a facet of conv(Rf (r

1, . . . , rn+1)), and thus it is

extreme for conv(Rf (r
1, . . . , rn+1)). Therefore  B is extreme for (3).

The above statement and Remark 2 imply the following.

Theorem 12. If B = conv(0, ne1, . . . , nen), ( B , �ℓ) is extreme for (1) with S = ℤ
n.
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By standard arguments, the above theorem holds up to unimodular transformations and
integer translations of the set B. Namely, given any unimodular n × n-matrix U (i.e. an
integral matrix with determinant one) and any vector v ∈ ℤ

n such that f is in the interior
of the set B′ = conv(v, n(Ue1) + v, . . . , n(Uen) + v), then ( B′ , �ℓ) is extreme for (1) with
S = ℤ

n. Note that, given a vector f /∈ ℤ
n, one may always find an appropriate unimodular

matrix U and integral vector v so that f is in the interior of the corresponding set B′. This
type of lifted inequalities have been used in computational experiments by Espinoza [14] and
recently by Balas and Qualizza [4], and their results seem to indicate that such cuts might
be useful in practice.

3.3 Simple cones

We consider the case were S = ℤ
n−1 × ℤ+ and the maximal S-free convex set B is the

translation of a simple cone. That is, B has a unique vertex v, and B − v is a simple cone.
Recall that a polyhedral cone in ℝ

n is simple if it is generated by n linearly independent
vectors, and therefore it has n facets. This case extends the wedge inequalities of Section 3.1.

Let B = {x ∈ ℝ
n ∣ ai(x − f) ≤ 1, i = 1 . . . , n}. By Theorem 3, rec(B) ∩ rec(conv(S))

is contained in the lineality space of B, which is empty. Therefore B ∩ conv(S) is bounded.
Therefore the polytope B∩(ℝn−1×{0}) is an an (n−1)-dimensional simplex P . Let v1, . . . , vn

be the vertices of P , and let rj = vj − f , j = 1, . . . , n. By symmetry, we may assume that
air

j = 1 for 1 ≤ i, j ≤ n, i ∕= j, and air
i < 1. Let r̂ = v − f . Note that, for i = 1, . . . , n,

air̂ = 1.
Let x̄ be a point of S in the relative interior of one of the facets of B, say the facet defined

by aℎ(x − f) ≤ 1. Then x̄ can be uniquely written as x̄ = f + �̄r̂ +
∑n

j=1 �̄jr
j such that

0 ≤ �̄j , j = 1, . . . , n, and �̄ℎ = 0. Let R(x̄) = {
∑n

j=1 �jr
j ∣ 0 ≤ �j ≤ �̄j , j = 1, . . . , n}+ ⟨r̂⟩.

Let us denote by ℐ the set of all points x̄ in S such that x̄ is contained in the relative interior
of some facet of B. Let R = ∪x̄∈ℐR(x̄).

Lemma 13. For every d ∈ R, �ℓ(d) =  B(d).

Proof. We only need to show that, given x̄ ∈ ℐ and d ∈ R(x̄), �ℓ(d) =  B(d). By symmetry
we may assume that x̄ is in the relative interior of the facet defined by a1(x − f) ≤ 1. Let
�̄ ∈ ℝ and �̄2, . . . , �̄n nonnegative such that x̄ = f + �̄r̂ +

∑n
j=2 �̄jr

j. Since d ∈ R(x̄), there

exist � ∈ ℝ and �1, . . . , �n such that d = �r̂ +
∑n

j=2 �jr
j and 0 ≤ �j ≤ �̄j , j = 2, . . . , n.

Note that, for i = 2, . . . , t, (a1 − ai)d = �(a1 − ai)r̂ +
∑n

j=2 �j(a1 − ai)r
j ≥ 0, since

(a1 − ai)r̂ = 0 and (a1 − ai)r
j ≥ 0. Thus  B(d) = a1d.

We will show that, for every � <  B(d), the set B(�) defined in (7) contains the point
(

x̄
1

)

in its interior. By Theorem 4, this will imply �ℓ(d) ≥  B(d), and thus �ℓ(d) =  B(d).
Let � =  B(d)− � for some � > 0. Then B(�) is the set of x ∈ ℝ

n+1 satisfying

a1(x− f) − �xn+1 ≤ 1,
ai(x− f) + (a1 − ai)dxn+1 − �xn+1 ≤ 1 i = 2, . . . , t.

Substituting
(

x̄
1

)

in the first inequality, we obtain a1(x̄− f)− � = 1− � < 1. Substituting
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in the ith inequality, i = 2, . . . , n+ 1, we obtain

ai(x̄− f) + (a1 − ai)d− � = �̄air̂ +

n
∑

j=2

�̄jair
j + �(a1 − ai)r̂ +

n
∑

j=2

�j(a1 − ai)r
j − �

= �̄a1r̂ +
n
∑

j=2

�̄ja1r
j − �̄i(a1 − ai)r

i + �i(a1 − ai)r
i − �

= a1(x̄− f)− (�̄i − �i)(a1 − ai)r
i − �

≤ 1− � < 1

where the equality in the second line follows from air̂ = a1r̂ and a1r
j = air

j for all 2 ≤ j ≤ n
such that i ∕= j, while the first inequality on the last line follows from �i ≤ �̄i and air

i < 1 =
a1r

i.

Note that P is an n − 1-dimensional simplex in ℝ
n−1 × {0} and P does not contain any

point of ℤn−1 × {0} in its interior. Suppose that P is maximal lattice free in ℝ
n−1 × {0}. In

this case we can apply the results of Section 3.2 to identify cases where �ℓ is a lifting of  B .
Let f̄ be the intersection of the line f + ⟨r̂⟩ with ℝ

n−1 × {0}, and let r̄j = vj − f̄ . For
every point x̄ ∈ ℤ

n−1 × {0} in the relative interior of one of the facets of P , say the facet
defined by aℎ(x− f) ≤ 1, x̄ can be uniquely written as x̄ = f̄ +

∑n
j=1 �̄j r̄

j such that 0 ≤ �̄j ,

j = 1, . . . , n, and �̄ℎ = 0. Let R̄(x̄) = {
∑n

j=1 �j r̄
j ∣ 0 ≤ �j ≤ �̄j , j = 1, . . . , n}. Note that

R̄(x̄) = R(x̄) ∩ (ℝn−1 × {0}). Let ℐ̄ be the set of all points in x̄ ∈ ℤ
n−1 × {0} in the relative

interior of some of the facets of P . We define R̄ = ∪x̄∈ℐ̄R̄(x̄). Then R ⊇ R̄ + ⟨r̂⟩. Hence, if
for every r ∈ ℝ

n−1 ×{0} there exists w ∈ ℤ
n−1 × {0} such that r+w ∈ R̄, it also holds that

for every r ∈ ℝ
n there exists wr ∈ ℤ

n−1 × {0} such that r + wr ∈ R.
Since ℝn−1×{0} is the lineality space of conv(S), Theorem 7 implies that �ℓ is the unique

minimal lifting of  B , and �ℓ(r) =  (r + wr).
The above property holds, for example, when n = 2 and P is an interval of length one

(as seen in Section 3.1), when n = 3 and P is a maximal lattice-free triangle containing at
least four points in ℤ

2 × {0}, or for general n when P is a unimodular transformation of
conv(0, (n − 1)e1, . . . , (n− 1)en−1).
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[5] A. Basu, M. Conforti, G. Cornuéjols, G. Zambelli, A counterexample to a conjecture
of Gomory and Johnson, manuscript (November 2008), to appear in Mathematical Pro-
gramming.
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