
London Taught Course Centre

2018 examination

Graph Theory

Answers

1 (a) This is standard, and not very hard as long as you use the equivalent definition of NP

as the class of languages for which there exists a polynomial time verifier (it is still

not very hard with the original definition, but the proof is a bit more cumbersome to

phrase).

Let L be a language in NP, and let M be a Turing Machine which verifies L: that

is, there is a polynomial p with the following property. For each word x of L there is

a word y of length at most p(|x|) such that (x, y) is accepted by M in time at most

p(|x|+ |y|), and for each word x 6∈ L there is no word y such that M accepts (x, y).

We let M ′ be a Turing Machine which does the following. On input x, it computes

p(x) and iterates through all words y of length at most p(x). For each such word, it

computes p(|x| + |y|) and simulates the running of M on input (x, y) for p(|x| + |y|)
time steps or until halting, whichever comes first. If the simulated M at some stage

accepts, then M ′ accepts as well, otherwise M ′ rejects.

It is clear from the definition that M ′ decides L. It is only necessary to check that

there is k such that the running time is at most exponential in |x|k. The number

of strings y over which M ′ iterates is at most 3p(|x|), and to check each string entails

a polynomial in |x| amount of time since M ′ can simulate M efficiently, proving the

result. (For this purpose efficiency is not really necessary; the most naive simulation

will be fast enough)

In terms of the original definition, one should iterate over all the possibilities for

nondeterministic branching; this is also easily enough checked to be a set of at most

exponential in a power of |x| size since the nondeterministic Turing Machine runs for at

most polynomial in |x| time and since the maximum degree of branching is independent

of |x| (it depends on the number of states).

(b) No, you cannot; or at least, if you can it should be published not submitted as an

exam answer (and you should find this out using Google very easily). It’s not known

(and many complexity theorists do not believe it is true) that EXP = NEXP. The

st−CONNECTIVITY algorithm which is at the heart of Savitch’s theorem is capable

of deciding connectivity of s and t using only polylogarithmic space, but its running

time is still at least linear in n (as any connectivity algorithm for general graphs

rather trivially must be: you cannot decide connectivity without reading the entire

input, otherwise you may fail to see a connecting path). You can formalise deciding

a language L in NEXP in terms of asking for a path from the initial state to the

accepting state in the tape/state graph of a nondeterministic Turing Machine which

witnesses L ∈ NEXP. This graph has a doubly exponential number of vertices, so

that a polylog-space connectivity algorithm can decide connectivity using exponential

space. But it still takes doubly exponential time, unless you find a way to make use

of the (rather special!) structure of the tape/state graph. No-one managed to do such

a thing yet, and it’s not clear that it should even be possible.

So you can modify the proof of Savitch’s theorem to show that EXPSPACE = NEXPSPACE

(with the obvious definitions) but, unless you just published a breakthrough paper in

computational complexity, you cannot do it for the time versions asked in the question.

2 (a) This is a modification of a theorem given in the lectures, and the following solution is

similarly a (very small) modification of the proof.

To begin with, observe that any 2-degenerate graph is 3-colourable. It follows that

if H is not 3-colourable, then removing successively vertices of degree at most 2 (in

the current graph) until no more exist we find H ′ ⊆ H with minimum degree at least

three. We can construct a four-vertex path in H ′ greedily.

We can assume α ≤ 1, trivially. We choose ε = α/100 (which is easily small enough

for the proof; there is no good reason to try to optimise constants), and we set K =

blog1+ε 2/αc+ 1. We choose

C(α) = 100Kα−K−10 .

If n ≤ C(α), we simply colour each vertex of G with a different colour. So suppose

n > C(α). We begin by taking a maximum cut (X, Y) of G; that is, Y = V (G) \ X
where X is chosen to maximise the number of edges between X and Y .

Without loss of generality, we can assume χ(G[X]) ≥ χ(G[Y]). So it is enough to show

χ(G[X]) ≤ C/2. Observe that for each x ∈ X we have d(x;Y) ≥ αn/2 (otherwise we

could move x to Y and increase the number of edges crossing). Here d(x;Y) means

the number of edges from x to Y .

Given X ′ ⊆ X and Y ′ ⊆ Y , and a partition Y ′ = Y1 ∪ Y2 ∪ Y3, for i = 1, 2, 3 let

Xi :=
{
x ∈ X ′ : x 6∈ Xj for j < i and

d(x;Yi)

|Yi|
≥ (1 + ε)

d(x;Y ′)

|Y ′|

}
.

Let X4 := X ′ \ (X1 ∪ X2 ∪ X3). If |Yi| ≥ α
10
|Y ′| for each i = 1, 2, 3, and G[X4] is

4-colourable then we have an ε-booster for (X ′, Y ′).

We generate partitions X and Y of X and Y respectively, together with a relation ‘in

correspondence’, as follows. We begin with {X}, {Y } and we say that X and Y are in

correspondence. We now iteratively do the following. Pick X ′ ∈ X and Y ′ ∈ Y which

are in correspondence. If there is a ε-booster Y1, Y2, Y3 for (X ′, Y ′), we replace Y ′ with

Y1, Y2, Y3 and we replace X ′ with X1, X2, X3, X4 (if some of these sets are empty we

simply do not add them); we say Xi and Yi are in correspondence for each i = 1, 2, 3.

So X4 is not in correspondence with any set of the new Y . We repeat this procedure

until any remaining (X ′, Y ′) which are in correspondence do not have ε-boosters.

There is a natural way to draw a tree representing this process: we start with the root

labelled X, then add children labelled with the sets into which X is split by finding

an ε-booster for (X, Y), and then to each of those, children for their ε-boosters, and

so on.

We claim that when this process terminates we have X with at most 4K parts. Indeed,

suppose that we have in the above tree a path from the root with K+1 vertices. Then

we have Y = Y ′0 , Y
′
1 , . . . , Y

′
K , where each Y ′i is obtained by finding an ε-booster in Y ′i−1.

Let x be a vertex in the corresponding set of X (the end of the path). Then we have

d(x;Y ′K)

|Y ′K |
≥ (1 + ε)

d(x;Y ′K−1)

|Y ′K−1|
≥ · · · ≥ (1 + ε)K

d(x;Y ′0)

|Y ′0 |
≥ (1 + ε)K

2

α
> 1 .

But x cannot have more than |Y ′K | neighbours in Y ′K ; this is a contradiction. So our

tree, in which each node has at most four children, also has depth at most K; it has

at most 4K leaves, and the leaves are precisely the elements of X .

This also justifies that any set Y ′ ∈ Y has size at least
(
α
10

)K+1
n; we start with

|Y | ≥ α
2
n, and by definition each time we find a booster our sets decrease in size by at

most a α
10

factor.

At this point we do something slightly different to the proof from the notes.

Consider a set X ′ in the final X . If it does not have a corresponding Y ′, it is 4-

colourable by construction. If it does have a corresponding Y ′, then (X ′, Y ′) does not

have any ε-booster.

Suppose that G[X ′] is not 4-colourable. Then (by the observation above) we can find a

four-vertex path af, fg, gb in G[X ′]. Each of a, b has at least α|Y ′|/2 neighbours in Y ′

by construction. Let Z1 be a set of α|Y ′|/4 vertices in Y ′ which are neighbours of a; and

let Z2 be a disjoint set of α|Y ′|/4 neighbours of b in Y ′. Let Z3 := Y ′ \ (Z1∪Z2). Note

that each of Z1, Z2, Z3 contains more than α
10
|Y ′| vertices. Since there is no booster

for (X ′, Y ′), in particular this partition of Y ′ does not give an ε-booster. So in the

corresponding partition X ′1, X
′
2, X

′
3, X

′
4 of X ′ the graph G[X ′4] is not 4-colourable.

Since G[X ′4] is not 4-colourable, it contains at least five vertices; we can take c to be

some vertex of X ′4 other than a, b, f, g. Now, if c has neighbours d in Z1 and e ∈ Z2,

we get a copy of C7 on vertices a, d, c, e, b, g, f . But suppose c has no neighbours in

Z1. Then we have d(c;Z2 ∪ Z3) = d(c;Y ′), and so

d(c;Z2 ∪ Z3)|Y ′|
|Z2 ∪ Z3|d(c;Y ′)

=
|Z2 ∪ Z3|
|Y ′|

≥ 1
1−α/10 > 1 + ε ,

and by averaging for at least one of i = 2, 3 we have

d(c;Zi)|Y ′|
|Zi|d(c;Y ′)

> 1 + ε ,

which is a contradiction to the assumption c ∈ X ′4. The same calculation gives a

contradiction if c has no neighbours in Z2; again we reached a contradiction.

In conclusion, if in the final X we have a set X ′ in correspondence with some Y ′ then

X ′ is 4-colourable. So we can colour G[X] using at most 4 · 4K colours. By the same

argument we can colour Y with at most 4 · 4K colours. Putting these together, we can

colour G with at most 4K+2 < C(α) colours, as desired.

It would be enough for a student to point out how to modify the proof. We use the same

decomposition approach, but allow the non-corresponding set to be 4-colourable rather

than independent. We claim that a final set X ′ in correspondence with Y ′ is also 4-

colourable. If not, we can find in it a path on four vertices (following the hint) a, f, g, b.

As in the notes, we generate a candidate ε-booster using the neighbourhoods of a and

b in Y ′; because we do not obtain an ε-booster we conclude that the corresponding X ′4
is not 4-colourable. We have the same case distinction as in the notes; because X ′4 has

at least five vertices we can choose c not equal to a, b, f, g in X ′4 and in either case we

obtain C7.

It is also enough for a student to provide a clear reference to the theorem in the

literature, together with an explanation of how the literature result applies. The

reference is to the (so far unpublished, but on arXiv) paper ‘Coloring dense graphs via

VC-dimension’ by Tomasz Luczak and Stéphan Thomassé (and the same is true for the

next question). The result is generalised in Allen, Böttcher, Griffiths, Kohayakawa,

Morris ‘The chromatic thresholds of graphs’ and this could also be cited (but really it

should not be; the Luczak-Thomassé paper has priority on these two results).

(b) This is rather harder. Again it is proved using a modification of the proof in notes,

but the modification is more subtle.

We can assume α ≤ 1, trivially. We choose ε = α4/10000 (which is easily small

enough for the proof; there is no good reason to try to optimise constants), and we set

K = blog1+ε 2/αc+ 1. We choose

C(α) = 100Kα−K−10 .

If n ≤ C(α), we simply colour each vertex of G with a different colour. So suppose

n > C(α). We begin by taking a maximum cut (X, Y) of G; that is, Y = V (G) \ X
where X is chosen to maximise the number of edges between X and Y .

Without loss of generality, we can assume χ(G[X]) ≥ χ(G[Y]). So it is enough to show

χ(G[X]) ≤ C/2. Observe that for each x ∈ X we have d(x;Y) ≥ αn/2 (otherwise we

could move x to Y and increase the number of edges crossing). Here d(x;Y) means

the number of edges from x to Y .

Given X ′ ⊆ X and Y ′ ⊆ Y , and a partition Y ′ = Y1∪Y2∪Y3∪Y4∪Y5, for i = 1, 2, 3, 4, 5

let

Xi :=
{
x ∈ X ′ : x 6∈ Xj for j < i and

d(x;Yi)

|Yi|
≥ (1 + ε)

d(x;Y ′)

|Y ′|

}
.

Let X6 := X ′ \ (X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5). If |Yi| ≥ α2

100
|Y ′| for each i = 1, 2, 3, and

G[X6] is 6-colourable then we have an ε-booster for (X ′, Y ′).

We generate partitions X and Y of X and Y respectively, together with a relation ‘in

correspondence’, as follows. We begin with {X}, {Y } and we say that X and Y are in

correspondence. We now iteratively do the following. Pick X ′ ∈ X and Y ′ ∈ Y which

are in correspondence. If there is a ε-booster Y1, Y2, Y3, Y4, Y5 for (X ′, Y ′), we replace

Y ′ with Y1, Y2, Y3, Y4, Y5 and we replace X ′ with X1, X2, X3, X4, X5, X6 (if some of these

sets are empty we simply do not add them); we say Xi and Yi are in correspondence

for each i = 1, 2, 3, 4, 5. So X6 is not in correspondence with any set of the new Y . We

repeat this procedure until any remaining (X ′, Y ′) which are in correspondence do not

have ε-boosters.

There is a natural way to draw a tree representing this process: we start with the root

labelled X, then add children labelled with the sets into which X is split by finding

an ε-booster for (X, Y), and then to each of those, children for their ε-boosters, and

so on.

We claim that when this process terminates we have X with at most 6K parts. Indeed,

suppose that we have in the above tree a path from the root with K+1 vertices. Then

we have Y = Y ′0 , Y
′
1 , . . . , Y

′
K , where each Y ′i is obtained by finding an ε-booster in Y ′i−1.

Let x be a vertex in the corresponding set of X (the end of the path). Then we have

d(x;Y ′K)

|Y ′K |
≥ (1 + ε)

d(x;Y ′K−1)

|Y ′K−1|
≥ · · · ≥ (1 + ε)K

d(x;Y ′0)

|Y ′0 |
≥ (1 + ε)K

2

α
> 1 .

But x cannot have more than |Y ′K | neighbours in Y ′K ; this is a contradiction. So our

tree, in which each node has at most six children, also has depth at most K; it has at

most 6K leaves, and the leaves are precisely the elements of X .

This also justifies that any set Y ′ ∈ Y has size at least
(
α2

100

)K+1
n; we start with

|Y | ≥ α
2
n, and by definition each time we find a booster our sets decrease in size by at

most a α2

100
factor.

Consider a set X ′ in the final X . If it does not have a corresponding Y ′, then G[X ′]

is 6-colourable. If it does have a corresponding Y ′, then (X ′, Y ′) does not have any

ε-booster; we will now show that in this case also G[X ′] is 6-colourable.

To begin with, if G[X ′] is not 4-colourable it contains an edge ab. As before we can take

two disjoint subsets Z1, Z2 of the neighbourhoods in Y ′ of a and b respectively, each of

size α|Y ′|/5. Choose arbitrarily two further sets Z3, Z4 of Y ′ such that Z1, Z2, Z3, Z4

are disjoint, and set Z5 to be whatever is left of Y ′. These sets are all large enough

to form an ε-booster; so the corresponding X6 is not 6-colourable. In particular it

contains an edge cd which is disjoint from ab.

Now, by essentially the same calculation as in the previous proof, c and d each have at

least α|Zi|/5 neighbours in Zi for each i = 1, 2. We can thus find four pairwise disjoint

vertex sets Y1, Y2, Y3, Y4 such that Y1, Y2 ⊆ Z1 and Y3, Y4 ⊆ Z2, with all vertices of Y1
and Y3 adjacent to c and all vertices of Y2 and Y4 adjacent to d.

Finally, let Y5 = Y ′ \ (Y1 ∪ Y2 ∪ Y3 ∪ Y4). Again, these sets are big enough to form

a candidate ε-booster; so the corresponding X6 is not 6-colourable. In particular, it

contains an edge ef which is disjoint from ab and from cd; and (by the same calculation

again) both e and f have at least two neighbours in each of Z1, Z2, Z3, Z4. We choose

one vertex fro each set adjacent to e and a different one from each set adjacent to f ;

this gives a copy of F in G, a contradiction.

So each of the at most 6K sets in the final X is 6-colourable; we conclude that G is

12 · 6k-colourable as desired.

Again it would be enough to sketch the modification, or to provide a clear reference

to the theorem in the literature.

(c) There are a couple of routes to this. The easier is as follows.

Let H be a fixed graph which has girth at least 9 and chromatic number at least

C; such graphs exist by a result of Erdős covered in the lectures. Without loss of

generality we may assume δ(H) ≥ 1 (because we can remove isolated vertices without

affecting either of our desired properties).

Let G be obtained by blowing up each vertex of H; that means replacing each vertex

with an independent set, and each edge with a complete bipartite graph between the

corresponding independent sets. We blow up each vertex to size n/v(H), rounded up

or down to ensure v(G) = n. Now G contains no odd cycle on less than 9 vertices, so

in particular it cannot contain F ; and since H is contained in G we have χ(G) ≥ C.

If n is large enough, then f(n) < n/v(H) by definition, and so δ(G) ≥ f(n).

Another way (which works in this specific case) is to take a random graph H on m

vertices with edge probability p = m−0.99. The expected number of copies of F in H

is at most m8 · p15 which tends (rather fast) to zero as m → ∞, so with probability

tending to one H does not contain any copy of F . The probability that H has any

independent set on m
logm

vertices is at most

mm/ logm(1− p)−m2/ log2m ≤ 2me−pm
2/ log2m = 2me−m

1.01/ log2m ,

which also tends to zero as m tends to infinity, so with probability tending to one H

has no independent set on m/ logm vertices and hence has chromatic number at least

logm.

We choose m such that logm ≥ C, and n large enough so that n > (m+ 1)(f(n) + 1).

We can construct G as follows. Take first a copy of H. Now add m independent sets

X1, . . . , Xm of size f(n), and for each i put each vertex ofXi adjacent to the ith vertex

of H. Finally add n −m(f(n) + 1) > f(n) vertices Y adjacent to all vertices in each

Xi.

By construction G has n vertices and minimum degree at least f(n), and it contains H

which has chromatic number C. It remains only to check that G does not contain F .

To begin with, observe that we cannot have any two side vertices of F in Y ; because

these two vertices are adjacent to distinct endpoints of some middle edge, both of

whose end-vertices can only be in
⋃
iXi. But that set is independent.

It follows that no middle vertex can lie in
⋃
iXi, since at most one of the four side

vertices to which it is adjacent can then be in the copy of H, and we would have three

side vertices in Y . But then also no middle vertex lies in Y , since then the adjacent

middle vertex is in
⋃
iXi. So all middle vertices lie in the copy of H. Now only vertices

in the copy of H have more than one neighbour in the copy of H: so all side vertices

must also lie in H. But H is F -free.

