
LTCC Course: Graph Theory 2024/25

Solutions to Exercises 1

Exercise 1.
The case left open is: G is a ∆-regular graph, for some ∆ ≥ 3, and G is 2-connected but not
3-connected.

Since G is not 3-connected, there is a pair {u, v} of vertices of V (G) whose removal discon-
nects G, i.e. V (G) splits up into pairwise disjoint non-empty sets X, Y and {u, v} where there are
no edges between X and Y . Let us assume that u has at least as many neighbours in X as in Y .
In particular, u does not have ∆− 1 neighbours in Y . If both u and v have ∆− 1 neighbours in X,
then both u and v have at most one neighbour in Y . Since G is 2-connected, both also have at
least one neighbour in Y . Let v′ be the neighbour of v in Y . Since v′ has degree ∆ ≥ 3, it has at
least one neighbour other than u and v. (It doesn’t have to be adjacent to u, but it could be!) This
other neighbour cannot be in X, as there are no edges between X and Y , so it is in Y . Hence Y
has size at least two. Now {u, v′} is a pair of vertices whose removal disconnects G into X ∪ {v}
and Y \ {v′}, which are non-empty disjoint sets with no edges between them. And v′ has just one
neighbour, v, in X.

This means we can assume from now on that our disconnecting pair {u, v} has the property
that at least one of u and v has fewer than ∆− 1 neighbours in X, and at least one has fewer than
∆− 1 neighbours in Y .

Now we define the graphs G1 = G[X ∪{u, v}] +uv and G2 = G[Y ∪{u, v}] +uv. The graph G1

has fewer than n vertices, since Y is non-empty. It has maximum degree at most ∆: although we
added an edge uv (which might or might not have been present already), both u and v have at
least one G-neighbour in Y which is no longer a neighbour in G1. And since at least one of u and v
has fewer than ∆− 1 neighbours in X, it follows that G1 cannot be K∆+1. Finally G1 is connected
(think about why!). So we can colour G1 with at most ∆ colours. Let c be a proper ∆-colouring.
All the same applies to G2 as well. Let c′ be a proper ∆-colouring of G2.

Now c(u) 6= c(v), and c′(u) 6= c′(v). So there is a permutation σ of {1, . . . ,∆} which maps c′(u)
to c(u) and c′(v) to c(v). Finally we colour G using the colouring c′′ defined by

c′′(z) = c(z) if z ∈ X c′′(z) = σ(c′(z)) if z ∈ Y , and c′′(z) = c(z) = σ(c′(z)) if z ∈ {u, v}.

This is a proper ∆-colouring of G (check!), and hence we are done.

Exercise 2.
For the first question we are asked to consider the case that |L(vi)| = 2 for each vertex vi. We
want to see if there exists an assignment ϕ(vi) for all vertices vi so that ϕ(vi) ∈ L(vi), and for all
edges vivi+1 we have ϕ(vi) 6= ϕ(vi+1).

First suppose that all lists are identical: L(vi) = {a, b} for all i. If we choose colour a for v1,
then we are forced to colour v2 with b, v3 with a, etc. If n is even, then we will colour vn with b,
and hence this way we have obtained a proper colouring. But if n is odd, then we will colour vn

1



with a and obtain a conflict since v1 is also coloured a. Exactly the same will happen if we start
colouring v1 with b. So we conclude that in this case we can find a proper assignment ϕ if and only
if n is even.

So now assume that not all lists are identical. Then there must be two adjacent vertices vi, vi+1

so that L(vi) 6= L(vi+1). Without loss of generality we can assume L(v1) 6= L(vn). In particular,
there must be a colour a ∈ L(v1) so that a /∈ L(vn). Now colour v1 with a and start colouring
v2, v3, . . . , vn in that order. Every time we need to colour a vertex vi, there is at most one colour
forbidden (the one given to vi−1). But since each vertex has a list with two colours, there is always
at least one colour from its list allowed. Once we have coloured everything, then by construction
for every edge of the type vivi+1 we have ϕ(vi) 6= ϕ(vi+1). But we also have ϕ(vn) 6= ϕ(v1), since
we coloured v1 with a colour that wasn’t in L(vn). So we found a proper assignment, no matter
the parity of n.

It is easy to see that none of χ(C2k), ch(C2k), . . . is equal to 1. Hence they all must be at least 2.
In the first part above we’ve shown that, for an even cycle, we have ch(C2k) ≤ 2. We can conclude
that ch(C2k) = 2.

Determining χ(C2k) is equivalent to list colouring in which all lists are the same. From the
arguments in (a) we obtain χ(C2k) ≤ 2, hence χ(C2k) = 2.

Because L(C2k) is again C2k for k ≥ 2, exactly the same arguments can be used to show the
values of the edge chromatic number and the edge list chromatic number.

Again from the first part above we see that χ(C2k−1), ch(C2k−1) are at least 3. On the other hand,
consider the case that the vertices of C2k−1 are given lists L(v) with at least three colours. It’s
easy to see that we can find sublists L′(v) ⊆ L(v) so that all L′(v) have two colours and are not
all the same. But then we can find colours from the lists L′(v) to give a proper colouring of the
vertices. This shows that with three (or more) colours, a colouring is always possible, proving
χ(C2k−1), ch(C2k−1) ≤ 3. It follows that χ(C2k−1) = ch(C2k−1) = 3.

Because L(C2k−1) is again C2k−1 for k ≥ 2, exactly the same arguments work for edge (list)
colouring.

Exercise 3.
This is actually not such a trivial question as it seems. First notice that χ′(K1) = 0 (since K1 has
no edges). So from now on assume n ≥ 2. Every vertex in Kn is incident with n − 1 edges. This
gives ∆(Kn) = n−1, and so by Vizing’s Theorem for simple graphs, χ′(Kn) = n−1 or χ′(Kn) = n.

Moreover, if we could colour the edges with n − 1 colours, then every vertex is incident with
one edge of every colour. So if we look at the edges that all have the same particular colour (say
colour 1), then each vertex is incident with exactly one of those edges, and hence the number of
vertices would be exactly twice the number of those edges. So n must be even in that case. In
particular this means that we can’t have χ′(Kn) = n− 1 if n ≥ 3 is odd. And hence we must have
χ′(Kn) = n if n ≥ 3 is odd.

At this point we know that χ′(Kn) ∈ {n − 1, n} if n is even. We will show that in fact for n
even, χ′(Kn) = n − 1. Hence we need to find a colouring of the edges of Kn with n − 1 colours
for n even.

If n = 2, this is trivial. So we assume that n ≥ 4 is even, and write n = 2k + 2 for some
k ≥ 1. Choose one special vertex v∗ and number the other vertices from −k to k. Hence
the vertices of G are: v∗, v−k, v−k+1, . . . , v−1, v0, v1, . . . , vk. Give colour 1 to each of the edges
v∗v0, v−1v1, v−2v2, . . . , v−kvk. For colour 2 we take the edges of colour 1, but add one to each of
the indices of the vi (v∗ doesn’t change), where we take k + 1 = −k. So the edge v∗v0 becomes
the edge v∗v1, edge v−1v1 becomes v0v2, edge v−2v2 becomes v−1v3, etc. So the edges coloured 2
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are v∗v1, v0v2, v−1v3, . . . , v−k+2vk, v−k+1v−k. You should check for yourself that these edges are
disjoint from those coloured 1. Now for colour 3 we add one to each of the indices of the edges
with colour 2 (always replacing k + 1 by −k), and continue to do this for all colours up to 2k + 1.
A little bit of checking should show that this is indeed an edge colouring with 2k + 1 = n − 1
colours. (For this checking, it may be useful to draw a picture of the graph in which the vertices
v−k, . . . , v−1v0, v1, . . . , vk are placed around a circle, with the vertex v∗ in the centre of that circle.)

This shows χ′(K1) = 0, χ′(Kn) = n− 1 if n is even, and χ′(Kn) = n if n ≥ 3 is odd.

Exercise 4.
If G is not connected, then it’s obvious that we can add an edge between two different components
so that the resulting graph is still planar and simple.

So assume G is connected, and let v1, . . . , vk, k ≥ 4 be the sequence of vertices encountered
when walking along the boundary of a face f of size more than three. We can add the edge v1v3 in
that face, so that the resulting graph is still planar. But we can’t be sure that the resulting graph is
still simple. That fails if there already was an edge v1v3 in G. But then that edge must go outside
the face f . And hence the edge v2v4 can’t be present in G (since v1, v2, v3, v4 is a path along a face
and both edges v1v3 and v2v4 must be on the same side of the path). So if v1v3 is already an edge
in G, then we can always add the edge v2v4 so that G is still planar and simple.

Exercise 5.
Let G be a graph with maximum degree ∆(G). We will prove that χ′(G) ≤ 3

2∆(G) by induction
on the number of edges of G. The result is trivially true if G has no edges.

So suppose G has at least one edge, and let µ(G) be the maximum edge multiplicity of G. Then
by Vizing’s Theorem we know χ′(G) ≤ ∆(G) + µ(G). So if µ(G) ≤ 1

2∆(G), then we are done
immediately.

So suppose µ(G) > 1
2∆(G). So there is a collection e1, . . . , eµ(G) of µ(G) edges, all with the

same pair of end-vertices u, v. Remove the edge eµ(G) from G, and call the resulting graph G′.

Then ∆(G′) ≤ ∆(G), and by induction we can edge colour G′ with 3
2∆(G′) ≤ 3

2∆(G) colours. We
can transfer this colouring to a colouring of the edges of G with at most 3

2∆(G) colours, except
that the edge eµ(G) is still uncoloured.

So let’s check how many colours are forbidden for eµ(G). This is certainly at most the number
of edges that are incident with one or both of u, v. One set of such edges consists of the µ(G)− 1
edges parallel to eµ(G). A second set of edges consists of the edges incident with u but not v.
Since u has degree at most ∆(G), and there are µ(G) edges in G from u to v, there are at most
∆(G)− µ(G) edges from u to some vertex other than v. Similarly, there are at most ∆(G)− µ(G)
edges incident with v and not u. So the total number of edges that are adjacent to eµ(G) is at most

µ(G)− 1 + 2(∆(G)− µ(G)) = 2∆(G)− µ(G)− 1 < 3
2∆(G)− 1 (since µ(G) > 1

2∆(G)). So we can
always find a colour from the 3

2∆(G) available colours to use for eµ(G), and that way colour all

edges of G with 3
2∆(G) colours.

Exercise 6.
For k ≥ 3, let

−→
Ck be the directed cycle on vertices V = {v1, . . . , vk} (so the arcs are −−→v1v2,

−−→v2v3, . . . ,
−−−−→vk−1vk and −−→vkv1). As we’ve done earlier, we use the convention that vk+1 = v1. For

a kernel, we need an independent set K ⊆ V so that for every vertex vi ∈ V \ K there is an
arc from vi to a vertex in K. But that means for each vi ∈ V \ K we must have vi+1 ∈ K. In
particular, for each two consecutive vertices vi, vi+1, at least one must be in K. On the other hand,
there cannot be two consecutive vertices in K, since K is independent.
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So we conclude that a kernel K of
−→
Ck contains exactly one vertex from each pair vi, vi+1, for

i = 1, . . . , k. But if k is odd, then we can’t make such a choice. And hence the set of directed

cycles
−→
Ck, k ≥ 3 odd, is an infinite family of directed graphs without a kernel.

Exercise 7.
Let v be a vertex of degree ∆(G). Say the edges incident with v are e1, . . . , e∆(G). Then all
the elements v, e1, . . . , e∆(G) need a different colour in a total colouring. Hence we have χ′′(G) ≥
∆(G) + 1.

By combining Proposition 1 and Vizing’s Theorem we get that χ′′(G) ≤ ∆(G) + deg(G) + 2.
We shall show something stronger, namely that χ′′(G) ≤ max{∆(G) + deg(G), 2 deg(G) + 1}.

We do this by induction on the number of vertices. If G has just one vertex, then χ′′(G) = 1 and
∆(G) = deg(G) = 0, so the bound is true in that case.

So consider the case that G has at least two vertices. Let v be a vertex in G with degree
at most deg(G). Remove v from G and call the resulting graph G′. Then we have ∆(G′) ≤
∆(G) and deg(G′) ≤ deg(G), and by induction we can find a total colouring of G′ using at most
max{∆(G′) + deg(G′), 2 deg(G′) + 1} ≤ max{∆(G) + deg(G), 2 deg(G) + 1} colours. And this gives
a proper total colouring of G, except that we still need to find colours for v and for the edges
incident with v.

Having coloured all vertices and edges from G′ with at most max{∆(G)+deg(G), 2 deg(G)+1}
colours, we now colour one by one the edges incident with v and then finally the vertex v. When
colouring an edge e = uv incident with v, we have to take into account the colours of: the vertex u
(that is one colour), the other edges incident with u (there are at most ∆(G)− 1 other edges), and
the other edges incident with v (there are at most deg(G) − 1 such edges). So there are at most
1 + (∆(G) − 1) + (deg(G) − 1) = ∆(G) + deg(G) − 1 forbidden colours for e. And since we have
more colours available, there is at least one free colour for e.

Now finally colour the vertex v. Forbidden colours for v are the colours of its neighbours and
the colours of the edges incident with v. Both sets have size at most deg(G), so there are at most
2 deg(G) forbidden colours for G. But since we have more colours available, there is at least one
free colour for v.

And then we have found a total colouring of G using at most max{∆(G)+deg(G), 2 deg(G)+1}
colours.

Let Cn be a cycle, n ≥ 3, and assume the vertices are v1, v2, . . . , vn and the edges are e1 = v1v2,
e2 = v2v3, . . . , en−1 = vn−1vn, and en = vnv1. In what follows, we will always use the convention
that vn+1 = v1.

By the first part above, we already know that χ′′(Cn) ≥ 3. If we want to total colour Cn
with three colours (say with 1, 2, 3), then we can assume we start with colouring v1 with 1, e2

with 2, and v2 with 3. Then we must choose 1 for e3, 2 for v3, etc. In other words, the sequence
v1, e2, v2, e3, v3, . . ., gets coloured 1, 2, 3, 1, 2, 3, . . .. Continuing this way, we can only make it into
a total colouring with three colours for the whole cycle if the final edge en gets colour 3. But this
only happens if n ≡ 0 (mod 3).

So if n 6≡ 0 (mod 3), then we need at least four colours. If n ≡ 0 (mod 2), then the sequence
of colours 1, 2, 3, 4, 1, 2, 3, 4, . . . for v1, e2, v2, e3, v3, . . . gives a proper total colouring.

I’ll leave it to you to find a colour scheme with four colours for the remaining cases.
All in all it follows that χ′′(Cn) = 3 if n ≡ 0 (mod 3), and χ′′(Cn) = 4 if n 6≡ 0 (mod 3).

Let Kn be the complete graph and n ≥ 3. Again by the first part we have that χ′′(Kn) ≥ n.
First consider the case that n is odd, so n+ 1 is even. In Question 2 we gave a colouring of the

edges of Kn+1 with n colours which involves a special vertex v∗. If we consider that edge colouring
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of Kn+1 and remove the vertex v∗, then we get an edge colouring of Kn with n colours and for
every colour i, there is exactly one vertex that is not incident with any edge of colour i. So for a
total colouring we can colour that vertex with i. The result will be a total colouring of Kn with n
colours for n odd.

We still have to do the case that n is even. It’s in fact not possible to have a proper total
colouring of Kn with n colours only. That is trivial for K2 and not so hard to check for K4. But
for larger n it’s quite tedious, so lets forget about that. If n is even, then n + 1 is odd. From the
above we know that we can find a total colouring of Kn+1 with n+ 1 colours. Removing one vertex
gives a total colouring of Kn with n+ 1 colours.

All in all it follows that χ′′(Kn) = n if n is odd, and χ′′(Kn) = n+ 1 if n is even.

Let G be a graph with maximum degree ∆(G). And suppose we are given the ∆(G) + 3 colours
C = {1, . . . ,∆(G) + 3}. Let ϕ be a colouring of the vertices of G with colours from C. (That is
easy since we can always colour vertices with at most ∆(G) + 1 colours.) For every e = uv in G,
set L(e) = C \ {ϕ(u), ϕ(v)}. Then we can give e any colour from L(e) and don’t cause a conflict
with the colours of u and v. So we only have to worry about conflicts with other edges.

But each edge e has a list L(e) of ∆(G) + 1 colours. We also know that χ(G) ≤ ∆(G) + 1
(Vizing’s Theorem in the notes). So if the List Colouring Conjecture is true, then we can find a
proper colouring of the edges of G using colours from each edge’s list. The combination of that
edge colouring and the vertex colouring ϕ is a proper total colouring of G.

Exercise 8.
So why does the approach presented in the proof of the Five Colour Theorem not work to prove the
Four Colour Conjecture? Briefly, if we try to repeat this proof with four colours rather than five,
we see that when we colour G− v, all four colours have to appear in the neighbourhood of v. If v
only has four neighbours, then the same Kempe chain method allows us to rearrange colours and
we can get a 4-colouring. If v has five neighbours, though, some colour (say 1) appears twice in the
neighbourhood of v. We can assume (see Exercise 4) that all faces in the plane drawing of G are
triangles, because otherwise we can add edges to G; that can only make it harder to colour. Then
the neighbours of v form a cycle, and the colours round that cycle are without loss of generality
1, 2, 1, 3, 4 in that order. We can still argue, as before, that in G24 there is a Kempe chain to the
vertices coloured 2 and 4 on the cycle; and similarly in G23. However, the chain G24 does not
separate the vertices of colours 1 and 3 on the cycle anymore; and the chain G23 does not separate
the vertices of colours 1 and 4 on the cycle.

By looking a bit more at the structure, you can find more complicated chains which allow you
to deal with most such cases. But it’s easy to miss a case that isn’t covered, which is what Kempe
did; by simply stating that this case can be handled similarly as another one. (This is a tale that
also teaches to proceed with caution in your own research: It is a good idea to always work out all
the details of all the cases and write these down somewhere.)

See http://web.stonehill.edu/compsci/lc/four-color/four-color.htm for more details.
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