
LTCC Course: Graph Theory 2024/25

Solutions to Exercises 3

Exercise 1.
(⇒) Suppose there exists a polynomial p(n) of degree d so that |f(n)| ≤ p(n) for all n ≥ 1. To
show that this means f(n) = O(nd) means that we must show that there exist constants C > 0 and
N ≥ 1 so that for all n ≥ N we have |f(n)| ≤ Cnd. Write p(n) = adn

d + ad−1n
d−1 + · · ·+ a1n+ a0.

Then we know ad 6= 0 (since p(n) is of degree d). And in fact we must have ad > 0, otherwise we
would have p(n) → −∞ as n → ∞, which is impossible if |f(n)| ≤ p(n) for all n ≥ 1. So we can
estimate for all n ≥ 1:

|f(n)| ≤ p(n) = adn
d + ad−1n

d−1 + · · ·+ a1n + a0

≤ adn
d + |ad−1|nd−1 + · · ·+ |a1|n + |a0|

≤ adn
d + |ad−1|nd + · · ·+ |a1|nd + |a0|nd

= (ad + |ad−1|+ · · ·+ |a1|+ |a0|)nd.

So by setting C = ad + |ad−1|+ · · ·+ |a0| and N = 1, we find |f(n)| ≤ Cnd for all n ≥ N .

(⇐) Suppose we have f(n) = O(nd), hence there exist constants C > 0 and N ≥ 1 so that
for all n ≥ N we have |f(n)| ≤ Cnd. So for n ≥ N the polynomial p(n) = Cnd would
work. But that polynomial might not work for n < N . To overcome that problem, set K =
max

{
0, |f(1)|, |f(2)|, . . . , |f(N − 1)|

}
. Then we know that |f(n)| ≤ K for all n < N . So by setting

p(n) = Cnd + K we are guaranteed |f(n)| ≤ p(n) for all n ≥ 1.

Exercise 2.
These questions are actually harder than they look. I’m not going to give full details of the Turing
Machine, but some important ideas that can be used. An important issue for both cases is how
to keep track of what part of the string has already been copied or doubled, and what part still
needs to be done. Although it seems tempting to use a “counter” to indicate what part needs to
be copied/doubled next, such a counter is actually quite hard to implement. So it’s probably much
more convenient to use a “marker” to indicate where the machine was. Such a marker can just be
a square on the tape with the blank symbol # on it.

Of course, that means the machine erases what was on that square before. So somehow the
machine needs to store that information. Since there are only two possible original symbols (0
or 1), this can be done using appropriate states. So there should be a set of states just for when
the machine is dealing with a 0, and a set of states for when the machine is dealing with 1.

So in the sketches of the two Turing Machines below, we divide the state space Q into three
parts: Q = Q′ ∪ Q0 ∪ Q1. Here Q′ contains some general states (including q0 and so), while Q0

and Q1 are sets of states the machine can be in while it is copying a 0 or a 1, respectively.

1

(A) Apart from the idea to use the blank symbol as a marker, another observation that makes life
a lot easier for this problem is to start working from the back of the string.

To understand the steps of the Turing Machine as given below, you should have an idea how the
tape is used. So here is how the tape would look like in the middle of the computation of making
a copy of the string 00010001011:

· · · |#|#|1|0|1|1|#|0|0|0|1|0|0 |#|1|0|1|1|#|#| · · · .

The underlined square is the starting square, while the black blob is the tape head. So the machine
has just erased the symbol on the square to the right of the tape head. That square was erased,
but since it contained originally the symbol 0, the machine entered in one of the states from Q0,
and the tape head started to move to the left.

The Turing Machine performs steps as follows, all the time using states from Q0:
– The tape head goes left to the beginning of the original string (recognised by the first blank it
encounters).
– Then it moves further left to the beginning of the already copied part (again, recognised by a
blank square).
– Once it encounters that blank square, it writes a 0, and starts moving right again.
– The tape head goes right till the beginning of the original string (recognised by a blank).
– Then further right till the marker of the bit it was working on (again a blank).
– Then it writes a 0 to replace the blank (so that square is back to the original state). It also
moves one square to the left, and the state becomes one of the non-specific states from Q′.
– If it now reads a blank symbol, the copying is done, and the machine halts. If it doesn’t read
a blank symbol, it replaces the current symbol by the blank symbol; and its state becomes a state
from Q0 or Q1, depending if the square contained a 0 or a 1.
– And now the process starts as from the first step above.

With the description above, it should be possible to design a full Turing Machine. You probably
need a few initial steps to get going and to make sure that the machine halts immediately if the
empty string is given as input.

(B) Several of the ideas from A can be used here as well. Here an extra complication is to make
room for the bits that have to be added in between. The best way to do this is probably by doing
it one by one. I.e. every time when making a copy of the next bit, first move the remainder of the
string one to the right (starting at the back again), and then make the copy in the freed space.

Let’s demonstrate the steps and the main ideas by looking at what the situation could be in
the middle of a computation again. Using the same string 00010001011 as example again, a typical
situation on the tape in the middle of the computation will be something like:

· · · |#|#|0|0|0|0|0|0|1|1|#|0 |0|1|0|1|1|#|#| · · · .

So the machine has already doubled the first four bits, and has just erased the fifth bit, and moved
one step to the right. Since that erased symbol was a 0, the machine will be in some state from Q0.

And next the machine will perform the following steps:
– It will move right to the end of the string (recognised by a blank square).
– It then will do one step back to the left, read the symbol, erase it, move one step to the right,
write that one symbol on that square, and one step to the left again. (These steps are just moving
one symbol one square to the right.)
– It continues doing the above until it is back to the beginning of the part of the original string
that hasn’t been doubled yet.

2

– Once it is back at the blank “marker”, there will actually be two blank squares in a row (since
the complete right side of the string has been moved one square further to the right). So it can
write two 0s in a row. (The machine “knows” these must be 0s since it was using states from Q0

in all the steps above.)
– The machine moves one square further to the right, and the state becomes one of the non-specific
states from Q′.
– If it now reads a blank symbol, the doubling is done and the machine halts. If it doesn’t read a
blank symbol, it replaces the current symbol by a blank, and goes into a state from Q0 or from Q1,
according to the symbol that was on the tape.
– And now the process starts as from the first step above.

Again, the final Turing Machine probably needs some extra initial steps to get it all going and
to make sure it halts if there is nothing on the tape. But apart from that, you should be able to
design a Turing Machine that does all of the above.

Exercise 3.
(a) By definition, L1 is in NP, if there exists a nondeterministic Turing Machine N (1) and a polyno-
mial p(1)(n) such that for every x ∈ L1, there exists a sequence of at most p(1)(|x|) allowed steps so
that N (1) halts in the accepting state of N (1). And a similar conclusion, using a nondeterministic
Turing Machine N (2) and a polynomial p(2)(n), can be drawn from the claim that L2 is in NP.

From this we can easily see that also L1 ∪ L2 is in NP. Make a new nondeterministic Turing

Machine N that is formed by using disjoint states q
(1)
i for N (1) and states q

(2)
i for N (2). Now let q0

and qY be two new states. Then form N as follows. Starting at state q0, there is one possible

transition to the initial state q
(1)
0 of N (1) and one possible transition to the initial state q

(2)
0 of N (2).

Also, from the accepting state q
(1)
Y of N (1) there is one transition to the accepting state qY of N ,

and the same holds for the accepting state of N (2).
It’s now straightforward to check that if x ∈ L1 ∪ L2, then the nondeterministic Turing Ma-

chine N has a sequence of at most max{p(1)(|x|), p(2)(|x|)}+ 2 allowed steps so that N halts in its
accepting state. And if x /∈ L1 ∪ L2, then x /∈ L1 and x /∈ L2, so with input x, N can never reach
the accepting state of the N (1) and the N (2) part of N , and hence such an x will never be accepted.

(b) We use the set-up from (a) again. And in fact we can use almost the same ideas, except now
we construct a nondeterministic Turing Machine N as follows: From the initial state q0 there is

one transition to the initial state q
(1)
0 of N (1); from the accepting state q

(1)
Y of N (1) there is one

transition to the initial state q
(2)
0 of N (2); and from the accepting state q

(2)
Y of N (2) there is one

transition to the general accepting state qY . (For this, we need to assume in addition, that after the
computations of N (1) the tape again just contains the original input; but it is easy to modify N (1)

accordingly by making it first copy the input and erase all intermediate calculations at the end.)
Again when we give an input x ∈ L1 ∩L2 to the resulting nondeterministic Turing Machine N ,

there is a sequence of at most p(1)(|x|) + p(2)(|x|) + 3 allowed transitions after which N has reached
its accepting state. And for x /∈ L1 ∩ L2, at least one of the two parts will prevent that from
happening.

(c) This time we can’t conclude that L1 \L2 is in NP. The reason is that the fact that x ∈ L1 \L2

means that x ∈ L1 and x /∈ L2. But we have no good way to deal with the situation x /∈ L2.
In general we don’t know if L1 \ L2 is in NP or not. If P = NP, then the statement is true

(because then NP = P = coP = coNP), but it’s generally believed that coNP is not equal to NP. If
that’s the case, then take L2 to be a language in NP but not in coNP (which exists by symmetry)
and L1 to be the trivial language containing all words (which is in NP), and we see that L1 \L2 is
a language in coNP but not in NP.

3

Exercise 4.
To show that ≤P is a quasi-order, we have to show that (a) L ≤P L for every language L, and
(b) if L1 ≤P L2 and L2 ≤P L3, then L1 ≤P L3.

For (a), the function f in the formal definition of ≤P is the identity: informally, if we have
a method to determine membership in L, then we can use this method trivially to determine
membership in L. For (b), suppose we are given functions g, h : {0, 1}∗ → {0, 1}∗ so that g certifies
L1 ≤P L2 and h certifies L2 ≤P L3. Then x ∈ L1 ⇔ g(x) ∈ L2 ⇔ hg(x) ∈ L3. Moreover, since
both g and h can be computed by Turing machines in polynomial time, so can the composition hg.
Hence hg certifies that L1 ≤P L3.

Now let L be an element of P. To show that L is a minimal, we need to show that L ≤P L′ for
every non-trivial language L′. Because L′ is non-trivial, there is some word w1 that is in L′, and
some word w0 that is not. To show that L ≤P L′, consider the function f that maps all words in
L to w1, and all words not in L to w0. This function can be computed in polynomial time by a
Turing machine, exactly because L is in P (more details are given below, if you are interested).

Some more details for showing L ≤P L′: If L is in P, then there is a Turing Machine M and
an integer d so that for all x ∈ {0, 1}∗ we have: if x ∈ L, then M accepts x in O(|x|d) steps; while
if x /∈ L, then M rejects x after O(|x|d) steps.

Now define the function f : {0, 1}∗ → {0, 1}∗ as follows: f(x) =

{
y1, if x ∈ L;
y2, if x /∈ L′.

Since y1 ∈ L′ and y2 /∈ L′, it’s obvious that for all x ∈ {0, 1}∗ we have x ∈ L if and only if
f(x) ∈ L′. Moreover, using the Turing Machine M from above, for all x ∈ L′, f(x) can be
computed in polynomial time. (Just give as output y1 if M accepts x, and as output y2 if M
rejects x.) This shows L ≤P L′.
Some extra notes: Although the above answer is (hopefully) not too hard to follow, there are
some deeper issues it touches. In particular, the algorithm described assumes we have knowledge
of suitable y1 and y2. By the formulation of the question, we can be sure suitable y1, y2 exist. And
hence the algorithm exists.

But if we would like to implement the algorithm above, we would need to know explicitly
what y1 and y2 are. And that could be a problem (or a lot of work).

So keep this in mind: The definitions of P and the other complexity classes talk about the
existence of certain Turing Machines. It doesn’t require that you are actually able to construct
them.

Exercise 5.
Property 7 states: Suppose L1 is an NP-complete language. If L2 is a language so that L2 is in NP
and L1 ≤P L2, then L2 is NP-complete.

The fact that L1 is NP-complete means that L1 is in NP, and for all L ∈ NP we have that
L ≤P L1. And to prove that L2 is NP-complete we need to prove that L2 is in NP, and for all
L ∈ NP we have that L ≤P L2.

We are already given that L2 is in NP, so we are left to prove that L ≤P L2 for all L ∈ NP. For
this we obviously need to use that L ≤P L1 for all L ∈ NP and that L1 ≤P L2. In fact it follows
directly that it is enough to prove the following property:

For any three languages L,L′,L′′, if L ≤P L′ and L′ ≤P L′′, then L ≤P L′′.
But this is the transitivity property we already shows in the solution of Exercise 4.

Exercise 6.
Property 8 states: Every non-trivial language in P is P-complete.

4

Let L′ ⊆ {0, 1}∗ be a language in P, L′ 6= ∅ and L′ 6= {0, 1}∗. In particular this means that
there are y1, y2 ∈ {0, 1}∗ so that y1 ∈ L′ but y2 /∈ L′. We need to show that for all L ∈ P we
have L ≤P L′, which means that L′ is P-complete. But we already showed this in the solution of
Exercise 4.

Exercise 7.
The easiest way to show 3-SAT is NP-complete is to reduce SATISFIABILITY to it and apply
Proposition 8. It’s obvious 3-SAT is in NP as it’s a special case of SATISFIABILITY. So all we
need to do is figure out how to go from a SATISFIABILITY formula (which we will assume is
in CNF form, since that’s the specific form we proved is NP-complete in Theorem 9) to a 3-SAT
formula.

We can replace a clause (x, y) with (x, y, t)(x, y, t) where t is a new variable. The point is,
whether t is True or False, to satisfy both clauses we need at least one of x and y to be True. We
can do something similar (with two new variables and four 3-SAT clauses) to deal with a clause (x).

So it remains to deal with long clauses that have four or more literals in them. We can replace
(x, y, z, w) with (x, y, t)(z, w, t), where t is again a new variable (which we use only in these two
clauses). More generally, we can repeat this trick to split any k-variable clause into two clauses of
sizes

⌊
1
2k

⌋
+ 1 and

⌈
1
2k

⌉
+ 1 respectively, which we can split again if necessary and so on.

The reduction in the last paragraph above doesn’t work for 3-SAT. The point where it goes
wrong is that when we try to split a 3-literal clause we get a 2-literal and a 3-literal clause; so we
are no better off than when we started.

There are several ways to solve 2-SAT instances in polynomial time. One way is simply to pick a
variable x and use the following procedure. Set x to True. For each clause containing x, set the
other variable to True or False in order to satisfy the clause, and keep doing this until either a
variable becomes conflicted (i.e. that variable needs to be set True to satisfy one clause but False
for another), or no further variables are forced. If the setting procedure terminates without finding
a conflict, then it has set a collection X of variables. Now any clause which contains a False literal
belonging to one of these variables also (by the setting procedure) contains a True literal from
one of these variables; in other words, any clause containing literals from the variables X is now
satisfied, and we can remove all of them.

If what remains is unsatisfiable, the original formula obviously was too; if what remains is
satisfiable, then the variables X can take any value in a satisfying assignment, in particular the
one given by the setting procedure, so the original formula was also satisfiable.

So the full algorithm is: iteratively, pick an un-set x. Try setting it True and following the
setting procedure; if there is no conflict discovered, move on to the next un-set variable. If a
conflict is discovered, instead set x False and run the same setting procedure. If there is again a
conflict, the formula is not satisfiable. If not, move on to the next un-set variable. At the end,
either all variables are set and we have a satisfying assignment, or the formula is not satisfiable.

5

Exercise 8.
It is obvious that HALF-STABLE-SET is in NP: the certificate would be a set of vertices; it is easy
to check if this is of size 1

2 |V | and if it is an independent set.
We can reduce STABLE-SET to HALF-STABLE-SET as follows. Given an instance (G,K) of

STABLE-SET, we can add vertex sets I and C to G, where we let I be an independent set with no
edges to V (G), and let the vertices of C be adjacent to all other vertices. The resulting graph has an
independent set of size K+ |I| if and only if G has an independent set of size K. To get an instance
of HALF-STABLE-SET we need to choose |I| and |C| so that K + |I| = 1

2(|V (G)|+ |I|+ |C|); i.e.
so that |I| − |C| = |V (G)| − 2K.

Exercise 9.
It is easy to see that there is a cycle in G through u if and only if there is an edge uv and a path
from u to v in the graph G′ formed by removing the edge uv from G. Using Savitch’s Theorem 13
from Section 3.10 of the notes, it is fairly easy to construct a way to do this checking for one edge uv
in the same amount of space it requires to check ST -CONNECTIVITY (plus a little bit extra to
store the edge uv we are currently dealing with). We then simply have to try all the different
neighbours v of u, one after the other (erasing the working take in between).

More explicitly, build a 2-tape Turing Machine that does the following. (Here we again assume
that the vertices are indicated by the numbers 1 to N .)
1. Write the vertices u and v on the tape and set a = 1.
2. Write a on the tape.
3. Read the input tape to check if ua is an edge.
- If ua is an edge, continue with step 4 below.
- If ua is not an edge and a = N , then conclude that there is no cycle through u and stop.
- If ua is not an edge and a < N , then increase a by one and go beck to step 2.
4. Use Savitch’s Algorithm to check if there is a path from u to a in G, where we will ignore the
edge ua in the computation.
- If there is such a path, then conclude that there is a cycle through u and stop.
- If such a path does not exist and a = N , then that there is no cycle through uv; then we should
repeat the procedure with the next neighbour v; if v is the last neighbour, then there is no cycle
through u and we stop.
- If such a path does no exist and a < N , then increase a by one and go beck to step 2.

Since step 4 can be done using at most O((log(N))2) memory space, we can easily see that the
whole procedure can be done using at most O((log(N))2) memory space.

6

