
Exercises and Solutions (Lecture 4, LTCC Course: Graph Theory)

1. (a) Prove Lemma 5. Hint: first evaluate EetX for t > 0 a fixed constant, apply Markov’s
inequality, and optimise t. Start with the case of independent identical Bernoulli variables (i.e.
p1 = p2 = . . . . For the general case, you might want to look up ‘Jensen’s inequality’.
(b) Try to generalise this to prove the martingale concentration inequality (1) after Lemma 9. The
difficult part is figuring out how to evaluate EetX .

Answer.
(a) Since X = Y1 + · · ·+ Yn is a sum of independent Bernoulli random variables, we have EetX =∏n
i=1 EetYi =

∏n
i=1

(
1− pi + pie

t
)
, where pi is the probability that Yi = 1. If all the pi are identical

and equal to p, this is equal to
(
1− p+ pet

)n
. If they are not all identical, but their mean is p, we

still have EetX ≤
(
1−p+pet

)n
. Probably the way to see this is to take the logarithm (which turns

the product into a sum) and observe that for x, t > 0, the function log
(
1 − x + xet

)
is a concave

function of x, hence by Jensen’s inequality the sum is maximised when all terms are equal.
Now since etx is a monotone increasing function of x when t > 0, we have

P
(
X ≥ (1 + δ)EX

)
= P

(
etX ≥ et(1+δ)EX

)
≤ EetX

et(1+δ)EX
,

where the inequality is Markov’s inequality. We just need to find a value of t which makes this
suitably small (which should be positive since we assume t > 0 a couple of times). It turns out
that choosing t such that

et =
(1 + δ)(n− EX)

n− (1 + δ)EX
works; the calculation is not too hard, and works since for 0 < δ < 3/2 we have (1+δ) ln(1+δ)−δ ≥
1
3δ

2 (In fact, it’s true for a slightly larger range).

For the lower bound, we use the same method to calculate Eet(n−X) and the same application
of Markov’s inequality to show that n−X is not likely to be larger than n− (1− δ)EX. This time,
we choose t such that

et =
n− EX + δEX
(n− EX)(1− δ)

.

(b) The idea is to prove by induction on n that EetX ≤
(
1 − s

n + s
ne

t
)n

. Given this, the result
follows by the identical use of Markov’s inequality and (the same) optimisation of t. The n = 1
base of this induction is trivial. For the induction step, let X ′0 be the random variable X − Y1
induced on the probability space given by Y1 = 0 with the conditional measure, and X ′1 the same
random variable on the (disjoint) space with Y1 = 1 and the conditional measure. Observe that

EetX = P(Y1 = 0)EetX
′
0 + etP(Y1 = 1)EetX

′
1

and the two random variables X ′0 and X ′1 are sums of n−1 sequentially dependent random variables
whose observed expectations are both almost surely at most s−P(Y1 = 1). By induction we obtain

EetX ≤
(
1− P(Y1 = 1) + etP(Y1 = 1)

)(
1− s−P(Y1=1)

n−1 + s−P(Y1=1)
n−1 et

)n−1
,

and again using Jensen’s inequality (exactly as before) we obtain the desired upper bound.

2. For k ∈ N, a graph G = (V,E) has Property Sk if, for every pair (A,B) of disjoint k-element
subsets of V , there is a vertex x of the graph that is adjacent to every vertex of A and no vertex
of B.
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(a) Find a graph with property S1.
(b) Show that, for each k ∈ N, there is a graph with property Sk.

Answer.
(a) The smallest graph with this property is the 5-cycle. However, as we’re about to prove, most
graphs work!
(b) Take a random graph G(n, 1/2). For specific sets A and B of size k, the probability that there is

no vertex (outside A and B) which is adjacent to all of A and none of B is
(
1− 2−2k

)n−2k
. This is

because the event that any individual vertex x does the job has probability 2−2k, and these n− 2k
events are independent.

Now, call a pair (A,B) bad if there is no x ∈ V (G) \ (A ∪ B) adjacent to all of A and none of
B. The expected number of bad pairs is(

n

k

)(
n− k
k

)(
1− 2−2k

)n−2k
≤ n2k

(
1− 2−2k

)n−2k
.

For each fixed k, this expression tends to 0 as n→∞. Choose n0 to make the expected number of
bad pairs less than 1. Then there must be a graph on n0 vertices with no bad pair, and this graph
has property Sk.

3. A k-uniform hypergraph is a pair H = (V,E), where V is a set of vertices, and E is a family of
k-element subsets of V . (So a 2-uniform hypergraph is just a graph.) A hypergraph H = (V,E)
has Property B if V can be partitioned into two subsets V1 and V2 in such a way that no edge is
entirely contained within one of the two sets.
(a) Show that, if H = (V,E) is a k-uniform hypergraph with |E| < 2k−1, then H has property B.
(b) Show that, if H = (V,E) is a k-uniform hypergraph such that each edge in E intersects at most
d others, and e(d+ 1) ≤ 2k−1, then H has property B.

Answer.
(a) Take each vertex of V and put it into V1 or V2, each with probability 1/2. The probability that
an edge, with k vertices, lies entirely within one of the two sets is 21−k. The expected number of
edges lying entirely within one of the two sets is |E|21−k < 1. Therefore there is some partition in
which there is no edge lying entirely within one of the two sets, which is what we wanted.
(b) I reckon “apply the Local Lemma” is sufficient!

4. (a) Let p = n−t, for 0 < t < 1, and let k be a fixed natural number. Write down an expression
for the expected number of k-cliques in G(n, p). Hence show that, if t > 2/(k − 1), the probability
that G(n, p) contains a k-clique tends to zero as n→∞.

It is also true that, if t < 2/(k − 1), then the probability that G(n, p) contains a k-clique tends
to one as n→∞: to prove this, one needs to work with the variance of the number of k-cliques.
(b) Let H denote the graph on five vertices a, b, c, d, e with seven edges: a, b, c, d form a clique, and
de is also an edge. For p = n−7/10, find the expected number of copies of H in G(n, p). What is

lim
n→∞

P(G(n, p) contains a copy of H)?

(c) There is a parameter b(H) of graphs such that, if t > b(H), then the probability that G(n, p)
contains a copy of H as a subgraph tends to zero, while if t < b(H) then this probability tends
to 1. Based on the calculations in this question, what do you think this parameter b(H) might be?
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Answer.
(a) The expected number of k-cliques is(

n

k

)
p(

k
2) ≤ nkn−tk(k−1)/2 = nk(1−t(k−1)/2).

So the expected number of k-cliques tends to zero if t > 2/(k − 1), and as usual this implies that
the probability of existence of a k-clique tends to zero.
(b) When counting the number of copies of H in a graph, if we have one copy, we don’t count
permuting the labels a, b, c as giving us a separate copy. However, we do count a 5-clique as giving
us 20 different copies. Adopting other conventions will only affect the constant factors, and won’t
obscure the main point.

The expected number of copies of H is

n(n− 1)

(
n− 2

3

)
p7 = (1 + o(1))

1

6
n5p7 = (1 + o(1))

1

6
n5−49/10 = (1 + o(1))

1

6
n1/10.

Of course, this is very large. However, the expected number of 4-cliques in G(n, p) is at most
n4p6 = n−1/5. This means that the probability that G(n, p) contains a 4-clique tends to zero as
n→∞. If G contains no 4-clique, then it certainly contains no copy of H.

This is no paradox. The probability that G(n, p) contains a 4-clique is indeed of order n−1/5.
However, if G(n, p) does contain a 4-clique, then each of its vertices d will be adjacent to about
np = n3/10 other vertices that can play the role of e, and so G(n, p) will contain on the order of n3/10

copies of H. So the expected number of copies of H is seen again to be at least n−1/5n3/10 = n1/10.
(c) To get the expected number of copies of H to be greater than 1, we need n|V (H)|p|E(H)| � 1,
which means |V (H)| − t|E(H)| > 0, if p = n−t. This suggests that we should be interested in
b′(H) = |V (H)|/|E(H)|. It is certainly true that, if t > b′(H), then there are unlikely to be any
copies of H, whereas if t < b′(H) then the expected number of copies of H is large.

However, (b) should warn us that it’s not that simple. A better proposal is

b(H) = min
H′⊆H

|V (H ′)|/|E(H ′)|,

where the minimum is over all subgraphs H ′ of H. This proposal turns out to be right: see Bollobás,
Random Graphs.

5. Set p = n−2/5, and consider a random graph G = G(n, p).
(a) Show that the degree of any fixed vertex v has a Binomial distribution, and find an upper
bound on the probability that this degree is greater than or equal to n2/3. [You may need to look
up some estimates on the tails of the distribution of a Binomial random variable.]
(b) Show that the probability that the maximum degree of G is at most n2/3 is at least 2/3.
(c) Show that, with probability at least 2/3, for every pair (U, V ) of subsets of V (G), with |U |, |V | ≥
n1/2, there is an edge from U to V .
(d) What can you deduce from (b) and (c)?

Answer.
(a) The degree of a vertex v is the sum, over all other vertices u, of the indicator function of the
event that uv is an edge. This means that the degree of v is a sum of Bernoulli (0-1 valued) random
variable with probability p of being 1, so the degree of v is a Binomial random variable X with
parameters (n−1, p). So its mean is p(n−1) ≤ n3/5. The variance is also about n3/5, so deviations
of greater than about n3/10 from its mean are unlikely.
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To get a more precise answer, let us use a version of the Chernoff bound which is different from
the one seen in the lecture.

Theorem 1. Let X be a binomial random variable with mean µ. Then, for all t ≥ 0:
(a) Pr(X ≥ µ+ t) ≤ exp(−t2/2(µ+ t/3));
(b) Pr(X ≤ µ− t) ≤ exp(−t2/2µ).

Here, for instance, we can take t = 1
2n

2/3: the probability that d(v) is greater than (n−1)p+t is

at most exp(−t2/2(µ+ t/3)) ≤ exp(−t) = exp(−n2/3/2), for n large enough. Hence the probability
that d(v) is as large as n2/3 is at most this large.

Cruder estimates can still give bounds that are perfectly good enough for this purpose.
(b) The probability that there is a vertex with degree at least n2/3 is at most n times the probability

that one particular vertex has this large a degree, which is therefore at most ne−n
2/3/2, which is

certainly at most 1/3 (for n large enough).
(c) The probability that some particular pair (U, V ) of disjoint sets of size dn1/2e is “bad” (spans
no edge) is at most (1− p)n, since there are at least n pairs of potential edges, and this is therefore
an upper bound on the probability that none of them are in the graph.

Now, the expected number of bad pairs is at most(
n

n1/2

)2

(1− n−2/5)n ≤
(
en/n1/2

)2n1/2

e−n
−2/5n ≤ exp

(
2n1/2 log n− n3/5

)
< 1/3,

again at least provided n is large enough. Note that we were crude where we could be, but we
didn’t compromise on the key part of the count, which is the power of n in the exponent.
(d) Of course, this means that there is at least one graph of maximum degree at most n2/3 such
that there is an edge between every pair (U, V ) of sets of at least n1/2 vertices.

You should see that we could make this argument a whole lot tighter, and get a stronger result.
Let me emphasise again that, if you want to construct a sequence of n-vertex graphs with the
properties above, you’ll have a tough time.

6. (a) Try to prove Lemma 9. You should find that the only difficult part is to prove that most
edges are in the ‘right’ number of triangles. You will not be able to prove that Tuv behaves nicely
for every edge uv ∈ G: you will need to assume both that uv happened to lie in about the ‘right’
number of triangles in G, and that ‘most’ of those triangles share edges with about the ‘right’
number of triangles in G. If you make this assumption, you should be able to modify the argument
given to show that Tuv is likely to be about the ‘right’ size. Then you will need to show that there
cannot be too many edges of G which don’t satisfy the assumption.
(b) Try to prove the special case of Theorem 8 from Lemma 9. The difficulty here is to find out
how to set constants in order to make the argument work.
(c) Try to prove Theorem 8—or try to understand the argument given in e.g. Alon and Spencer!

Answer.
For a solution please consult the section on the “Rödl nibble” in Alon and Spencer.
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