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Abstract

The central problem in case based reasoning (CBR) is to infer a
solution for a new problem-instance by using a collection of existing
problem-solution cases. The basic heuristic guiding CBR is the hy-
pothesis that similar problems have similar solutions. Recently, some
attempts at formalizing CBR in a theoretical framework have been
made, including work by Hüllermeier who established a link between
CBR and the probably approximately correct (PAC) theoretical model
of learning in his ‘case-based inference’ (CBI) formulation. In this pa-
per we develop further such probabilistic modelling, framing CBI it as
a multi-category classification problem. We use a recently-developed
notion of geometric margin of classification to obtain generalization
error bounds.
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1 Introduction and related work

The basic problem in case based reasoning (CBR) is to infer a solution for
a new problem-instance by using a collection of existing problem-solution
cases [1]. (We will henceforth use ‘problem’ for ‘problem instance’.) The
basic heuristic that guides CBR is the hypothesis that similar problems have
similar solutions (see [2], for example). The area of CBR research has had
practical success and has been shown to be widely applicable [3]. The well
known methodological framework of case-based reasoning divides CBR into
four main steps (referred to as the R4 framework): retrieve, reuse, refine and
retain [2].

There have been a number of attempts to develop a sound theoretical basis
for CBR. Significant recent work, due to Hüllermeier [4], makes a connection
between CBR and the probably approximately correct (PAC) theoretical
model of learning [5]. Hüllermeier defines case-based reasoning as a prediction
process, which allows him to make the connection between CBR and the
learning based on a sample. He calls this framework case-based inference
(CBI) and it aims to solve the ‘retrieve’ and ‘reuse’ steps of the R4 framework.
Given a new problem to be solved, CBI aims just to produce a ‘promising’ set
of solutions for use by the remaining two steps of the R4 framework. The last
two stages of the R4 framework use not just the set of candidate solutions but
also domain-knowledge, user input and further problem-solving strategies [2].
As noted in Section 5.4 of [6], these steps adapt the set of promising solutions
into a solution that fits the existing problem.

In this paper, we continue work in the direction inspired by [2], probabilisti-
cally modelling case-based inference as a multi-category classification prob-
lem. We use a recently-developed notion of geometric margin of classification,
called width, to obtain generalization error bounds. This notion has recently
been used in [7] to exploit regularity in training samples for the problem of
classification learning in finite metric spaces. The main results in the cur-
rent paper are bounds on the error of case-based learning which involve the
sample width.

Dubois and Prade [8] and Dubois et al. [9] attempted to provide a formal
model of CBR which is based on fuzzy logic. The similarity between two
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problems (or two solutions) is represented by a fuzzy relations. There is
no learning process for determining these relations. Our model differs from
theirs in that we learn from examples to produce a set of candidate solutions
for input problems; and we do not employ fuzzy logic, but statistical learning
under the PAC framework.

Ontañón and Plaza [10] introduce a model of knowledge transfer for case-
based inference part of CBR. It produces, from retrieved cases (cases whose
problems are similar to the given problem), a set of conjectures (or incom-
plete solutions) rather than actual solutions. A conjecture may require fur-
ther adaptation, for instance using some domain specific rules, in order to
produce a solution. (Their model can deal with cases where there is no
clear distinction between a problem and solution.) Our model differs from
theirs in that it produces a set of complete solutions for the input problem
(rather than conjectures); and our model expands on the CBI framework of
Hüllermeier, and hence we have two separate spaces, one for solutions and
one for problems.

In Section 2, we start by describing Hüllermeier’s framework of CBI, where
the goal is to predict a ‘credible’ or promising set of solutions for a given
input problem instance. We outline and explain our contribution and its
connections with this framework. The key idea is that we model CBI as a
supervised learning problem. Section 3 describes a probabilistic model that
is the basis of our analysis. We redefine what is meant by a credible set
in this context and we provide a mathematical formalism for measuring the
success of a method for predicting credible sets. Section 4 presents some
recent results on the generalization accuracy of learning multi-category clas-
sifiers defined on metric spaces, and provides results on which we draw for
the conclusions of this paper. Section 5 describes in detail the important
transformation of learning CBI to the problem of supervised learning. Sec-
tion 6 provides bounds on the error of learning CBI. These bounds can serve
as a guiding criterion for the design of successful algorithms.

One main contribution is to show how learning CBI over the wide spectrum
of complex and unstructured CBR domains can be transformed to standard
supervised learning problems. A further contribution is in showing how the
large-width advantage (familiar from the branch of learning theory known as
large-margin learning) can also be realised for learning CBI.
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2 Case-based inference (CBI)

In the Introduction, we mentioned that CBI infers as an output a set of
candidate, or ‘promising’, solutions rather than solving the full CBR prob-
lem by predicting a single specific solution. This is at the basis of what
Hüllermeier [4] calls approximate reasoning. We now describe his framework
(using slightly different notation).

2.1 Hüllermeier’s CBI framework

In the general set-up of Hüllermeier’s case-based inference, there is a prob-
lem space, denoted by X , and a solution space, denoted by Y . We define
Z := X × Y . The problem space and solution space may be very general;
in particular, not only finite-dimensional vector spaces (as those that are
common in supervised learning) but also problems described by more com-
plex structures like trees, graphs, or plans. Each of the spaces, X , Y , has
a similarity function, simX : X × X → [0, 1] and simY : Y × Y → [0, 1],
respectively. These are reflexive and symmetric; that is, simX (x, x) = 1, and
simX (x, x′) = simX (x′, x), and similarly for simY . The goal of case-based
inference in [4] can be described as follows.

Goal of CBI in [4]: Given a sample {zi}mi=1 = {(xi, yi)}mi=1 (also referred
to as a case-base), consisting of problem-solution pairs, and given a new
problem instance x, produce for it a subset of solutions (subset of Y) called
a credible set, that contains some (possibly all) solutions for the problem x.

An underlying assumption is that there exists some unknown relationship
between the level of similarity of pairs of problems and the similarity of their
solutions. Hüllermeier[4] represents this by a similarity profile σ, mapping
from [0, 1] to [0, 1] and defined by

σ(α) := inf
x,x′∈X :simX (x,x′)=α

simY(y, y′)

where (x, y), (x′, y′) ∈ Z are two problem-solution pairs. This function σ
represents in a formal way the CBR assumption that similar problems have
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similar solutions, since given any pair of problems that are similar by a value
of α, their solutions must be at least similar by a level of σ(α).

Theoretically speaking, if one knows σ then, for a given problem x, one can
produce a ’credible’ set of solutions, which is defined as

C(x) :=
m⋂
i=1

Γσ (zi, x) (1)

where Γσ(zi, x) ⊆ Y is given by

Γσ(zi, x) = {y : simY(y, yi) ≥ σ(simX (xi, x))} .

Since σ is unknown, the aim in this framework is to learn a hypothesis func-
tion which approximates σ. This is called a ‘similarity hypothesis’ h : [0, 1]→
[0, 1]. Substituting h for σ in (1) yields the following hypothesis set:

Ch(x) :=
m⋂
i=1

Γh (zi, x) (2)

where
Γh(zi, x) = {y : simY(y, yi) ≥ h(simX (xi, x))} .

If it is possible to guarantee that h(α) ≤ σ(α), for all α ∈ [0, 1] then C(x) ⊆
Ch(x), which means that the hypothesis set must be a credible set since
it contains the credible set of (1). In reality, one cannot guarantee this,
and hence Ch(x) may not be a credible set. But one can state probabilistic
confidence levels that this holds if h is chosen from a suitable class of empirical
similarity hypotheses. It is not intended here to describe the details of this
class of hypothesis but we note that the class consists of hypotheses that
are generated by the classic candidate-elimination algorithm (see algorithm
Find-S of [11]). Hypotheses h in this class are piecewise-constant on [0, 1]
and the generalization heuristic of the Find-S algorithm is used to learn a
good h.

To explain what a good h is, let us first define the notion of consistency. A hy-
pothesis h is consistent with the sample if for all 1 ≤ i, j ≤ m, simX (xi, xj) =
α implies that simY(yi, yj) ≥ h(α).
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For any two hypotheses h and h′, h is said to be stronger than h′ if h(α) ≥
h′(α) for all α ∈ [0, 1]. This implies that for any problem instance x the
corresponding set Ch(x) is contained in Ch′(x), that is, the set corresponding
to h is more specific than the set that corresponds to h′. Then, the goal of
learning in [4] is as follows.

Goal of learning in [4]: Find the strongest h that is consistent with the
sample.

Hüllermeier’s Algorithm 1 (see [4]) achieves this goal by producing a consis-
tent hypothesis which is piecewise constant over the subintervals of a parti-
tion of [0, 1] which is fixed before the learning starts. The algorithm converges
to the strongest hypothesis of this kind. Hüllermeier obtains a bound on the
probability that Ch(x) does not contain a solution of x. The bound is of
the form O(1/m) and is linearly proportional to the size of the partition.
This means that as m increases, there is a higher probability that Ch(x) is a
credible set.

2.2 Our contribution

Learning is at the core of the above-mentioned inference framework. It is
responsible for generating a set Ch that with high probability contains so-
lutions for future problem instances. While the learning approach taken by
Hüllermeier is sensible, it leads to sets that are constrained to take a special
form as defined by (2) and based on hypotheses h that are piecewise con-
stant over a partition which is chosen in advance, based on heuristic domain
knowledge. The resulting mapping that outputs a credible solution set from
an input problem instance is very particular and hence potentially introduces
an inductive bias [11], which is a known cause for less accurate learning [5],
meaning that there is more chance that the learnt mapping produces a set
which is not credible.

To circumvent that, in this paper we extend the CBI model such that no
a priori inductive bias is placed through a choice of a particular class of
mappings. We represent the CBI as a multi-category classification problem
where the class of hypotheses is different from the one used by Hüllermeier.
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Our class of hypotheses models an extremely rich non-parametric class of
mappings from problem space to subsets of the solution space, while respect-
ing the CBR assumption that similar problems have similar solutions. As
we describe in Sections 4 and 5 we consider vector-valued functions which
represent distances from a given input problem instance x to general labeled
subsets S of the space. The fact that these sets can be any subsets of the
metric space makes the hypothesis class extremely rich. In this paper we do
not offer any particular algorithm to search over this space but we provide
theorems that apply to any hypothesis in this class: hence they apply to any
learning algorithm over this class (the inductive bias enters from the choice of
a supervised learning algorithm). If, for example, we use as sets S the sample
points that correspond to the case-base (referred to as auxiliary samples in
Section 5) then the mapping h is based on a multi-category nearest-neighbor
rule.

The overall goal of CBI remains as in Hüllermeier’s framework, but the goal
of learning is different from that of Hüllermeier. We have provided general-
ization error bounds in Section 6 and the goal of learning becomes that of
producing by any means and with any algorithm hypotheses that give low
value to these bounds. Our error bounds can provide criteria for an algo-
rithm to minimize. In particular, this motivates the use of algorithms that
seek to maximize sample width.

In comparison to CBR, there are two important points to emphasize here:
first, CBR is fundamentally based on “lazy learning” [12] where the inference,
or generalization, is done at the problem-solving time. Our learning approach
for CBI is left open as we do not offer any particular algorithm to obtain the
hypothesis that is used for inferring the credible set given an input problem
instance. In particular, this hypothesis can be based on lazy learning, for
example the nearest-neighbor rule (or any of its generalizations), or on any
other supervised non-lazy learning algorithm. We emphasize again that the
learning bounds that we obtain in this paper (Theorems 6.1 and 6.2) apply
to any hypotheses regardless of the type of learning algorithm that produces
it. As far as these bounds are concerned, it is only the performance of h on
the sample that counts and not on the algorithmic procedure that obtained
it.
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The second point is the similarity that exists between our learning approach
and the non-parametric similarity based approach of CBR: we show that
there is an important notion of width of a hypothesis that can be used in a
learning algorithm to select simpler and more accurate hypotheses automat-
ically and based only on the sample. The width is actually defined based on
discriminant functions (Section 4) that involve the computation of distance
functions (which are the opposite analog of similarity functions). They mea-
sure the distance between the input problem instance and some other sets S
in the metric space which in general can be any subsets of the space, and in
particular can be the elements of the case-base. The fact that just calcula-
tion of distances is sufficient to give better hypotheses (and hence improved
prediction of credible solution sets) makes our learning potentially of interest
to the CBR research community.

We do not in the paper define one algorithmic scheme, but rather a general
approach based on the modelling of CBI as the learning of two related multi-
category classification problems (through the construction of two auxiliary
samples). These problems can be solved by any supervised learning algo-
rithm: we do not stipulate any particular learning algorithms, but provide
generalization error bounds that apply to any algorithm.

We assume each space has a metric dX and dY associated with it (which,
therefore, in particular, satisfies the triangle inequality). We also assume that
each of the two metric spaces has a finite diameter diam(X ) := maxx,x′∈X dX (x, x′) <
∞, diam(Y) = maxy,y′∈Y dY(y, y′) < ∞. Note, however, that the metric
spaces need not be finite and could consist of elements which are complex
or highly-structured, as is typical in CBR. Our idea is based on learning
‘hypotheses’ (multi-category classifiers) on each of the metric spaces X and
Y separately, and by taking account of the sample-width, an idea we intro-
duced in [13, 7] and applied in [14, 15]. This leads to favoring more regular
(or ‘smooth’) hypotheses, as much as the complexity of the sample permits.
The fact that the learning approach favors such simpler hypotheses is en-
tirely compatible with the underlying assumption of CBR that similarity in
problem space implies similarity in solution space.
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3 A probabilistic set-up for CBI

In this section we extend the CBI model of [4] described in Section 2. The
underlying assumption that similar problems must have similar solutions is
represented here through an automatic preference for, albeit not limited to,
smooth hypotheses that map similar problems to similar solutions (discussed
in Section 4). Automatic means that the complexity of the learnt hypothe-
sis is dictated by the given case-base rather than by some heuristic choice.
Compared to the learning approach in [4], and in addition to the advantage
of not assuming any particular class of mappings (see the previous section),
our approach also delivers rigorous error-bounds that depend on the partic-
ular sample (the case-base) and are therefore more useful in practice. Such
bounds are referred to in the literature as sample-dependent error bounds.

We now describe our learning approach.

3.1 The probabilistic framework

In this framework, examples of problem-solutions pairs (all being positive
examples, meaning that each pair consists of a problem and a solution to
it) are drawn according to an unknown probability distribution Q(Z) :=
Q(X, Y ). We assumeQ is multi-modal; that is, it takes the form of a weighted
sum with a finite number of terms as follows:

Q(Z) =
∑
k∈[K]

QZ|M(Z |k )QM(k) (3)

=
∑
k∈[K]

QY |M(Y |k )QX|Y,M(X|Y, k)QM(k),

where M is a random variable representing the mode whose possible val-
ues are in a set [K] := {1, 2, . . . , K}. The mode-conditional distribution
QZ|M(Z|k) is defined on Z, and QY |M(Y |k) :=

∑
x∈X QZ|M((x, Y )|k) is a

mode-conditional distribution defined on Y with QX|Y,M a conditional dis-
tribution on X . We henceforth refer to the support of the mode-conditional
distribution QY |M in Y as a mode-region. (The support of a probability
distribution is the smallest closed set whose complement has measure zero.)
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For any probability distribution P on Y , denote by supp(P ) ⊆ Y the support
of P . We assume that there exists a τ > 0 such that Q belongs to a family
Qτ of probability distributions that satisfy the following properties on Y :

(A) For k 6= k′, we have supp
(
QY |M (Y |k)

)⋂
supp

(
QY |M (Y |k′)

)
= ∅.

(B) For any y, y′ in the support of the marginal distribution of Q on
Y such that dY(y, y′) ≤ τ , there exists k ∈ [K] such that y, y′ ∈
supp

(
QY |M(Y |k)

)
.

(C) For any α ∈ (0, 1), there is mQ
0 (α) such that if a sequence of m ≥ mQ

0 (α)
elements of Z, ξ(m) = {(xi, yi)}mi=1, is drawn according to the product
probability measure Qm, then, with probability at least 1 − α, the
following holds: for any yi1 , yi2 in the sample which belong to the same
mode-region, there is a sequence yj1 , yj2,, . . . , yjN in the sample and in
that same mode-region such that dY(yi1 , yj1) ≤ τ , dY(yjl , yjl+1

) ≤ τ and
dY(yjN , yi2) ≤ τ , 1 ≤ l ≤ N − 1.

Condition (A) says that the mode regions are disjoint (non-overlapping).
Condition (B) implies that mode regions must be at least distance τ apart.
Thus both conditions imply that cases drawn fall into non-overlapping ‘clus-
ters’ that are at least distance τ apart in the solution space. Condition (C)
implies the following deterministic condition: any pair y, y′ in a mode re-
gion (not necessarily sample points) is ’τ -connected’, that is, there exists a
sequence of points {yi}Ni=1 in the mode-region that satisfies dY(yi, yi+1) ≤ τ ,
dY(y, y1) ≤ τ and dY(y′, yN) ≤ τ . Condition (C) essentially says that the
mode conditional distribution of points is ‘smooth’, to the extent that for
any pair of random points, no matter how far apart they are in a mode
region, there is a high enough probability density to ensure that with high
probability there will be points drawn in between them that are not too far
apart.

The above conditions imply that, for a given x, if a solution y to x is in
a mode region k, then it is acceptable to predict the whole region k as its
credible solution set. For, if this support region is small, then any solution
contained in it is not too distant from y and is therefore a good candidate for
a solution for x. And if the region is not small, then condition (C) captures
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the notion that the mode conditional distribution of points is ‘smooth’ (not
discontinuous), and the mode does not contain outlier solution instances,
and therefore may likely serve as a credible set. This is a natural constraint
on a mode-conditional distribution since, without it, a mode-region could
further be split into multiple (smaller) modes in which case the true number
of modes K would be higher and Q would be different. (The intuition is that
this indicates K as being as small as possible.) Thus a mode region may
serve as a credible set of candidate solutions which can be further processed
by the third and fourth stages of the R4 model to produce a solution for
x. (We note again that in this paper we only deal with the CBI part which
concerns the first two steps of the R4 model.) Thus, in this set-up, we infer
a whole mode region k as the inferred credible set for any problem x.

Learning CBI amounts to learning to map an x to a mode that, with high
confidence (in a sense to be defined shortly), contains a solution y, and then
predict the corresponding mode region as a credible set for x. We assume
that τ is known to the learner but that the number K of modes of Q is
unknown.

Relating to Condition (C), it is intuitively plausible that for m larger than
some finite threshold value, the condition will hold. Related ideas have been
studied in the context of percolation theory (see [16], for instance). In partic-
ular, the following related problem has been studied. Given a parameter τ ,
and a random sample from a given distribution, if the graph Gτ has as ver-
tices the points of the sample and two vertices are connected if their distance
is at most τ , is there a high probability that Gτ is connected? This has been
studied in particular when the distribution is uniform on the d-dimensional
unit cube.

Before continuing to describe our model, let us define two probability func-
tions that we refer to in subsequent sections,

PX (X = x,M = k) : =
∑
y∈Y

QZ|M((x, y)|k)QM(k)

PY(Y = y,M = k) :=
∑
x∈X

QZ|M((x, y)|k)QM(k). (4)
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3.2 Inference by hypothesis

Given a randomly drawn problem X ∈ X the inference task is to produce
a set of credible solutions for X. This inference can be represented by a
mapping from X to 2Y in terms of a pair of functions h1 : X → [K] and
h2 : Y → [K] which map the problem and solution spaces into a finite set
[K] := {1, 2, . . . , K} of natural numbers. We henceforth write

h(z) : = [h1(x), h2(y)] (5)

and refer to the vector-valued function h : Z → [K]2 as a hypothesis for
case-based inference. Note that [K] is the same set in (3) that defines the
modes of Q. We later show that h is learned based on a sample whose labels
are equal to the mode-values (up to some permutation). Thus while Q, and
hence [K], are unknown, the above conditions on Q ensure that information
about the set [K] is available in the random sample, from which it is possible
to learn h as a mapping into [K]2.

Given a hypothesis h of this new type and a problem x, the credible solution
set C(x) predicted by h can now be defined as

C(x) := Ch(x) = {y ∈ Y : h2(y) = h1(x)}

or, equivalently,
Ch(x) = h−12 (h1(x)).

(We continue to use the notation of Hüllermeier, but have replaced his defi-
nitions by our new ones.) In other words, if x ∈ X has h1(x) = k then C(x)
is a set of solutions that are classified by h2 as k. Thus, inference in this
CBI setting amounts to classifying x into one of a finite number of solution
regions.

In Section 4 we discuss how to learn h by learning the two classifiers h1 and
h2. We learn each separately based on a labeled sample. Given a sample
of cases, we prefer a simpler h that has ‘smoother’ component mappings h1
and h2. Being smooth means that the learning process prefers hypotheses h
whose h1 maps similar (dX -close) problems x, x′ to the same k ∈ [K]. For
similar problems, h predicts the same credible set. Thus the CBR assumption
that similar problems map to similar credible solutions holds in our model.
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In Section 5 we show that training samples for each of h1 and h2 can be
constructed in such a way that the labels are the values of the correspond-
ing modes of Q. So learning h amounts to learning the mode-regions and,
thus, given a problem x the learnt hypothesis h predicts the mode region
(that contains a solution y of x) to be the credible solution set for x. The
intuition is that if h is sufficiently ‘accurate’ then, with a large confidence,
the predicted credible set consists of solutions y to x. More importantly, as
explained above, the conditions on Q ensure that the mode region (which is
the predicted credible set) has other solutions that are close to y or, at least,
typical elements of the region that contains y.

Learning mode-regions is reminiscent of identifying clusters in unsupervised
learning and clustering research; for instance, unsupervised learning of mix-
ture distributions or non-parametric statistical density estimation where sub-
groups of the data are identified based on the modes of the estimated density
[17]. As in our framework, these areas of research also assume the existence
of some unknown underlying multi-modal probability distribution.

Figure 1 shows an example of a distribution Q and hypothesis h. For il-
lustrative purposes, we have assumed that the metric spaces X and Y are
one-dimensional. There are three modes QY |M(Y |k), k = 1, 2, 3 with non-
overlapping supports in Y (obeying condition (A)). Associated with them are
mode-conditional distributions QZ|M(Z|k), k = 1, 2, 3, where the support of
QZ|M(Z|2) splits into two regions in Z. In this example, when Q is projected
on X there is overlap between the modes (which is permitted by the above
conditions). This means that a problem may have multiple solutions, even
in different mode regions. The component hypotheses h1 and h2 partition
X and Y , respectively, into regions that are labeled with values in the set
[K] = [3] = {1, 2, 3}. We denote these regions by S

(1)
k and S

(2)
k , 1 ≤ k ≤ 3.

Given an x, if x ∈ S(1)
k then h predicts a credible solution set Ch(x) = S

(2)
k .

Note that it is possible that dissimilar problems have similar solutions. For
instance, consider two different problems x in the left region of S

(1)
2 and x′ in

the right region of S
(1)
2 . Both have similar solutions y, y′ ∈ S(2)

2 . Our learning
approach is applicable in general to probability distributions Q with mode
regions that are not necessarily circular as in this example and the mapping
h from X to sets of Y can be arbitrarily complex rather than box-shaped as
in this example.
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(a) Example of a distribution Q on X × Y. It has K
modes on Y, QY |M (Y |k), k = 1, . . . ,K = 3.

(b) a hypothesis h : Z → [K]2, with classification re-

gions S
(1)
k , in X , and S

(2)
k in Y, k = 1, . . . ,K, with ,

K = 3.

Figure 1: (a) Circular regions are mode regions of Q. Regions of different
mode value may overlap with respect to X but not on Y . (b) Rectangular
regions are sets of problems and their credible solutions that are inferred by
h. There are three such sets: the kth set is labeled (k) and is defined as

S
(1)
k × S

(2)
k = {(x, y) : h1(x) = h2(y) = k}, k = 1, . . . , K, with K = 3.
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In the learning model that we introduce in Section 5 the number of modes K
is not assumed to be known. The value of K is estimated based on a training
sample of problem-solution pairs and on knowing the value of τ (which is
given as domain knowledge). The estimate of K may be as large as the
sample size m.

3.3 Error of h

We define the error of a hypothesis h as the probability that for a randomly
drawn problem-solution pair Z = (X, Y ) ∈ Z, h mis-predicts Z, that is,
h predicts a bad credible solution set Ch(X) for X. This means that Y 6∈
Ch(X). We therefore denote the error of h as

err (h) := Q (Y 6∈ Ch(X)) . (6)

Since the two components of h are classifiers, then the event that h mis-
predicts (X, Y ) implies that the two component classifiers disagree on the
category of the solution. We can represent this as follows: denote by M ∈ [K]
the mode from which the random (X, Y ) is drawn. Then the probability of
mis-predicting is

Q ({(X, Y ) : Y 6∈ Ch(X)}) = Q ({(X, Y ) : h1(X) 6= h2(Y )})
=

∑
k∈[K]

QZ|M ({(X, Y ) : h1(X) 6= h2(Y )} |k )QM(k)

≤
∑
k∈[K]

QZ|M ({(X, Y ) : h1(X) 6= k or h2(Y ) 6= k} |k )QM (k)
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which is bounded from above by∑
k

QZ|M ({(X, Y ) : h1(X) 6= k} |k )QM (k) +
∑
k

QZ|M ({(X, Y ) : h2(Y ) 6= k} |k )QM (k)

=
∑
k

∑
y∈Y

QZ|M ({(X, y) : h1(X) 6= k} |k )QM (k) (7)

+
∑
k

∑
x∈X

QZ|M ({(x, Y ) : h2(Y ) 6= k} |k )QM (k)

=
∑
k

∑
x:h1(x)6=k

∑
y∈Y

QZ|M ((x, y) |k )QM (k) +
∑
k

∑
y:h2(y)6=k

∑
x∈X

QZ|M ((x, y) |k )QM (k)

=
∑
k

∑
x:h1(x)6=k

PX (X = x,M = k) +
∑
k

∑
y:h2(y) 6=k

PY (Y = y,M = k)

= PX (h1(X) 6= M) + PY (h2(Y ) 6= M) . (8)

The first and second term in (8) are the probability of misclassifying a labeled
example (X,M) ∈ X × [K] and the probability of misclassifying a labeled
example (Y,M) ∈ Y×[K] by the classifier h1 and h2, respectively. We denote
these misclassification probabilities by

err(h1) := PX (h1(X) 6= M)

and
err(h2) := PY (h2(Y ) 6= M)

and therefore have
err(h) ≤ err(h1) + err(h2). (9)

In splitting the error of h into a sum of two errors we assumed that the mode
set [K] is fixed and is known to the learner. The errors (9) are implicitly
dependent on the set [K]. In Section 5, we loosen this assumption and treat
K as an unknown so that when a case Z is drawn randomly according toQ(Z)
the mode value k is not disclosed to the learner as part of the information
in the sample. It is therefore necessary to produce auxiliary labeled samples
that contain this mode information. We do that in Section 5.1.

We now proceed to present new results on learning multi-category classifi-
cation on metric spaces which we subsequently use for the analysis of CBI
learning in Section 6.
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4 Multi-category classification on a metric space

In this section we consider classification learning on a metric space. Our aim
here is to provide a bound on the error of each of the individual component
hypotheses of Section 3; that is, on each of the two terms on the right side
of (9). At this point, we consider a general metric space X . (We will then
apply the results to the case in which that metric space is X or Y in the CBI
framework.)

For a given x ∈ X , by a K-category classifier h we mean a function h :
X → [K] = {1, . . . , K}: every element x ∈ X has one definite classification
according to h. (Note: here, h is not the vector-valued hypothesis defined in
Section 3.)

We can associate with h the regions S
(h)
k := {x :∈ X : h(x) = k}, k ∈ [K],

where we drop the superscript and write Sk when it is clear that h is the
classifier. Note that these regions are disjoint, Sk

⋂
Sk′ = ∅ for k 6= k′ and

their union equals X . We define the distance between a point x and a set
S ⊆ X based on the metric dX as follows,

dist (x, S) := inf
x′∈S

dX (x, x′) .

As in [7] we define the notion of width of a classifier h at a point x as follows:

wh(x) := min
k 6=h(x)

dist (x, Sk) .

The width wh(x) measures how ‘definite’ the classification of x is according
to h since the further x is from the ‘border’ (the set of closest points to x that
are not in Sh(x)), the higher the width and the more definite the classification.
Note that the width wh(x) is always non-negative. For a labeled point (x, l),
l ∈ [K], we define a real-valued discriminant function [17] which we denote
by fh : X × [K]→ R and which is defined as follows:

fh(x, l) := min
k 6=l

dist (x, Sk)− dist (x, Sl) .

Note that if x ∈ Sl then by definition x 6∈ Sk for every k 6= l and so we have

fh(x, l) = wh(x).
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If x 6∈ Sl then it must be that x ∈ Sk for some k 6= l and hence

fh(x, l) = −dist (x, Sl) .

For a fixed h and k ∈ [K] define the real-valued function g
(h)
k : X → R as

g
(h)
k (x) = fh(x, k)

where we will drop the superscript for brevity and write gk whenever the
dependence on h can be left implicit. We denote by g(h) the vector-valued
function g(h) : X → RK given by

g(h)(x) := [g
(h)
1 (x), . . . , g

(h)
K (x)].

We refer to g(h) as the margin function of the classifier h. Note that for
a fixed h and x ∈ X there is only a single component g

(h)
k of g(h) which

is non-negative, and its value equals the width wh(x), while the remaining
components are all negative.

Thus we can express the decision of the classifier h in terms of g as follows:

h(x) = argmaxk∈[K]gk(x).

It is important to note at this point that a hypothesis h is completely specified
in terms of distances between the given input problem instance x and the
subsets Sk in the metric space. There is no parameters hence the class of
hypotheses that our learning framework uses is non-parametric. It is much
richer than the class of nearest-neighbor classifiers since the regions S

(h)
k can

be any subsets of the metric space.

The event of misclassification of a labeled point (x, l) by h means that there
exists some component gk with k 6= l such that gl(x) < gk(x). So the event
that h misclassifies a labeled point (x, l) can be expressed as the event that
gl(x) < maxk 6=l gk(x). Thus for a randomly drawn pair (X,L) ∈ X × [K], we
have

P (h(X) 6= L) = P (gL(X) < max
k 6=L

gk(X))

where g = g(h) is the margin function corresponding to h. We henceforth
denote this by the error err(h) of h,

err(h) := P (h(X) 6= L) .
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The empirical error of h is the average number of misclassifications that h
makes on a labeled sample χ(m) = {(xi, li)}mi=1. A more stringent measure is
the average number of examples which h does not classify to within some pre-
specified minimal width level γ > 0; that is, the average number of examples
(xj, lj) for which gli(xi) − maxk 6=li gk(xi) < γ. We call this the empirical
margin error of h (at scale γ) and denote it as

êrrγ (h) :=
1

m

m∑
i=1

I
{
gli(xi)−max

k 6=li
gk(xi) < γ

}
.

(Here, I denotes the indicator function of an event.)

In [18], the general problem of learning multi-category classifiers defined on
metric spaces is investigated, and a generalization error bound is presented.
In order to describe this, we first need to define what we mean by covering
numbers of a metric space.

Suppose, as above, that (X , dX ) is any metric space and that α > 0. Then
an α-cover of X (with respect to dX ) is a finite subset C of X such that, for
every x ∈ X , there is some c ∈ C such that dX (x, c) ≤ α. If such a cover
exists, then the minimum cardinality of such a cover is the covering number
N (X , α, dX ). If the context is clear, we will abbreviate this to Nα.

We will see that the covering numbers (for both X and Y) play a role in our
analysis. So, in practice, it would be useful to know these or to be able to
estimate them.

For the moment, let us focus on the case in which we have a finite metric
space X of cardinality N . Then, the problem of finding a minimum γ-cover
Cγ for X can be phrased as a classical set-cover problem as follows: find
a minimal cardinality collection of sets Cγ := {Bγ(jl) : jl ∈ X , 1 ≤ l ≤ Nγ}
whose union satisfies

⋃
lBγ(jl) = X . It is well known that this problem

is NP-complete. However, there is a simple efficient deterministic greedy
algorithm (see [19]) which yields a solution — that is, a set cover — of size
which is no larger than (1+lnN) times the size of the minimal cover. Denote
by Ĉγ this almost-minimal γ-cover of X and denote by N̂γ its cardinality.

Then N̂γ can be used to approximate Nγ up to a (1 + lnN) accuracy factor:

Nγ ≤ N̂γ ≤ Nγ(1 + lnN).

19



We now present two results from [18]. The first bounds the generalization
error in terms of a width parameter γ for which the corresponding empiri-
cal margin error is zero. All results henceforth apply to any metric space,
including infinite spaces. In these results, it is assumed that the labeled
examples (xi, li) in the training sample χ(m) have each been generated ran-
domly according to some fixed (but unknown) probability distribution P on
Z = X × [K]. Thus, a sample χ(m) of length m can be regarded as being
drawn randomly according to the product probability distribution Pm.

Theorem 4.1 Suppose that X is a metric space of diameter diam(X ) and
that K is a positive integer. Suppose P is any probability measure on Z =
X × [K] and let Pm denote the product probability measure on Zm. Let
δ ∈ (0, 1). Then, with Pm-probability at least 1 − δ, the following holds for
χ(m) ∈ Zm: for any function h : X → [K], and for any γ ∈ (0, diam(X )], if
êrrγ(h) = 0, then

err(h) ≤ 2

m

(
KNγ/12 log2

(
36 diam(X )

γ

)
+ log2

(
8 diam(X )

δγ

))
,

where Nγ/12 is the γ/12-covering number of X .

What this bound shows is that a hypothesis h that has a large width value
γ on every point of the sample is likely to obtain a low generalization error.
An important point of our work in this paper is the fact that we make this
large-width advantage appear in learning CBI; that is, the same conclusion
holds in our CBI learning bounds, Theorem 6.1 and 6.2.

Note here that γ is not prescribed in advance, but can be chosen after learn-
ing and, in particular, it can be set to be the largest value for which the
corresponding empirical margin error is zero.

The following result is more general than the one just presented, because
it bounds the error in terms of the empirical margin error (which may be
nonzero). It has a better dependence on K (being proportional to

√
K rather

than K). However, in terms of m, it is looser when applied to the case of
zero empirical margin error (involving 1/

√
m rather than 1/m.
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Theorem 4.2 With the notation as above, with Pm-probability at least 1−δ,
the following holds for χ(m) ∈ Zm: for any function h : X → [K], and for
any γ ∈ (0, diam(X)],

err(h) ≤ êrrγ(h)+

√
2

m

(
KNγ/12 ln

(
18 diam(X )

γ

)
+ ln

(
2 diam(X )

γδ

))
+

1

m
,

where Nγ/12 is the γ/12-covering number of X .

What we have in Theorem 4.2 is a high probability bound that takes the
following form: for all h and for all γ ∈ (0, diam(X)],

err(h) ≤ êrrγ(h) + ε(m, γ, δ),

where ε tends to 0 as m→∞ and ε decreases as γ increases. The rationale
for seeking such a bound is that there is likely to be a trade-off between
empirical margin error on the sample and the value of ε: taking γ small
so that the error term êrrγ(h) is zero might entail a large value of ε; and,
conversely, choosing γ large will make ε relatively small, but lead to a large
empirical error term. So, in principle, since the value γ is free to be chosen,
one could optimize the choice of γ on the right-hand side of the bound to
minimize it.

5 From CBI to supervised learning

In Section 3, we have framed CBI as a multi-category classification learning
problem in which hypotheses are two-dimensional multi-category functions
h = [h1, h2]. In the current fairly technical section, we describe how from
the case base we can derive the training samples that are necessary for any
supervised learning algorithm to learn h1 and h2. These ‘auxiliary’ samples
are defined from the cases by a labeling procedure that we describe. One of
these auxiliary samples consists of labeled problems and the other consists
of the corresponding labeled solutions. Each of the two components of h are
learned separately based on these auxiliary samples. Section 6 describes the
learning results that follow.
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5.1 Two auxiliary samples

The learner is given a random sample, which is also referred to as a collection
of problem-solution cases (or case base),

ξ : = ξ(m) = {(xi, yi)}mi=1 . (10)

This sample is drawn i.i.d. according to some product probability measure
Qm on Zm, where Q ∈ Qτ for some τ > 0.

Denote by
X|ξ := {xi ∈ X : ∃i ∈ {1, . . . ,m} , (xi, yi) ∈ ξ}

and
Y|ξ := {yi ∈ Y : ∃i ∈ {1, . . . ,m} , (xi, yi) ∈ ξ}

the sample projection sets of problems and solutions, respectively. Note
that the sample ξ may be ‘noisy’; that is, a sample problem x ∈ X|ξ may
appear multiple times in the sample with different solutions y ∈ Y|ξ and even
solutions from different modes. In other words, the modes of Q may overlap
in problem space X , and hence cases drawn according to Q may pair the
same problems with different solutions. Needless to say, a solution y ∈ Y|ξ
may appear multiple times for different problems x ∈ X|ξ .

In addition to the sample ξ we assume that expert advice (or domain-
knowledge) is available in the form of knowing the value of τ , the parameter
of the family Qτ satisfying the properties in Section 3.1.

We now describe a procedure the learner can use to construct two auxiliary
labeled samples ζX and ζY from the given sample ξ and the value τ .

Labeling Procedure: We use τ to partition the sample points of ξ into a
finite number of categories as follows. Let Dξ be the m × m matrix with
entries as follows:

Dξ[i, j] = dY(yi, yj)

for all pairs of solution examples yi, yj ∈ Y|ξ . Based on Dξ, let us define the
m×m {0, 1} matrix

Aτ : = [a(i, j)] (11)
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as follows:

a(i, j) :=

{
1 if Dξ[i, j] ≤ τ
0 otherwise.

The jth column a(j) of Aτ represents an incidence (binary) vector of a set,
or a ball Bτ (j) which consists of all the points i ∈ Y|ξ that are a distance at
most τ from the point j ∈ Y|ξ .

The matrix Aτ defined in (11) is an adjacency matrix of a graph Gτ =
(Y|ξ , Eτ ), where Eτ is the set of edges corresponding to all adjacent pairs of
vertices according to Aτ ; that is, we place an edge between any two vertices
i, j such that Dξ[i, j] ≤ τ .

Let {Hi}Kτi=1 be the set of Kτ connected components Hi ⊆ Y|ξ of the graph
Gτ , where by a connected component we mean a subset of vertices such that
there exists a path (sequence of edges) between every pair of vertices in the
component. This set of components can be easily found, for instance, by a
hierarchical clustering procedure [20].

Note that Kτ := Kτ (ξ) is dependent on the sample ξ through Y|ξ and is no
larger than m since the number of connected components is no larger than
the number of vertices of Gτ . Let us partition the sample ξ into the subsets
ξ(k) ⊆ ξ based on these components Hk as follows:

ξ(k) := {(x, y) ∈ ξ : y ∈ Hk} , 1 ≤ k ≤ Kτ .

Then, define two auxiliary sets of samples as follows:

ζX := ζ
(m)
X =

{
(xi, k) : xi ∈ X|ξ , (xi, ·) ∈ ξ(k), 1 ≤ i ≤ m, 1 ≤ k ≤ Kτ

}
ζY := ζ

(m)
Y =

{
(yi, k) : yi ∈ Y|ξ , (·, yi) ∈ ξ(k), 1 ≤ i ≤ m, 1 ≤ k ≤ Kτ

}
.(12)

We use these samples for the classification learning problems in Section 5.2.
Note that both samples have Kτ possible categories for the labels of each
of the sample points. Since Kτ enters the learning bounds it is important
to understand how large it can be. From spectral graph theory [21, 22] the
number of connected components of a graph G is equal to the multiplicity
µ0(G) of the zero eigenvalue of the Laplacian matrix L := Λ − A, where Λ

23



is a diagonal matrix of the degrees of each vertex and A is the adjacency
matrix. It follows that

Kτ = µ0(Gτ )

and clearly Kτ ≤ m.

We now state two lemmas that together imply that the labels li of pairs of
examples (xi, li) and (yi, li) in ζX and ζY equal the true unknown mode values
of the unknown underlying distribution Q(Z), up to a permutation. That is,
under a permutation π of the set [K] a label value j ∈ [K] is in one-to-one
correspondence with a mode value π(j) ∈ [K].

Lemma 5.1 Let H be a connected component of Gτ .Then there exists a k ∈
[K] such that H ⊆ supp

(
QY |M(Y |k)

)
.

Proof: Denote by Rk = supp(QY |M(y|k)), k ∈ [K], the mode regions. Sup-
pose there does not exist a j such that H ⊆ Rj. Then there is a connected
pair y, y′ ∈ H such that y ∈ Rk and y′ ∈ Rk′ for some k′ 6= k. This means
that on any path that connects y and y′ there exists some edge e ∈ Eτ that
connects two vertices u, v ∈ Y|ξ (which may be y or y′) where u ∈ Rk and
v ∈ Rk′ . But by condition (B) of Section 3 it follows that dY(u, v) > τ hence
by definition of Gτ the pair u, v is not connected. Hence y, y′ are discon-
nected. This is a contradiction and hence the statement of the lemma holds.
�

Lemma 5.2 Let α ∈ (0, 1) and suppose that the sample size m is at least
mQ

0 (α). Let {Hj}Kτj=1 be the connected components of the graph Gτ . Then,
with probability at least 1 − α, the sample is such that, for every k ∈ [K],
there exist at most one single component Hj ⊆ supp

(
QY |M(Y |k)

)
.

Proof: Suppose there are two distinct connected components H, H ′ of the
graph contained in a mode-region Rk = supp(QY |M(y|k)) for some k ∈ [K].
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Then there exist two points y ∈ H, y′ ∈ H ′ such that every path p =
{y, y1, . . . , yn, y′} from y to y′ must have at least one pair of consecutive
points yi, yi+1 such that dY(yi, yi+1) > τ . But, by condition (C) of Section
3, if m ≥ mQ

0 (α), with probability at least 1− α, this cannot be. Hence the
statement of the lemma holds. �

From these two lemmas, the following observation follows.

Proposition 5.3 For any α ∈ (0, 1), with probability at least 1−α, provided
m is large enough (m ≥ mQ

0 (α)), a connected component Hk of the graph Gτ

is always contained in the support of a mode-conditional distribution QY |M
and there is never more than a single such component in a mode-region.

This implies that if an example (xi, li) ∈ ζX corresponds to a case (xi, yi) ∈ ξ
with yi in a connected component Hk of the graph Gτ then li equals k where
k equals (up to a permutation) the value of the true (unknown) mode from
which the case was drawn from. Similarly, if an example (yi, li) ∈ ζY is such
that yi falls in a connected component Hk of the graph Gτ then li equals k
where k equals (up to a permutation) the value of the mode from which the
case was drawn from.

Thus the labels li of the sample points of ζX and ζY are representative of the
mode numbers and thus these auxiliary samples are proper labeled samples
needed for supervised learning of the classifiers h1 and h2, respectively.

5.2 Two classification problems

Given the two auxiliary samples ζX and ζY of (12), we learn two multi-
category classification problems, independently, by finding a component hy-
pothesis h1 and h2. Any supervised learning algorithms could be used to
produce h1 and h2: we do not propose or limit discussion to any particular
ones, but derive performance results (Theorems 6.1 and 6.2) that apply to
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all algorithms. Based on h1 and h2 we form a hypothesis h = [h1, h2] as in
(5), where by (9) its error is bounded by the sum of the errors of h1 and h2.

As mentioned above, the number of categories Kτ (ξ) is dependent on the
sample ξ, or more specifically on the set Y|ξ. Thus we need to make the
bounds of Section 4 apply for any value K and not just for a K which is
fixed in advance. To do that we use a ‘sieve’ method in the error-bound
proof.

To be able to use the standard-learning theory bounds we need the auxiliary
samples ζX and ζY to be drawn i.i.d.. The next lemmas state that they are
effectively drawn in an i.i.d. manner.

Lemma 5.4 Let α ∈ (0, 1) and m ≥ mQ
0 (α). Let ξ be a random sample

consisting of i.i.d. pairs of problem-solution cases. Let ζY be a sample ob-
tained by the labeling procedure applied on ξ. Then, with probability at least
1 − α, ζY consists of m i.i.d. random pairs of solution-mode values each
drawn according to PY .

Proof: Let L(m) = [L1, . . . , Lm] denote the label vector random variable and
Y (m) = [Y1, . . . , Ym] the solution vector random variable, where {(Yi, Li)}mi=1 =
ζY is a random sample produced by the labeling procedure of Section 5.1.
Denote by M (m) = [M1, . . . ,Mm] ∈ [K]m where Mi is the mode index
corresponding to the solution Yi. For any given sample realization ζY =
{(y∗i , l∗i )}

m
i=1 with y∗(m) = [y∗1, . . . , y

∗
m] ∈ Ym and l∗(m) = [l∗1, . . . , l

∗
m] ∈ [K]m

we have

P ({(Yi, Li)}mi=1 = {(y∗i , l∗i )}
m
i=1) = P

(
L(m) = l∗(m)

∣∣Y (m) = y∗(m)
)
P
(
Y (m) = y∗(m)

)
=

∑
l(m)∈[K]m

P
(
L(m) = l∗(m)

∣∣M (m) = l(m), Y (m) = y∗(m)
)

·P
(
M (m) = l(m) | Y (m) = y∗(m)

)
P
(
Y (m) = y∗(m)

)
.(13)

Conditioned on Y (m) = y∗(m) being drawn from mode values M (m) = l(m),
from Proposition 5.3, if m ≥ m0(α), then with probability at least 1−α, the
labels equal the mode values; that is, L(m) = l(m). (In fact, as noted earlier,
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the labels are equal to the mode values up to a permutation, by which we
mean there is some fixed permutation π such that L(m) = π(l(m)). However,
without loss of any generality, we can assume that the labels are the same as
the mode values because what matters is that the labels on the two auxiliary
samples match.) Hence (13) equals∑
l(m)∈[K]m

I
{
l(m) = l∗(m)

}
P
(
M (m) = l(m) | Y (m) = y∗(m)

)
P
(
Y (m) = y∗(m)

)
= P

(
M (m) = l∗(m)

∣∣Y (m) = y∗(m)
)
P
(
Y (m) = y∗(m)

)
= P

(
Y (m) = y∗(m),M (m) = l∗(m)

)
=

∑
x(m)

P
(
X(m) = x(m), Y (m) = y∗(m),M (m) = l∗(m)

)
= P

(
M (m) = l∗(m)

)∑
x(m)

P
(
X(m) = x(m), Y (m) = y∗(m)

∣∣M (m) = l∗(m)
)

=
∑
x(m)

m∏
i=1

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )QM (Mi = l∗i ) (14)

=
m∏
i=1

QM (Mi = l∗i )
∑
xi∈X

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )

=
m∏
i=1

∑
xi∈X

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )QM (Mi = l∗i )

=
m∏
i=1

PY (Yi = y∗i ,Mi = l∗i ) (15)

where (14) follows from the fact that the sample ξ is drawn i.i.d. according to∏m
i=1Q(Zi) =

∏m
i=1QZ|M(Zi|Mi)QM(Mi), and (15) follows from (4). Hence

it follows that the random sample ζY consists of m i.i.d. trials according to
the distribution PY(Y,M). �

The next lemma shows that the sample ζX is also i.i.d..

Lemma 5.5 Let α ∈ (0, 1) and m ≥ mQ
0 (α). Let ξ be a random sample

consisting of i.i.d. pairs of problem-solution cases. Let ζX be a sample ob-
tained by the labeling procedure applied on ξ. Then, with probability at least
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1 − α, ζX consists of m i.i.d. random pairs of problem-mode values each
drawn according to PX .

Proof: Let L(m) = [L1, . . . , Lm] denote the label vector random variable and
X(m) = [X1, . . . , Xm] the problem vector random variable. Denote byM (m) =
[M1, . . . ,Mm] ∈ [K]m where Mi is the mode index corresponding to the
problem Xi. For any sample ζX = {(x∗i , l∗i )}

m
i=1 with x∗(m) = [x∗1, . . . , x

∗
m] ∈

Xm and l∗(m) = [l∗1, . . . , l
∗
m] ∈ [K]m we have

P ({(Xi, Li)}mi=1 = {(x∗i , l∗i )}
m
i=1) = P

(
X(m) = x∗(m), L(m) = l∗(m)

)
=

∑
l(m)∈[K]m

P
(
X(m) = x∗(m), L = l∗(m)

∣∣M (m) = l(m)
)
P
(
M (m) = l(m)

)
=

∑
l(m)∈[K]m

∑
y(m)

P
(
X(m) = x∗(m), L(m) = l∗(m), Y (m) = y(m)

∣∣M (m) = l(m)
)
P
(
M (m) = l(m)

)
=

∑
l(m)∈[K]m

∑
y(m)

P
(
L(m) = l∗(m) | X(m) = x∗(m), Y (m) = y(m),M (m) = l(m)

)
·P
(
X(m) = x∗(m)

∣∣Y (m) = y(m),M (m) = l(m)
)
P (Y (m) = y(m)

∣∣M (m) = l(m) )P
(
M (m) = l(m)

)
.

(16)

Conditioned on X(m) = x∗(m) being drawn from mode values M (m) = l(m),
from Proposition 5.3, if m ≥ m0(α), then with probability at least 1−α, we
can assume as before the labels are equal to the modes, that is, L(m) = l(m).
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Hence (16) equals∑
l(m)∈[K]m

∑
y(m)

I
{
l(m) = l∗(m)

}
P
(
X(m) = x∗(m)

∣∣Y (m) = y(m),M (m) = l(m)
)

·P (Y (m) = y(m) |M (m) = l(m))P
(
M (m) = l(m)

)
= P

(
M (m) = l∗(m)

)∑
y(m)

P
(
X(m) = x∗(m), Y (m) = y(m)

∣∣M (m) = l∗(m)
)

=
∑
y(m)

m∏
i=1

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )QM (Mi = l∗i ) (17)

=
m∏
i=1

QM (Mi = l∗i )
∑
yi∈Y

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )

=
m∏
i=1

∑
yi∈Y

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )QM (Mi = l∗i )

=
m∏
i=1

PX (Xi = x∗i ,Mi = l∗i ) (18)

where (17) follows from the fact that the sample ξ is drawn i.i.d. according to∏m
i=1Q(Zi) =

∏m
i=1QZ|M(Zi|Mi)QM(Mi), and (18) follows from (4). Hence

it follows that the random sample ζX is drawn as m i.i.d. trials according to
the distribution PX (X,M). �

6 Error bounds for learning CBI

In this section, we give bounds on the credible set prediction error of any
hypothesis h = [h1, h2]. In particular, if h1, h2 happen to have a large width
value γ on every point of the auxiliary samples, then the bounds indicate
that the prediction will likely be a good one. Having these bounds can serve
as a guiding criterion for supervised learning algorithms to learn to predict
credible sets more accurately by producing hypotheses which make these
bounds small.
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Recall that what we want to do is obtain a high-probability bound on the
error err(h) of a hypothesis h, which is the probability that for a randomly
drawn problem-solution pair Z = (X, Y ) ∈ Z, h mispredicts Z; that is, h
predicts a bad credible solution set Ch(X) for X. Now, by (8), this error is
bounded by the sum

PX (h1(X) 6= M) + PY (h2(Y ) 6= M) = err(h1) + err(h2).

We may use Theorem 4.1 and Theorem 4.2 to bound each of the two prob-
abilities here. This results in the following error bounds. To be clear, in
these bounds, êrrγ1(h1) means the empirical margin error of h1 at scale γ1 on
sample ζX , and êrrγ2(h2) means the empirical margin error of h2 at scale γ2
on sample ζY . The fact that the theorems below hold for all K means that
the number of modes of Q does not have to be known in order to apply the
theorems.

Theorem 6.1 With the notation as above, with probability at least 1−δ, the
following holds for all integers m ≥ mQ

0 (δ/2). For all positive integers K for
all γ1 ∈ (0, diam(X )] and γ2 ∈ (0, diam(Y)], and for all h = [h1, h2] mapping
X ×Y into [K]2: if êrrγ1(h1) = 0 and êrrγ2(h2) = 0, then the error of h is at
most

2

m
(K(A+B + 2) + C + 10) ,

where

A = N (X , γ/12, dX ) log2

(
36 diam(X )

γ1

)
,

B = N (Y , γ/12, dY) log2

(
36 diam(Y)

γ2

)
,

C = log2

(
diam(X )diam(Y)

δ2γ1γ2

)
.

Proof: Fix K. We apply Theorem 4.1 simultaneously to both auxiliary sam-
ples. It is the case, since m ≥ mQ

0 (δ/2), that with probability at least
1− δ/2, each auxiliary sample will be i.i.d., by Lemma 5.4 and Lemma 5.5.
Call this event the ‘independence event’. Assuming the independence event
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holds, Theorem 4.1 then shows that, with probability at least 1 − δ/2K+1,
the sample will be such that we have both

err(h1) ≤
2

m
AK +

2

m
log2

(
32 2Kdiam(X )

γ1δ

)
and

err(h2) ≤
2

m
BK +

2

m
log2

(
32 2Kdiam(Y)

γ2δ

)
.

This is for fixed K. It follows that, if the independence event holds, then
with probability at least 1 −

∑∞
K=1 δ/2

K+1 = 1 − δ/2, the error of h is at
most

2

m
AK +

2

m
log2

(
32 2Kdiam(X )

γ1δ

)
+

2

m
BK +

2

m
log2

(
32 2Kdiam(Y)

γ2δ

)
.

So, the probability that either the independence event does not hold, or it
does but the stated error bound fails, is at most δ/2+δ/2. The result follows.
�

Theorem 6.2 With the notation as above, with probability at least 1−δ, the
following holds for all integers m ≥ mQ

0 (δ/2). For all positive integers K for
all γ1 ∈ (0, diam(X )] and γ2 ∈ (0, diam(Y)], and for all h = [h1, h2] mapping
X × Y into [K]2:

err(h) ≤ êrrγ1(h1) + êrrγ2(h2) +
2

m
+ (A+B)

√
2

m
,

where

A =

√
KN (X , γ1/6, dX ) ln

(
18 diam(X )

γ1

)
+ ln

(
8 diam(X )

γ1δ

)
+K

and

B =

√
KN (Y , γ2/6, dY) ln

(
18 diam(Y)

γ2

)
+ ln

(
8 diam(Y)

γ2δ

)
+K
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Proof: The result follows from Theorem 4.2 in a similar way as the previous
theorem followed from Theorem 4.1, making the observation that

ln

(
8 2K diam(X )

γδ

)
≤ K + ln

(
8 diam(X )

γδ

)
.

�

7 Conclusions

Hüllermeier introduced a framework of CBI whose goal is to predict a cred-
ible set of solutions for a given input problem instance. In his framework,
he has a specific learning algorithm that produces a hypothesis function,
from which one constructs a credible set of solutions. Taking the goal of
his framework, we introduce a new approach to learning CBI which uses a
different and much richer class of hypotheses to predict a credible set of so-
lutions. In our approach, a hypothesis is a pair of multi-category classifiers.
We model learning CBI as two multi-category learning problems. We pro-
vide and mathematically justify an automatic procedure that transforms any
given case-base into two sets of samples that can be used by any supervised
learning algorithm to learn CBI. We then perform an analysis of the error
of a hypothesis that any algorithm may provide as output when training on
these samples. We provide bounds on this error that can serve as a guiding
criterion for the design of successful algorithms.

One main contribution has been to show how learning CBI over the wide
spectrum of complex and unstructured CBR domains can now be tackled by
standard off-the-shelf supervised-learning algorithms. Another contribution
is in showing how the large-width advantage (related to the branch of learning
theory known as large margin-learning) can also be realised for learning CBI.
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