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1. Introduction

In this paper we study a method of classifying points of [0, 1]n into two
classes. The classifiers we use combine the use of ‘boxes’ with a nearest-
neighbor approach and for this reason we describe it as a hybrid classifier.
Both classification by boxes and nearest-neighbor classification have been
widely used. For instance, the use of boxes is integral to many of the stan-
dard methods used in the logical analysis of data (LAD); see [8] and [9], for
instance.

The primary purpose of this paper is to quantify the performance of the
hybrid classifiers by bounding their generalization error. In doing so, we
obtain bounds that depend on a measure of how ‘robust’ the classification is
on the training sample. In using real-valued functions to form the basis of the
classification, we can also attach some degree of ‘confidence’ or ‘definitiveness’
to the resulting classifications, and this could be of some practical use.

In Section 2, we give some background by way of motivation. Chiefly, this
is a description of some of the standard methods used in the logical analysis
of data, especially as they apply to data in which the data points are not
necessarily binary, but have real-valued components. In this context, unions
of boxes are used as a key means of classification. (It should be noted that
classification by unions of boxes have been more widely studied, not just in
the context of LAD; see [10] for instance.)

Section 3 describes a type of ‘hybrid’ classifier which incorporates some of the
features of the LAD (and other) techniques in that it uses unions of boxes.
However, the classifiers combine this with a nearest-neighbor paradigm for
classifying some regions of the domain. In this section, we define the classi-
fiers, give an example, and discuss the rationale for this method of classifi-
cation.

Section 4 provides the main theoretical results, giving bounds on the predic-
tive performance (or generalization error) of the classifiers. The bounds we
obtain are better if the classifier achieves ‘definitively’ correct classification
of the sample points.
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2. Classification using unions of boxes

In standard logical analysis of data (LAD) for binary data, we have some col-
lection of labeled observations (or data-points, or training examples) (xi, bi),
for i = 1, 2, . . . ,m, where m is known as the sample size. The observations
are the xi and their labels are the bi. The xi ∈ {0, 1}n for which (xi, 1)
appears among the observations are said to be the positive observations; and
those for which (xi, 0) appears are the negative observations. We denote the
sets of positive and negative observations by D+ and D− respectively, and
the set of all m observations by D. The primary aim is to find some function
h : {0, 1}n → {0, 1}, a hypothesis or classifier, that describes the classifica-
tions of the known observations well and therefore, as a result, would act as
a reliable guide to how future, as yet unseen, elements of {0, 1}n ought to
be classified. This is, indeed, a central issue generally in machine learning.
The approach taken in LAD methods involves the use of Boolean functions
constructed in precise algorithmic ways from the observations. In the stan-
dard LAD method for binary data [11], a disjunctive normal form Boolean
function (a DNF) is produced. The terms of this DNF are called positive pat-
terns. A (pure) positive pattern is a conjunction of literals which is true on
at least one positive observation (in which case we say that the observation
is covered by the pattern) but which is not true on any negative observation.
The classifier is then taken to be the disjunction of a set of positive patterns.
A more general technique combines the use of positive patterns with nega-
tive patterns, conjunctions which cover some negative observations. Points
of {0, 1}n are then classified as follows: x ∈ {0, 1}n is assigned value 1 if it
is covered by at least one positive pattern, but no negative patterns; and it
is assigned value 0 if it is covered by at least one negative pattern, but no
positive patterns. If a point x is covered by both types of pattern (which
might well be the case, even if we have been careful to ensure that the obser-
vations themselves have only been covered by patterns of one type) then its
classification is often determined by using a discriminant, which takes into
account (perhaps in a weighted way) the number of positive and the number
of negative patterns covering it.

These standard LAD techniques apply when the data is binary. However,
many applications involve numerical data, in which D ⊆ [0, 1]n × {0, 1}.
The LAD methods have been extended to deal with such cases; see [9], for
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instance. The approach is first to binarize the data, so that observations x ∈
[0, 1]n are converted into binary observations x∗ ⊆ {0, 1}d, where, generally,
d ≥ n. The standard way to do so is to use cutpoints for each attribute
(that is, for each of the n geometrical dimensions). For each coordinate (or

dimension) j = 1, 2, . . . , n, let u
(j)
1 , u

(j)
2 , . . . , u

(j)
kj

be, in increasing order, all
the distinct values of the jth coordinate of the observations in D. For each
j, let

β
(j)
i =

u
(j)
i + u

(j)
i+1

2

for i = 1, . . . , kj − 1. For j = 1, 2, . . . n and i = 1, 2, . . . kj − 1, and for each

x ∈ D, we define b
(j)
i (x) to be 1 if and only if xj ≥ β

(j)
i . Let x∗ be the

resulting binary vector

x∗ = (b
(1)
1 (x), . . . , b

(1)
k1

(x), . . . , b
(n)
1 (x), . . . , b

(n)
kn

(x)) ∈ {0, 1}d,

where d =
∑n

j=1 kj. The set D∗ = {x∗i : 1 ≤ i ≤ m} is then a binarized
version of the set D of observations, and standard LAD techniques can be
applied.

There are a number of ways, however, in which the binarization just described
could be non-optimal and, usually, some cutpoints can be eliminated; see the
approaches taken in [8] and [9]). In [4], variants on these approaches are
discussed, the aim being to find ‘robust’ cutpoints; that is, cutpoints which
define hyperplanes geometrically at least at a certain distance from the data
points. Suppose, then, that a (reduced) set C(j) of Kj cutpoints (a subset of

the corresponding β
(j)
i ) is selected for coordinate j, and suppose the members

of C(j) are
a
(j)
1 < a

(j)
2 < · · · < a

(j)
Kj
.

Let d =
∑n

j=1Kj. An element x ∈ [0, 1]n will be ‘binarized’ as x∗ ∈ {0, 1}d
where x∗ is

(b
(1)
1 (x), . . . , b

(1)
K1

(x), . . . , b
(n)
1 (x), . . . , b

(n)
Kn

(x)),

where b
(j)
i (x) = 1 if and only if xj ≥ a

(j)
i . Let the Boolean literal u

(j)
i be given

by I[xj ≥ a
(j)
i ], where I[P ] has value 1 if P is true and value 0 otherwise.

Then a positive pattern is a conjunction of some of the Boolean variables
u
(j)
i . By definition of u

(j)
i , u

(j)
i = 1 implies u

(j)
i′ = 1 for i > i′, and any j. So
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a typical positive pattern can be written in terms of these Boolean variables
as

n∧
j=1

u(j)rj ū
(j)
sj
,

where sj > rj. (Here, ∧ denotes the Boolean conjunction, the ‘and’ operator.)
Geometrically, this positive pattern is the indicator function of the ‘box’

[a(1)r1 , a
(1)
s1

)× [a(2)r2 , a
(2)
s2

)× · · · × [a(n)rn , a
(n)
sn ).

With this approach, then, the simplest LAD classifier, which corresponds to
a disjunctive normal form, is the indicator function of a union of boxes of
this type; and all other regions of [0, 1]n are classified as negative. With the
use also of negative patterns, we then have two separate unions of boxes:
one labeled as positive, and the other negative. The other regions of [0, 1]n

must also be classified and, as mentioned above, this is often done by a
discriminator, the simplest approach being to classify a point as positive if
and only if it is covered by at least as many positive patterns as negative
patterns. (See [9, 8], for instance.) This would, by default, classify as positive
a point or a region which is covered by no patterns at all, of either type.
Alternatively, such points or regions could be classified randomly as either
positive or negative. One issue we seek to address in this papers is whether
a more justifiable approach can be taken to classifying such regions.

3. A hybrid classifier based on boxes and distance

3.1. Definition of the classifiers

The classifiers we study here are in many ways similar to those that result, as
just described, from the use of positive and negative patterns in the logical
analysis of numerical data. (But their use is not confined to LAD.) However,
we combine the use of boxes with the use of a nearest-neighbor paradigm.
Explicitly, if a point of [0, 1]n is not in the union of ‘positive’ boxes (the region
covered by positive patterns) or in the union of ‘negative’ boxes, then it is
not simply classified as positive, nor is it randomly classified. Instead, we
take into account the distance of the point from these two unions of boxes.
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If it is ‘closer’ to the positive boxes than the negative ones, we classify it as
positive. We now describe the classifiers.

For each j between 1 and n, suppose there is a set C(j) = {a(j)1 , a
(j)
2 , . . . , a

(j)
Kj
} ⊆

[0, 1]. We call these the cutpoint sets, by analogy with the LAD terminology.
An open box (defined with respect to the cutpoint sets) is a set of the form

(a(1)r1 , a
(1)
s1

)× (a(2)r2 , a
(2)
s2

)× · · · × (a(n)rn , a
(n)
sn ),

where 0 ≤ rj < sj ≤ Kj + 1 (and where a
(j)
0 is interpreted as 0 and a

(j)
Kj+1 as

1). Note that the ‘sides’ of the box in each dimension, j, are defined by two
cutpoints from C(j) (or the end-points 0, 1). These cutpoints need not be
consecutive cutpoints. The cutpoint sets C(j) define

∏n
j=1

(
Kj+2

2

)
open boxes.

Now take S+ and S− to be unions of some such boxes, in such a way that
S+ and S− are disjoint. The boxes in S+ are positive (labeled 1) and those
in S− negative (labeled 0); and, generally, there are unlabeled boxes, not in
S+ or S−.

For a point x ∈ X = [0, 1]n let

‖x‖ := ‖x‖∞ = max
1≤j≤n

|xj|

denote the max-norm of x. For two points x, x′ ∈ X the distance between
them is ‖x− x′‖ and for a set S ⊆ X we define the distance from x to S to
be dist (x, S) = infx′∈S ‖x− x′‖. Clearly, for x ∈ S, dist (x, S) = 0.

Given the pair S+ and S− of unions of open boxes, denote their closures
by S+ and S−. (So, these are just the same unions of boxes, but with the
boundaries included.) We define

f+(x) = dist
(
x, S+

)
, f−(x) = dist

(
x, S−

)
(1)

and we let

f(x) =
f−(x)− f+(x)

2
.

So each pair (S+, S−) has a unique f associated with it.

Our classifiers will be the binary functions of the form

h(x) = sgn (f(x)) ,
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where sgn(z) = 1 if z ≥ 0 and sgn(z) = 0 if z < 0. So, if F is the set of all
real-valued functions of the form

f =
f− − f+

2
,

where f+ and f− correspond to unions of boxes S+ and S−, then the set of
classifiers is

H = {sgn(f) | f ∈ F}

Classification in which each category or class is a union of boxes is a long-
studied and natural method for pattern classification. It is central, for in-
stance, as noted above, to the methods used for logical analysis of data (see,
for example [8, 9, 14, 4]) and has been more widely studied as a geomet-
rical classifier (see [10], for instance). More recently, unions of boxes have
been used in combination with a nearest-neighbor (or proximity) paradigm
for multi-category classification [13]. (In Felici et al. [13], the taxi-cab or d1
metric is used rather than the max-norm used here, though we can easily
adapt the analysis to apply to the d1 metric.) Felici et al.[13] use an ag-
glomerative box-clustering method to produce a set of candidate classifiers
and then select from these one that is, in a sense they define, optimal. They
provide some experimental evidence that this approach works. This paper
provides theoretical justification for similar types of classifer.

3.2. Example

Figure 1 shows a 2-dimensional example. We have five cutpoints in each
dimension. The white boxes form S+ and the black boxes form S−. The
grey region is the region which will be classified, in our method, using the
distance to the boxes of each type (the ‘nearest-neighbor’ paradigm). When
the whole domain is classified in the way described above, we obtain the
partition indicated in Figure 2: the white region is labeled 1 and the black
region 0.

3.3. Rationale

We are interested in this particular kind of classifier for several reasons. A
special case of it corresponds quite naturally to a very simple and intuitive
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Figure 1: ‘Before classification’: the labeled boxes.
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Figure 2: ‘After classification’: the classification of the whole domain.

learning algorithm. Assume that the cutpoints have the property that we
can find boxes defined by them, each of which contains only positive or
only negative observations from the known data set. (The standard LAD
algorithms for cutpoint selection guarantee this.) Then we could simply take
S+ to be the union of all boxes containing positive observations and S− the
union of those containing negative observations. Any other point x of the
domain is then classified according to whether it is closer to the positive
boxes or the negative ones.

Furthermore, these classifiers can be used in conjunction with LAD-type
methods. One could run an LAD-type algorithm to produce positive and
negative patterns. Each pattern corresponds to a box. Let R+ be the union
of the boxes defined by positive patterns and R− the union of the boxes
defined by negative patterns. The fact that some points (and indeed some box
regions) could be covered by both positive and negative patterns means that
R+ and R− need not be disjoint. The intersection R+ ∩R− would itself be a
union of boxes, and these could be classified, as in standard LAD procedures,
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using a discriminant. This would assign a box in the intersection a positive
classification if and only if the number of positive patterns covering it (that
is, boxes of R+ containing it) is at least the number of negative patterns
covering it (boxes of R− containing it). The classification of these (sub-)
boxes would then be resolved, and we could then form S+ and S− as the
unions of the boxes now labeled 1 and 0, respectively. Then, any point not
falling into S+ ∪ S− (that is, any point not covered by any pattern, positive
or negative) is not simply classified as positive by default, but is classified
according to whether it is closer to the positive region or the negative region.

Another attractive feature of the classifier produced is that it has a represen-
tation which, unlike ‘black-box’ classification schemes (for instance, based on
neural networks), can be described and understood: there are box-shaped re-
gions where we assert a known classification, and the classification anywhere
else is determined by an arguably fairly sensible nearest-neighbor approach.

It is also useful that there is an underlying real-valued function f . This, as we
will see, is useful in analyzing the performance of the classifier. Moreover, the
value of f (not just its sign) has some geometrical significance. In particular,
if f(x) is relatively large, it means that x is quite far from boxes of the
opposite classification: it is not the case that x is very near the boundary of
a box which has the opposite classification. If all points of the data set satisfy
this, then it means that the classification is, in a sense, ‘robust’. (In related
work in [4], a similar notion of robustness of the cutpoints for standard LAD
methods is investigated and algorithms for selecting robust cutpoints are
discussed.) We could interpret the value of the function f as an indicator
of how confident we might be about the classification of a point: a point in
the domain with a large value of f will be classified as positive, and more
‘definitely’ so than one with a smaller, but still positive, value of f . We might
think that the classification of the first point is more reliable than that of
the second, because the large value of f , indicating that the point is far from
negative boxes, provides strong justification for a positive classification. For
instance, consider again the example we have been studying. A contour plot
of the function f is shown in Figure 3. The darkest regions are those with
lowest (that is, most negative) values of f and the lightest are those with
highest value of f . The very dark or very light regions are, arguably, those
for which we can most confidently classify the points. Figure 4 has some
contour lines indicated.
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Figure 3: Contour plot of the underlying real-valued function f . Very dark regions have
lowest values of f and very light highest.
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Figure 4: A contour plot of f , with contour lines idicated.
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4. Predictive performance of the classifier

4.1. Probabilistic modeling of learning

To quantify the performance of a classifier after training, we use a form of the
‘probably approximately correct’ (or ‘PAC’) model of computational learning
theory (see [3], [17], [7]). This assumes that we have some training examples
zi = (xi, bi) ∈ Z = [0, 1]n×{0, 1}, each of which has been generated randomly
according to some fixed probability measure P on Z. These training examples
are, in the LAD terminology, the labeled positive and negative observations
we are given at the outset. Then, we can regard a training sample of length
m, which is an element of Zm, as being randomly generated according to
the product probability measure Pm. Suppose that F is the set of functions
we are using to classify. (So, recall that F is a set of real-valued functions
and that the corresponding binary classification functions are the functions
h = sgn(f) for f ∈ F .)

The natural way to measure the predictive accuracy of f ∈ F in this context
is by the probability that the sign of f correctly classifies future randomly
drawn examples. We therefore use the following error measure of the classifier
h = sgn(f):

erP (sgn(f)) = P ({(x, b) ∈ Z : sgn(f(x)) 6= b}) .

Of course, we do not know this error: we only know how well the classifier
performs on the training sample. We could quantify how well f ∈ F matches
the training sample by using the sample error of h = sgn(f) on the training
sample z = ((x1, b1), . . . , (xm, bm)):

erz(h) =
1

m
|{i : sgn(f(xi)) 6= bi}|

(the proportion of points in the sample incorrectly classified by the sign of f).
But we will find it more useful to use a variant of this, involving a ‘width’ or
‘margin’ parameter γ. Much emphasis has been placed in practical machine
learning techniques, such as Support Vector Machines [12], on ‘learning with a
large margin’. (See, for instance [16], [2], [1] and[15].) Related work involving
‘width’ (applicable to binary-valued rather than real-valued functions) rather
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than ‘margin’ has also been carried out [5]. For γ > 0, with h = sgn(f), and
z = ((x1, b1), . . . , (xm, bm)), we define

erγz(f) =
1

m
|{i : f(xi)bi < γ}|.

This is the proportion of zi = (xi, bi) in the sample for which either sgn(f(xi)) 6=
bi, or sgn(f(xi)) = bi but |f(xi)| < γ. So it is the fraction of the sample that
is either misclassified by the classifier, or is correctly classified but not defini-
tively so, in the sense that the value of f(xi) is only just of the right sign
(and not correct ‘with a margin’ of at least γ).

Much effort has gone into obtaining high-probability bounds on erP (h) in
terms of erγz(f); see [2, 6, 15, 1], for instance. A typical result would be of
the following form: for all δ ∈ (0, 1), with probability at least 1 − δ, for all
f ∈ F ,

erP (sgn(f)) < erγz(f) + ε(m, γ, δ),

where ε decreases with m and δ. We obtain a bound of a similar, but slightly
different form, in this paper for the set of hybrid classifiers we are considering.

4.2. Covering the set of classifiers

We now consider covering numbers, in order to deploy some results on prob-
abilistic learning. Suppose that F is a set of functions from a domain X to
some bounded subset Y of R. For a finite subset S of X, the l∞(S)-norm of f
is defined by ‖f‖l∞(S) = maxx∈S |f(x)|. For γ > 0, a γ-cover of F with respect

to the l∞(S) norm is a subset F̂ of F with the property that for each f ∈ F
there exists f̂ ∈ F̂ with the property that for all x ∈ S, |f(x) − f̂(x)| < γ.
The covering number N (F, γ, l∞(S)) is the smallest cardinality of a covering
for F with respect to l∞(S) and the uniform covering number N∞(F, γ,m)
is the maximum of N (F, γ, l∞(S)), over all S with S ⊆ X and |S| = m.

We will make use of the following result, a slight improvement of a result that
follows from one in [2]. Unlike some standard bounds (see [2], for instance),
this has a factor of 3 in front of the erγz(f), but it involves ε rather than ε2 in
the negative exponential. This type of bound is therefore potentially more
useful when erz(f) is small.
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Theorem 4.1. Suppose that F is a set of [0, 1]-valued functions defined on
a domain X and that P is any probability measure on Z = X×{0, 1}. Then,
for any ε ∈ (0, 1), any γ > 0 and any positive integer m,

Pm ({z ∈ Zm : ∃f ∈ F, erP (sgn(f)) > 3 erγz(f) + ε}) ≤ 4N∞(F, γ/2, 2m)e−εm/4.

Proof: A theorem from [6] states that, for any η, with probability at least
1− 4N∞(F, γ/2, 2m)e−η

2m/4, for all f ∈ F ,

erP (sgn(f))− erγz(f)√
erP (sgn(f))

≤ η.

Let η =
√
ε. Fix f ∈ F and suppose this inequality holds. If we write x

for
√

erP (sgn(f)) and if we set β = erγz(f), then x2 ≤ β + ηx. Equivalently,
x2 − ηx − β ≤ 0. Regarding this as a quadratic inequality in x, we deduce
that

x ≤ η

2
+

1

2

√
η2 + 4β.

It follows that

x2 ≤ η2

4
+

(
η2

4
+ β

)
+

1

2
η
√
η2 + 4β

≤ η2

2
+ β +

1

2

√
η2 + 4β

√
η2 + 4β

= η2 + 3β.

So, by fixing η =
√
ε, with probability at least 1− 4N∞(F, γ/2, 2m)e−η

2m/4,
for all f ∈ F ,

erP (sgn(f)) ≤ 3 erγz(f) + ε.

Hence the result follows (on noting that η2 = ε). ut

One approach to bounding the covering number of a function class F with
respect to the l∞(S)-norm is to construct and bound the size of a covering
with respect to the sup-norm ‖f‖∞ on X, defined as ‖f‖∞ = supx∈X |f(x)|.
This clearly also serves as a covering with respect to the l∞(S) norm, for any
S, since if ‖f−f̂‖∞ < γ then, by definition of the sup-norm, |f(x)−f̂(x)| < γ
for all x ∈ X (and, therefore, for all x ∈ S where S is some subset of X).
This is the approach we now take.

The following result will be useful to us.
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Lemma 4.2. Suppose f+ is defined as in equation (1) with respect to the set

S+, a union of boxes based on cutpoints a
(j)
i (for 1 ≤ j ≤ n and 1 ≤ i ≤ Kj).

Then, for any x ∈ [0, 1]n, there exists a pair of indices 1 ≤ q ≤ n, 1 ≤ p ≤ Kq

such that the distance between x and S+ satisfies dist
(
x, S+

)
=
∣∣∣xq − a(q)p ∣∣∣.

Proof: We have
dist

(
x, S+

)
= inf

x′∈S+

φ (x, x′)

where, for each fixed x, φ(x, x′) = max1≤j≤n |xj − x′j| is continuous in x′.

Since the set S+ is closed, by the extreme-value theorem φ(x, x′) attains its
infimum on S+. If x ∈ S+ then it is attained at x′ = x. If x 6∈ S+ then it is
attained at some point on the boundary of S+. This boundary consists of a
union of ‘sides’, each side j being a set of the form

V
(j)
i =

{
z ∈ [0, 1]n : zj = a

(j)
i , a(k)rk ≤ zk ≤ a(k)sk , k 6= j

}
.

The point z∗ closest to x in V
(j)
i is then such that z∗j = a

(j)
i , and for the other

coordinates k 6= j, either z∗k = xk, or z∗k equals one of the two cutpoint values

a
(k)
rk , a

(k)
sk . Thus the distance ‖x− z∗‖ either equals

∣∣∣xj − a(j)i ∣∣∣; or
∣∣∣xk − a(k)rk ∣∣∣

or
∣∣∣xk − a(k)sk ∣∣∣, for some k 6= j. The distance between x and S+ equals the

minimal distance between x and any of the sides V
(j)
i . It follows that this

distance equals
∣∣∣xs − a(q)p ∣∣∣ for some 1 ≤ q ≤ n, 1 ≤ p ≤ Kq. ut

We now bound the covering number of the set of classifiers that derive from
a set of boxes with cardinality at most B. Suppose B ∈ N and that for each
j between 1 and n, Kj ∈ N. Let ` = (K1, K2, . . . , Kn) ∈ Nn and let F (`, B)
be the set of all the classifiers obtained as follows: (i) for each j, there is a set

C(j) = {a(j)1 , a
(j)
2 , . . . , a

(j)
Kj
} ⊆ [0, 1]; and, (ii) the boxes taken to form S+ ∪S−

are at most B in number, and each of them has the form

(a(1)r1 , a
(1)
s1

)× (a(2)r2 , a
(2)
s2

)× · · · × (a(n)rn , a
(n)
sn ).

where 0 ≤ rj < sj ≤ Kj + 1 (and where a
(j)
0 is interpreted as 0 and a

(j)
Kj+1 as

1). (Note that we specify here the numbers Kj of cutpoints in each dimension,
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but we do not fix the sets of cutpoints. Note also that the boxes need not be
disjoint.)

We have the following bound.

Theorem 4.3. Let B ∈ N and ` = (K1, K2, . . . , Kn) ∈ Nn. Then, one has
the following bound for the uniform covering numbers of F (`, B):

lnN∞(F (`, B), γ,m) ≤
n∑
j=1

Kj ln

(
3

γ

)
+ 2B

n∑
j=1

ln(Kj + 2) +B,

for all m ∈ N and all γ ∈ (0, 1).

Proof: As indicated in the preceding discussion, we construct a covering of
F (`, B) with respect to the sup-norm ‖f‖∞ on F (`, B). For a given γ ∈ (0, 1),
let N = b1/γc and let

Gγ = {iγ : 0 ≤ i ≤ N} ∪ {1} =

{
0, γ, 2γ, . . . ,

⌊
1

γ

⌋
γ, 1

}
⊆ [0, 1].

Note that |Gγ| ≤ N + 2 = b1/γc+ 2 ≤ b3/γc. Let us define the class F̂ (`, B)
of classifiers to be those satisfying: (i) for each j, there are Kj cutpoints in
dimension j, and each belongs to Gγ; and, (ii) the boxes in S+ ∪ S− are at

most B in number. Then we claim that F̂ (`, B) is a γ-covering of F (`, B)
with respect to the sup-norm.

Given any f ∈ F (`, B) let C(j) be the set of cutpoints {a(j)1 , a
(j)
2 , . . . , a

(j)
Kj
},

for 1 ≤ j ≤ n . By construction, for each a
(j)
i there exists a corresponding

â
(j)
i ∈ Gγ that satisfies

∣∣∣a(j)i − â(j)i ∣∣∣ ≤ γ. For each box Q in S+ of the form

Q = (a(1)r1 , a
(1)
s1

)× (a(2)r2 , a
(2)
s2

)× · · · × (a(n)rn , a
(n)
sn ),

let Q̂ be the box

Q̂ = (â(1)r1 , â
(1)
s1

)× (â(2)r2 , â
(2)
s2

)× · · · × (â(n)rn , â
(n)
sn ).
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Let Ŝ+ be the union of the boxes Q̂ corresponding to the boxes Q forming
S+. In an analogous way, define Ŝ−. The function class F̂ (`, B) is precisely
the set of all functions f̂ , defined by

f̂(x) =
f̂−(x)− f̂+(x)

2
,

where
f̂−(x) = dist(x, Ŝ−), f̂+(x) = dist(x, Ŝ+).

We now show that ‖f − f̂‖∞ ≤ γ.

Fix any x ∈ X. Let us compute the values of f+(x) and f̂+(x). From

Lemma 4.2, there exist indices r, s such that f+(x) = dist
(
x, S+

)
=
∣∣∣xs − a(s)r ∣∣∣.

Denote by â
(s)
r the cutpoint in Gγ that satisfies

∣∣∣â(s)r − a(s)r ∣∣∣ ≤ γ. Then we

have,

f+(x) =
∣∣xs − a(s)r ∣∣

≥
∣∣xs − â(s)r ∣∣− γ

≥ inf{‖x− z‖ : z ∈ Ŝ+} − γ

= dist
(
x, Ŝ+

)
− γ

= f̂+(x)− γ.

Also, from Lemma 4.2, there exist indices p, q such that f̂+(x) = dist
(
x, Ŝ+

)
=∣∣∣xp − â(p)q ∣∣∣. Hence we have

f̂+(x) =
∣∣xp − â(p)q ∣∣

≥
∣∣xp − a(p)q ∣∣− γ

≥ inf{‖x− z‖ : z ∈ S+} − γ
= dist

(
x, S+

)
− γ

= f+(x)− γ.

It follows that ‖f+− f̂+‖ ≤ γ. The same argument holds for the pair f− and
f̂−, and so it follows that

‖f − f̂‖∞ = sup
x∈X

∣∣∣f(x)− f̂(x)
∣∣∣

18



=
1

2
sup
x∈X

∣∣∣f−(x)− f+(x)− f̂−(x) + f̂+(x)
∣∣∣

≤ 1

2
sup
x∈X

∣∣∣f+(x)− f̂+(x)
∣∣∣+

1

2
sup
x∈X

∣∣∣f−(x)− f̂−(x)
∣∣∣

≤ γ.

Thus for each f ∈ F (`, B) there exists f̂ ∈ F̂ (`, B) such that ‖f − f̂‖∞ ≤ γ,
and F̂ (`, B) is therefore a γ-covering of F (`, B) in the sup-norm.

We now bound the cardinality of F̂ (`, B). Note that since there are Kj cut-
points in each dimension j, and each of these is from Gγ, a set of cardinality

at most b3/γc, it follows that there are at most
∏n

j=1

(b3/γc
Kj

)
possible ways of

choosing the cutpoints for a function in F̂ (`, B). A box is defined by choosing
a pair of cutpoints in each dimension (allowing also for the possibility that
one end of the interval defining the box in any given dimension can be 0 or
1). We then choose B boxes, and, next, each box is assigned either a 0 label
or a 1 label (that is, it is chosen to be part of Ŝ− or Ŝ+). Thus, we have

|F̂ (`, B)| ≤
n∏
j=1

(
b3/γc
Kj

)(∏n
j=1

(
Kj+2

2

)
B

)
2B

≤
n∏
j=1

⌊
3

γ

⌋Kj n∏
j=1

(Kj + 2)2B2B.

It follows, therefore, that

ln |F̂ (`, B)| ≤
n∑
j=1

Kj ln

(
3

γ

)
+ 2B

n∑
j=1

ln(Kj + 2) +B

and the result of the theorem follows. ut

4.3. A generalization error bound

Theorem 4.1, together with Theorem 4.3, could now be used to bound the
generalization error of a classifier when B and K1, K2, . . . , Kn are prescribed
in advance. However, the following more useful result does not require these
to be known or prescribed.
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Theorem 4.4. Suppose δ ∈ (0, 1), and suppose P is any probability measure
on X = [0, 1]n. Then, with Pm-probability at least 1− δ, a sample z is such
that:

• for all γ ∈ (0, 1);

• for all ` = (K1, K2, . . . , Kn) ∈ Nn;

• for all B ∈ N;

• if f ∈ F (`, B), then

erP (sgn(f)) ≤ 3 erγz(f) + ε(m, γ, δ, `, B),

where ε(m, γ, δ, `, B) is

4

m

(
ln

(
12

γδ

)
+

n∑
j=1

Kj ln

(
24

γ

)
+ 2B + 2B

n∑
j=1

ln(Kj + 2)

)
.

Proof: Theorems 4.1 and 4.3 have the following immediate consequence:
for ` ∈ Nn and B ∈ N, with probability at least 1− δ, for all f ∈ F (`, B),

erP (sgn(f)) < 3 erγz(f) + ε1(m, γ, δ, `, B)

where ε1(m, γ, δ, `, B) is

4

m

(
ln

(
4

δ

)
+

n∑
j=1

Kj ln

(
6

δ

)
+B + 2B

n∑
j=1

ln(Kj + 2)

)
.

For α1, α2, δ ∈ (0, 1), let E(α1, α2, δ) be the set of z ∈ Zm for which there
exists some f ∈ F (`, B) with erP (sgn(f)) ≥ 3 erα2

z (f) + ε1(m,α1, δ, `, B).
Then, as just noted, Pm(E(α, α, δ)) ≤ δ and, also, if α1 ≤ α ≤ α2 and
δ1 ≤ δ, then E(α1, α2, δ1) ⊆ E(α, α, δ). It follows, from [6] and [2], that

Pm

 ⋃
α∈(0,1]

E(α/2, α, δα/2)

 ≤ δ.
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In other words, for fixed ` and B, with probability at least 1 − δ, for all
γ ∈ (0, 1], we have

erP (sgn(f)) < 3 erγz(f) + ε2(m, γ, δ, `, B),

where ε2(m, γ, δ, `, B) is

4

m

(
ln

(
4

δ

)
+

n∑
j=1

Kj ln

(
12

δγ

)
+B + 2B

n∑
j=1

ln(Kj + 2)

)
.

(Note that γ now need not be prescribed in advance.) It now follows that
the probability that for some ` and for some B, we have

erP (sgn(f)) ≥ 3 erγz(f) + ε2

(
m, γ,

δ

2(B+
∑n

j=1Kj)
, `, B

)
for some γ ∈ (0, 1) is at most

∞∑
B,K1,...Kn=1

δ

2(B+
∑n

j=1Kj)
=

∞∑
B=1

δ

2B

∞∑
K1,...,Kn=1

n∏
j=1

1

2Kj

=
∞∑
B=1

δ

2B

n∏
j=1

∞∑
Kj=1

1

2Kj

=
∞∑
B=1

δ

2B

n∏
j=1

1 = δ.

The result now follows. ut

For any classifier of the type considered, there will be some maximal value
of γ such that erγz(f) = 0. We call this value of γ the width of f on z.
This terminology is motivated by the earlier observation that the value of
f(x) measures the distance from x to the nearest box with the opposite
classification. (The term ‘margin’ might be more standard in the general
context of using real-valued functions for classification, but ‘width’ seems
more geometrically appropriate here.) Theorem 4.4 does not specify γ in
advance, so we have the following immediate corollary.
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Theorem 4.5. With the same notation as above, with Pm-probability at least
1− δ, a sample z is such that for any f ∈ F , erP (sgn(f)) is at most

4

m

(
ln

(
12

γ(f, z)δ

)
+

n∑
j=1

Kj ln

(
24

γ(f, z)

)
+ 2B(f) +B(f)

n∑
j=1

ln(Kj + 1)

)
,

where γ(f, z) is the width of f on z, and f involves B(f) boxes, defined with
respect to some set of Kj cutpoints in dimension j (for 1 ≤ j ≤ n).

We could also use Theorem 4.4 as a guide to ‘model selection’. The theorem
states that, with probability at least 1− δ,

erP (sgn(f)) < E(m, γ, δ, `, B) = 3 erγz(f) + ε(m, γ, δ, `, B).

For fixed m and δ, ε(m, γ, δ, `, B) decreases as γ increases, and erγz(f) in-
creases as γ increases. Therefore E(m, γ, δ, `, B) is the sum of two quan-
tities, one increasing and the other decreasing as γ increases, and there is
hence a trade-off between the two quantities. Clearly, also, the parameters
` and B can be varied. This motivates the use of a learning algorithm that
returns a classifier which minimizes the combination E(m, γ, δ, `, B). The
(high-probability) generalization error bound for such an algorithm take the
form

erP (sgn(f)) ≤ inf
γ,`,B

inf{3 erγz(f) + ε(m, γ, δ, `, B) : f ∈ F (`, B)}.

How to develop an algorithmic procedure for realizing such a learning algo-
rithm is an interesting question for further work; but, certainly, what this
suggests is that, given a choice of possible classifiers, it might be sensible to
select from among those the one that minimizes the right-hand side of this
bound.

5. Conclusions

This paper has studied the generalization ability of a classifier that is a hybrid
between two approaches: classical LAD (or unions of boxes) and nearest-
neighbors. In using real-valued functions as a key tool in the classification,
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we can attach some measure of how ‘definitive’ the classification is. This is
potentially of some practical use, but it also enables us to develop general-
ization error bounds of a special type, which depend on a measure of the
classifier’s robustness, which we term its ‘width’.
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