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Abstract We introduce an algorithm, called Large Width
(LW), that produces a multi-category classifier (defined on
a distance space) with the property that the classifier has
a large ‘sample width’ (width is a notion similar to clas-
sification margin). LW is an incremental instance-based
(also know as ‘lazy’) learning algorithm. Given a sample
of labeled and unlabeled examples it iteratively picks the
next unlabeled example and classifies it while maintain-
ing a large distance between each labeled example and
its nearest unlike-prototype (a prototype is either a la-
beled example or an unlabeled example which has already
been classified). Thus LW gives a higher priority to unla-
beled points whose classification decision ‘interferes’ less
with the labeled sample. On a collection UCI benchmark
datasets, the LW algorithm ranks at the top when com-
pared to 11 instance-based learning algorithms (or con-
figurations). When compared to the best candidate from
instance-based learners, MLP, SVM, decision-tree learner
(C4.5) and Naive Bayes, LW is ranked at second place after
only MLP which comes at first place by a single extra win
against LW. The LW algorithm can be implemented in par-
allel distributed processing to yield a high speedup-factor
and is suitable for any distance space, with a distance func-
tion which need not necessarily satisfy the conditions of a
metric.

Keywords Large margin learning · k-Nearest neighbor ·
Lazy-learning · Non-parametric classification

1 Introduction

1.1 Overview

This paper is the first applied work in a programme of re-
search we have been conducting on learning classifiers that
take into account the concept of ‘width’ (it is a revised
version of an unpublished preprint). We consider multi-
category classification problems on distance spaces where
by multi-category classifier we mean a mapping from some
input space X to an image set Y whose cardinality is at
least 2 (the elements of Y are referred to as class cate-
gories). A distance space is any set equipped with a dis-
tance function which, in contrast to a metric, does not need
to satisfy the triangle inequality. We introduce an algo-
rithm that produces a multi-category classifier and which
is motivated by the aim of maintaining a large ‘sample
width’ (the precise notion of width will be defined fur-
ther below, but for the interim, one may think of width as
a measure of how confident a classifier’s decision is for a
given input). We implemented this algorithm in software
and report the results of machine learning experiments in
which we compare its accuracy against several other algo-
rithms on several standard classification problems. Com-
pared to other large-margin learning algorithms [18] such

as the ubiquitous kernel methods, where a kernel func-
tion needs to be defined and be an inner product in some
higher dimensional space, the LW algorithm distance func-
tion does not have to satisfy anything other than perhaps
non-negativity. This makes LW easy to apply in classifica-
tion learning problems on non-standard domains [21] with
no need for kernel functions nor for distance functions that
satisfy the metric axioms.

There are learning domains where it is difficult to for-
malize quantitative features encoded as numerical vari-
ables in order to discriminate between objects from dif-
ferent class categories [27]. Featureless qualitative dissim-
ilarity information can be represented mathematically by
defining a distance function over the input space. For in-
stance, objects may be represented by strings of symbols
which can be compared using a dissimilarity (or distance)
function which typically does not satisfy all of the met-
ric axioms. For instance, the normalized information dis-
tance [24] which is based on Kolmogorov complexity of
a string-based representation of objects is a non-metric
distance. This has been successfully applied to classifica-
tion and data clustering over diverse problem domains [15].
Another example of a non-metric is the universal distance
introduced in [13, 14] and applied to image classification
which is based on a data-compression algorithm of Lempel-
Ziv. A main advantage of these distances is the fact that
they can be applied to a pair of string-based representa-
tion of objects with variable lengths, that is, the lengths
of the strings that describe the two objects whose distance
is being measured do not need to be equal.

This non-parametric approach of learning by a possibly
non-metric distance is much more flexible than ones based
on numerical features. There are many examples of dis-
tance functions that do not satisfy all the metric axioms
[19] and new ones can be defined easily for any kind of
objects—for instance, for bioinformatic sequences, graphs,
images, etc.. Most learning algorithms, in particular neural
networks which have been very successful recently, require
a Euclidean or more generally a vector space, represented
by numerical-valued features and hence cannot be applied
to such non-metric input spaces. In contrast, the LW algo-
rithm introduced in this paper can learn over non-metric
spaces and can be used to learn from featureless data using
any distance function, which need not satisfy any of the
metric axioms.

1.2 Width

We start by giving an intuitive indication, in general terms,
of what it means for a binary classifier to have a large sam-
ple width. (The paper deals with multi-category classifica-
tion more generally, but the case of two classes is easier
to visualise.) Imagine we have a sample of points in the
distance space, each of which has been given a classifica-
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tion label 1 or −1. Suppose we have a classifier that has
classified some points in the space (not necessarily all of
them) as belonging to class 1 or −1. Let S+ be the set of
points labeled 1 and S− the set of points labeled −1. If x is
a sample point labeled 1, then we define the classification
width at x to be the distance d(x, S−), the minimum (or in-
fimum, in the case in which S− is infinite) of the distances
between x and points in S−. We make a similar definition
if x is labeled −1; then, we use d(x, S+). The sample width
is defined to be the minimum, over the sample points, of
these individual widths.

The concept of width was introduced by [3] and ap-
plied there to binary functions on the real line. The mo-
tivation was to develop a notion of ‘definitive’ classifica-
tion that was analogous to the well known large ‘margin’
idea (see, for instance [2, 30]). In [5] this was generalized
to binary functions over the multi-dimensional cube [0, 1]n

where S− and S+ are union of boxes labeled −1 and 1. The
paper [4] applied the idea to multi-category classification
on [0, 1]n where, for category l, the points with classifica-
tion l formed a set Sl that is a union of boxes. In [6] this
was generalized to learning binary classifiers on any finite
metric input space, where S+ and S− formed any partition
of the space. This was extended to multi-category classifi-
cation on (possibly infinite) metric spaces in [8]; and this
work was applied to case-based inference in [7]. In [10] we
applied the concept of width to learning binary classifica-
tion using ‘half-spaces’ over finite distance spaces; and in
[11] we extended this to learning ‘nearest-prototype’ bi-
nary classifiers. The theoretical bounds obtained on the
misclassification probability of the classifiers considered in
these papers improve as the sample width increases. This
motivates the use of classifiers with a large width.

1.3 Setup and definitions

Let the distance space be denoted X (which may be an
infinite space) and d(x, x′) denotes the distance between
points x and x′. A labeled sample, ξ = {zi}mi=1 with
zi := (xi, yi), is a sequence of points of X together with
labels in a set Y = {1, . . . ,M} (for some fixed integer M).
We call such a labeled point z = (x, y) an example; and we
denote by x(z) and y(z) the x and y components of z. We
will slightly abuse the notation and for any two points, z,
z′ in X × Y we also write d(z, z′) to mean d(x(z), x(z′)).

In the current paper we consider an algorithm for pro-
ducing multi-category classifiers h : X → Y on the basis
of a labeled sample ξ. The algorithm is an instance-based
learning algorithm [25] in the sense that it is given a finite
set of unlabeled points in X to be classified and it uses
only the sample to classify them. We denote by U1 the ini-
tial set of unlabeled points which are to be classified by
the algorithm. It classifies this set in an incremental way,
such that at each time step t the set Ut of points which
are still unlabeled (and unclassified) is smaller than the
previous set Ut−1 by one. At any stage — let us say stage
t — of the sequential process, there will be a set of points
already classified: those in the sample ξ, together with a
set Lt of those not in the sample that the algorithm has
already classified with a sufficient level of confidence (this
will be detailed when we state the pseudo-code). We will
call the set of points, ξ ∪ Lt, that have been labeled pro-

totypes. (We are abusing notation slightly: here, we should
write {x(z) : z ∈ ξ} rather than simply ξ.) For any proto-
type p, let NUN(p), the nearest unlike neighbor prototype

to p, denote the closest prototype to p which is of a differ-
ent label, meaning y (NUN(p)) 6= y(p). The classification
(at this stage) of any unlabeled point x is based on the
following rule: let the NUN-ball centered at a labeled point
z, denoted by BNUN (z), be the set of all points z′ (not just
labeled ones) such that d(z, z′) ≤ d(z,NUN(z)). For k ∈ Y
let

vk(x) :=
∑

i:y(zi)=k

I {x ∈ BNUN (zi)}

be the number of labeled examples that are labeled k whose
NUN-balls contain x. (Here I{x ∈ S} is the indicator func-
tion of the set S.) Note that the sum is over the examples
in ξ only: it is not over all prototypes (ξ together with some
other currently labeled points). To be clear: the radii of the
NUN-balls depend on all the prototypes, but this sum is
over only the examples. Then the classification given to x
(where h denotes the current ‘hypothesis’ of the algorithm)
is

h(x) := argmaxk∈Yvk(x); (1)

that is, x is given the label of the class with the largest
number of NUN-balls containing x. (If there is no sin-
gle category which maximises vk(x), then the algorithm
LW uses a slightly different rule, described further be-
low.) Once x is classified, if it is classified with sufficient
confidence then it becomes a prototype, and in this way
the algorithm adapts. It works sequentially in this manner
through the points of U1 (chosen in a particular order).

The motivation for the above definition (1) lies with
the notion of width. Let Sk be the set of prototypes la-
beled k. We use the notion of width from [8]. The width of
h at x is defined as

wh(x) := inf
k 6=h(x)

d (x, Sk) .

For a labeled point z = (x, y), we also write wh(z) to mean
wh(x(z)). The width wh(z) of h at an example z is the
distance to the nearest prototype of opposite label. For a
sample ξ of examples z, we define the sample width of h as

wξ(h) := min
z∈ξ

wh(z). (2)

The sample width of h is always non-negative.
For a classifier h : X → Y, let erP (h) be the probability

that h misclassifies an example (X,Y ) ∈ X × Y which is
drawn randomly according to a probability distribution P

on X × Y. Denote by N (X , γ, d) the γ-covering number of
X with respect to the metric d. The following result (which
follows from Theorem 5.1 of [8]) states a theoretical bound
on the misclassification probability for any classifier h.

Theorem 11 Suppose that X is a metric space of diameter

diam(X ) and denote by M := |Y|. Suppose P is any prob-

ability measure on Z = X × Y. Let δ ∈ (0, 1). Then, with

probability at least 1 − δ, the following holds for ξ ∈ Zm: for

any function h : X → Y and for any γ ∈ (0,diam(X )], if

wξ(h) > γ then

erP (h) ≤ 2

m

(
MN log2

(
36 diam(X )

γ

)
(3)

+ log2

(
4 diam(X )

δγ

))

where N = N (X , γ/12, d) is the covering number of the met-

ric space at scale γ/12.
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The Large Width (LW) algorithm, when given a sample
ξ, produces an h that classifies all points of U1, while not
misclassifying any of the examples in the sample ξ. This
means that LW produces a classifier h with a strictly pos-
itive sample width wξ(h). Therefore, for any γ such that
wξ(h) > γ the right side of (4) bounds its error from above.
From the dependence on γ, the bound decreases as the
sample width wξ(h) increases hence the algorithm aims to
produce an h that has a large sample width wξ(h) because
this reduces the upper bound on its generalization error.

In the next section we describe the LW algorithm whose
behavior is motivated by this aim; and which selects points
to be classified in an order which is intended to keep the
sample width large.

2 The LW algorithm

In the previous section we indicated that the aim of the
algorithm is to find a classifier that has a large sample
width. LW is an instance-based supervised learning algo-
rithm, as for example is the nearest-neighbor algorithm. It
relies on a sample of labeled examples for making a classifi-
cation decision about any unlabeled point in U1. We called
the union of the sample ξ and the set of already-classified
points (with sufficient confidence) at time t the set Lt of

prototypes.This is the union
⋃
k∈Y S

(t)
k , where S

(t)
k is the

set of points in Lt ∪ ξ that are labelled with category k.
Given this set, we then have a classifier ht at time t which
can be used to label any one of the remaining unlabeled
points at time t + 1. That classifier depends only on the

sets S
(t)
k .

As mentioned in the previous section, LW aims to pro-
duce a classifier that has a large sample width wξ(h); hence
we want the algorithm to classify the next unlabeled point
while maintaining a large distance between each labeled
example and its nearest differently-labeled prototype.

To achieve this, given a set of remaining unlabeled
points to classify, it chooses in a particular way the next
point among those to be classified. LW gives a higher pri-
ority to unlabeled points p whose classification decision
‘interferes’ less with the sample. By this, we mean that
it prioritises points p with the property that fewer exam-
ples z in the sample incur a decrease in width, meaning
wht+1

(z) < wht
(z), as the algorithm continues to adapt the

classifier from ht to ht+1 as a result of choosing to clas-
sify p at time t. (Recall from above that once the classifier
classifies an unlabeled point with sufficient confidence it
becomes a prototype and hence one of the prototype sets

S
(t)
k grows in cardinality by one and the classifier changes

from ht to ht+1.)

There are two main issues that LW needs to determine:
the first is which unlabeled point at time t should be clas-
sified next, and the second is what classification value to
assign it. To explain how LW does this we now describe
the algorithm by splitting it into parts. The main part is
Algorithm 1 which calls Procedures 2, 3.

Before proceeding, let us mention that by a ‘shuffle’ of
a set, we mean choosing a random ordering of the indices
of the elements of the set. We do this with members of
a set from which we need to choose an element according
to some criterion which can have a repeated value across
some members (ties in the criterion value). Shuffling en-
sures that in this case we do not always choose the same
member, for instance, the one with the lowest index.

We now describe the algorithm formally. Denote by ξ

a finite labeled sample and denote by t ≥ 1 an integer that
specifies the time step. The algorithm advances one step at
a time, where in each step it classifies one unlabeled point.
Let

Ut ⊆ X

be the set of unlabeled points, p, that remain to be classi-
fied, and let U1 be the starting set of unlabeled points. As
mentioned above, to simplify the notation, for an example
z ∈ ξ and an unlabeled point p ∈ Ut we write d(z, p) to
mean d(x(z), p).

Denote by Lt the set of non-example points at time t

which have already been classified with a sufficient level
of confidence at some time previous to t. Thus the set⋃
k∈Y S

(t)
k of prototypes at time t equals the union Lt

⋃
ξ

of all points at time t which are either examples or have
been confidently classified.

We now define more precisely the notion of nearest-
unlike neighbor prototype to an example in the sample.
For z = (x, y) ∈ ξ, let the nearest-unlike prototype of z be

NUNt(z) = argmin{p∈Lt∪ξ: y(p) 6=y(z)}d(x(p), x(z)). (4)

It is either a labeled point in Lt or a labeled example in ξ

which is closest to x(z) and whose label differs from y(z).
For an unlabeled point p and any k ∈ Y, define the vote-set

Vk(p) ⊆ ξ to be the following subset of the sample ξ:

Vk(p) := {z ∈ ξ : y(z) = k, d(p, z) < d(NUN(z), z)} , k ∈ Y.

This is the set of examples in the sample ξ of category k

whose NUN-balls contain p.
The main part of the algorithm in presented next in

Algorithm 1.

Algorithm 1: Algorithm LW

1: Let t = 1 and the initial set of unlabeled points is U1.
2: while |Ut| > 0 do

3: for all points p ∈ Ut do

4: Vk(p) = ∅, 1 ≤ k ≤M // initalize Vote-sets
5: end for

6: for all examples z ∈ ξ do

7: Calculate NUN-prototype NUN(z) ∈ ξ
⋃
Lt

8: Let dz := d(z,NUN(z))
9: end for

10: Shuffle ξ // Choose a random ordering for ξ
11: for all examples z := (x, y) ∈ ξ do

12: for all points p ∈ Ut do
13: if d(z, p) < dz then

14: Vy(p) := Vy(p)
⋃
z, // z votes for p to be

classified y

15: end if

16: end for

17: end for

18: p∗t = findBestPoint(Ut) // Call procedure that
returns the best point to classify

19: Classify(p∗t ) // Call procedure that classifies this
point

20: t := t+ 1
21: end while

Algorithm LW allows to have a positive real value
weight associated with each example z ∈ ξ. One way in
which this is useful is for placing a larger emphasis on cer-
tain examples in the training set ξ which in effect changes
the level of influence that an example has on learning. In
particular, this can be used for balancing the class cate-
gories (as described in Section 3). The weight of z is denoted
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by w(z). For a set A ⊂ ξ let the weighted cardinality of A be
defined as

|A|w :=
∑
z∈A

w(z).

The choice of value of the weight of each example in ξ is
left for the discretion of the user of LW. If it is 1 for every
example in ξ then the weighted cardinality of A becomes
the standard set cardinality |A|.

Procedure findBestPoint(Ut) is described in Proce-
dure 2. It selects the best unlabeled point to classify at
time t. It operates according to a score function. If the
score is strictly positive for at least one point in the set
Ut then it selects a point with the highest score. If all
points in Ut have a score value of zero then it selects
a point with the highest weighted cardinality vote-set,
if such exists. Otherwise, it selects a point x from Ut
whose distance from the nearest NUN-sphere is minimum
when considering all points in Ut and their distances from
their corresponding nearest NUN-spheres (a NUN-sphere
is the set of points whose distance from a prototype equals
the distance between that prototype and its nearest un-
like prototype). Note that the distance between a point
x from a NUN-sphere centered at a prototype p equals
d(x, p)− d(p,NUN(p)).

Procedure 2: findBestPoint(Ut)

1: Shuffle Ut
2: p∗t := argmaxp∈Ut

Score(p) // Score defined in
Function 4

3: if Score(p∗t ) > 0 then

4: return p∗t
5: else

6: // All points p ∈ Ut have Score(p) = 0
7: Let a(p) := max1≤k≤M |Vk(p)|w
8: if maxp∈Ut

a(p) > 0 then

9: return p∗t := argmaxp∈Ut
a(p)

10: else

11: // All points p ∈ Ut have empty vote-sets
12: Choose p∗t from Ut whose distance to its nearest

NUN-sphere (centered at a labeled example) is
minimum, considering all points in Ut.

13: return p∗t
14: end if

15: end if

Procedure Classify(p) is described in Procedure 3 and
is in charge of classifying a given unlabeled point p. Let us
denote by k∗ and k∗∗ the labels of the maximum weighted
cardinality vote-set and second-highest weighted cardinal-
ity vote-set of p, respectively.(These cardinalities could be
the same when there are different categories with the same
weighted cardinality vote-sets with respect to p.) At the
current version of the algorithm, we are using Score(p)
(described as Function 4) which defines a score for an un-
labeled point p as

Score(p) := a(p) (a(p)− b(p)) (5)

where
a(p) := max

1≤k≤M
|Vk(p)|w

is the value of the maximum weighted cardinality vote-set
and

b(p) := max
1≤k 6=k∗≤M

|Vk(p)|w

is the value of the second-highest weighted cardinality
vote-set. With this score function, a point p ranks high
if either of the following quantities is high:

(1) Weighted cardinality of the set of examples that will suffer

a reduction in width if the classification decision is not k∗:
it is the weighted cardinality of the set of examples z in
Vk∗(p). All examples z ∈ Vk∗(p) will suffer a reduction
in the value of the width wh(z) if p gets classified by
a label which differs from their label; that is, if p gets
classified by label y 6= k∗. This is represented by the
factor a(p) in (5).

(2) Confidence of classification: there is (possibly) a higher
confidence for classifying p by y = k∗, because the
next best classification choice k∗∗ is supported by a
smaller weighted cardinality set of examples. This is
represented by the factor a(p)− b(p) in (5).

Obviously there are other possible score definitions that
can replace (5); for instance, a(p) ln a(p)

b(p) but we have not

tried them.

Procedure 3: Classify(p)

1: Let p be a given point
2: Let |Vk∗(p)|w := max1≤k≤M |Vk(p)|w // maximum

cardinality vote-set
3: Let |Vk∗∗(p)|w := max1≤k 6=k∗≤M |Vk(p)|w // second

highest cardinality vote-set or another maximum
cardinality vote-set

4: if |Vk∗(p)|w > |Vk∗∗(p)|w then

5: // The level of confidence in classifying p is
sufficiently high. In this case, even if |Vk∗∗(p)|w
equals zero, |Vk∗(p)|w is larger than zero

6: Classify p with label y = k∗

7: makeItPrototype := true

8: else

9: // The level of confidence is not high.
10: if |Vk∗(p)|w = |Vk∗∗(p)|w > 0 then

11: Let MAX(p) :=
{
k : |Vk(p)|w = |Vk∗(p)|w

}
12: Let A(p) :=

⋃
k∈MAX(p) Vk(p)

13: NN(p) := argminz∈A(p)d(z, p), // Find the
nearest neighbor example NN(p) ∈ A(p)

14: Classify p with the label y of example NN(p)
15: else

16: // All vote-sets for p are of cardinality zero so
find the nearest NUN-sphere to p which is
centered at a labeled example.

17: z∗ := argminz∈ξ (d(z, p)− d(z,NUN(z)))
18: Classify p with the label y of z∗

19: end if

20: makeItPrototype := false

21: end if

22: if makeItPrototype then

23: Lt := Lt
⋃
{p} // Add p to the set of prototypes

24: end if

25: Ut := Ut \ {p}

Note that when there is more than one category with
maximum weighted cardinality vote-set for p, a nearest-
neighbor approach is taken on the set of all examples in
the union of all such vote-sets (Lines 8–11 in Procedure
3.) And when the vote-sets of the point p to be classified
are all empty we find the closest NUN-sphere to p which is
centered at a labeled example and classify p by the label
of this example.



5

Function 4: Score(p)

1: Let p be a given point
2: Let |Vk∗(p)|w := max1≤k≤M |Vk(p)|w
3: Let |Vk∗∗(p)|w := max1≤k 6=k∗≤M |Vk(p)|w // Second

highest (could equal the maximum)
4: return Score(p) := |Vk∗(p)|w (|Vk∗(p)|w − |Vk∗∗(p)|w)

Let us analyze the time complexity. Denote by

n := |U1|

the initial cardinality of the set of unlabeled points at time
t = 1. Function 4 has a time complexity of O(M), Proce-
dure 3 is O(m + M), Procedure 2 has time complexity
O(n). The double loop at lines 11-12 of Algorithm 1 has
a time complexity of O(nm) and therefore the algorithm
has O(n2m) time complexity. Initial investigation in [28]
reveals a parallel version of the LW algorithm with a re-
duced time complexity of O(n(logm + logM)). We note
that the LW algorithm was first introduced and described
in its serial form in a preprint of the current paper and
preceded the paper [28].

3 Experiments

We used the WEKA toolset [22] which includes many ma-
chine learning algorithms and accuracy analysis tools with
which we test and compare LW versus several standard
algorithms. Algorithm LW relies on a distance function.
While the LW algorithm can be used with any type of data
provided that a distance function is defined, in the current
paper we limit the experiments to datasets in a Euclidean
space and using the l2-metric which is obviously also a dis-
tance function. We chose datasets that have only numeric
attributes (or nominal attributes which are transformed to
numeric using WEKA’s filters). In practice, given a learn-
ing classification problem that has also nominal attributes,
one needs to choose a distance function that measures dis-
similarity between nominal values in an appropriate man-
ner, using knowledge about the attributes (as for instance,
in measuring distance between two text documents, where
the well known TFIDF formula gives a numeric represen-
tation to a nominal attribute that indicates if a particular
word appears in a document).

The aim of the paper is not to test LW on any particu-
lar dataset but to compare it to other standard algorithms
on common datasets. For this purpose, we set up machine
learning experiments based on several datasets (Table 1)
from the UCI repository [29]. (In Table 1, the input di-
mension does not include the target class attribute and M

denotes the number of class categories.)
Since the Euclidean distance can only be applied to

numeric data we used the WEKA filter NominalToBinary
to transform the nominal attributes into binary attributes
that encode the nominal values This increased the dimen-
sion from 20 to 62 in the credit dataset, 17 to 116 in the
zoo dataset, 9 to 48 in the breast cancer dataset, 20 to 100
in the autism dataset. On all the datasets we normalized
the data (using Normalize filter) and we used ReplaceMiss-
ingValues filter to substitute a value for missing values in
the breast cancer dataset, the voting records dataset, and
the autism dataset.

On all of the experiments that we describe below we
applied WEKA’s ClassBalancer filter which assigns each
case in a dataset a weight (a positive value which may also
be greater than 1) such that the sum of the weights of all

cases in any class category is the same and the total weight
of the dataset remains unchanged and is equal to the total
number of cases. This class balancing improved the accu-
racy for all the algorithms that we considered and hence
makes the competition more challenging for LW. To apply
class balancing we used WEKA’s FilteredClassifier which
acts as a meta-learner that trains each of the algorithms
using cross validation in such a way that the class balanc-
ing is done solely on the training part of each of the cross
validation folds (this way the testing part remains with the
original empirical distribution unchanged and hence with-
out bias). On each dataset, every algorithm is tested on 10
runs, each run has 10-fold cross-validation and the average
accuracy over all runs is computed. (The algorithms’ pa-
rameter values are detailed in the Appendix.) If the class
attribute is nominal, WEKA stratifies the data for each of
the cross-validation splits.

The LW Algorithm was implemented in C and appears
as a native library (using Java Native Interface) to the
WEKA toolbox which is written in Java [23]. LW runs
at approximately the speed of a single-hidden layer MLP
with WEKA’s default architecture and parameter specifi-
cation (mentioned further below) and takes approximately
the same time as single-hidden layer MLP to do ten rep-
etitions of 10-fold cross validation on all the datasets. For
instance, on a MacBook (Intel Core m3 Processor, 1.1 GHz
with 8 Gb RAM) it takes approximately one minute to run
10-fold cross validation on the diabetes dataset with LW.

Being that LW produces a classifier which belongs to
the family of instance based classifiers (also known as ‘lazy’
learning [25]) our primary aim is to compare it against
other algorithms of this type. For this purpose we chose
to compare LW to all the lazy-learning algorithms in the
WEKA toolset (we are using version 3.8.4). This includes
the nearest-neighbor algorithm [17], the k∗ algorithm [16],
the LWL algorithm [12] and the k-nearest neighbor algo-
rithm [1] with k chosen automatically by cross validation
and with either no distance-weighting, distance-weighting
according to 1/distance or weighting of 1−distance [20].
(Distance weighting is a method by which a neighbor in-
fluences the classification decision of a point in a way that
is proportional to its weight.) The list of lazy-learning al-
gorithms is as follows,

(1) LW
(2) IBk, Nearest neighbor algorithm k = 1, no distance

weighting
(3) IBk, Nearest neighbor algorithm k = 1, weight

1/distance
(4) IBk, Nearest neighbor algorithm k = 1, weight

1−distance
(5) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 5, choose k

based on cross-validation, no distance weighting
(6) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 5, choose k

based on cross-validation, weight 1/distance
(7) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 5, choose k

based on cross-validation, weight 1−distance
(8) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 10, choose k

based on cross-validation, no distance weighting
(9) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 10, choose k

based on cross-validation, weight 1/distance
(10) IBk, Nearest neighbor algorithm, 1 ≤ k ≤ 10, choose k

based on cross-validation, weight 1−distance
(11) k∗ algorithm
(12) LWL algorithm
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Dataset M dimension sample size
zoo 8 116 101
LSVT voice 2 310 126
iris 3 4 150
glass 7 10 214
breast cancer 2 48 286
ionsphere 2 34 351
voting records 2 16 435
autism adult 2 100 704
absentism work 3 20 740
diabetes 2 8 768
credit 2 62 768
sports 2 59 1000
website phishing 3 23 1353
seismic bumps 2 27 2584

Table 1: Datasets used in the experiments (M denotes the number of class categories)

Table 2 displays the learning accuracy of LW and these
lazy-learning algorithms. As can be seen from Table 2,
there are 12 × 14 = 168 learning trials where for each we
average the accuracy over 10 runs of 10-fold cross valida-
tion. Symbol ◦ or • in column i indicates that algorithm
i over-performed or underperformed, respectively, relative
to algorithm LW (denoted by (1)) by a statistically signif-
icant amount. Statistical significance refers to the result
of a pairwise comparison of algorithm LW and any of the
other algorithms (labeled (2) – (12)) using the corrected
resampled T-Test [26]. Table 2 shows that there are 41
trials which resulted in an algorithm that underperforms
compared to LW while there are only two in which an al-
gorithm over-performs compared to LW.

In order to rank all the competing algorithms, we fol-
low [22] and define by a ‘win’ (or ‘loss’) the event that
an algorithm’s accuracy is higher (or lower) than another
algorithm’s accuracy (where the comparison is made ac-
cording to the T-test mentioned above). We take the dif-
ference between the number of wins and number of losses
as a measure of success of an algorithm.

Table 3 shows that LW is ranked first amongst these
instance-based algorithms. In particular, it is noteworthy
to mention that the LW decision rule which is based on
vote-sets (described in Procedures 2 and 3) outperforms
the standard k-majority vote of the k-NN algorithm even
with k chosen in a data-dependent manner and optimized
via cross validation. The one which is ranked second to
the best is k-NN with 1 ≤ k ≤ 5 where k chosen based on
cross-validation, with weight 1−distance (labeled (7)). We
use it as the best lazy-learning candidate against LW in
an experiment which is described further below.

We lined up the best candidates from the instance-
based learning algorithms, the multilayered perceptron
neural networks (MLP) and the support vector machines
(SVM), all against LW. As mentioned above, we apply
class balancing for all algorithms using WEKA’s meta-
learner with FilteredClassifier. To obtain the best MLP
candidates we tested several different MLP architectures
on the above datasets,

(1) single hidden layer,
(2) two hidden layers,
(3) three hidden layers.

We used WEKA’s default parameter settings which in-
clude the number of activation units being equal to (num-
ber of attributes + number of class categories)/2, sigmoid
activation function, back-propagation learning rate of 0.3,
momentum value of 0.2, and number of training epochs is
500. Table 4 shows the ranking of these three architectures.
The single-layered architectures (labeled (1)) obtains the

highest number of wins and is used further below as a best
MLP candidate against LW. To obtain the best SVM can-
didate we tested the following kernels,

(1) polynomial of first degree
(2) polynomial of second degree
(3) polynomial of third degree
(4) Radial Basis Function (RBF)
(5) Pearson universal kernel (Puk)

on the above datasets. Table 5 shows the ranking of these
five SVM kernels. The polynomial of first degree obtains
the highest number of wins and is used further below as a
best SVM candidate against LW.

Next, we ran LW against the above best candidates
from the lazy algorithms, the MLP and SVM, and two ad-
ditional learning algorithms, C4.5 decision trees learning
algorithm (denoted as J48 in WEKA) and Naive Bayes.
Table 6 shows the accuracy results. Table 7 shows that
MLP is in first place and LW is ranked at second place.
The third column in Table 6 shows that MLP has three
wins and two losses against LW. The remaining columns
show that none of the other algorithms had more wins than
losses over LW.

In the above experiment, in order to compare LW
against this variety of algorithms we ensured that the
datasets consist of numeric values (some of which were
transformed from nominal using WEKA’s filters). How-
ever, LW can learn over any distance space provided that
a distance function is defined (it does not need to satisfy
the metric axioms nor any of the conditions that kernel
functions are required to satisfy for SVM). This can be
a significant advantage over some of the other algorithms
mentioned above in learning problems where the data is
unstructured or even featureless.

4 Variants

The results mentioned in the previous section are based
on LW’s algorithm after testing also some other variants
of its classification rule and the selection rule used to find
the best point. While they did not improve the accuracy
of LW, we still think it is interesting to mention them.

4.1 Choosing best point differently

We repeated the experiment using another variant which
differs in procedure findBestPoint in that it selects a point
which has the minimum (over all unlabeled points) of the
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Dataset (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
zoo 95.93 97.03 97.03 97.03 96.53 96.53 96.53 96.53 96.53 96.53 95.15 90.58 •
LSVT 82.62 75.88 75.88 75.88 76.49 74.87 • 75.87 75.67 73.56 • 74.49 • 52.71 • 71.09 •
iris 94.87 95.40 95.40 95.40 95.33 95.07 95.20 95.73 95.33 95.47 94.67 93.47
glass 68.52 69.95 69.95 69.95 69.95 69.76 69.95 69.95 69.76 69.95 69.14 41.10 •
breast cancer 67.18 67.16 67.16 67.16 66.74 66.42 66.81 65.68 65.12 65.58 64.14 66.63
ionosphere 93.88 87.10 • 87.10 • 87.10 • 89.77 • 90.00 • 89.77 • 89.77 • 90.00 • 89.77 • 84.05 • 82.37 •
voting 94.18 93.13 93.13 93.13 92.49 92.62 92.60 92.42 92.57 92.48 92.05 94.25
autism 97.23 93.37 • 93.37 • 93.37 • 94.71 • 93.54 • 94.71 • 94.71 • 93.52 • 94.71 • 93.37 • 100.00 ◦
absenteeism 64.57 63.84 63.84 63.84 63.84 63.84 63.84 63.84 63.84 63.84 62.38 87.86 ◦
diabetes 74.15 70.62 • 70.62 • 70.62 • 73.74 72.29 73.87 73.24 72.93 73.30 68.30 • 71.40
credit 70.60 71.08 71.08 71.08 70.86 71.03 70.86 70.60 71.03 70.86 67.35 60.20 •
sports 81.78 77.33 • 77.33 • 77.33 • 81.55 81.68 81.55 82.32 82.38 82.32 75.53 • 75.96 •
web phishing 86.90 87.12 87.12 87.12 86.96 86.92 86.94 86.96 86.92 86.94 86.34 81.80 •
seismic bumps 89.40 89.38 89.38 89.38 89.38 89.38 89.38 89.38 89.38 89.38 78.57 • 80.33 •

◦, • statistically significant improvement or degradation

Table 2: LW (1) versus other instance-based algorithms (2)–(12)

Resultset Wins− Wins Losses
Losses

(1) 39 41 2
(7) 18 22 4
(5) 18 22 4

(10) 14 19 5
(9) 14 19 5
(8) 14 18 4
(6) 14 19 5
(4) -11 9 20
(3) -11 9 20
(2) -11 9 20

(12) -48 23 71
(11) -50 3 53

Table 3: Ranking of LW (1) and other instance-based algorithms (2)–(12)

Resultset Wins− Wins Losses
Losses

(1) 3 3 0
(2) 0 1 1
(3) -3 0 3

Table 4: Ranking of MLP: (1) single hidden layer, (2) two hidden layers, (3) three hidden layers

Resultset Wins− Wins Losses
Losses

(1) 9 18 9
(2) 8 14 6
(5) 7 16 9
(3) 7 15 8
(4) -31 1 32

Table 5: Ranking of SVM with different kernels: (1) polynomial of first degree, (2) second degree, (3) third degree, (4) RBF, (5) Pearson
universal

set of all maximum vote-set weighted cardinalities; that is,
the best point p∗t is

p∗t := argminp∈Ut
max

1≤k≤M
|Vk(p)|w .

In this variant, LW starts to classify points which are far-
ther away from the Bayes’ border of the underlying class-
conditional probability distributions. A point that has all
empty vote-sets has a preference for being selected for clas-
sification over a point that has at least one non-empty
vote-set. The accuracy results that we obtained with this
variant are very close to the results mentioned in Table 6
and hence we conclude that this variant does not improve
on Procedure 2.

4.2 Weighted vote-sets

We tried the following alternative, motivated by [9]. Given
an unlabeled point p, define the weighted-cardinality of its
vote set Vk(p) as follows:

|Vk(p)|W :=
∑

z∈Vk(p)

[
1− d (z, p)

d(z,NUN(z))

]
+

where for a real value a, [a]+ = a if a ≥ 0 and is equal to
zero otherwise. In words, instead of counting the elements
of the set, each element of Vk(p) contributes a weight to-
wards the overall weighted count. If a point p is not con-
tained in the ball BNUN (z) then it contributes a value
of zero to the overall count. Otherwise, it contributes a
value between 0 and 1 such that the farther the point p
from z the lower the contribution. We can view this weight
as an indication of how deeply embedded p is within the
BNUN (z) ball.
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Dataset (1) (2) (3) (4) (5) (6)
zoo 95.93 96.53 95.95 92.01 96.05 96.95
LSVT 82.62 75.87 85.43 75.60 85.85 53.99 •
iris 94.87 95.20 96.73 94.73 96.27 95.33
glass 68.52 69.95 62.92 61.60 48.47 • 38.87 •
breast cancer 67.18 66.81 66.10 60.46 67.55 68.75
ionosphere 93.88 89.77 • 90.74 • 90.83 86.52 • 81.31 •
voting 94.18 92.60 94.04 95.42 95.61 94.02
autism 97.23 94.71 • 99.96 ◦ 100.00 ◦ 99.86 ◦ 92.97 •
absenteeism 64.57 63.84 75.05 ◦ 100.00 ◦ 60.66 73.93 ◦
diabetes 74.15 73.87 73.48 72.25 75.62 74.26
credit 70.60 70.86 71.85 66.42 • 71.45 73.79 ◦
sports 81.78 81.55 81.16 75.63 • 83.58 ◦ 79.69
web phishing 86.90 86.94 89.34 ◦ 89.86 ◦ 83.79 • 79.64 •
seismic bumps 89.40 89.38 76.75 • 85.33 • 79.84 • 80.90 •

◦, • statistically significant improvement or degradation

Table 6: LW (1) versus the best candidates of instance-based learning (2), best candidate of MLP (3), best candidate of SVM (5),
decision tree learning (4) and Naive Bayes (6)

Resultset Wins− Wins Losses
Losses

(3) 13 20 7
(1) 7 17 10
(2) 0 15 15
(5) -1 17 18
(4) -1 20 21
(6) -18 10 28

Table 7: Ranking of algorithms listed in Table 6

After repeating the above tests, the results indicate
that the weighted vote-sets makes LW algorithm have
fewer significant wins relative to losses.

5 Conclusions

The paper introduces a new learning algorithm for learn-
ing multi-category classification over any distance space.
Compared to other large-margin learning algorithms such
as the ubiquitous kernel methods, where a kernel func-
tion needs to be defined and be an inner product in some
higher dimensional space, the LW algorithm distance func-
tion does not have to satisfy anything other than perhaps
non-negativity. This makes LW easy to apply in classifica-
tion learning problems on non-standard domains with no
need for kernel functions.

We implemented the algorithm in C and interfaced it
using the Java Native Interface to the WEKA toolset for
testing its accuracy. Its run time is comparable to single-
hidden layer MLP in WEKA. On several datasets from the
UCI machine learning repository, the LW algorithm out-
performs, in terms of the number of wins versus losses, 11
instance-based learning algorithms including the k-nearest
neighbor algorithm (with k chosen in a data-dependent
manner and optimized via cross validation). Compared to
5 algorithms which include the best candidates of MLP and
SVM, and compared to decision tree learning and Naive
Bayes, it is ranked in second place.
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Appendix

For the experiment displayed in Table 2 the algorithms’ parameter settings are as follows:

(1) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.LW – -M 0 -I 0 -R true’ -4523450618538717400
(2) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 1 -W 0 -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(3) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 1 -W 0 -I -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(4) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 1 -W 0 -F -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(5) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 5 -W 0 -X -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(6) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 5 -W 0 -X -I -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(7) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 5 -W 0 -X -F -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(8) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 10 -W 0 -X -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(9) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 10 -W 0 -X -I -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(10) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 10 -W 0 -X -F -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(11) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.KStar – -B 20 -M a’ -4523450618538717400
(12) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.LWL – -U 0 -K -1 -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\” -W trees.DecisionStump’ -
4523450618538717400

For the experiment displayed in Table 6 the algorithms’ parameter settings are as follows:

(1) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.LW – -M 0 -I 0 -R true’ -4523450618538717400
(2) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W lazy.IBk – -K 5 -W 0 -X -F -A

\”weka.core.neighboursearch.LinearNNSearch -A /\”weka.core.EuclideanDistance -R first-last/\”\”’ -4523450618538717400
(3) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W functions.MultilayerPerceptron – -L 0.3 -M 0.2 -N 500

-V 0 -S 0 -E 20 -H a’ -4523450618538717400
(4) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W trees.J48 – -C 0.25 -M 2’ -4523450618538717400
(5) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W functions.SMO – -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V

-1 -W 1 -K \”functions.supportVector.PolyKernel -E 1.0 -C 250007\” -calibrator \”functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4\”’
-4523450618538717400

(6) meta.FilteredClassifier ’-F \”supervised.instance.ClassBalancer -num-intervals 10\” -S 1 -W bayes.NaiveBayes’ -4523450618538717400


