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Abstract

The use of boxes for pattern classification has been widespread and is a fairly
natural way in which to partition data into different classes or categories. In
this paper we consider multi-category classifiers which are based on unions
of boxes. The classification method studied may be described as follows:
find boxes such that all points in the region enclosed by each box are as-
sumed to belong to the same category, and then classify remaining points
by considering their distances to these boxes, assigning to a point the cat-
egory of the nearest box. This extends the simple method of classifying by
unions of boxes by incorporating a natural way (based on proximity) of clas-
sifying points outside the boxes. We analyse the generalization accuracy of
such classifiers and we obtain generalization error bounds that depend on a
measure of how definitive is the classification of training points.
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1. Box-based multi-category classifiers

Classification in which each category or class is a union of boxes is a long-
studied and natural method for pattern classification. It is central, for
instance, to the methods used for logical analysis of data (see, for exam-
ple [9, 10, 15, 6]) and has been more widely studied as a geometrical classi-
fier (see [11], for instance). More recently, unions of boxes have been used
in combination with a nearest-neighbor (or proximity) paradigm for binary
classification [5] and multi-category classification [13], enabling meaningful
classification for points of the domain that lie outside any of the boxes.

In this paper, we analyse multi-category classifiers of the type decribed by
Felici et al. [13]. In that paper, they describe a set of classifiers based on
boxes and nearest-neighbor, where the metric used for the nearest-neighbor
measure is the Manhattan (or taxicab) metric. (We give explicit details
shortly.) They use an agglomerative box-clustering method to produce a
set of candidate classifiers of this type. They then select from these one
that is, in a sense they define, optimal. First they focus on the classifiers
which are, with respect to the two dimensions of error on the sample, E,
and complexity (number of boxes), B, Pareto-optimal. Among these they
then select a classifier that minimizes an objective function of the form (E−
E0)

2 + (B − B0)
2 (effecting a tradeoff between error and complexity) and,

if there is more that one such classifier, they choose that which minimizes
E. They provide some experimental evidence that this approach works.
Here, we obtain generalization error bounds for the box-based classifiers of
the type considered in [13], within a version of the standard PAC model
of probabilistic learning. The bounds we obtain depend on the error and
complexity and they improve (that is, they decrease) the more ‘definite’ is
the classification of the sample points.

Suppose points of [0, 1]n are to be classified into C classes, which we will
assume are labeled 1, 2, . . . , C. We let [C] denote the set {1, 2, . . . , C}.

A box (or, more exactly, an axis-parallel box) in Rn is a set of the form

I(u, v) = {x ∈ Rn : ui ≤ xi ≤ vi, 1 ≤ i ≤ n},

where u, v ∈ [0, 1]n and u ≤ v, meaning that ui ≤ vi for each i. We consider
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multi-category classifiers which are based on C unions of boxes, as we now
describe. For k = 1, . . . , C, suppose that Sk is a union of some number, Bk,
of boxes:

Sk =

Bk⋃
j=1

I(u(k, j), v(k, j)).

Here, the jth box is defined by u(k, j), v(k, j) where u(k, j), v(k, j) ∈ [0, 1]n

and u(k, j) ≤ v(k, j) (so, for each i between 1 and n, u(k, j)i ≤ v(k, j)i).
We assume, further, that for k 6= l, Sk ∩ Sl = ∅. We think of Sk as being
a region of the domain all of whose points we assume to belong to class k.
So, as in [13] and [15], for instance, the boxes in Sk might be constructed by
‘agglomerative’ box-clustering methods.

To define our classifiers, we will make use of a metric on [0, 1]n. To be
specific, as in [13], d will be the d1 (or ‘Manhattan’ or ‘taxicab’) metric: for
x, y ∈ [0, 1]n,

d(x, y) =
n∑
i=1

|xi − yi|.

We could equally well (as in [5], where the two-class case is the focus) use
the supremum or d∞ metric, defined by

d∞(x, y) = max{|xi − yi| : 1 ≤ i ≤ n}

and similar results would be obtained. For x ∈ [0, 1]n and S ⊆ [0, 1]n, the
distance from x to S is

d(x, S) = inf
y∈S

d(x, y).

Let S = (S1, S2, . . . , SC) and denote by hS the classifier from [0, 1]n into [C]
defined as follows: for x ∈ [0, 1]n,

hS(x) = argmin1≤k≤Cd(x, Sk),

where if d(x, Sk) is minimized for more than one value of k, one of these
is chosen randomly as the value of hS . So, in other words, the class label
assigned to x is k where Sk is the closest to x of the regions S1, S2, . . . , SC .
We refer to B = B1 + · · · + BC as the number of boxes in S and in hS . We
will denote by HB the set of all such classifiers where the number of boxes is
B. The set of all possible classifiers we consider is then H =

⋃∞
B=1HB.
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These classifiers, therefore, are based, as a starting point, on regions assumed
to be of particular categories. These regions are each unions of boxes, and
the regions do not overlap. (In practice, these boxes and the corresponding
regions will likely have been constructed directly from a training sample by
finding boxes containing sample points of a particular class, and merging, or
agglomerating these; see [13].) See, for example, Figure 1. The three types
of boxes are indicated, and the pale gray region is the region not covered by
any of the boxes.

Figure 1: Boxes of three categories.

Then, for all other points of the domain, the classification of a point is given
by the class of the region to which it is closest (in the d1 metric). For the
initial configuration of boxes indicated in Figure 1, the final classification of
the whole domain is as indicated in Figure 2. Bounding lines for the boxes
have been inserted in these figures to make it easier to see the correspondence
between them.
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Figure 2: Classification of the whole domain resulting from the boxes of Figure 1.

’

These classifiers seem quite natural, from a geometrical point of view; and
unlike ‘black-box’ classifiers (such as neural networks), can be described and
understood: there are box-shaped regions where we assert a known classifi-
cation, and the classification elsewhere is determined by an arguably fairly
sensible nearest-neighbor approach.

It is also potentially useful that the classification is explicitly based on dis-
tance, and so there is a real-valued function f underlying the classifier: if
the classification of x is k, then we can consider how much further x is from
the next-nearest category of box. This real number, f(x) = minl 6=k d(x, Sl)−
d(x, Sk), quantifies, in a sense, how sure or definitive the classification is. In
particular, if f(x) is relatively large, it means that x is quite far from boxes
of the other categories. We could interpret the value of the function f as an
indicator of how confident we might be about the classification of a point. A
point in the domain with a large value of f will be classified more ‘definitely’
than one with a small value of f and we might think that the classification
of the first point is more reliable than that of the second, because the larger
value of f indicates that the first point is further from boxes of other cat-
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egories than is the second point. Furthermore, by considering the value of
f on the sample points, we have some measure of how ‘robust’ the classifier
is on the training sample. This measure of robustness plays a role in our
generalization error bounds. In earlier work [6], we considered classical LAD
methods, and analysed their performance in terms of a related measure of
robustness. But that paper analysed only the standard LAD methods, in
which (to describe it in terms of boxes) the classification of any point that
was not contained in a box of some category would be determined randomly,
rather than by means of a nearest neighbor paradigm.

2. Generalization error bounds for definitive classification

Guermeur [14] describes a fairly general framework for PAC-analysis of multi-
category classifiers and we will show how we can use his results to bound
the generalization error for our classifiers. This involves defining a certain
function class and then bounding the covering numbers of that class. First,
however, we obtain a tighter bound for the case in which the ‘margin error’
is zero. What this means is that we bound the error of the classifier in terms
of how definitive the classification of the training sample is.

2.1. Classifiers with definitive classification on all sample points

The following definition describes what we mean by definitive classification
on the sample.

Definition 2.1. Let Z = X×Y where X = [0, 1]n and Y = [C] = {1, 2, . . . , C}.
For γ ∈ (0, 1), and for z ∈ Zm, we say that hS ∈ H achieves margin γ on
the sample point z = (x, y) in z if for all l 6= y, d(x, Sl) > d(x, Sy) + γ. We
say that hS achieves margin γ on the sample z if it achieves margin γ on
each of the (xi, yi) in z.

So, hS achieves margin γ on a sample point if Sy is the closest of the Sk to
x (so that the class label assigned to x will be y) and, also, every other Sl
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has distance from x that is at least γ greater than the distance from x to
Sy. Note that we need only consider values of γ in the range (0, n], since the
maximum value of the Manhattan metric on [0, 1]n is n.

To quantify the performance of a classifier after training, we use a form of
the ‘PAC’ model of computational learning theory. (See, for instance [8,
4, 20].)This assumes that we have training examples zi = (xi, yi) ∈ Z =
[0, 1]n × [C], each of which has been generated randomly according to some
fixed probability measure P on Z. (The sequence of zi is i.i.d according to
P .) Then, we can regard a training sample of length m, which is an element
of Zm, as being randomly generated according to the product probability
measure Pm.

The error of a classifier hS is the probability that it does not definitely assign
the correct class to a subsequent randomly-drawn instance (and we include
in this the cases in which there are more than one equally close Sk, for the
random choice then made might be incorrect). So, the error is the probability
that it is not true that for (x, y) ∈ Z we have d(x, Sy) < d(x, Sk) for all k 6= y;
that is,

erP (hS) = P

(
{(x, y) : d(x, Sy) ≥ min

k 6=y
d(x, Sk)}

)
.

What we would hope is that, if a classifier performs well on a large enough
sample, then its error is likely to be low. The following result is of this
type (where good performance on the sample means correct, and definitively
correct, classification on the sample).

Theorem 2.2. Let δ ∈ (0, 1) and suppose P is a probability measure on
Z = [0, 1]n × [C]. With Pm-probability at least 1 − δ, z ∈ Zm will be such
that we have the following: for all B and for all γ ∈ (0, n], for all hS ∈ HB,
if hS achieves margin γ on z, then

erP (hS) <
2

m

(
2nB log2

(
12n

γ

)
+ 2B log2C + log2

(
4n

δγ

))
.

In particular, Theorem 2.2 provides a high-probability guarantee on the real
error of a classifier once training has taken place, based on the observed
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margin that has been obtained. (By the observed margin, we mean the
largest value of γ such that a margin of γ has been achieved.) For this bound
to be of use, the total number of boxes must, as a function of m, be sublinear,
which has implications for the control of B during training.

2.2. Proof of Theorem 2.2

We first derive a result in which B and γ are fixed in advance. We then re-
move the requirement that these parameters be fixed, to obtain Theorem 2.2.

For γ ∈ (0, 1), let Aγ ⊆ [0, 1] be the set of all integer multiples of γ/(4n)
belonging to [0, 1], together with 1. So,

Aγ =

{
0,

γ

4n
, 2

γ

4n
, 3

γ

4n
, . . . ,

⌊
4n

γ

⌋
γ

4n
, 1

}
.

We have

|Aγ| ≤
⌊

4n

γ

⌋
+ 2 ≤

⌊
6n

γ

⌋
.

Let ĤB ⊆ HB be the set of all classifiers of the form hS where, for each k,
Sk is a union of boxes of the form I(u, v) where u, v ∈ Anγ .

Lemma 2.3. With the above notation, we have∣∣∣ĤB

∣∣∣ ≤ (6n

γ

)2nB

CB.

Proof: The number of possible boxes I(u, v) with u, v ∈ Anγ is(
|Aγ|

2

)n
≤

(⌊
6n

γ

⌋2)n

≤
(

6n

γ

)2n

.

A classifier in ĤB is obtained by choosing B such boxes and labeling each
with a category between 1 and C. So,

|ĤB| ≤
(

(6n/γ)2n

B

)
CB ≤

(
6n

γ

)2nB

CB,
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as required. �

For γ ≥ 0, we define the γ-margin error of hS on a sample z. Denoted by
Eγ

z (hS), this is simply the proportion of (x, y) in z in which hS does not
achieve a margin of γ. In other words,

Eγ
z (hS) =

1

m

m∑
i=1

I {∃l 6= yi : d(xi, Sl) ≤ d(x, Syi) + γ} .

Here, IA denotes the indicator function of a set (or event) A. Evidently, to
say that hS achieves margin γ on z is to say that Eγ

z (hS) = 0.

The next part of the proof uses a ‘symmetrization’ technique similar to those
first used in [21, 19, 12, 18] and in subsequent work extending those tech-
niques to learning with real-valued functions, such as [16, 1, 3, 7].

Lemma 2.4. If

Q = {s ∈ Zm : ∃hS ∈ HB with Eγ
s (hS) = 0, erP (hS) ≥ ε}

and

T = {(s, s′) ∈ Zm × Zm : ∃hS ∈ HB with Eγ
s (hS) = 0, E0

s′(hS) ≥ ε/2},

then, for m ≥ 8/ε, Pm(Q) ≤ 2P 2m(T ).

Proof: We have

P 2m(T ) ≥ P 2m
({
∃hS ∈ HB : Eγ

s (hS) = 0, erP (h) ≥ ε and E0
s′(hS) ≥ ε/2

})
=

∫
Q

Pm
({

s′ : ∃hS ∈ HB, E
γ
s (hS) = 0, erP (hS) ≥ ε and E0

s′(hS) ≥ ε/2
})

dPm(s)

≥ 1

2
Pm(Q),
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for m ≥ 8/ε. The final inequality follows from the fact that if erP (hS) ≥ ε,
then for m ≥ 8/ε, Pm(E0

s′(hS) ≥ ε/2) ≥ 1/2, for any hS ∈ HB, something
that follows by a Chernoff bound. �

We next bound the probability of T and use this to obtain a generalization
error bound for fixed γ and B.

Proposition 2.5. Let B ∈ N, γ ∈ (0, n] and δ ∈ (0, 1). Then, with proba-
bility at least 1− δ, if hS ∈ HB and Eγ

s (hS) = 0, then

erP (hS) <
2

m

(
2nB log2

(
6n

γ

)
+B log2C + log2

(
2

δ

))
.

Proof: Let G be the permutation group (the ‘swapping group’) on the set
{1, 2, . . . , 2m} generated by the transpositions (i,m + i) for i = 1, 2, . . . ,m.
Then G acts on Z2m by permuting the coordinates: for σ ∈ G,

σ(z1, z2, . . . , z2m) = (zσ(1), . . . , zσ(m)).

By invariance of P 2m under the action of G,

P 2m(T ) ≤ max{P(σz ∈ T ) : z ∈ Z2m},

where P denotes the probability over uniform choice of σ from G. (See, for
instance, [18, 2].)

Fix z ∈ Z2m. Suppose τz = (s, s′) ∈ T and that hS ∈ HB is such that
Eγ

s (hS) = 0 and E0
s′(hS) ≥ ε/2. Suppose that S = (S1, S2, . . . , SC) where,

for each k,

Sk =

Bk⋃
j=1

I(u(k, j), v(k, j)).

Let û(k, j), v̂(j, k) ∈ Anγ be such that, for all r,

|û(k, j)r − u(k, j)r| ≤
γ

4n
, |v̂(k, j)r − v(k, j)r| ≤

γ

4n
.

10



These exist by definition of Aγ. Let

Ŝk =

Bk⋃
j=1

I(û(k, j), v̂(k, j))

and Ŝ = (Ŝ1, . . . , ŜC). Let ĥS be the corresponding classifier in ĤB; that is,
ĥS = hŜ . (Recall that ĤB is the set of classifiers of the form hS where, for
each k, Sk is a union of boxes of type I(u, v) where u, v ∈ Anγ .)

The following geometrical fact (easily seen) will be useful: for any k, for any
a ∈ Sk, there exists â ∈ Ŝk such that d(a, â) ≤ γ/4; and, conversely, for any
â ∈ Ŝk, there exists a ∈ Sk such that d(a, â) ≤ γ/4. For any k, there is some
a ∈ Sk such that d(x, Sk) = d(x, a). If â ∈ Ŝk is such that |ar − âr| ≤ γ/(4n)
for all r, then it follows that

d(a, â) =
n∑
r=1

|ar − âr| ≤ γ/4.

So,
d(x, Ŝk) ≤ d(x, â) ≤ d(x, a) + d(a, â) ≤ d(x, Sk) + γ/4.

A similar argument shows that, for each k,

d(x, Sk) ≤ d(x, Ŝk) + γ/4.

Suppose that, for all l 6= y, d(x, Sl) ≥ d(x, Sy) + γ. Then, if l 6= y, we have

d(x, Ŝl) ≥ d(x, Sl)−
γ

4
≥ d(x, Sy)+γ−γ

4
≥ d(x, Ŝy)−

γ

4
+γ−γ

4
= d(x, Ŝy)+

γ

2
.

So, if hS achieves margin γ on (x, y), then ĥS achieves margin γ/2. It follows

that if Eγ
s (hS) = 0 then E

γ/2
s (ĥS) = 0. Now suppose that there is l 6= y such

that d(x, Sl) < d(x, Sy). Then

d(x, Ŝl) ≤ d(x, Sl) +
γ

4
< d(x, Sy) +

γ

4
≤ d(x, Ŝy) +

γ

4
+
γ

4
= d(x, Ŝy) +

γ

2
.

This argument shows that if E0
s′(hS) ≥ ε/2, then E

γ/2
s′ (hS) ≥ ε/2.
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It now follows that if τz ∈ T , then, for some ĥS ∈ HB, τz ∈ R(ĥS), where

R(ĥS) = {(s, s′) ∈ Zm × Zm : Eγ/2
s (ĥS) = 0, E

γ/2
s′ (ĥS) ≥ ε/2}.

By symmetry, P
(
σz ∈ R(ĥS)

)
= P

(
σ(τz) ∈ R(ĥS)

)
. Suppose thatE

γ/2
s′ (ĥS) =

r/m, where r ≥ εm/2 is the number of (xi, yi) in s′ on which ĥS does not
achieve margin γ/2. Then those permutations σ such that σ(τz) ∈ R(ĥS)
are precisely those that do not transpose these r coordinates, and there are
2m−r ≤ 2m−εm/2 such σ. It follows that, for each fixed ĥS ∈ ĤB,

P
(
σz ∈ R(ĥS)

)
≤ 2m(1−ε/2)

|G|
= 2−εm/2.

We therefore have

P(σz ∈ T ) ≤ P

σz ∈
⋃

ĥS∈ĤB

R(ĥS)

 ≤ ∑
ĥS∈ĤB

P(σz ∈ R(ĥS)) ≤ |ĤB| 2−εm/2.

So,

Pm(Q) ≤ 2P 2m(T ) ≤ 2 |ĤB| 2−εm/2 ≤ 2

(
6n

γ

)2nB

CB2−εm/2

This is at most δ when

ε =
2

m

(
2nB log2

(
6n

γ

)
+B log2C + log2

(
2

δ

))
,

as stated. �

Next, we use this to obtain a result in which γ and B are not prescribed
in advance. For α1, α2 ∈ (0, n] and δ ∈ (0, 1), let E(α1, α2, δ) be the set of
z ∈ Zm for which there exists some hS ∈ HB which achieves margin α2 on z
and which has erP (f) ≥ ε1(m,α1, δ, B), where

ε1(m,α1, δ, B) =
2

m

(
2nB log2

(
6n

α1

)
+B log2C + log2

(
2

δ

))
.
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Proposition 2.5 tells us that Pm(E(α, α, δ)) ≤ δ. It is also clear that if
α1 ≤ α ≤ α2 and δ1 ≤ δ, then E(α1, α2, δ1) ⊆ E(α, α, δ). It follows, from a
slightly modified version of a result from [7], that

Pm

 ⋃
γ∈(0,n]

E(γ/2, γ, δγ/(2n))

 ≤ δ.

In other words, for fixed B, with probability at least 1− δ, for all γ ∈ (0, 1],
we have that if hS ∈ HB achieves margin γ on the sample, then erP (hS) <
ε2(m, γ, δ, B), where

ε2(m, γ, δ, B) =
2

m

(
2nB log2

(
12n

γ

)
+B log2C + log2

(
4n

δγ

))
.

Note that γ now need not be prescribed in advance. It now follows that
with probability at least 1 − δ/2B, for any γ ∈ (0, n], if hS ∈ HB achieves
margin γ, then erP (hS) ≤ ε2(m, γ, δ/2

B, B). So, with probability at least
1 −

∑∞
B=1(δ/2

B) = 1 − δ, we have: for all B, for all γ ∈ (0, 1), if hS ∈ HB

achieves margin γ, then

erP (hS) ≤ ε2(m, γ, δ/2
B, B) =

2

m

(
2nB log2

(
12n

γ

)
+B log2C + log2

(
4n

δγ

)
+B

)
.

Theorem 2.2 now follows on noting that log2C ≥ 1.

2.3. Allowing less definitive classification on some sample points

As mentioned, Guermeur [14] has developed a fairly general framework in
which to analyse multi-category classification, and we can apply one of his
results to obtain a generalization error bound applicable to the case in which
a margin of γ is not obtained on all the training examples. We describe his
result and explain how to formulate our problem in his framework. This
requires us to define a certain real-valued class of functions, the values of
which may themselves impart some useful information as to how ‘confident’
one might be about classification. To use his result to obtain a generalization
error bound, we then bound the covering numbers of this class of functions.
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What we obtain is a high probability bound that takes the following form:
for all B, for all γ ∈ (0, 1), if hS ∈ HB, then

erP (hS) ≤ Eγ
z (hS) + ε(m, γ, δ, B),

where ε tends to 0 as m → ∞ and ε decreases as γ increases. (Recall that
Eγ

z (hS) is the γ-margin error of hS on the sample.) The rationale for seeking
such a bound is that there is likely to be a trade-off between margin error
on the sample and the value of ε: taking γ small so that the margin error
term is zero might entail a large value of ε; and, conversely, choosing γ large
will make ε relatively small, but lead to a large margin error term. So, in
principle, since the value γ is free to be chosen, one could optimize the choice
of γ on the right-hand side of the bound to minimize it.

We now describe Guermeur’s framework (with some adjustments to the no-
tation to make it consistent with the notation used here). There is a set G
of functions from X = [0, 1]n into RC , and a typical g ∈ G is represented by
its component functions g = (gk)

C
k=1. Each g ∈ G satisfies the constraint

C∑
k=1

gk(x) = 0, ∀x ∈ X.

A function of this type acts as a classifier as follows: it assigns category
l ∈ [C] to x ∈ X if and only if gl(x) > maxk 6=l gk(x). (If more than one
value of k maximizes gk(x), then the classification is left undefined, assigned
some value ∗ not in [C].) The risk of g ∈ G, when the underlying probability
measure on X × Y is P , is defined to be

R(g) = P

(
{(x, y) ∈ X × [C] : gy(x) ≤ max

k 6=y
gk(x)}

)
.

For (v, k) ∈ RC × [C], let M(v, k) =
1

2

(
vk −max

l 6=k
vl

)
and, for g ∈ G, let ∆g

be the function X → RC given by

∆g(x) = (∆gk(x))Ck=1 = (M(g(x), k))Ck=1.

Given a sample z ∈ (X × [C])m , let

Rγ,z(g) =
1

m

m∑
i=1

I {∆gyi(xi) < γ} .
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To describe Guermeur’s result, we need covering numbers. Suppose H is a
set of functions from X to RC . For x ∈ Xm, define the metric dx on H by

dx(h, h′) = max
1≤i≤m

‖h(xi)− h′(xi)‖∞ = max
1≤i≤m

max
1≤k≤C

|hk(xi)− h′k(xi)|.

For α > 0, a finite subset Ĥ of H, is said to be a (proper) α-cover of H
(with respect to metric dx) if for each h ∈ H there exists ĥ ∈ Ĥ such that
dx(h, ĥ) ≤ α. The class H is totally bounded if for each α > 0, for each
m, and for each x ∈ Xm, there is a finite α-cover of H with respect to dx.
The smallest cardinality of an α-cover of H with respect to dx is denoted
N (α,H, dx). The covering number N (α,H,m) is defined by

N (α,H,m) = max
x∈Xm

N (α,H, dx).

A result following from [14] is (in the above notation) as follows:

Theorem 2.6. Let δ ∈ (0, 1) and suppose P is a probability measure on
Z = [0, 1]n × [C]. With Pm-probability at least 1 − δ, z ∈ Zm will be such
that we have the following: for all γ ∈ (0, n] and for all g ∈ G,

R(g) ≤ Rγ,m(g) +

√
2

m

(
lnN (γ/4,∆G, 2m) + ln

(
2n

γδ

))
+

1

m
.

We now use Theorem 2.6, with an appropriate choice of function space G.
Let us fix B ∈ N and let S = (S1, . . . , SC) be, as before, C unions of boxes,
with B boxes in total. Let gS be the function X = [0, 1]n → RC defined by
gS = (gSk )Ck=1, where

gSk (x) =
1

C

C∑
i=1

d(x, Si)− d(x, Sk).

Let GB = {gS : hS ∈ HB}. Then these functions satisfy the constraint that
their coordinate functions sum to the zero function, since

C∑
k=1

gk(x) =
C∑
k=1

1

C

C∑
i=1

d(x, Si)−
C∑
k=1

d(x, Sk) =
C∑
k=1

d(x, Sk)−
C∑
k=1

d(x, Sk) = 0.
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For each k,

∆gSk (x) = M(gS(x), k)

=
1

2

(
gSk (x)−max

l 6=k
gSl (x)

)
=

1

2

(
1

C

C∑
i=1

d(x, Si)− d(x, Sk)−max
l 6=k

(
1

C

C∑
i=1

d(x, Si)− d(x, Sl)

))

=
1

2

(
−d(x, Sk)−max

l 6=k
(−d(x, Sl))

)
=

1

2

(
min
l 6=k

d(x, Sl)− d(x, Sk)

)
.

From the definition of g,

gSy (x) ≤ max
k 6=y

gk(x) ⇐⇒ 1

C

C∑
i=1

d(x, Si)− d(x, Sy) ≤ max
k 6=y

(
1

C

C∑
i=1

d(x, Si)− d(x, Sk)

)
⇐⇒ min

k 6=y
d(x, Sk) ≤ d(x, Sy).

So it follows that R(gS) = erP (hS). Similarly, Rγ,z(g
S) = Eγ

z (hS).

By bounding the covering numbers of our class ∆GB of functions, and then
by removing the restriction that B be specified in advance, we obtain the
following result.

Theorem 2.7. Let δ ∈ (0, 1) and suppose P is a probability measure on
Z = [0, 1]n × [C]. With Pm-probability at least 1 − δ, z ∈ Zm will be such
that we have the following: for all B and for all γ ∈ (0, 1), for all hS ∈ HB,

erP (hS) ≤ Eγ
z (hS) +

√
2

m

(
2nB ln

(
6n

γ

)
+ 2B lnC + ln

(
2n

γδ

))
+

1

m
.

2.4. Proof of Theorem 2.7

As the preceding discussion makes clear, the functions in ∆GB are all of the
form (∆gS1 , . . . ,∆g

S
C), where

∆gSk =
1

2

(
min
l 6=k

d(x, Sl)− d(x, Sk)

)
.
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Here, S, as before, involves B boxes. To simplify, we will bound the covering
numbers of 2∆GB, noting that an α-covering of 2∆GB is an α/2-covering of
∆GB. So, consider the class F = FB = {fS : hS ∈ HB}, where fS = 2∆gS ;
that is, fS : [0, 1]n → RC is given by

(fS)k(x) = min
l 6=k

d(x, Sl)− d(x, Sk).

We use some of the same notations and ideas as developed in the proof of
Theorem 2.2. We will define F̂ to be the subset of F = FB in which each Sk
is of the form

Sk =

Bk⋃
j=1

I(û(k, j), v̂(k, j))

where û(k, j), v̂(k, j) ∈ Anγ . We will show that F̂ is a γ/2-cover for FB, and
hence a γ/4 cover for ∆GB.

Suppose fS ∈ FB, where S = (S1, S2, . . . , SC). Suppose û(k, j), v̂(j, k) ∈ Anγ
are chosen as in the proof of Theorem 2.2, and that Ŝk =

⋃Bk

j=1 I(û(k, j), v̂(k, j))

and Ŝ = (Ŝ1, . . . , ŜC). Let f̂S be the corresponding function in F̂B: f̂S = fŜ .
As argued in the proof of Theorem 2.2, for all k and all x, |d(x, Sk) −
d(x, Ŝk)| ≤ γ/4. For any k, and for any x,∣∣∣fS(x)− f̂S(x)

∣∣∣ =

∣∣∣∣min
l 6=k

d(x, Sl)− d(x, Sk)−
(

min
l 6=k

d(x, Ŝl)− d(x, Ŝk)

)∣∣∣∣
≤

∣∣∣∣min
l 6=k

d(x, Sl)−min
l 6=k

d(x, Ŝl)

∣∣∣∣+
∣∣∣d(x, Ŝk)− d(x, Sk)

∣∣∣ .
The second term in this last line is bounded by γ/4, by the observation just
made. Consider the first term. Suppose minl 6=k d(x, Sl) = d(x, Sr). Then,

since |d(x, Sr)− d(x, Ŝr)| ≤ γ/4, it follows that

min
l 6=k

d(x, Ŝk) ≤ d(x, Ŝr) ≤ d(x, Sr) + γ/4 = min
l 6=k

d(x, Sl) + γ/4.

Similarly, minl 6=k d(x, Sk) ≤ minl 6=k d(x, Ŝk) + γ/4. So,∣∣∣∣min
l 6=k

d(x, Sl)−min
l 6=k

d(x, Ŝl)

∣∣∣∣ ≤ γ

4
.
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Therefore, |fS(x)− f̂S(x)| ≤ γ/4 + γ/4 = γ/2. This establishes that F̂B is a
γ/2-cover of FB with respect to the supremum metric on functions X → RC ,
meaning that for every fS ∈ FB, there is f̂S ∈ F̂B with

sup
x∈X
‖fS(x)− f̂S(x)‖∞ ≤ γ/2.

In particular, therefore, for any m and for any x ∈ Xm, F̂B is a γ/2 cover
for FB with respect to the dx metric.

We now see that the covering numberN (γ/4,∆GB, 2m) is, for all m, bounded
above by |F̂B|. Bounding this cardinality as in the proof of Theorem 2.2 gives

N (γ/4,∆GB, 2m) ≤
(

6n

γ

)2nB

CB.

Taking δ/2B in place of δ, using the covering number bound now obtained,
and noting that R(gS) = erP (hS) and Rγ,z(g

S) = Eγ
z (hS), Theorem 2.6 shows

that, with probability at least 1− δ/2B, for all γ ∈ (0, 1), if hS ∈ HB, then

erP (hS) ≤ Eγ
z (hS) +

√
2

m

(
2nB ln

(
6n

γ

)
+ 2B lnC + ln

(
2

γδ

))
+

1

m
.

(We have used B ln 2 ≤ B lnC.) So, with probabilty at least 1− δ, for all B,
this bound holds, completing the proof.

3. Conclusions

This paper has analyzed the generalization performance of a type of multi-
category classifier introduced in [13], which has a very natural interpretation.
Based on boxes, each of which contains points of one particular classification,
remaining points (outside the boxes) are categorised as belonging to the same
class as the nearest box, where distance is measured by the d1, or Manhattan,
metric. The generalization error bounds we derive involve ‘margin error’, and
we have two types of bound: one applying to the case in which the margin
error is zero, and the other to the general situation.
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It is certainly possible to use metrics other than the Manhattan metric (as
we explored in [5], for the two-class classification case, using the d∞ metric).
Additionally, and perhaps simultaneously, one might consider regions other
than box regions, one example being to use the Euclidean metric and to
consider spheres (as in [17], where a different approach to obtaining error
bounds, using sample compression bounds, was taken).
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