
Classification based on prototypes with spheres of

influence

Martin Anthony

Department of Mathematics, The London School of Economics and Political Science,

Houghton Street, London WC2A2AE, U.K.

Joel Ratsaby

Electrical and Electronics Engineering Department, Ariel University, Ariel 40700,
ISRAEL

Abstract

We present a family of binary classifiers and analyse their performance. Each
classifier is determined by a set of ‘prototypes’, whose labels are given; and
the classification of any other point depends on the labels of the prototypes
to which it is sufficiently close, and on how close it is to these prototypes.
More precisely, the classification of a given point is determined through the
sign of a discriminant function. For each prototype, its sphere of influence is
the largest sphere centred on it that contains no prototypes of opposite label,
and, given a point to be classified, there is a contribution to the discrimi-
nant function at that point from precisely those prototypes whose spheres
of influence contain the point, this contribution being positive from positive
prototypes and negative from negative prototypes. Furthermore, these con-
tributions are larger in absolute value the closer the point is (relative to the
sphere’s radius) to the prototype. We quantify the generalization error of
such classifiers in a standard probabilistic learning model, and we do so in
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a way that involves the values of the discriminant function on the points of
the random training sample.

Keywords: Classification, learning, generalisation error

1. Introduction

Learning Vector Quantization (LVQ) and its various extensions introduced
by Kohonen [16] are used sucessfully in many machine learning tools and
applications. Learning pattern classification by LVQ is based on adapting
a fixed set of labeled prototypes in Euclidean space and using the resulting
set of prototypes in a nearest-prototype rule (winner-take-all) to classify any
point in the input space. LVQ fails if the Euclidean representation is not
well-suited for the data. To that end, several extensions of the LVQ algo-
rithm exist which use a weighted Euclidean metric [13] that take advantage
of samples for which a more confident (or a large margin) classification can
be obtained. Generalization error bounds with dependence on this sample
margin are stated in [13, 20] and, as is usually the case for large-margin learn-
ing [1], the bounds are tighter than ones with no sample-margin dependence.
The results of such work are important as they explain why LVQ works well
in practice in Euclidean metric spaces.

In the world of big data, which deals with a rich variety of learning do-
mains, there is a huge potential in doing prototype-based learning over non-
Euclidean spaces. In this paper we present a family of binary classifiers
for learning on any metric input space. We analyse their performance and
present generalization learning error bounds that are sample-dependent and
hence take advantage of samples that can be classified with a large margin.
Each classifier is determined by a set of ‘prototypes’, whose classifications
are given; and the classification of any other point depends on the classifica-
tions of the prototypes to which it is sufficiently close, and on how close it is
to these prototypes. Thus, in contrast to the above-mentioned works, here
a classifier’s decision is not based only on the nearest prototype. In many
domains of application, data can no longer simply be considered to be in Eu-
clidean space. As has been pointed out in [14], data can take diverse forms
in areas such as linguistics and bioinformatics. For this reason, an approach
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that analyses data in a general metric space (such as that taken here) might
be more useful.

More precisely, the classification of a given point is determined through the
sign of a discriminant function. For each prototype, its sphere of influence is
defined to be the largest sphere centred on it that contains no prototypes of
opposite label. Given a point to be classified, there is a contribution to the
discriminant function at that point from precisely those prototypes whose
spheres of influence contain the point, this contribution being positive from
positive prototypes and negative from negative prototypes. These contri-
butions are larger in absolute value the closer the point is (relative to the
sphere’s radius) to the prototype. We quantify the generalization error of
such classifiers in a standard probabilistic learning model, and we do so in
a way that involves the values of the discriminant function on the points of
the random training sample.

We note in passing that the idea of a sphere of influence is not new. In fact,
RCE networks [17] have a hidden layer of activation units associated with
a spherical decision region in the input space. There are some differences
between our classifier and the RCE. RCE is essentially a classifier whose
decision regions are union of spheres, which may not cover all of the input
space and hence the classifier can in some cases reject making a decision.
The radii of the spheres are parameters to be learnt. Learning RCE involves
adapting the size of the radii in an incremental manner in response to whether
sample instances are included or not in spheres that are associated with a
mismatching class label. New spherical units, that is, prototypes, can also
be added when sample points are not covered and not classified. In contrast
to RCE, our classifier is non-parametric and the region of influence of each
prototype, in resemblance to Voronoi cells in the nearest-neighbor classifier
[8], is determined directly from the sample without any parameter such as
a radius. The classifier’s definition is intentionally left very general in that
the set of prototypes can be any set of k points, in particular a subset of the
sample, and can be determined via any algorithm. The error bounds that
we state in the paper apply regardless of the algorithm that is used to learn
these prototypes.
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2. Classifiers based on spheres of influence

The classifiers we consider are binary classifiers defined on a metric space X ;
so, they are functions h : X → {−1, 1}. We shall assume that X is of finite
diameter with respect to the metric d and, for the sake of simplicity, that
its diameter is 1. (The analysis can easily be modified for any other value
of the diameter.) Each classifier we consider is defined by a set of labeled
prototypes. More precisely, a typical classifier is defined by a finite set Π+

of positive prototypes and a disjoint set Π− of negative prototypes, with Π+

and Π− both being subsets of X . The idea is that the correct classifications
of the points in Π+ (Π−, respectively) are +1 (−1). We define the sphere of
influence of each prototype as follows. Suppose p ∈ Π+ and let

r(p) = min{d(p, p−) : p− ∈ Π−},

the distance to the closest oppositely-labeled prototype; and define r(p) anal-
ogously in the case where p ∈ Π−. Then the open ball Br(p)(p) = Br(p)(p; d),
of radius r(p) and centred on p, is the sphere of influence of p. Suppose
that Π = Π+ ∪ Π− = {p1, p2, . . . , pk}, where Π+ = {p1, . . . , pt} and Π− =
{pt+1, . . . , pk}, and let ri denote r(pi) where 0 < r(pi) ≤ 1. For x ∈ X , let

φi(x) = 1− d(x, pi)

ri

and let
si(x) = [φi(x)]+ ,

where, for z ∈ R, [z]+ = z if z ≥ 0 and [z]+ = 0 otherwise. Define the
‘discriminant’ function fΠ : X → R as follows:

fΠ(x) =
t∑
i=1

si(x)−
k∑

i=t+1

si(x). (1)

The corresponding binary classifier defined by Π (and its labels) is hΠ(x) =
sgn(fΠ(x)) where sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 if z < 0. (Note that
|fΠ(x)| ≤ k for all x.) We denote the class of all such fΠ by F and we denote
by H the corresponding set of classifiers hΠ. In the context of learning, (1)
defines the margin of hΠ at x.
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To explain the idea behind this classifier, consider the contribution that a
prototype p makes to the value fΠ(x) of the discriminant function at x and
suppose, without loss of generality, that p is a positive prototype. This
prototype makes no contribution at all if x lies outside the sphere of influence
of p. The rationale for this is simply that, in this case, there must be at least
one negative prototype p− whose distance from p is no more than the distance
from x to p; and so there seems to be little justification for assuming x is close
enough to p to derive some influence from the classification of p. If x does
lie inside the sphere of influence of p, then there is a positive contribution to
fΠ(x) that is between 0 and 1 and is larger in absolute value the closer x is to
p. The rationale here is that if x is deeply embedded in the sphere of influence
of p (rather than being more on its periphery), and if we were considering
how we should classify the point by taking into account only the prototype
p, then, given its relative proximity to p, it would be reasonable to propose
a positive classification. The overall classification is determined by the net
effect of these contributions. So, if x lies closer to a prototype p than does any
oppositely-labeled prototype, we can think of p as contributing an influence
(signed the same as the label of p) to the discriminant (and hence an influence
on the final value of the classification); and this influence depends on how
relatively close x is to p within its sphere of influence. Although slightly
reminiscent of nearest neighbor methods, this approach is quite different. It
is likely to have less sensitivity to changes in the prototypes than nearest
neighbor methods would. This is because the discriminant has a term for
each prototype, not just a fixed number of nearest ones. Furthermore, for the
introduction of a new prototype to change the classification of a point, that
point would have to be sufficiently close to the new prototype, sufficiently
within its sphere of influence. (Note that any point whose classification
changes on the introduction of the new prototype must be in its sphere of
influence, and it could be that few points change classification because the
contribution to the the discriminant arising from the new prototype would
have to be sufficiently large to change the sign of the discriminant: this is not
a winner-takes-all classification in contrast to the standard nearest neighbor
method.)

We should note that the particular form we take for φi could be modified:
indeed, we could take φi(x) = ψ(d(x, pi)/ri) where ψ(z) decreases with z and
ψ(z) ≤ 0 if z ≥ 1. For many such ψ functions, the analysis that follows could
be modified appropriately.
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3. Generalization performance of the classifiers

3.1. Probabilistic modelling of learning

To quantify the performance of a classifier after training, we use a form of the
popular ‘PAC’ model of computational learning theory (see [3], [21], [7]). This
assumes that we have some training examples zi = (xi, bi) ∈ Z = X×{−1, 1},
each of which has been generated independently at random according to
some fixed probability measure P on Z. Then, we can regard a training
sample of length m, which is an element of Zm, as being randomly generated
according to the product probability measure Pm. Suppose that F is the
set of discriminant functions we are using to classify. (So, recall that F is a
set of real-valued functions and that the corresponding binary classification
functions are the functions h = sgn(f) for f ∈ F .)

The natural way to measure the predictive accuracy of h = sgn(f) for f ∈ F
in this context is by the probability that h agrees with the classification of
future randomly drawn elements of Z. We therefore use the following error
measure of the classifier h = sgn(f):

erP (h) := erP (f) = P ({(x, b) ∈ Z : sgn(f(x)) 6= b}) .

Of course, we do not know this error: we only know how well the classifier
performs on the training sample. We could quantify how well h performs on
the training sample by using the sample error of h = sgn(f):

erz(h) =
1

m
|{i : sgn(f(xi)) 6= bi}|

(the proportion of points in the sample incorrectly classified by h or, equiva-
lently, for which f gives the incorrect sign). We will also denote this sample
error by erz(f). We will find it more useful, however, to use a variant of
this, involving a ‘width’ or ‘margin’ parameter γ. Much emphasis has been
placed in practical machine learning techniques, such as Support Vector Ma-
chines [10], on ‘learning with a large margin’. (See, for instance [19], [1], [2]
and[18].) Related work involving ‘width’ (applicable to binary-valued clas-
sifiers directly rather than those obtained by taking the sign of real-valued
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functions) has also been carried out [4] and, similarly, shows that ‘definitive’
classification is desirable. If h = sgn(f), we define

erγz(h) = erγz(f) =
1

m
|{i : f(xi)bi < γ}|.

This is the proportion of points zi = (xi, bi) in the sample for which either
sgn(f(xi)) 6= bi, or sgn(f(xi)) = bi but |f(xi)| < γ. So it is the fraction of the
sample that is either misclassified by the classifier, or is correctly classified
but not definitively so, in the sense that the value of f(xi) is only just of the
right sign (but not of absolute value at least γ).

A number of results give high-probability bounds on erP (h) in terms of erγz(f).
A typical such result would be of the following form: for all δ ∈ (0, 1), with
probability at least 1− δ, for all f ∈ F ,

erP (sgn(f)) < erγz(f) + ε(m, γ, δ),

where ε decreases with m and δ. We obtain a bound of a similar, but slightly
different, form in this paper for the set of classifiers we are considering.

3.2. Covering numbers and a generalization result

To deploy techniques from the theory of large-margin learning, we will need
to consider covering numbers. We will discuss different types of covering
numbers, so we introduce the idea in some generality to start with.

Suppose (A, d) is a metric space (or pseudo-metric space) and that α > 0.
Then an α-cover of A (with respect to d) is a finite subset C of A such that,
for every a ∈ A, there is some c ∈ C such that d(a, c) ≤ α. If such a cover
exists, then the mimimum cardinality of such a cover is the covering number
N (A,α, d).

Suppose now that F is a set of functions from a domain X to some bounded
subset Y of R. For a finite subset S of X, the l∞(S)-norm is defined by
‖f‖l∞(S) = maxx∈S |f(x)| and we denote by d∞(S) the corresponding metric,
d∞(f, g) = ‖f − g‖. For α > 0, an α-cover of F with respect to d∞(S) is
then a subset F̂ of F with the property that for each f ∈ F there exists
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f̂ ∈ F̂ with the property that for all x ∈ S, |f(x)− f̂(x)| ≤ α. The covering
number N (F, α, d∞(S)) is the smallest cardinality of a covering for F with
respect to d∞(S). We define the uniform covering number N∞(F, α,m) to
be the maximum of N (F, α, d∞(S)), over all S with S ⊆ X and |S| = m.

We will make use of the following result from [5].

Theorem 3.1. Suppose that F is a set of real-valued functions defined on
a domain X and that P is any probability measure on Z = X × {−1, 1}.
Let δ ∈ (0, 1) and B > 0, and let m be a positive integer. Then, with Pm

probability at least 1 − δ, a training sample z of length m will be such that:
for all f ∈ F , and for all γ ∈ (0, B],

erP (sgn(f)) ≤ 3 erγz(f) +
4

m

(
lnN∞(F, γ/4, 2m) + ln

(
4B

γδ

))
.

Note that, in Theorem 3.1, γ is not specified in advance, so γ can be chosen,
in practice, after learning, and could, for instance, be taken to be as large as
possible subject to having the empirical γ-margin error equal to 0.

4. Covering numbers for the class of discriminants

Our approach to bounding the covering number of F with respect to the
d∞(S) metrics is to construct and bound the size of a covering with respect
to the sup-norm on X . (This is the norm given by ‖f‖∞ = supx∈X |f(x)|.)
This clearly also serves as a covering with respect to d∞(S), for any S, since
if ‖f− f̂‖∞ ≤ γ then, by definition of the sup-norm, supx∈X |f(x)− f̂(x)| ≤ γ
and, hence, for all x ∈ X (and, therefore, for all x ∈ S where S is any subset
of X ), |f(x)− f̂(x)| ≤ γ. The construction we use is based on one from [5].

4.1. A Lipschitz bound for the function class

We first show that the discriminant functions are ‘smooth’, meaning Lipschitz-
continuous. Suppose f = fΠ ∈ F is defined by prototypes Π = {p1, p2, . . . , pk}
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and define R(Π) to be

R(Π) =
k∑
i=1

1

ri

where, as before, ri denotes r(pi), the radius of the sphere of influence of pi.
Let R > 0 and suppose that FkR ⊆ F is FkR = {fΠ ∈ F : |Π| = k,R(Π) ≤ R},
the set of all fΠ ∈ F such that |Π| = k and

∑k
i=1 1/ri ≤ R.

We prove that the class FkR satisfies a Lipschitz condition, as follows (recall
from (1) the definition of f = fΠ):

Theorem 4.1. For every f ∈ FkR,

|f(x)− f(x′)| ≤ Rd(x, x′)

uniformly for any x, x′ ∈ X .

Proof: Suppose f ∈ FkR and consider two points x, x′ ∈ X . We have

|f(x)− f(x′)| =

∣∣∣∣∣
t∑
i=1

si(x)−
k∑

i=t+1

si(x)−
t∑
i=1

si(x
′) +

k∑
i=t+1

si(x
′)

∣∣∣∣∣
=

∣∣∣∣∣
t∑
i=1

(si(x)− si(x′))−
k∑

i=t+1

(si(x)− si(x′))

∣∣∣∣∣
≤

k∑
i=1

|si(x)− si(x′)|.

Now, for any real numbers a, b, we have |[a]+ − [b]+| ≤ |a − b| (as can be
easily checked), and so

|si(x)− si(x′)| = |[φi(x)]+ − [φi(x
′)]+|

≤ |φi(x)− φi(x′)|

=

∣∣∣∣(1− d(x, pi)

ri

)
−
(

1− d(x′, pi)

ri

)∣∣∣∣
=

1

ri
|d(x, pi)− d(x′, pi)|

≤ 1

ri
d(x, x′).
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It follows, then, that

|f(x)− f(x′)| ≤
k∑
i=1

|si(x)− si(x′)| ≤
k∑
i=1

1

ri
d(x, x′) ≤ Rd(x, x′),

as required. �

Note that this proof relies on d being a metric, because the triangle inequality
is used when we assert that |d(x, pi) − d(x′, pi)| ≤ d(x, x′). (The argument
would work also for a pseudo-metric space, but it is intuitively more satisfying
to deal with a metric space so that the spheres of influence have positive
radii.)

Next we use this ‘smoothness’ to obtain a cover.

4.2. Covering the function class

For now, let us fix R and k. Let the subset Cγ ⊆ X be a minimal size γ-cover
for X with respect to the metric d of the metric space. So, for every x ∈ X
there is some x̂ ∈ Cγ such that d(x, x̂) ≤ γ. Denote by Nγ the cardinality of
Cγ.

Let

Λγ =

{
iγ : i = −

⌈
k

γ

⌉
, . . . ,−1, 0, 1, 2, . . . ,

⌈
k

γ

⌉}
and define the class F̂ to be all functions f̂ : Cγ → Λγ. Clearly, a function

f̂ can be thought of simply as an Nγ-dimensional vector whose components

are restricted to the elements of the set Λγ. Hence F̂ is of a finite size equal

to |Λγ|Nγ . For any f̂ ∈ F̂ define the extension f̂ext : X → Λγ of f̂ to
the whole domain X as follows. For each x ∈ X , let x̂ ∈ Cγ be such that
d(x, x̂) ≤ γ. There may be more than one possible choice of x̂ with this
property, but we assume a fixed choice of one such x̂ is made for each x, so
that we have a fixed mapping x 7→ x̂. Then, define f̂ext(x) = f̂(x̂). There
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is a one-to-one correspondence between the functions f̂ and f̂ext. Hence the

set F̂ext =
{
f̂ext : f̂ ∈ F̂

}
is of cardinality equal to |Λγ|Nγ .

We claim that for any f ∈ FkR there is f̂ext ∈ F̂ext such that

‖f − f̂ext‖∞ ≤ (R + 1)γ;

that is, such that
sup
x∈X
|f(x)− f̂ext(x)| ≤ (R + 1)γ.

First for every point x̂ ∈ Cγ consider the value f(x̂) and find a corresponding

value in Λγ, call it f̂(x̂), such that |f(x̂)− f̂(x̂)| ≤ γ. (That there exists such
a value follows by the design of Λγ.) By the above definition of extension,

f̂ext(x) = f̂(x̂) where the mapping x 7→ x̂ is as above. Since d(x, x̂) ≤ γ,
Theorem 4.1 shows that |f(x)− f(x̂)| ≤ Rγ. We therefore have

|f(x)− f̂ext(x)| = |f(x)− f̂(x̂)| ≤ |f(x)− f(x̂)|+ |f(x̂)− f̂(x̂)| ≤ Rγ + γ,

from which the claim follows.

Hence the set F̂ext forms an (R + 1)γ-covering of the class FkR in the sup-
norm over X . Thus we have the following covering number bound (holding
uniformly for all m) which we will use in Theorem 3.1 .

Theorem 4.2. With the above notation, for all m, and γ ∈ (0, k],

N∞
(
FkR,

γ

4
, 2m

)
≤
(

11k(R + 1)

γ

)N
,

where N = Nγ/(4(R+1)) = N
(
X , γ

4(R+1)
, d
)

.

Proof: The analysis above shows that

N∞
(
FkR, (R + 1)γ, 2m

)
≤ |F̂ext|
≤ |Λγ|Nγ

=

(
2

⌈
k

γ

⌉
+ 1

)Nγ
.
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It follows (by scaling γ) that

N∞
(
FkR,

γ

4
, 2m

)
≤
(

2

⌈
4k(R + 1)

γ

⌉
+ 1

)Nγ/(4(R+1))

.

The result follows on noting that

2

⌈
4k(R + 1)

γ

⌉
+ 1 ≤ 2

(
4k(R + 1)

γ
+ 1

)
+ 1 ≤ 11k(R + 1)

γ
,

noting that k(R + 1)/γ ≥ 1. �

5. A generalization error bound for prototype-based classifiers

We now come to our main result. To keep it fairly general, we will work with
two decreasing sequences of positive numbers: (δi)

∞
i=1 and (αi)

∞
i=1, which

are such that
∑∞

i=1 δi = δ and
∑∞

i=1 αi = 1. For example, we could take
δi = 6δ/(π2i2) and αi = 6/(π2i2).

Theorem 5.1. Let P be any probability distribution on Z = X × {−1, 1}.
For all m, the following holds with Pm probability at least 1− δ for a sample
z ∈ Zm randomly drawn according to Pm:

–for any positive integer k,

– for any R ≥ 1,

– for any γ ∈ (0, k],

if Π is any set of k prototypes such that
k∑
i=1

1

ri
≤ R and if f = fΠ is the

corresponding discriminator (and hΠ the corresponding classifier) then
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erP (f) = erP (h) ≤ 3 erγz(f)+
4

m

(
N ln

(
11k(2R + 1)

γ

)
+ ln

(
4k

γαkδblog2(2R)c

))
where N = N

(
X , γ

4(2R+1)
, d
)

.

As mentioned in section 1, the classifier h is non-parametric and the variables
R and γ above are not parameters that need to be learnt. Rather, they are
variables that describe its properties, and are measured after learning it.

Proof: For the moment, fix R and k and let Ek
R (a subset of Zm) be the event

that for z ∈ Zm, the following holds: for some γ ∈ (0, k], there exists f = fΠ

where |Π| = k and R(Π) ≤ R, such that

erP (f) > 3 erγz(f) + ε(k, 2R,m, γ, δblog(2R)c),

where

ε(k,R,m, γ, δ) =
4

m

(
N ln

(
11k(R + 1)

γ

)
+ ln

(
4k

γδαk

))
,

where N = N
(
X , γ

4(R+1)
, d
)

. Then what we want to establish is that

Pm

( ⋃
R≥1,k≥1

Ek
R

)
≤ δ.

Next, we note that, for fixed R and k, Theorems 3.1 and 4.2 show that with
probability no more than δαk, there will be some γ ∈ (0, k] and some f ∈ FkR
with

erP (f) > 3 erγz(f) + ε(k,R,m, γ, δ).

In particular, let Dk
i ⊆ Zm be the event that for z ∈ Zm, there exists

γ ∈ (0, k] and f ∈ Fk2i with

erP (f) > 3 erγz(f) + ε(k, 2i,m, γ, δi).

Then it follows that Pm(Dk
i ) ≤ δiαk.
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Next, we claim that, for all R ∈ [2i−1, 2i), Ek
R ⊆ Dk

i . First, we note that,
clearly, if R(Π) ∈ [2i−1, 2i), then f = fΠ ∈ Fk2i . Next, if R ∈ [2i−1, 2i), then
i = blog(2R)c, so that δblog(2R)c = δi. Furthermore, given this, and since
R ∈ [2i−1, 2i) implies 2R ≥ 2i, we have

ε(k, 2R,m, γ, δblog(2R)c) ≥ ε(k, 2i,m, γ, δi).

Put together, these observations imply Ek
R ⊆ Dk

i .

We therefore have

Pm

(
∞⋃
k=1

⋃
R≥1

Ek
R

)
≤

∞∑
k=1

Pm

(⋃
R≥1

Ek
R

)

=
∞∑
k=1

Pm

 ∞⋃
i=1

⋃
R∈[2i−1,2i)

Ek
R


≤

∞∑
k=1

Pm

(
∞⋃
i=1

Dk
i

)

≤
∞∑
k=1

∞∑
i=1

Pm(Dk
i )

≤
∞∑
k=1

∞∑
i=1

δiαk

=
∞∑
k=1

αk

(
∞∑
i=1

δi

)

=
∞∑
k=1

αkδ = δ.

�

Note that, in Theorem 5.1, Π could itself be taken to depend on the sample,
for the result holds uniformly over the class of all fΠ. For instance, Π could
be a subset of the sample, or could be a set of prototypes derived from the
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sample by a clustering algorithm, for instance k-means, or by editing methods
which start with the sample and produce a reduced set of more important
points in the sample to be used as prototypes [15, 11].

As mentioned earlier, the Theorem is stated for general αi, δi. By way of
illustration, we state the special case corresponding to δi = 6δ/(π2i2) and
αi = 6/(π2i2).

Corollary 5.2. Let P be any probability distribution on Z = X × {−1, 1}.
For all m, the following holds with Pm probability at least 1− δ for a sample
z ∈ Zm: for any positive integer k, for any R ≥ 1, for any γ ∈ (0, k], if Π is

any set of k prototypes such that
k∑
i=1

1

ri
≤ R and if hΠ is the corresponding

classifier, then

erP (hΠ) ≤ 3 erγz(fΠ) +
4

m

(
N ln

(
11k(2R + 1)

γ

)
+ ln

(
π4k3(log(2R))2

9γδ

))
where N = N

(
X , γ

4(2R+1)
, d
)

.

Suppressing constants, this error bound is of the form

erP (f) ≤ 3 erγz(f) +O

(
1

m

(
N ln

(
kR

γδ

)))
.

As another corollary to Theorem 5.1, since that result holds uniformly for
all γ, we may take γ to be such that the error erγz(fΠ) is 0. We have:

Corollary 5.3. Let P be any probability distribution on Z = X × {−1, 1}.
For all m, the following holds with Pm probability at least 1− δ for a sample
z ∈ Zm: for any positive integer k, for any R ≥ 1, if Π is any set of k

prototypes such that
k∑
i=1

1

ri
≤ R and if f = fΠ is the corresponding discrimi-

nator (and hΠ the corresponding classifier) then, for all γ ∈ (0, k] such that
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erγz(hΠ) = 0, we have

erP (hΠ) ≤ 4

m

(
N ln

(
11k(2R + 1)

γ

)
+ ln

(
4k

γαkδblog2(2R)c

))
(2)

where N = N
(
X , γ

4(2R+1)
, d
)

.

The sample margin is the maximum value of γ such that erγz(fΠ) is 0. We
can compare the above bound with existing results on large-margin learn-
ing with prototypes. The paper [9] studies the problem of learning vector
quantization (LVQ) in Rn where a point x is classified by the label of the
nearest prototype to it (winner-take-all). In the current paper, the classifier
hΠ decides based on contribution from all the prototypes whose sphere of
influence contains x. With respect to the number k of prototypes [9] states
a generalization learning-error bound which is O(k

√
log k), compared to the

O(ln(k)) error bound of Corollary 5.2 which is exponentially smaller and yet
holds for a much more general learning setting, applicable to any metric-
space. In [9] the error bound depends on the dimension n and the margin
parameter γ as O (min (n, 1/γ2)) while in current paper, the dependence is
O (N (X , γ, d) ln(1/γ)). In [13], an error bound is obtained for LVQ in a
Euclidean space with squared Euclidean distance weighted by relevance pa-
rameters. With respect to the number k of prototypes, their generalization
bound is O(k2), and is inversely proportional to the margin parameter γ.

6. Conclusions

We have studied the generalization error of classifiers defined in a particular
way by a set of labeled prototypes in a metric space. The classifiers, through
the use of a discriminant function, take into account the proximity to the
prototypes of a point to be classified. Those prototypes involved in the
classification of a point are those whose sphere of influence contains it, where
the sphere of influence is the largest sphere centred on the prototype which
contains no oppositely-labeled prototypes. Each of these prototypes then
influences the classification of the point in a way that depends on how close
the point is to the prototype, relative to the radius of its sphere of influence.
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We have obtained bounds on the generalization error that involve the margin-
based error on a training sample. One implication of the bounds is that it
appears to be advantageous to use a classifier which involves a small number
of prototypes and ‘definitively’ classifies the points of the training sample (in
the sense that the discriminant takes large absolute value on the each sample
point, which would be the case if, for instance, a sample point was deeply
embedded within a large number of spheres corresponding to prototypes of
a particular classification). We have worked in the context of a general
metric space, but in future work would wish to investigate weakening this
assumption (dealing with a general ‘dissimilarity’ measure d, which need not
be a metric).
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