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Abstract

I study optimal selling strategies by a multi-product seller who is confined to using

a standard auction format but has leeway in bundling products and choosing aggregate

and individual quantities offered to buyers. I show how decisions of bundling, rationing,

and dispersing the allocation depend on whether the product is of private or common

value, how high demand is relative to supply, and what auction mechanism the seller

uses.

∗Preliminary and incomplete.
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1. Introduction

This paper studies packaging and rationing choices faced by a multi-product, multi-unit seller

when buyers have private information about tastes. In this environment, a profit maximizing

seller has an incentive to design the selling mechanism in such a way as to extract as much

surplus as possible from buyers. There are (at least) three instruments at the sellers disposal

to accomplish this:

• Bundling: A multi-product seller has a choice between selling each product separately
or tying the purchase of one product to the purchase of another. Examples of bundling

in product markets abound - a notorious example in later years being the strategy of

Microsoft to bundle software with their sale of operating systems. Another example,

studied by Stigler [18], is the practice of movie theaters to bundle ticket sales for

consecutive shows (“block booking”). In financial markets, the practice of pooling

assets and selling a single security with claims to all of them is commonplace for loans

and stocks.

• Rationing: The seller has two ways of restricting the aggregate quantity sold. One way
is to withhold some of the quantity from the market. Another way is to set a reserve

price below which no purchase can me made. In the monopoly pricing literature, this

is the classical way for a monopolist to increase profits at the expense of efficiency.

• Dispersion: On top of deciding whether differentiated products should be bundled
or not, the seller also has to decide what quantity of each product a bundle should

contain. Should products be sold unit by unit, or in larger packages? I call this

a dispersion choice because within an auction context it involves deciding whether

to spread out the quantity sold over a larger set of winning bidders or whether to

keep the allocation concentrated. In consumer markets, the choice of package size is

an important marketing variable. In financial markets, the practice of dispersion is

widespread in, for example, the allocation of initial public offerings, where bidders

often get rewarded less than their demanded quantity even though they bid a higher

price than the market clearing price.

I argue that regardless of the bargaining or market power of the seller, he will typically

have a lot of leeway in using these three instruments (except possibly for setting a reserve

price). Of course, if the seller has complete latitude over the choice of selling mechanism,

these instruments will all be embedded in a larger mechanism design choice which also
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involves constructing the optimal auction format. I argue, however, that it is often reasonable

to assume that the seller may be constrained to using a standard auction when selling his

products. There are several reasons for this. First, the format may be predetermined by the

market and is not easily adaptable to every single seller. Second, designing a complicated

novel mechanism can introduce a lot of confusion on the part of buyers. Third, the seller

may not be completely sure how to design the mechanism - it may depend in an intricate way

on assumptions about the distribution of buyers and may not be robust to small changes in

the market environment. For all of these reasons, I pay special attention to three standard

auction formats: Discriminatory price auctions, in which bidders submit sealed bids and

winning bidders pay their bids, uniform price auction, in which winning bidders all pay the

bid of the pivotal bidder, and ascending price auctions, in which bidders drop out as the

price rises until demand equals supply. I also discuss mechanisms that are more attractive

to the seller (when they exist), and study how bundling, rationing, and dispersion strategies

vary with the auction format.

A further goal of the paper is to characterize how these strategies vary with the product

characteristics. In particular, I distinguish between private value products such as consumer

goods where the valuation of a buyer is not affected by the valuation of others, and com-

mon value products such as financial assets where everyone has the same intrinsic value of

consumption but have differing information about the true value of the asset.

The set-up of the paper is as follows: A single risk-neutral seller has I independent

products to sell and a fixed quantity Q of each. There are N risk-neutral bidders, each of

whom gets a signal about each product. The valuation contains a private and a common

value component, and I assume that valuations across products are independent (thus, there

are no complementarities between products). I also assume that buyers have a constant

marginal value of consumption up to a quantity threshold normalized at one, after which

they have zero marginal value of consumption.

The results of the paper can be summarized as follows. First, I study the independent

private value case. With independent private values all the standard auction formats are

revenue equivalent, and are often optimal mechanisms. I first show that the seller wants

to concentrate the allocation as much as possible when values are private; that is, zero

dispersion is optimal. Thus, winning bidders get allocated a full unit. This is natural, since

the highest bidders are the ones with the highest marginal valuation of the products.

I also reaffirm the standard monopoly pricing result that some rationing is optimal. The

seller always wants to set a non-zero reserve price to increase overall payments, even at the
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expense of not always selling the full quantity. I show that setting an optimal reserve price

is a better instrument for rationing than withholding quantity from the market ex ante.

Indeed, once the optimal reserve price is set, the seller does not withhold any quantity as

long as bids are above the reserve price. On the other hand, if the seller cannot set a reserve

price, withholding some quantity ex ante is typically optimal.

I go on to show that the choice of whether to bundle products or sell them separately

depends critically on the ratio of supply to “effective” demand, where effective demand is

the expected number of bidders with a positive valuation. When the supply is small relative

to demand, separate sales are typically optimal, while bundling is typically optimal when

the supply is large relative to demand (cf Palfrey [16] who developed similar results for the

case of one unit). The intuition is that when the supply is small relative to demand, the

pivotal price setting bidder will likely be closer to the top of the distribution, while when

supply is large he will likely be closer to the bottom. Therefore, since bundling will tend to

push valuations towards the center of the distribution, it is beneficial in the second case but

not in the first.

I also show how efficiency relates to the optimal choices of the seller. The choice of optimal

concentration is efficient, while rationing and bundling introduces inefficiencies. A reserve

price excludes some bidders with positive valuations, and bundling may cause a bidder with

a high valuation for one product to be excluded if he has a sufficiently low valuation for the

other product. Interestingly, bundling tends to reduce the first inefficiency by lowering the

optimal reserve price, and so there is no obvious efficiency ranking between bundled and

separate sales. I show that when the number of products is sufficiently large and the supply

is sufficiently large, bundled sales may be both optimal and efficient relative to separate

sales. In fact, in the limit as the number of products grows large and the supply is as big

as the effective demand, maximal bundling will both extract the total consumer surplus and

be socially efficient. On the other hand, if supply is sufficiently small, separate sales are

optimal and efficient. In the middle region, there are typically situations where the optimal

bundling strategy is inefficient.

I next study correlated private values. Most of the results for independent private values

goes through in this case. Maximal concentration is still optimal, as is setting a non-zero

reserve price. However, the reserve price is now a less efficient instrument for rationing, and

I show that it can be beneficial to restrict quantity ex ante even when the optimal reserve

price is set. The intuition for this is that with correlated values, bidders do not expect to face

the same distribution of competitors independent of their own signal. Thus, ideally a reserve
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price should not be fixed, but should change with the conditional distribution of bidders -

when all values are relatively low, the reserve should be lower than otherwise. Decreasing the

aggregate quantity supplied approximates this type of conditional rationing. By reducing

the supply, the pivotal bidder’s valuation is increased, but only relative to the conditional

distribution of valuations.

The bundling decision will again depend in the same way on supply relative to demand,

but will now be affected by which auction format is being used. With correlated private

values, revenue equivalence still holds between uniform and ascending price auctions, but

as was established in Milgrom and Weber [14], discriminatory price auctions perform worse.

Since bundling tends to decrease valuation differences between bidders, it also decreases

the revenue differences between auction formats. Therefore, bundling will typically be a

substitute for choosing a better auction format, and I show that if the seller is forced to use

discriminatory price auctions, he will be more tempted to bundle. On the other extreme,

if the seller could utilize the optimal mechanism design, bundling would never occur. With

correlated values the seller can typically extract all surplus in a separate sale if he uses

the optimal mechanism, as has been shown by Myerson [15], Cremer and McLean [4], and

McAffee McMillan and Reny [10]. Thus, there is no room for either bundling, rationing, or

dispersion in this case (indeed, any of those strategies would reduce revenues).

For common value products, much of the analysis above changes dramatically. With

common values, all the standard auction formats can be revenue ranked, with ascending

price auctions being (weakly) superior to uniform price auction which in turn are (weakly)

superior to discriminatory price auctions. Selling strategies will differ between formats,

especially between the discriminatory price auction and the other two formats. I first show

that maximal concentration is typically optimal in discriminatory price auctions, but may or

may not be in uniform and ascending price auctions. In the private value case, concentration

was optimal because higher bidders had higher marginal values. With common values, a

higher bidder has a higher signal, but everyone has the same valuation function ex post (when

all information is revealed). It is therefore not too surprising that dispersion can be optimal.

In a uniform price auction, the price is set by the pivotal bidder, who takes into account the

information that he is pivotal when formulating his bid. When the allocation is concentrated,

the pivotal bidder tends to have a higher signal than most of his competitors, which increases

the winner’s curse and hence decreases his bid. By dispersing the concentration, the pivotal

bidder will tend to have a lower signal, but the winner’s curse will also diminish. Which of

these effects is stronger is not clear, and I show circumstances in which either can dominate.
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In the discriminatory price auction, however, bidders use strategic bid-shading, which reduces

revenues to the seller. This strategic behavior is exacerbated when the allocation is dispersed,

as bidders do not have to worry as much about not winning. This explains why maximal

concentration is typically optimal in discriminatory price auctions.

Rationing strategies also differ in common value auctions. I show that zero rationing

(setting a zero reserve price and offering the whole quantity) is often optimal in uniform and

ascending price auction, especially as the auction grows large. As the auction grows large (in

that the number of bidders and the quantity both grow large), the underpricing in uniform

and ascending price auction goes to zero. There is therefore no need for restricting the

quantity sold. On the other hand, in discriminatory price auctions the underpricing does not

go to zero as the auction grows large because of the strategic bid-shading discussed above.

Therefore, a non-zero reserve price and restricted quantity ex ante is typically optimal.

The choice of bundling decision will also be determined by different driving forces than in

private value auctions. I first show that, regardless of the size of supply relative to demand,

bundling is optimal in all auction formats if the seller has enough products to bundle. The

intution is simple: Bidders’ information about the average quality in a large bundle tends to

converge to the mean, so that there is no private information about the mean in the limit.

Therefore, the underpricing per unit goes to zero as the number of products goes to infinity.

On the other hand, I show that if we think of holding the number of products fixed, and let the

auction grow large, separate sales become optimal in ascending and uniform price auctions

under some distributional assumptions. As the auction grows large, the underpricing goes to

zero regardless of the bundling strategy, but the convergence rate is faster for separate sales.

This is because bidders tend to have less complex information about an individual asset,

and the informational distance between the pivotal losing bidder and the winning bidders

therefore tends to disappear quicker. For discriminatory price auctions, a similar result holds

if the allocation is very concentrated, because only then does the underpricing go to zero as

the auction grows large. When the supply is bigger, bundling is typically more attractive in

discriminatory price auctions even as the auction grows large.

The last point again illustrates the fact that bundling tends to be a substitute for an

inferior auction mechanism. However, I show that this is not a general theorem. In fact,

there are situations when bundling is optimal in ascending price auctions when separate sales

are optimal in uniform price auctions, even though the ascending price auction is superior.

Finally, I study the situation when products have both private and common value com-

ponents. Using a valuation function that is additively separable in the private and common

6



value components, I show that each component can be analyzed separately as in the discus-

sion above, and that the optimal choice of strategy reduces to choosing the strategy that

maximizes the sum of the two components. The weight on each part will depend on the auc-

tion format being used and how large the auction is. In particular, since the underpricing per

unit sold goes to zero on the common value part as the auction grows large if the ascending

or the uniform price auction is used, the bundling and dispersion decisions will be completely

determined by considering the private value component. On the other hand, rationing will

decrease the revenue raised on the common value part even in large auctions, and so there

will be less of a tendency for rationing than if the products were pure private value. Since

the discriminatory price auction does not feature zero underpricing on the common value

part unless the allocation is extremely concentrated, common value considerations will be

more important in discriminatory price auctions.

Literature Review (*Incomplete*)

Many aspects of this problem have already been studied. It should be stated up front that

especially the results for independent private values have close parallels in existing literature.

A stylized categorization of the results can be done as follows:

Private values, single unit, single product: Myerson [15] studied the mechanism design

problem showing that first price, second price, and english auctions are all revenue equivalent

and optimal, under some conditions. For affiliated private values, Myerson [15] and later

Cremer and McLean [4] also showed that all surplus could in fact be extracted.

Private values, multiple unit, single product: This problem has been studied by Harris

and Raviv [6] and Maskin and Riley [9]. For unit demand, revenue equivalence still holds,

and ascending, uniform, and discriminatory price auctions are still optimal (with the correct

reserve price). With downward sloping demand curves, these auctions are not optimal.

Rather, a non-linear posted pricing schedule is optimal. Even in the competetive limit, the

monopolist will produce too little. Also, Maskin and Riley show that for the consumer with

top tastes, marginal utility is set equal to marginal cost, and for all other types, marginal

utility is higher than marginal cost. In the regular case, if the hazard rate is nonincreasing,

then marginal utility is decreasing in type, showing that relatively lower types consume too

little - there is concentration to the top. That is, the allocation is concentrated relative to

first best. Note that this is not necessarily the case, however it is the case for the highest

type and for the parametrization we consider in this paper. If types are independent but

utilities depend on all other types, then the same condition hold for a non-decreasing hazard

rate. Jackson and Kremer [7] also provide an example of revenue-increasing bundling in
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private value auctions when marginal utilities are decreasing.

Private values, single unit, multiple products: Palfrey [16] shows, for the case of exoge-

nously given auctions and independent products, that bundling is optimal with two bidders,

but not with many bidders. Chakraborthy [3] sharpens some of these results to give ex-

act conditions for when there is a critical number of bidders N above which separate sales

are optimal and below which pooling is optimal. However, Armstrong shows that this is

no longer true when the optimal mechanism is used. With the optimal mechanism, which

allows for endogenous bundling as a function of bids, allowing some probability of bundling

is optimal even for two bidders. In this paper, I show that Armstrong’s result is specific to

his binary set-up, and that bundling is often optimal with two bidders and one good even

when the optimal reserve price is set.

2. Model Set-Up

A single risk-neutral seller has I differentiated products to sell. Each product i is of quality

Zi, where Zi is a random variable. I assume that qualities are distributed identically and

independently according to the distribution function G (z). The seller’s supply of each prod-

uct is Q. There are N risk neutral bidders. Each bidder n privately observes a signal Xi,n

about each product i. The value V that a bidder attaches to consuming a bundle containing

q1, ..., qI units of the I products is given by

V (q1, ..., qI ,X1,n, ...,XI,n, Z1, ..., ZI) =
IX

i=1

min (qi, 1) (tXi,n + (1− t)Zi) (2.1)

Thus, marginal utility is constant up to a quantity normalized to one, after which it is zero.

Xi,n is the private value component and Zi the common value component of the valuation.

The parameter t ∈ [0, 1] measures the relative importance of these components, with t = 1

corresponding to the pure private value case and t = 0 corresponding to the pure common

value case. I assume that products are neither substitutes nor complements, so that the

utility of consuming product i is independent of the consumption of product j.

Signals are independent across products, and I assume that conditional on a quality

realization Zi = z, signals about product i are distributed identically and independently

across bidders according to the distribution function F (x |z ) with density f (x |z ) with
support in [x, x]. Sellers do not know the realization of any random variables, but bidders

can make an inference about Zi from observing the signal Xi,n. To be precise, I assume that
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the monotone likelihood ratio property holds:

MLRP f(x|z )
f(x0|z ) ≥

f(x|z0 )
f(x0|z0 ) if x > x0, z > z0

TheMLRP assumption captures the notion that a higher signal is correlated with a higher

value, and implies together with the valuation function in 2.1 that values are affiliated (see

Milgrom and Weber [14]).

I assume that the seller is faced with an exogenously specified auction format when selling

his products, but that he has leeway in choosing the quantity he puts on the market and

the way products are bundled, both in terms of number of distinct products and in terms

of the quantity of each product sold to winning bidders. More specifically, the seller has the

following choice variables:

-A partition Π = {Π1, ...,ΠJ} of the I assets, such that J separate auctions are held, one
for each bundle of products. I call this a bundling strategy.

-A choice of aggregate quantity Qj ≤ Q for each bundle to put on the market and a

choice of reserve price rj below which no bundle is sold. I call this a rationing strategy.

-A choice of individual quantity qj allocated to each winning bidder, or, equivalently, a

choice of Kj =
Qj

qj
∈ {1, ..., N} of how many bidders are allocated a bundle, subject to the

lowest of them paying at least rj. I call this a dispersion strategy.

Thus, the auction for bundle Πj will be a multi-unit auction of Kj identical items, each

valued by bidder n at

Vj
³
qj, {Xi,n}i∈Πj , {Zi,n}i∈Πj

´
= min (qj, 1)

⎛⎝t
X
i∈Πj

Xi,n + (1− t)
X
i∈Πj

Zi,n

⎞⎠
I study the following standard auction formats (which, as is discussed in more detail

below, are in increasing order of attractiveness to the seller):

1. Discriminatory price auction (DP): Each bidder submits a sealed bid bn and bundles

are awarded to the K highest bidders subject to bn ≥ r. Winning bidders pay their

bid.

2. Uniform price auction (UP): Each bidder submits a sealed bid bn and bundles are

awarded to the K highest bidders subject to bn ≥ r. Winning bidders pay the bid of

the K + 1:st highest bidder or r, whichever is larger.

3. Ascending price auction (AP): The price starts at r and is increased continuously

throughout the auction, and bidders decide at each moment whether to stay in the
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auction or drop out (irreversibly). Once all but K bidders have dropped out, the

auction stops and the remaining bidders are rewarded a bundle at the stopping price.

Given an auction format A ∈ {DP,UP,AP}, denote the revenues in auction j by πjA.

The seller’s maximization problem is then given as follows:

max
Π,{Qj≤Q,rj ,Kj}J

j=1

JX
j=1

E (πjA |Kj, Qj, rj ) (2.2)

I will also discuss how the results for the standard auction formats above differ from the

solutions where the seller has more power to choose an optimal mechanism. In particular,

one can think of two increasingly powerful levels of mechanism design accessible to the seller:

4. Optimal mechanism given a bundling strategy: Once the bundling strategy is picked,

revenue maximizing auctions are run under the restriction that a winner must be

awarded the same quantity of each product in bundle Πj.

5. Unrestricted optimal mechanism.

It is worth pointing out several restrictions imposed on the seller in Problem 2.2 relative

to mechanisms 4 and 5. Relative to mechanism 4, the standard auction formats impose a

restriction that all winning bidders are awarded the same quantities. This turns out not to

be an important restriction in most circumstances (see below), mainly due to the step-like

nature of the valuation function. More importantly, there is a severe restriction in how

payments and allocations are allowed to depend on the bids of competing bidders. This is

unimportant in the case of independent private values, but as has been shown by Myerson

[15], Cremer and McLean [4] and McAfee, McMillan and Reny [10] it is typically possible to

extract all bidder surplus in an optimal mechanism when bidders have correlated valuations.

In that case, allocations will be efficient if separate auctions for each product is run and

strategic components such as bundling, rationing, and dispersion have no bite.

Furthermore, relative to mechanism 5 the four other mechanisms have a restriction that

either the allocation of product i to bidder n is independent of Xi0n (if products i and i0 are

in different bundles), or as dependent on Xi0n as Xin (if they are in the same bundle). This

is not necessarily a feature of a revenue-maximizing mechanism. In fact, McAfee, McMillan,

and Whinston show in a monopoly pricing set-up that it is typically optimal to have the

allocation of i depend positively on Xi0n but less strongly so than on Xin, even in the case

of independent product values and independent private values. The solution to 2.2 will,
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however, be qualitatively similar to the solution to the less restricted problem, and will often

come quite close to achieving the same level of revenues for the seller.

2.1. Equilibria of the auctions

To characterize equilibria for the three standard auction formats in the auction of bundle

Πj, denote by Xn and Z the sum of signals and qualities for the bundle, and by V (q,Xn, Z)

the valuation of the bundle:

Xn ≡
X
i∈Πj

Xi,n

Z ≡
X
i∈Πj

Zi

V (q,Xn, Z) ≡ min (q, 1) (tXn + (1− t)Z)

Equilibria for the three auction formats can then be found without any further restrictions

on the signal- and asset structure for the case of private values using the one-dimensional

aggregate signals Xn. In the case of common values (t < 1), however, equilibria can be quite

difficult to characterize, and a symmetric equilibrium may even fail to exist (see Jackson ).

The difficulty stems from the multi-dimensionality of the signals: It is in general not possible

to construct a sufficient statistic for the signals {Xi,n}i∈Πj
that also satisfies MLRP with

respect to Z. To circumvent these problems, I will frequently use the following distributional

assumption on signals and qualities when t < 1:

D1 Zi ∈ {0, 1}, Xi,n ∈ {0, 1}, P (Xi,n = 1 |Zi = 1) = p > P (Xi,n = 1 |Zi = 0) = q

Many of the results in the paper hold without invoking this assumption.

To allow for mixed strategies when signals are discretely distributed, denote by sn ∈ [0, 1]
a random draw from a uniform distribution for each bidder that is independent of all other

variables. Also, denote by Y1 ≥ Y2 ≥ ... ≥ YN the N order statistics of the sample of

signals {Xi}Ni=1 , and by eY1 ≥ eY2 ≥ ... ≥ eYN the order statistics of the “augmented” signals
{{Xi, si}}Ni=1 ordered lexicographically so that {Xi, si} > {Xj, sj} if Xi > Xj or if Xi = Xj

and si > sj. Similarly, define by Y −nK and eY −nK the K :th order statistic of the same samples

excluding {Xn} and {Xn, sn} respectively. The goal is now to find a bid-function bA (x, s)

for auction format A that describes bidding by an agent with signals Xn = x and sn = s

and constitutes a symmetric Bayesian Nash equilibrium. This can be done by a relatively
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straight-forward extension of the analysis in Milgrom and Weber [14] to the multi-unit case

allowing for discretely distributed signals. Define a function v (x, y, s) by

v (x, y, s) = E
³
V (1,Xn, Z)

¯̄̄
Xn = x, eY −nK = {y, s}

´
Then the equilibrium bid functions are given in the following proposition.

Proposition 1. Suppose t = 1 or Πj is a singleton or assumption D1 holds, and the auction

has parameters {Q, r,K}. In all auction formats, bA (x, s) < r for {x, s} < {x∗, s∗} where
the screening level {x∗, s∗} is defined as

{x∗, s∗} = inf
n
{x, s}

¯̄̄
E
³
V
³
q,Xn, Z

¯̄̄
Xn = x, eY −nK < {x, s}

´
≥ r

´o
The equilibrium bid function for the discriminatory price auction for {x, s} ≥ {x∗, s∗} is
given by

bDP (x, s) = rL (x∗, s∗ |x, s) + min (q, 1)
Z {x,s}

{x∗,s∗}
v (α, α, t) dL (α, t |x, s)

where

L (α, t |x, s) = exp
Ã
−
Z {x,s}

{α,t}

fY −nK
({y, u} |Xn = y )

FY −nK
({y, u} |Xn = y )

d {y, u}
!

The equilibrium bid function for the uniform price auction for {x, s} ≥ {x∗, s∗} is given by

bUP (x, s) = min (q, 1) ∗ v (x, x, s)

The equilibrium bid function for the ascending price auction is defined recursively as follows

for {x, s} ≥ {x∗, s∗}: SupposeM < N−K bidders do not participate at r. Define b0 (x, s |M )

as

b0 (x, s |M ) = E
³
V (q,Xn, Z)

¯̄̄
Xn = x, eY −nK , ..., eY −nN−M−1 = {x, s} , eY −nN−M < {x∗, s∗}

´
If the price reaches b0 (x, s |M ) without anyone else dropping out, drop out. If someone

drops out at p1 < b0AP (x, s |M ), define b1 (x, s |M,p1 ) as

b1 (x, s |M,p1 ) = E
³
V (q,Xn, Z)

¯̄̄
Xn = x, eY −nK , ..., eY −nN−M−2 = {x, s} ,

b0
³eY −nN−1−M

´
= p1, eY −nN−M < {x∗, s∗} )
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If the price reaches b1 (x, s |M,p1 ) without anyone else dropping out, drop out. Continue

similarly until the price reaches

bk (x, s |M,p1, ..., pk ) = E
³
V (q,Xn, Z)

¯̄̄
Xn = x, eY −nK , ..., eY −nN−k−M−1 = {x, s} ,

bk−1
³eY −nN−k−M

´
= pk, ..., b

0
³eY −nN−1−M

´
= p1 )

where k more bidders have dropped out at prices pk ≥ pk−1 ≥ ... ≥ p1 and drop out when

the price reaches bk (x, s |M,p1, ..., pk ) if noone else has dropped out.

Proof. In Appendix.

Note that because the value function is additively separable in the private and common

value component, so is the bid function for all auction formats. Therefore, we can think of

the auction as two separate auction, one with a pure private value component and one with a

pure common value component, as long as we make sure that the screening level introduced

by the reserve price is the same as in the composite auction. This is the approach taken in

sections 3, 4, and 5 below. Section 6 then revisits the mixed case.

3. Independent Private Values

Suppose t = 1 and values are independently distributed. Proposition 1 shows that bids in the

uniform and ascending price auction are identical on the private value component, but differ

on the common values component, while the discriminatory price auction differs on both.

Thus, uniform and ascending price auctions raise exactly the same revenues when values are

private. In fact, as has been established for similar cases elsewhere, with independent private

values the discriminatory price auction raises the same expected revenues as well.

Lemma 1. Given {Πj, {Q, r} , q}, all three auction formats are revenue equivalent.

Proof. Omitted. Maskin and Riley [9] have proved revenue equivalence for the continuous

case. It is relatively straight-forward to extend the proof to the discrete case.1

It follows from Lemma 1 that the choice of bundling, rationing, and dispersion strategies

are not dependent on the particular auction format. I start by analyzing the dispersion

strategy and show that maximal concentration is always optimal in standard private value

auctions.

1However, it should be noted that revenue equivalence only holds in the discrete case if bids over the
whole interval

£
X,X

¤
are allowed. When values are discrete, it is typically optimal for the seller not to allow

bids over certain intervals (see Maskin and Riley () and Armstrong ()).
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Proposition 2. q∗ = 1 for all auction formats.

Proof. Clearly, we can rule out q∗ > 1, since we can always reduce Q instead of allocating

extra quantity to bidders with zero marginal valuation. Given revenue equivalence, we can

confine study to the uniform price auction. From Proposition 1, the price per unit sold

will be max (YK+1, r) and the quantity sold will be q
PK

i=1 1Yi≥r = Q
K
i=1 1Yi≥r

K
. Suppose

q < 1, and suppose you increase quantity to q0 = Q
K−1 . Then, the price per unit sold will

be max (YK , r) ≥ max (YK+1, r) and the quantity sold will be Q
K−1
i=1 1Yi:N≥r

K−1 ≥ Q
K
i=1 1Yi:N≥r

K
.

Hence, expected revenue is increased.

Following Myerson [15], define the “virtual utility” J (x) as

J (x) ≡ x− 1− F (x)

f (x)

A regularity assumption that I will sometimes invoke is that J (x) is increasing:

Regularity F (x) is regular if the virtual utility J (x) is increasing in x.

This is a standard assumption in the mechanism design literature (see Myerson [15] and

Maskin and Riley [9]).

Define the set J0 as follows:

J0 =

(
J−1 (0) J−1 (0) 6= ∅
{0} J−1 (0) = ∅

That is, J0 contains the solutions to the equation J−1 (0) = 0 or {0} if no such solution
exists. The following proposition derives the optimal reserve price r∗ and shows that when

there is a chance of bidders’ valuation being below the valuation of the seller, a reserve price

strictly higher than the valuation of the seller is optimal.

Proposition 3. r∗ ∈ J0. If x≤ 0, there exists ε > 0 such that r∗ > ε for all Q,N .

Proof. Following Maskin and Riley, one can express the expected revenues (with q = 1)

as

E (π) = E

Ã
QX
n=1

1Yn≥rJ (Yn)

!
(3.1)

Clearly, if J (x) is positive for all x, setting r to zero is optimal. If J (x) is negative somewhere,

r should be set at a point where J crosses 0 from below. Such a point exists, since J (x) =

x > 0. This proves the first part of the proposition. The second part follows from the
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fact that J (x) is negative at x ≤ 0, so that the smallest solution to J (x) = 0 is strictly

positive.

The following proposition shows that under very mild assumptions, it is always optimal

to sell the full quantity Q if the seller can set the optimal reserve price. Thus, rationing

through the reserve price is always more efficient than rationing through the quantity put

on the market. However, if the seller does not have enough power to credibly set a reserve

price, decreasing the aggregate quantity can serve as a substitute.

Proposition 4. If J (x) = 0 has at most one solution, Q∗ = Q if the optimal reserve price

is set. If the seller is forced to set r = 0, there exists situations such that Q∗ < Q even when

x = 0 and Q < N .

Proof. If J (x) = 0 has at most one solution, it is positive above r∗. Hence, Expression

3.1 is strictly increasing in Q. Now suppose the seller is forced to set r = 0. Then, if Q
N
→ 1

as N →∞, Expression 3.1 will be decreasing in Q at Q as N →∞, since J (0) < 0.
I end the analysis of dispersion and rationing strategies by relating the standard auction

formats to the optimal mechanism given a bundling decision (format 4 above). As has been

established in Maskin and Riley [9], regularity actually implies that the standard auction

formats are optimal under the optimal rationing and dispersion strategies.

Proposition 5. (Maskin and Riley) If F (x) is regular, all auction formats with q∗ = 1, r∗ =

J0, Q∗ = Q are optimal mechanisms.

For non-regular distributions, Maskin and Riley show that the standard auction formats

perform worse than an ascending price auction with appropriately chosen discrete jumps in

the price increases, in which bidders who drop out just before a jump point get to share any

allocation that is left after distributing to remaining bidders. This will in effect create a type

of dispersion, since 0 < q < 1 for a range of bidder valuations. This should be contrasted

with the result in 2, which states that for the standard auction formats, dispersion is never

valuable.

I now turn to analyzing the bundling choice Π.. In light of Proposition 2, we can take

q given as one. The following two propositions show that the bundling decision will depend

on the ratio of demand to supply. The smaller the supply Q is relative to the number of

bidders, the more beneficial separate sales will be, and vice versa.

Proposition 6. Suppose the auction is regular and that x≥ 0. Then, there exists a β < 1

such that for all K, N there exists I such that if K
N
≥ β, bundling is optimal.
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Proof. I start by establishing the folllowing Lemma:

Lemma 2. Suppose the auction is regular. Then, given K,N expected revenue per unit

π (K,N) is bounded by

E (YK+1) ≤ π (K,N) ≤
(

1−F (r)
K/N

r K
N
≥ 1− F (r)

(1− F )−1 (K/N) K
N
< 1− F (r)

Proof. E (YK+1) is the expected profit in a uniform price auction without reserve, and

hence serves as a lower bound for expected revenues. Now compare π (aK, aN) to π (K,N)

for a some integer larger than one. Then, π (aK, aN) ≥ π (K,N), since running a auctions

identical to the K,N auction yields aπ(K,N)
a

= π (K,N) in expected revenues per unit. As a

goes to infinity, revenue in the optimal auction is given as in the right side of the Lemma.

It is now enough to show that π (K,N) is below the mean for K
N
≥ β for some β. Suppose

β = 1. Then,

π (K,N) ≤ (1− F (r)) r

=

Z x

r

rf (x) dx

<

Z x

x

xf (x) dx

Thus, there exists a β < 1 such that the statement holds.

Proposition 7. Suppose Q is given. Then there exists anM such that for all I, x, N ≥M ,

separate sales dominate bundling.

Proof. <<Extending Palfrey>>

Remark: These Propositions extend results in Palfrey [16] to the case of multiple units

and optimal reserve prices. He show that pooling is always optimal with two bidders when

there is no reserve. This result is modified when the optimal reserve price is taken into

account. Armstrong [1], for example, has shown that separate sales are always optimal for a

binary distribution when K = 1, even when N = 2. However, even with an optimal reserve

price, it is often the case that bundling dominates separate sales when N = 2. For example,

for one can sharpen the for symmetric unimodal distributions, .
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One can sharpen the propositions by making stronger distributional assumptions. For

example, if f (x) is symmetric and unimodal and x≥ 0, one can show that bundling dominates
separate sales if and only if K+.5

N
> .5 for any I.

The intuition behind propositions 6 and 7 is relatively straightforward. When the supply

is large relative to demand, the pivotal price-setting bidder tends to have a relatively low

valuation. Therefore, bundling independent products helps by pulling all valuations closer

to the mean. The opposite is true when the supply is small relative to demand, since the

pivotal bidder then tends to have an above average valuation.

The following proposition builds on the same intuition by showing that the lower the

support of the valuation function, the more likely it is that separate sales are optimal when

the optimal reserve price is set. If the optimal reserve price is close to the top of the support,

the effective supply relative to demand is low regardless of the actual supply.

Proposition 8. Suppose N , Q are given, and the support of f (x) is [x, x+ b] with f (x) >

ε > 0 for all x ∈ [x, x+ b]. Then there exists an a > −b such that separate sales are optimal
for all I and all x less than a.

Proof. Straight-forward.

In Palfrey’s analysis, separate sales are always more efficient than bundling, even though

the seller only prefers separate sales for a large enough number of bidders. This depends

crucially on the fact that there is no reserve price. When there is no reserve price (and

no other type of rationing or dispersion), separate sales are efficient as the products are

always allocated to the highest value users. However, when the optimal reserve price is set,

there is an additional inefficiency associated with separate sales in that the screening level

is typically higher than for bundled sales. This inefficiency can be so high that bundling

is more efficient, especially when the number of distinct products in the bundle is large.

The following proposition shows that when the supply is large relative to demand and the

number of distinct products is large enough, bundling is typically both optimal and efficient

relative to separate sales. The opposite holds when supply is small relative to demand. For

intermediate cases, it can well be that the optimal bundling strategy is inefficient relative to

some other available bundling strategy.

Proposition 9. Suppose x= 0 and the optimal reserve is set. Then there exists β, β, I

satisfying 0 < β < β < 1 such that bundling is optimal and creates a larger consumer

surplus than separate sales if K
N

> β and I >I, and separate sales are optimal and create

a larger consumer surplus than bundling if K
N

<β. In general, there are situations when
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bundling is optimal but inefficient relative to separate sales, and separate sales are optimal

but inefficient relative to bundling.

4. Affiliated Private Values

With affiliated private values, revenue equivalence still holds between uniform and ascending

price auctions, as can be seen by inspecting the bid functions in Proposition 1. However, the

discriminatory price auction typically performs worse than the uniform and ascending price

auctions, as is established in the following proposition.

Lemma 3. The ascending and uniform price auctions are revenue equivalent given a fixed

reserve price r, and are superior to the first price auction.

Proof. Bids in the uniform price auction are equal to the valuation, while in the ascending

price auction it is optimal to stay in the auction up until your valuation. With a continuous

bid support, this will lead to equal revenues. That the discriminatory price auction is worse

is shown in Milgrom and Weber for the unit supply case, but can easily be extended to the

multi-unit supply case.

Just as in the case for independent private values, maximal concentration is optimal for

all standard auction formats.

Proposition 10. q∗ = 1 is optimal in all auction formats.

Proof. Same as before for ascending and uniform price auctions. <<To be finished>> .

Also, just like in the independent case, there will always be some rationing through a

reserve price if the lower end of the support is zero. However, a fixed reserve price is no

longer a powerful enough rationing instrument to assure Q = Q. The intuition for this is

that with affiliated values, bidders do not expect to face the same distribution of competitors

independent of their own signal. Thus, ideally a reserve price should not be fixed, but

should change with the conditional distribution of bidders - when all values are relatively

low, the reserve should be lower than otherwise. Decreasing the aggregate quantity supplied

approximates this type of conditional rationing. By reducing the supply, the pivotal bidder’s

valuation is increased, but only relative to the conditional distribution of valuations.

Proposition 11. If x≤ 0, there exists ε > 0 such that r∗ > ε for all Q,N . There exists

situations in which Q < Q even when the optimal reserve price is set.
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Equivalents of Propositions 6, 7, 8, and 9 can be established relatively easily for the

affiliated case. A major difference is that the bundling decision will be different for dif-

ferent auction formats. In particular, we can show that bundling will often be optimal in

discriminatory price auctions when it is not in uniform or ascending price auctions.

Proposition 12. As I goes to infinity, bundling is always optimal in discriminatory price

auctions if it is optimal in uniform and ascending price auctions.

Proof. In the pooled auction, revenues per variety converge to the average valuation in

the different auction formats. There is a cut off level N∗ above which separate sales are

better for uniform price auctions. Since for separate sales, discriminatory price auctions

generate strictly lower revenues, pooling should be at least as valuable for discriminatory

price auctions.

It is also worth discussing the relation between the standard auction formats and more

powerful mechanisms as in 4 and 5 above. In fact, as was shown in Myerson [15] and Cremer

and McLean [4], it is possible to extract all bidder surplus with the optimal mechanism.

Thus, rationing and dispersion is inconsequential. Separate sales together with one of these

mechanisms is always optimal. Thus, there is a negative correlation between the amount

of bundling and the attractiveness of the mechanism to the seller. Proposition 12 can be

strengthened to state that if maximal bundling is optimal in a certain auction format when

I is big enough, then it is also optimal in all auction formats that are revenue inferior.

5. Pure Common Values

With pure common values, ascending price auctions are revenue superior to uniform price

auctions, and both are revenue superior to discriminatory price auctions.

Lemma 4. With pure common values, the auction formats are ranked as follows: E (πAP ) ≥
E (πUP ) ≥ E (πDP )

Proof. Extension of Milgrom and Weber.

A special case of this revenue ranking is when the auction grows large in the sense that

Q,N →∞. Then, it can be shown that the underpricing per product disappears in uniform

and ascending price auctions, but not in discriminatory price auctions unless the allocation

is highly concentrated. (Compare Theorem 5 of Jackson and Kremer [7] for a similar result.)
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Lemma 5. As K,N →∞, K
N
→ β < 1, underpricing per unit goes to zero in uniform and

ascending price auctions. In discriminatory price auctions, the underpricing per unit goes

to zero if and only if the probability of bidders with the highest signal getting an allocation

is less than one. Otherwise, the underpricing per unit is strictly bounded from zero and is

increasing in β.

Proof. (Sketch) Suppose the equilibrium is strictly increasing. Suppose K
N
→ β with

1− F (H − 1 |0) > β. Then, there will always be some bidders with the highest signal that

do not get any allocation, regardless of the realization of z. These bidders will get exactly

zero revenue. But from indifference over the mixing region, this implies that they get zero

revenue whatever they bid. The aggregate profits must be zero as well.

Suppose 1 − F (H − 1 |0) < β but 1 − F (H − 1 |1) > β, so that it is possible that all

bidders with the highest signal get an allocation, but it only happens when the asset is

worthless. Then, there is a positive measure of bidders with the highest signal who expect

to get zero surplus; hence, all of them expect to get zero surplus.

Now suppose that all bidders with the highest signal always get the asset; and that some

fraction of bidders who do not get the highest signal also always get the asset. There is a

price k above which you can be assured of getting the asset. It has to be the case that

k < E (z |x)

where x < H − 1. In the case of two signals, therefore, k < E (z |x = 0). This implies that
there will be underpricing.

In the case of more signals, proceed as follows: No clientele can get a negative expected

gain. Set the expected gain to the bidders with the second highest signal to zero. Suppose

they always get the asset; then, they should pay E (z |x). But then, the highest bidders will
gain, because they can pay the same.

With continuous signal, we would get the result that for any allocation which makes

bidders below the upper bound get the asset with positive probability, then undepricing per

asset will not go to zero. It remains to show what happens when all high signal bidders do

not get an allocation at the highest z, but do at some z > 0.

Corollary 1. Suppose N →∞, Q
N
→ β < 1. Then, q∗ → 1 in discriminatory price auctions.

As the corollary suggests, maximal concentration is typically optimal in discriminatory

price auctions.
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Conjecture 1. q∗ = 1 in discriminatory price auctions

However, for uniform and ascending price auctions, dispersion is often optimal. The

following proposition delineates the optimal dispersion strategies as the auction grows large.

Proposition 13. There exists situations in which q∗ < 1 for uniform and ascending price

auctions. Suppose signalsX and qualityZ are discretely distributed, and that β < P (X = x |Z = z ).

Then, if F (x |z ) − F (x |z0 ) > ε > 0 ∀x, z, z 6= z0, there exists a > 0 such that for all

P (X = x |Z = z ) ≤ a, we have q∗ → C < 1 in uniform price auctions as N →∞, Q
N
→ β.

Proof. In Appendix.

Proposition 14. Suppose signals X are discretely distributed and quality Z is continuously

distributed, and that β < P (X = x |Z = z ). Then, q∗ → 1 in uniform price auctions as

N →∞, Q
N
→ β.

Proof. In Appendix.

I now study the rationing strategy {Q, r}.

Proposition 15. With uniform and ascending price auctions, r → 0 andQ→ Q asN →∞,
Q
N
→ β < 1. In discriminatory price auctions, there exists situations where r > 0 and Q < Q

even as N →∞.

Proof. Since underpricing per unit goes to zero as N → ∞, it is strictly better to sell
more (as long as the value is above zero), so Q→ Q, r → 0. <<To be finished>>

I now turn to the bundling decision.

I first show the following: In the pure common values case, and for a finite fixed number

of bidders and units of each asset, bundling will always be optimal if the seller has access

to enough different products. This result holds under very general specifications of the

underlying signal distribution and the correlation structure across products.

Proposition 16. Holding N and K fixed, bundling is optimal in all auction formats as I

goes to infinity.

Proof. The proposition is almost trivial once we note that revenue is homogeneous of degree

1 in Z. From homogeneity, we can then look at an auction of wI ≡
I
i=1 zi
I

to get the expected

revenue per asset. Since wI →a.s. c, the auction is virtually identical to an auction under

certainty, where the only possible symmetric equilibrium is for everyone to bid c in all auction
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forms. Formally, the proposition follows immediately from the equilibrium bidding functions

in Proposition 16 and from the fact that E (wI |x, y1 = x) →a.s. c for a set x of measure

one. However, not surprisingly, the proposition holds under much more general conditions

than the ones necessary for deriving the equilibrium bidding functions. In particular, we

do not need any of the distributional assumtions on values and signals that are necessary

for aggregation as long as a symmetric equilibrium exists. To illustrate this, we prove the

proposition for second price auctions under no other assumption than that of existence of

a symmetric equilibrium b (x). It is enough to show that there exists an I such that for all

I >I , b (x) is above c− ε with probability 1− δ for arbitrary ε, δ > 0. Suppose this was not

true so that for each I, there exists an I >I such that b (x) < c − ε for a set x of measure

at least δ2. Then, any bidder can increase his expected profits by bidding bb (x) = c − ε for

all x such that b (x) < c − ε. By doing this, he now wins the auction on a set of positive

measure where he didn’t win before, and he wins at a price lower than or equal to c − ε.

His conditional expectation of the value of the security on this set goes to c as I goes to

infinity, except for a set of measure 0. Since losses are bounded above by c− ε on this set of

measure 0, this change in strategy gives strictly higher expected profits. Proofs for uniform

and ascending price auctions are almost identical.

The intiution for this result is that as the bundle grows large, bidders’ information about

the average quality in the bundle tend to converge, so that they cannot utilize their infor-

mational rents. More surprising, the following proposition shows that if we let the degree

of competition grow while holding the number of products fixed, separate sales are optimal

even if supply is large relative to demand.

Proposition 17. Suppose assumption D1 holds. Then, holding I fixed, separate sales be-

come optimal in uniform and ascending price auctions as N →∞, K/N → β for β < 1.

Proof. In Appendix.

The result in Proposition 17 is exclusive to uniform and ascending price auctions. The

following Proposition shows that if the bundle can be made large enough, bundling is optimal

in discriminatory auctions as long as the supply is not picked up exclusively by bidders with

the highest signal.

Proposition 18. There exists I such that for all N,K such that K
N
> P (X = x), bundling

is optimal in the discriminatory price auction for all I ≥.I.

2The measure of the set is given by
P

x:b(x)<c−ε
P

z P (x |z )P (z) .
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Proof. Since the underpricing does not go to zero with N for discriminatory price auctions,

the existence of an I independent of N can be established in the same way as in the proof

of Proposition 16.

Propositions 16, 17 and 18 should be contrasted with the private value case in Propo-

sitions 6 and 7. For common values, bundling can be optimal regardless of the ratio of

supply to demand, as can separate sales. In the case of uniform and ascending price auction,

it is the degree of diversification relative to how large the auction is that decides whether

bundling or separate sales are optimal. In the discriminatory price auction, it is the degree

of diversification relative to the degree of competition that is the deciding factor.

Proposition 19. Suppose assumption D1 holds and Q = 1. Then, the underpricing for a

bundle with I products goes to zero with N
¡
1− pqI−1

¢N
for uniform and discriminatory

price auctions, and at least as fast for ascending price auctions. Separate sales become

optimal in all auction formats as N →∞, and the rate of convergence of all auction formats
is the same.

The Propositions above establish that bundling is typically more powerful in auction

formats that are less attractive to the seller, as the discriminatory versus uniform, or an

auction without reserve relative to one with the optimal reserve, or a standard auction

format relative to the optimal mechanism. However, as the following proposition shows, it

is not a general rule that bundling is used more in less attractive auction formats.

Proposition 20. Under assumption D1, if bundling is optimal for uniform price auctions,

it is also optimal for ascending price auctions. There exists situations in which bundling is

optimal in ascending price auctions where it is not in uniform price auctions.

Proof. For separate sales, revenues are the same for uniform and ascending price auctions.

For bundled sales, revenues in ascending price auctions are strictly higher. Therefore, at a

point of indifference between bundling and not in uniform price auction, bundling must be

strictly better for ascending price auctions.

6. Mixed Common and Private Values

Putting the results from sections 4 and 5 together, we see that for discriminatory price

auctions, almost all results go in the same direction as the results for affiliated private values.

However, there may be an increased tendency to bundle if there are enough products. For
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the other auction formats, that converge on the underpricing, the impact of the common

value component will be largest for small N. For large N , the common value component

does not get affected much by the choice of strategy relative to the private value component.

Thus, any small private value component will dictate the choice of strategies. In particular,

there will be no dispersion, and the bundling decision will be based on how high demand

is relative to supply. However, the rationing strategy may get affected - since the rationing

strategy will in fact affect the revenues raised on the common value part.

7. Conclusion

<<To be written.>>
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APPENDICES
Proof of Proposition 1

First I establish that under assumption D1, there exists a sufficient statistic for the

multidimensional signal that satisfies MLRP:

Lemma 6. Suppose assumption D1 holds. Then, Xn is a sufficient statistic for {Xi,n}i∈Πj

and satisfies MLRP with respect Z.

Proof. Denote the sum of signals byX ≡
P

i∈J Xi and the sum of values by Z ≡
P

i∈J Zi.

It is easy to show that X is a sufficient statistic for Z using the formal definition of a

sufficient statistic3, but it is also obvious from the symmetry of signals and assets: To predict

how many of the assets take on value one (that is, to predict Z) it doesn’t matter for which

assets you got a high signal, only how many high signals you got (that is, X). It remains to

show that X satisfies MLRP with respect to Z, so that signals can be ranked unambiguously

from high to low according to the value of X when bundle Πj is auctioned.

We show this by induction. First, we show that under assumption A1, MLRP holds for

1 asset. This follows from p > q:

P (x = 1 |z = 1)
P (x = 0 |z = 1) =

p

1− p

>
q

1− q

=
P (x = 1 |z = 0)
P (x = 0 |z = 0)

Next, we show that if MLRP holds for K − 1 assets, then it holds for K assets. Denote by

P (x |z from K ) the probability of observing a sum of signals x about K assets given that

the sum of K assets is equal to z. It is enough to show that, given our induction hypothesis,

P (x |z from K )

P (x |z + 1 from K )
>

P (x+ 1 |z from K )

P (x+ 1 |z + 1 from K )
∀x, z ≤ K − 1 (.1)

These local conditions imply the global MLRP condition. Note that we can write, for

3See, for example, DeGroot [?].
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1 ≤ z ≤ K − 1 and x ≤ K − 1 :4

P (x |z from K ) =
K

K − x

µ
(1− p)

z

K
P (x |z − 1 from K − 1) + (1− q)

(K − z)

K
P (x |z from K − 1)

¶
The left hand side of .1 then becomes

P (x |z from K )

P (x |z + 1 from K )
=

(1− p) z P (x|z−1 from K−1 )
P (x|z from K−1 ) + (1− q) (K − z)

(1− p) (z + 1) + (1− q) (K − z − 1) P (x|z+1 from K−1 )
P (x|z from K−1 )

and, for x ≤ K − 2, the right hand side of .1 becomes

P (x+ 1 |z from K )

P (x+ 1 |z + 1 from K )
=

(1− p) z P (x+1|z−1 from K−1 )
P (x+1|z from K−1 ) + (1− q) (K − z)

(1− p) (z + 1) + (1− q) (K − z) P (x+1|z+1 from K−1)
P (x+1|z from K−1)

From our induction hypothesis, P (x+1|z−1 from K−1)
P (x+1|z from K−1 ) < P (x|z−1 from K−1 )

P (x|z from K−1) and
P (x+1|z+1 from K−1 )
P (x+1|z from K−1 ) >

P (x|z+1 from K−1)
P (x|z from K−1 ) . This proves

P (x|z from K )
P (x|z+1 from K )

> P (x+1|z from K )
P (x+1|z+1 from K )

, as long as 1 ≤ z ≤ K − 1
and x ≤ K − 2. We also need to show that .1 holds for z = 0 and x = K − 1. For z = 0 we
have:

P (x |z = 1 from K ) =

µ
K − 1
x− 1

¶
qx−1 (1− q)K−x p+

µ
K − 1
x

¶
qx (1− q)K−1−x (1− p)

P (x |z = 0 from K ) =

µ
K

x

¶
qx (1− q)K−x

4This is derived as follows:

P (x |z from K ) =
P (x ∩ xK = 0 |z from K )

P (xK = 0 |x)

Here, P (xK = 0 |x) is the probability of observing a zero signal on the K:th asset conditional on observing
x ones on all K assets, and is given by

P (xK = 0 |x) =
K − x

K

P (x ∩ xK = 0 |z from K ) is the probability of observing x ones on K assets and zero on the K:th asset
given that z assets are one. It is calculated as:

P (x ∩ xK = 0 |z from K ) = P (zK = 1 |z from K )P (xK = 0 |zK = 1)P (x |z − 1 from K − 1)
+P (zK = 0 |z from K )P (xK = 0 |zK = 0)P (x |z from K − 1)

= (1− p) zP (x |z − 1 from K − 1) + (1− q) (K − z)P (x |z from K − 1)
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so that
P (x |z = 1 from K )

P (x |z = 0 from K )
=

x

K

p

q
+

K − x

K

1− p

1− q

This is increasing in x, since 1−p
1−q > p

q
. It is similarly straightforward to show that .1 holds

for x = K − 1.
The rest of the Proposition is proved by straight-forward extension of the results in

Milgrom and Weber [14].//To be completed//.

Proof of Propositions 13 and 14:

Lemma 7. The rate of convergence is increasing in γ(F (x∗∗))
γ(1−β)

Proof: We have that

fYK+1 (x |z ) =
N !

K! (N −K − 1)!F (x |z )
N−K−1 (1− F (x |z ))K f (x |z )

=
N !

K! (N −K)!
F (x |z )N−K (1− F (x |z ))K f (x |z )

F (x |z ) (N −K)

=
√
N

N !

K! (N −K)!
γ (1− β)N

µ
γ (F (x |z ))
γ (1− β)

¶N
f (x |z )
F (x |z )

√
N (1− β)

Note that

lim
N→∞,K

N
→β

√
N

N !

K! (N −K)!
γ (1− β)N = C > 0

for some constant C. This follows from the fact that for a binomial distribution X ∼
Bin [N,β], we have that

θ ≡
√
N

µ
X

N
− β

¶
→ N (0, β (1− β))

so that, for some ε (N) > 0 such that limN→∞ ε (N) = 0 and limN→∞
√
Nε (N) = ∞, we

have that
P
³
−ε(N)

2
≤ θ ≤ ε(N)

2

´
ε (N)

→ 1p
2πβ (1− β)

(the normal distribution evaluated at 0). But we can also write this as

P
³
−ε(N)

2
≤ θ ≤ ε(N)

2

´
ε (N)

=

P−
√
N

ε(N)
2
+K

X=−
√
N ε(N)

2
+K

P (X)

ε (N)

≈
√
NP (K)
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which gives the result. Hence, fYK+1 (x |z ) goes to zero at a rate proportional toµ
γ (F (x |z ))
γ (1− β)

¶N
f (x |z )
F (x |z )

√
N (1− β)

Since f (x |z ) > 0 and for β < 1, this is dominated by the behavior of
³
γ(F (x|z ))
γ(1−β)

´N
.

Lemma 8. The convergence rate is in the interval
h
max

h
γ(F (x∗∗|0 ))
γ(1−β) , γ(F (x

∗∗|I ))
γ(1−β)

i
,maxz

h
γ(F (x∗∗|z ))
γ(1−β)

ii
Lemma 9. If P (x > H − 1) is small enough, some rationing is optimal.

Proof. For β → 0, we have convergence proportional to F (H − 1 |I ). This follows since

F (H − 1 |I )1−β (1− F (H − 1 |I ))β

(1− β)1−β ββ
→ F (H − 1 |I )

as β → 0. For P (x > H − 1) small enough, this is close to one. For β lower, it is enough to
show that F (x |z )− F (x |z − 1) > ε for all z. If this is so, we must have

γ (F (x∗ |z ))
γ (1− β)

< 1 ∀z

so that the convergence rate is strictly faster. This is so since F (x∗ |z ) will be strictly smaller
than 1− β. But for z discrete, this will be the case.

Lemma 10. If P (x > H − 1) > 0, and z’s are on a fine enough grid so that F (x |z ) −
F (x |z − 1) < ε for all z, x, then rationing is not optimal.

Proof: If F (x |z )−F (x |z − 1) are sufficiently close together, γ(F (x∗|z ))
γ(1−β) is arbitrarily close

to one, and will be larger than F (H − 1 |1). Hence, rationing is not optimal.
Proof of Proposition :

We begin by establishing a couple of lemmas that will be useful in proving the proposition.

Lemma 11.

lim
N,K→∞,K

N
→β

fYK+1 (x |z ) = 0 ∀x such that F (x |z ) 6= (1− β)
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Lemma 12.

lim
N,K→∞,K

N
→β

fYK+1 (x |z )
fYK+1 (y |u)

= 0 if γ (F (x |z )) < γ (F (y |u))

where γ (F ) is defined as

γ (x) ≡ F 1−β (1− F )β

Proof: We can write fYK+1 (x |z ) as

fYK+1 (x |z ) =
N !

K! (N −K − 1)!F (x |z )
N−K−1 (1− F (x |z ))K f (x |z )

=
³
F (x |z )1−β (1− F (x |z ))β

´N N !

K! (N −K − 1)!F (x |z ) f (x |z )

= γ (F (x |z ))N N !

K! (N −K − 1)!F (x |z ) f (x |z )

Therefore, we have that

lim
N,K→∞,K

N
→β

fYK+1 (x |z )
fYK+1 (y |u)

=

µ
γ (F (x |z ))
γ (F (y |u))

¶N
F (x |z ) f (x |z )
F (y |u) f (y |u)

If γ (F (x |z )) < γ (F (y |u)), this goes to zero with N , which proves Lemma 12.

Lemma 11 is then proved as follows. Since γ (F ) has a unique maximum at F = 1− β,

it follows that
fYK+1 (x|z )
fYK+1(y|z )

goes to infinity for x such that F (x |z ) = 1 − β and y 6= x. Now

suppose, contrary to the claim in the lemma, that

lim
N,K→∞,K

N
→β

fYK+1 (y |z ) = ε (.2)

for some ε > 0 and for y such that F (y |z ) 6= 1−β. Also, suppose without loss of generality

that y < x. Then, since γ (F ) is concave, it follows that

γ (F (y |z )) < γ

µ
F

µ
y + x

2
|z
¶¶

< γ (F (x |z ))

But this implies that for all y0 ∈
£
y+x
2
, x
¤
, fYK+1 (y

0 |z ) goes to infinity from Lemma 12 and

expression .2. This in turn implies thatZ H

y0=0

fYK+1 (y
0 |z ) dy0 →∞ > 1
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which is a contradiction. Hence, fYK+1 (y |z ) must go to zero.

Lemma 13. The hazard rate 1−F (x|z )
f(x|z ) is strictly increasing in z for x < H − 1 and is

independent of z for x ≥ H − 1.

Proof. We have that
1− F (x |z )
f (x |z ) =

Z H

x

f (y |z )
f (x |z )dy

Since MLRP assumes that f(y|z )
f(x|z ) is strictly increasing in z for y ≥ H−1 and x < H− 1, and

is constant in z for x ≥ H − 1, the result follows.
To prove proposition ?, divide the bundle ZI into two monotonically increasing claims

a1 (ZI) = min (ZI , I − 1) and a2 (ZI) = max (0, ZI − (I − 1)). Then, from Lemma ?, we

have that the expected underpricing U (ZI) satisfies

U (ZI) = U (a1 (ZI) + a2 (ZI))

= U (a1 (ZI)) + U (a2 (ZI))

with

U (ai (ZI)) ≥ 0 i = 1, 2

Note that Z1 = a2 (Z1). To prove the proposition, it is sufficient to show that U (Z1) goes

to zero with N faster than U (a2 (ZI)) for I > 1.

The underpricing U (a2 (ZI)) in uniform price auctions is given by

U (a2 (ZI)) = E (a2 (ZI))−E (π (a2 (ZI)))

=

Z H

0

(E (a2 (ZI) |YK+1 = x)−E (a2 (ZI) |YK+1 = x, YK = x)) fYK+1 (x) dx

=

Z H−1

0

(P (I |YK+1 = x)− P (I |YK+1 = x, YK = x)) fYK+1 (x) dx

= P (I)

Z H−1

0

fYK+1 (x |I )A (x) dx (.3)

where A (x) is defined as

A (x) ≡ 1− P (I |YK+1 = x, YK = x)

P (I |YK+1 = x)

and the third equality above follows from the fact that for x in the highest equivalence interval

x ∈ [H − 1, H), P (I |YK+1 = x) = P (I |YK+1 = x, YK = x) since the event [YK+1 = x] is
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informationally equivalent to [YK+1 = YK = ... = Y1 = x] on the highest equivalence interval.

The following Lemma delineates some properties of the integrand fYK+1 (x |I )A (x) in
expression .3 that are used below:

Lemma 14. For x ∈ [0,H − 1) , fYK+1 (x |I )A (x) is strictly positive and goes to zero with
min

¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
:

lim
N→∞,K

N
→β

fYK+1 (x |I )A (x)
min

¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢ = C > 0

for some bounded constant C.

Proof: First rewrite A (x) as

1− P (I |YK+1 = x, YK = x)

P (I |YK+1 = x)
= 1−

fYK+1,YK (x,x|I )P (I)
fYK+1,YK (x,x)

fYK+1 (x|I )P (I)
fYK+1(x)

= 1−

f(x|I )
1−F (x|I )fYK+1(x|I )

I
u=1

f(x|u )
1−F (x|u )fYK+1(x|u )P (u)

fYK+1(x|I )
fYK+1 (x)

=

PI
u=1

³
f(x|u )

1−F (x|u ) −
f(x|I )

1−F (x|I )

´
fYK+1 (x |u)P (u)PI

u=1
f(x|u )

1−F (x|u )fYK+1 (x |u)P (u)

where the second equality follows from

fYK+1,YK (x, x |z ) =
1

2K

N !

K! (N −K − 1)!F (x |z )
N−K−1 (1− F (x |z ))K−1 f (x |z )2

=
1

2K

f (x |z )
1− F (x |z )fYK+1 (x |z )

Lemma 13 implies that the inverse hazard rate f(x|z )
1−F (x|z ) is strictly decreasing in z for x < H−

1, which shows that A (x) , and hence fYK+1 (x |I )A (x), is strictly positive for x ∈ [0, H − 1).
The remainder of Lemma 14 is proved as follows. Define zmax (x) as

zmax (x) ≡ arg max
z∈{0,...,I}

γ (F (x |z ))

In view of Lemma 12, we have that

lim
N→∞,N/K→β

fYK+1 (x |z )
fYK+1 (x |zmax )

= 0 z 6= zmax (.4)
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Also, since F 1−β (1− F )β is a concave function of F , and since F (x |z ) is decreasing in z,

we have that for any integer i

lim
N→∞,N/K→β

fYK+1 (x |zmax − (i+ 1))
fYK+1 (x |zmax − i)

= 0 (.5)

lim
N→∞,N/K→β

fYK+1 (x |zmax + (i+ 1))
fYK+1 (x |zmax + i)

= 0 (.6)

We can now derive the limiting behavior of fYK+1 (x |I )A (x):

lim
N→∞,K

N
→β

fYK+1 (x |I )A (x)
min

¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
= lim

N→∞,K
N
→β

⎛⎜⎝
PI−1

u=0

³
f(x|u )

1−F (x|u ) −
f(x|I )

(1−F (x|I ))

´
fYK+1(x|u )

fYK+1 (x|zmax )
fYK+1 (x|I )

min(fYK+1 (x|I−1 ),fYK+1 (x|I ))
P (u)PI

u=0
f(x|u )

1−F (x|u )
fYK+1(x|u )

fYK+1(x|zmax )
P (u)

⎞⎟⎠

=

PI−1
u=0

³
f(x|u )

1−F (x|u ) −
f(x|I )

(1−F (x|I ))

´
limN→∞,K

N
→β

∙
fYK+1 (x|u )

fYK+1(x|zmax )
fYK+1(x|I )

min(fYK+1(x|I−1 ),fYK+1 (x|I ))

¸
P (u)PI

u=0
f(x|u )

1−F (x|u ) limN→∞,K
N
→β

h
fYK+1 (x|u )

fYK+1(x|zmax )

i
P (u)

(.7)

The last step is valid provided that the denominator does not go to zero and provided

both numerator and denominator are bounded, conditions that are verified now. First,

from Lemma 12, the denominator goes to f(x|zmax )
1−F (x|zmax ) > 0. Second, if zmax 6= I, we have

min
¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
= fYK+1 (x |I ) from expression .6, so that the numerator

goes to f(x|zmax )
1−F (x|zmax ) −

f(x|I )
(1−F (x|I )) > 0. For zmax = I, we have

lim
N→∞,K

N
→β

fYK+1 (x |u)
fYK+1 (x |zmax )

fYK+1 (x |I )
min

¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
= lim

N→∞,K
N
→β

fYK+1 (x |u)
fYK+1 (x |I − 1)

=

(
1 u = I − 1
0 u < I − 1

where the first step follows from fYK+1 (x |I ) = fYK+1 (x |zmax ), and the second from expres-

sion .5. Thus, the numerator of .7 goes to f(x|I−1 )
1−F (x|I−1) −

f(x|I )
(1−F (x|I )) > 0. It remains to show

that min
¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
does in fact go to zero with N . But this follows from

Lemma 11, since F (x |I − 1) 6= 1−β ifmin
¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
= fYK+1 (x |I − 1)
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and F (x |I ) 6= 1− β if min
¡
fYK+1 (x |I − 1) , fYK+1 (x |I )

¢
= fYK+1 (x |I ).

The convergence rate of U (a2 (ZI)) will be governed by the integrand in .3 with the

slowest convergence.

From Lemma .7 and Lemma 12, it follows that the integrand with the slowest convergence

in .3 is for the x that solves the problem

max
x≤H−1

[min (γ (F (x |I )) , γF (x |I − 1))] (.8)

I claim that the solution to problem .8 is given by x∗∗ defined as

x∗∗ ≡ min (H − 1, x∗) (.9)

where x∗ is defined implicitly by the solution to

γ (F (x∗ |I ) |I ) = γ (F (x∗ |I − 1))

To see this, we first show that x∗ is the solution to the relaxed problem

max
x
[min (γ (F (x |I )) , γF (x |I − 1))] (.10)

To see this, notice that F (x |I ) < F (x |I − 1) for all 0 < x < 1 from MLRP. Then, since

γ (F ) is increasing for F < 1− β and decreasing for F > 1− β, it must be that F (x∗ |I ) <
1−β < F (x∗ |I − 1). Also, γ (F (x |I )) < γ (F (x |I − 1)) for 0 < x < x∗ and γ (F (x |I )) >
γ (F (x |I − 1)) for x∗ < x < H. Hence, min (γ (F (x |I )) , γF (x |I − 1)) is maximized at x∗.
This shows that x∗ is also the solution to .8 if x∗ ≤ H − 1. Now suppose x∗ > H − 1. Then,
we have that F (x |I ) < F (x∗ |I ) < 1−β and min (γ (F (x |I )) , γF (x |I − 1)) = γ (F (x |I ))
for x ≤ H − 1. Since γ (F (x |I )) is increasing in x for x < x∗, we then have x = H − 1 as
the solution to .8. This shows that x∗∗ = min (H − 1, x∗) is indeed the solution to .8.
I now show that the higher F (x∗∗ |I ), the slower U (a2 (ZI)) goes to zero. Note that

min (γ (F (x∗∗ |I )) , γ (F (x∗∗ |I − 1))) = γ (F (x∗∗ |I ))

Since the convergence rate of U (a2 (ZI)) is inversely proportional to γ (F (x∗∗ |I )), the result
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follows from the fact that F (x∗∗ |I ) < 1− β so that ∂γ(F (x∗∗|I ))
∂F (x∗∗|I ) > 0.5

To make the distinction between bundles of different size explicit, denote by FI (x |z ) the
distribution function of X for a bundle with I assets. To finish the proof of the proposition,

it is enough to show that FI (x
∗∗
I |I ) > F1 (x

∗∗
1 |I ) for I > 1 (with the dependence of x∗∗ on

I made explicit).

From the definition of x∗∗, we have

FI (x
∗∗
I |I ) = min (FI (I − 1 |I ) , FI (x

∗
I |I ))

= min
¡
1− pI , F (x∗I |I )

¢
Since 1 − pI is increasing in I, all that remains is to show that FI (x

∗
I |I ) ≥ F1 (x

∗
1 |1) for

I > 1.

Define y (x) implicitly by

FI (y (x) |I ) ≡ F1 (x |1)

If we can show that

FI (y (x) |I − 1) ≤ F1 (x |0) ∀x (.11)

we have that

γ (FI (y (x
∗
1) |I )) = γ (F1 (x

∗
1 |1))

= γ (F1 (x
∗
1 |0)) < γ (FI (y (x

∗
1) |0))

The last inequality follows since FI (y (x
∗
1) |I − 1) ∈ (F1 (x∗1 |1) , F1 (x∗1 |0)) and from the con-

cavity of γ (F ). Hence, x∗I > y (x∗1), and FI (x
∗
I |I ) > F1 (x

∗
1 |1), which proves the proposition.

Note that we have

5More exactly, it is straightforward to show that

U (a2 (ZI))
N !

K!(N−K−1)!γ (F (x
∗∗ |I ))N

→ 0

while for all ε > 0,
U (a2 (ZI))

N !
K!(N−K−1)!γ (F (x

∗∗ |I )− ε)N
→∞
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f1 (0 |0)
f1 (0 |1)

=
1− q

1− p

f1 (1 |0)
f1 (1 |1)

=
q

p

and

fI (x |I − 1)
fI (x |I )

=

I−1!
(J−1)!(I−J)! (1− p)I−J pJ−1q + I−1!

J!(I−J−1)! (1− p)I−J−1 pJ (1− q)

I!
J !(I−J)! (1− p)I−J pJ

=
J

I

q

p
+

I − J

I

1− q

1− p

where J is an integer such that J ≤ x < J+1. Therefore, we have f1(0|0)
f1(0|1) ≥

fI(y|I−1 )
fI(y|I ) ≥

f1(1|0)
f1(1|1)

for all y. This implies inequality .11, since for x < 1, we have

f1 (x |0)
f1 (x |1)

≥ fI (y |I − 1)
fI (y |I )

⇒

F1 (x |0) fI (y |I ) ≥ F1 (x |1) fI (y |I − 1)⇒

F1 (x |0)FI (y |I ) ≥ F1 (x |1)FI (y |I − 1)⇒

F1 (x |0) ≥ FI (y (x) |I − 1)

Similarly, for x ≥ 1,

f (x |0)
f (x |1) ≤

f (y |I − 1)
f (y |I ) ⇒

(1− F1 (x |0)) fI (y |I ) ≤ (1− F1 (x |1)) fI (y |I − 1)⇒

(1− F1 (x |0)) (1− FI (y |I )) ≤ (1− F1 (x |1)) (1− FI (y |I − 1))⇒

F1 (x |0) ≥ FI (y (x) |I − 1)

This concludes the proof.

.1. Ascending Price Auctions

U (a2 (ZI)) = E (a2 (ZI))−E (π (a2 (ZI)))
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=

Z H

0

µ
fYK+1 (x |I )P (I)

fYK+1 (x)

¶
fYK+1 (x) dx

−
Z H

0

Z
YK+2:N

fYK+2:N ,YK+1,YK (Y, x, x |I )P (I)
fYK+2:N ,YK+1,YK (Y, x, x)

fYK+2:N |YK+1 (YK+2:N) dY fYK+1 (x) dx

= P (I)

Z H

0

fYK+1 (x |I ) dx

−P (I)
Z H

0

Z
YK+2:N

fYK+2:N ,YK+1,YK (Y, x, x |I )
fYK+2:N ,YK+1 (Y, x)

fYK+2:N ,YK+1,YK (Y, x, x)
dY dx

= P (I)

Z H

0

fYK+1 (x |I ) dx

−P (I)
Z H

0

Z
YK+2:N

C

D

f (x |I )
1− F (x |I )fYK+2:N ,YK+1 (Y, x |I )

fYK+2:N ,YK+1 (Y, x)

fYK+2:N ,YK+1,YK (Y, x, x)
dY dx

= P (I)

Z H

0

fYK+1 (x |I ) dx

−P (I)
Z H

0

fYK+1 (x |I )
Z
YK+2:N

C

D

f (x |I )
1− F (x |I )fYK+2:N (Y |I, YK+1 = x)

fYK+2:N ,YK+1 (Y, x)

fYK+2:N ,YK+1,YK (Y, x, x)
dY dx

= P (I)

Z H

0

fYK+1 (x |I ) dx

−P (I)
Z H

0

fYK+1 (x |I )
Z
YK+2:N

fYK+2:N (Y |I, YK+1 = x)

C
D

f(x|I )
1−F (x|I )fYK+2:N ,YK+1 (Y, x)P

z
C
D

f(x|z )
1−F (x|z )fYK+2:N ,YK+1 (Y, x |z )P (z)

dY dx

= P (I)

Z H

0

fYK+1 (x |I ) dx

−P (I)
Z H

0

fYK+1 (x |I )
Z
YK+2:N

f(x|I )
1−F (x|I )P

z
f(x|z )

1−F (x|z )
fYK+2:N,YK+1

(Y,x|z )
fYK+2:N,YK+1

(Y,x)
P (z)

fYK+2:N (Y |I, YK+1 = x) dY dx

= P (I)

Z H−1

0

fYK+1 (x |I )A (x)

−P (I)
Z H

0

fYK+1 (x |I )
Z
YK+2:N

f(x|I )
1−F (x|I )P

z
f(x|z )

1−F (x|z )
fYK+2:N,YK+1

(Y,x|z )
fYK+2:N,YK+1

(Y,x)
P (z)

fYK+2:N (Y |I, YK+1 = x) dY dx

= P (I)

Z H−1

0

fYK+1 (x |I )A (x) .

We need to show that for a cut off level P ∗1 where A (x) converges for one asset, it does not
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for many assets. Then, there is an x such that A (x) does not go to zero where γ (F (x |I )) >
γ (P ∗1 ), so that the bundle converges at a slower rate.

Lemma 15. A (x)→ 1−
f(x|I )

1−F (x|I )
f(x|zmax )

1−F (x|zmax )
where zmax solves

max
z

h
Πx
i=1P (i |z )

P (i|I )
F (x|I )

i1−β
(1− F (x |z ))β

Proof: It is enough to show that, with probability one under the measure fYK+2:N (Y |I, YK+1 = x),

fYK+2:N ,YK+1 (Y, x |z )P (z)
fYK+2:N ,YK+1 (Y, x)

→
(
1 z = zmax

0 z 6= zmax

Denote by #i the number of elements in Y that are equal to i. Then,

#i

N −K
→a.s.

P (i |I )
F (x |I )
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under the measure fYK+2:N (Y |I, YK+1 = x) for i ≤ x. We have that

fYK+2:N ,YK+1 (Y, x |z )P (z)
fYK+2:N ,YK+1 (Y, x)

=

³
Πx
i=0P (i |z )

#i
N−K−1

´N−K−1
P (x |z ) (1− F (x |z ))K P (z)P

u

³
Πx
i=0P (i |u)

#i
N−K−1

´N−K−1
P (x |u) (1− F (x |u))K P (u)

=

Ã
Πx
i=0P (i|z )

#i
N−K−1

Πx
i=1P (i|zmax )

P (i|I )
F (x|I )

!N−K−1

P (x |z )
³

1−F (x|z )
1−F (x|zmax )

´K
P (z)

P
u

Ã
Πx
i=0P (i|u )

#i
N−K−1

Πxi=1P (i|zmax )
P (i|I )
F (x|I )

!N−K−1

P (x |u)
³

1−F (x|u )
1−F (x|zmax )

´K
P (u)

=

Ã
Πx
i=0P (i|z )

#i
N−K−1

Πx
i=1P (i|zmax )

P (i|I )
F (x|I )

!N((1−β)− 1
N ) ³

1−F (x|z )
1−F (x|zmax )

´Nβ

P (x |z )P (z)

P
u

Ã
Πx
i=0P (i|u )

#i
N−K−1

Πxi=1P (i|zmax )
P (i|I )
F (x|I )

!N((1−β)− 1
N ) ³

1−F (x|u )
1−F (x|zmax )

´Nβ

P (x |u)P (u)

=

⎡⎣Ã Πxi=0P (i|z )
#i

N−K−1

Πx
i=1P (i|zmax )

P (i|I )
F (x|I )

!(1−β)− 1
N ³

1−F (x|z )
1−F (x|zmax )

´β⎤⎦N P (x |z )P (z)

P
u

⎡⎣Ã Πx
i=0P (i|u )

#i
N−K−1

Πx
i=1P (i|zmax )

P (i|I )
F (x|I )

!((1−β)− 1
N ) ³

1−F (x|u )
1−F (x|zmax )

´β⎤⎦N P (x |u)P (u)

Here, for a set of measure one, if z 6= zmax,Ã
Πx
i=0P (i |z )

#i
N−K−1

Πx
i=1P (i |zmax )

P (i|I )
F (x|I )

!(1−β)− 1
N µ

1− F (x |z )
1− F (x |zmax )

¶β

→ C < 1

And hence the result follows. Hence, A (x) goes to zero for x such that zmax < I.∙
Πx
i=1f (yi |I )

f(yi|I )
F (x|I )

¸1−β
(1− F (x |I ))β =

∙
Πx
i=1 (f (yi |I − 1))

f(yi|I )
F (x|I )

¸1−β
(1− F (x |I − 1))β

We can rewrite this as⎡⎣Πx
i=1

f (yi |I − 1)
f (yi |I )

f(yi|I )
F (x|I )

⎤⎦1−β µ1− F (x |I − 1)
1− F (x |I )

¶β

= 1
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(1− β)
X
J≤x

f (J |I )
F (x |I ) ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
+ β ln

X
J>x

f (J |I )
1− F (x |I )

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
= 0

(1− β)E

µ
ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
+ β lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
= 0

Denote by L (x) the function x q
p
+ (1− x) 1−q

1−p . Then, we can rewrite this as

(1− β)E

µ
ln

µ
L

µ
X

I

¶¶
|X ≤ x, I

¶
+ β lnE (L (J) |J > x, I ) = 0

We know that

F (x |I )E
µ
J

I

q

p
+

I − J

I

1− q

1− p
|J ≤ x, I

¶
+(1− F (x |I ))E

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
=

E

µ
J

I

q

p
+

I − J

I

1− q

1− p
|I
¶

=

q
p
E (J) + 1−q

1−pE (I − J)

I
=

q

p
p+

1− q

1− p
(1− p) = 1,

or

ln

∙
F (x |I )E

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J ≤ x, I

¶
+ (1− F (x |I ))E

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶¸
= 0.

Then, from Jensen’s inequality, we have

F (x |I ) lnE
µ
J

I

q

p
+

I − J

I

1− q

1− p
|J ≤ x, I

¶
+

+(1− F (x |I )) lnE
µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
< 0

F (x |I )E
µ
ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
+

+(1− F (x |I )) lnE
µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
< 0

Both these follow from Jensen’s inequality: E (f (x)) < f (E (x)) for f a concave function.
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Also, we have

E

µ
ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
> lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
Hence, we have to have

1− β > F (x |I )

Now, let I grow. Then, f
¡
J
I

¢
goes to a peaked distribution around p. Since

√
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
→ N (0, 1)

we have that

√
I ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
→ N (0, 1)

so that

E

µ√
I ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
→ E

µ√
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
|J ≤ x, I

¶
and

√
I lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
→ E

µ√
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
|J > x, I

¶

(1− β)E

µ√
I ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
+β
√
I lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
= 0

Show that

F (x |I )→ 1− β
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We have that √
I

µ
J

I
− p

¶
→ N (0, p(1− p))

and √
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
→ N

¡
0, σ2

¢
Also,

√
I ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
∼
√
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶

and

E

µ√
I ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
→ E

µ√
I

µ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
|J ≤ x, I

¶
√
I lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J > x, I

¶
→
√
IE

µµ
J

I

q

p
+

I − J

I

1− q

1− p
− 1
¶
|J > x, I

¶
Therefore, there exists I such that

which shows that the cut-off level is increasing in I. Hence, at the F (x |I ) where we
have convergence for one asset, there is no convergence of A (y (x)) for many assets, and we

can increase F (x |I ) slightly and hence γ (F (x |I )) .
Also, since

E

µ
ln

µ
J

I

q

p
+

I − J

I

1− q

1− p

¶
|J ≤ x, I

¶
< lnE

µ
J

I

q

p
+

I − J

I

1− q

1− p
|J ≤ x, I

¶
It has to be that the cut off level for ascending price auctions is in general lower than for

uniform price auctions. Hence, ascending price auctions converge faster.

If x∗ > H − 1, the convergence is at F (H − 1 |I ) - the same for uniform and ascending

price auctions. Hence, with a more concentrated allocation, the ascending price auction has

less of an advantage. Also, with less bundling, it has less of an advantage?
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