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Abstract

This paper presents a model of price setting wherein firms partially inform their decisions by
watching price changes by other firms across an observation network. Within a context of
imperfect common knowledge and for a wide range of plausible and commonly observed net-
work structures, idiosyncratic shocks are shown to not "wash out" in aggregate prices. These
aggregate effects are also shown to be persistent despite the underlying idiosyncratic shocks
being entirely transitory. The model is therefore able to explain a variety of recently docu-
mented stylised facts regarding price setting, including the observation that short-lived price
changes appear to contain macroeconomic content. The paper also presents a general, readily
implementable solution to Bayesian learning over an opaque social network, with the effects of
network learning on aggregate expectations able to be simulated without the need to explicitly
model the network.

JEL Classification: D21 (Firm Behavior), D83 (Search, Learning, and Information), E31
(Price Level; Inflation; Deflation)

Keywords: Network learning; Incomplete information; Inflation persistence; Aggregate
volatility
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1 Introduction

The UK appears to be experiencing a negative supply shock. Real GDP is slumping and
inflation, originally predicted to fall quickly following the full pass-through of one-off factors
like the VAT increase, remains stubbornly high. Although arguably to a lesser extent, the
USA appears to be undergoing a similar episode, with inflation remaining higher than might be
expected given the growth rate in real GDP.

Following experiences in the 1970s, it has come to be thought that stagflation persists in
an economy through agents’ expectations. In particular, most research has supposed that
households, expecting high inflation in the coming period, demand higher wages in the current
period. To the extent that firms use some version of cost-based pricing and are free to update
their prices, this therefore causes high inflation in the current period. But in the UK the present
period of stagflation has been accompanied with very low growth rates of nominal wages (and
so sizable contractions in real wages), thereby ruling out a wage-price spiral as an explanation
for its persistence.

In addition, the UK also appears to be experiencing a notable slump in estimates of TFP
relative to its pre-financial-crisis trend.

This paper proposes a partial explanation of this phenomenon by generating persistent ag-
gregate cost-push dynamics in the absense of aggregate shocks, the aggregate responses instead
being driven by firms’idiosyncratic shocks. That idiosyncratic shocks are an important aspect
of firms’price-setting decisions is now broadly accepted. However, it remains commonly as-
sumed that since the shocks themselves must cancel out,1 the effects of those shocks on firms’
decisions must also wash out in aggregation. In such a setting, firm-specific shocks can only
contribute to aggregate dynamics by causing sluggish responses to aggregate shocks, because
firms take time to be sure that a given shock is truly common to all firms. In contrast to this,
recently documented evidence from studies of micro-level price changes suggests that those price
changes most likely to have been driven by idiosyncratic shocks do not cancel out and therefore
appear to contain content of macroeconomic import.

To achieve the emergence of aggregate effects from idiosyncratic shocks, this paper develops
a model in which firms learn about the state of the economy by observing each other’s prices in
a directed network and set those prices on the basis of their own marginal costs and their belief
regarding the average price. If the network is suffi ciently non-uniform, idiosyncratic shocks to
firms’marginal costs will not wash out in aggregate prices. If a highly visible firm receives
a positive shock to costs (e.g. a negative idiosyncratic productivity shock) and an obscure
firm receives a negative cost shock such that the sum of them is zero, the average competitor
will consequently believe that there has been a positive aggregate shock to costs. If actual
aggregate shocks are persistent, then the average firm will therefore anticipate higher costs
tomorrow and thus, if able, will raise their price today. Finally, as firms’learning is recursive,
this aggregate effect will be persistent. To a macroeconomist focusing on aggregate data, this
will be observationally equivalent to a persistent negative TFP shock.

1Over a continuum of agents, that mean-zero idiosyncratic shocks must sum to zero is true by definition; if
they did not, they would necessarily include an aggregate component.
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It may be noted that because firms may choose to observe the prices of other firms with
whom they do not trade and are are not competitors (a perfectly reasonable action provided that
their marginal costs are correlated), this model also represents a novel transmission mechanism
for inflation across industries or geographies independent of it’s path along production chains.
However, the origin of an observation network remains largely outside the scope of the current
paper, which takes the network as exogenously given.

More generally, this paper develops a general, readily implementable solution to Bayesian
learning over an opaque social network in a setting of repeated, simultaneous actions and a
dynamic underlying state. Previous work on network learning has typically limited attention
to sequential actions and an unchanging state, or relied on assumptions of bounded rationality,
or characterised only the speed of convergence in social beliefs. The effects of the network on
agents’learning are here captured in a manner that permits researchers to simulate the effects
of network learning without having to model the network explicitly, with results calibrated by
a single additional parameter describing the degree of asymmetry within the network. This
makes the model particularly amenable to nesting within broad general equilibrium models of
the economy and may be of independent interest.

When firms exist in an observation network, it is necessary for them to estimate not only
the average expectation (for reasons of strategic complementarity), but also the expectations
of their observees (and, in turn, their observees’expectations of others again). As the number
of agents in the network expands, this causes an explosion in the size of the state vector quite
apart from the presence of higher-order expectations (see section 3.1 for more detail) and has
typically been thought to prevent closed-form analysis in anything other than trivially small
networks.

In contrast, this paper limits the state vector to growing in the number of higher orders
of expecation only, even for networks with an infinite number of agents, by denying agents
knowledge of the exact topology of the network (the network is opaque). Instead, agents are
granted knowledge of the distribution from which observation targets are drawn and do not
learn about the structure of the network over time. With unobserved aggregate variables
following an AR(1) process, the full hierarchy of agents’ expectations is shown to follow an
ARMA(1,1) process, with current and lagged weighted sums of agents’ idiosyncratic shocks
entering at an aggregate level. For asymmetric networks —i.e. where some agents’actions are
disproportionately observable —these weighted sums are shown to not converge to zero.

Within the literature on deriving aggregate volatility from firms’idiosyncratic shocks, this
paper is most closely related to work by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Saleh
(2011).2 Examining the idea of firms operating within an intersectoral supply network, they
show idiosyncratic productivity shocks leading to volatility in aggregate output and, for finite
networks, derive an upper limit for the rate at which aggregate volatility declines as the number
of firms increases. For suffi ciently asymmetric trading networks, aggregate volatility need not
vanish at all. In another vein, Gabaix (2011) demonstrates how aggregate volatility can emerge
from idiosyncratic shocks when the distribution of firm sizes exhibits fat tails, even when those
firms do not trade directly with each other. Each of these share with this paper an emphasis
on unequal, or fat-tailed, distributions. In the model of Gabaix (2011), aggregate volatility
arises because the largest firms contribute disproportionately to aggregate production. In that
by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Saleh (2011), it emerges through those firms
whose output is most extensively used as an intermediate good by other firms. In the current

2The work of this paper was first developed independently by Carvalho (2010) and Acemoglu, Ozdaglar, and
Tahbaz-Saleh (2010) and later combined to the paper referenced in the text.
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paper, with network-based learning, it derives from firms whose price changes are most readily
observed.

A large literature also exists exploring network learning. To avoid the dimensionality prob-
lems mentioned above, a common approach in this literature has been to step away from fully
Bayesian updating. DeMarzo, Vayanos, and Zwiebel (2003), for example, explore situations
where where agents assume that signals they receive from observing each other contain entirely
new information. Such a rule greatly simplifies analysis, but introduces what the authors label
"persuasion bias" from the agents’ failure to properly discount the repetition of information
they receive. Somewhat more generally, Golub and Jackson (2010) study learning in a setting
where agents "naïvely" update their beliefs by taking weighted averages of their neighbour’s
opinions and determine conditions under which social beliefs regarding a single, fixed state of
the world converge to the truth. In examining Bayesian learning over a network, previous work
has typically limited attention to settings with a fixed state of the world and with agents acting
sequentially (and only once each). For example, Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011) study the equilibrium of a sequential learning model over a general stochastic network,
showing that there will be asymptotic learning when private beliefs are unbounded and char-
acterising some settings under which asymptotic learning still emerges when private beliefs are
bounded. Other work of note includes Calvo-Armengol and de Marti (2007), who characterise
a method of calculating the welfare gains from a variety of network structures in communication
networks that exhibit convergent learning.

This paper falls broadly within and was initially inspired by the literature on imperfect
common knowledge or incomplete information. The idea that real effects may arise from
nominal disturbances through imperfect information dates to Lucas (1972) and, more recently,
Woodford (2003a). The solution method developed by this paper builds upon that put forward
by Nimark (2008, 2011a), who introduced dynamic pricing and idiosyncratic shocks in marginal
costs to the Woodford (2003a) paper. Other recent work in this area includes Adam (2007),
who looked at optimal monetary policy in the Woodford setting and Melosi (2011), who uses
the Survey of Professonal Forecasters to estimate a DSGE model with price setters experiencing
imperfect common knowledge.

The idea of firms’existing within observation networks need not only feed into a setting of
imperfect common knowledge. It might also be readily applied to the the rational inattention
work of Sims (2003) or the "sticky information" literature of Mankiw and Reis (2002) and Reis
(2006). If one were to suppose that a full information update was costly and observing the price
of a competitor less so, a natural incentive emerges to delay a full update and instead update
one’s price on the basis of those of one’s competitors. However, as shown below, evidence
from a variety of surveys of firms’price-setting behaviour suggest that the imperfect common
knowledge setting may be the more likely reason for firms’observation of each others’prices.

The remainder of this paper is organised as follows. Section 2 provides evidence in support
of the price-setting model described in this paper. Section 3 then examines a generalised
definition of hierarchies of expectations and presents a context-free model of learning across
opaque networks. This may be of independent interest. Section ?? applies this to a small
model of price setting and considers the implications for inflation dynamics. Section 5 concludes.

2 Evidence

In this section we summarise a variety of facts regarding firms’price-setting behaviour garnered
over recent decades and argue that they are strongly supportive of a model of price setting in
which firms obtain information by observing the prices of other firms.
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At some level, that firms operate within not just transactional but also observational net-
works is intuitive, or even self evident. An independent coffee shop will take note of the prices
offered by their competitors, including other independent outlets nearby and larger chains like
Starbucks. Firms might also observe the price movements of businesses that are not direct
competitors in order to learn about the structure of their costs. When a book shop observes
a price change at a Thai restaurant next door, or even a car mechanic around the corner, they
obtain information about movements in average marginal costs, thereby improving their ability
to ascertain that portion of their own cost changes that are idiosyncratic.

In further support of this, we here first describe evidence from a number of price-setting
surveys conducted in the 1990s and 2000s and then explore a series of stylised facts identified
from studies of recently available datasets of observed price changes.

2.1 Price-setting Surveys

Starting with the work of Blinder (1991) and Blinder, Canetti, Lebow, and Rudd (1998) in the
United States and continuing through to the first half of the 2000s, a variety of surveys were
been conducted in an attempt to shed light on precisely how firms set prices. These include
work in the UK (Hall, Walsh, and Yates (1997)), Sweden (Apel, Friberg, and Hallsten (2005)),
Japan (Nakagawa, Hattori, and Takagawa (2000)), Canada (Amirault, Kwan, and Wilkinson
(2006)) and nine euro area countries (Fabiani, Druant, Hernando, Kwapil, Landau, Loupias,
Martins, MathÃ

,
d , Sabbatini, Stahl, and Stokman (2005)).3

When looking at those firms following partially or completely state-based pricing, Cana-
dian firms listed price changes by competitors as the most important cause in triggering an
adjustment, as did those in Sweden. 53% of Spanish firms reported that competitors’price
movements were important factors in triggering their own price changes. In considering the
magnitude of price changes, 25% of surveyed UK firms reported basing their prices on those of
their competitors. This figure agreed with the 27% of surveyed eurozone firms reporting the
same, although this ranged from 13% in Portugal to 38% in France. In the Netherlands, where
the survey was unique in including very small firms among those polled, this figure was 21.6%
overall but rose sharply to 34.1% for firms employing only one worker.

These responses are strongly supportive of the idea that firms observe each others’prices,
and we can only assume that they do so as a result of some form of imperfect information: that
they learn something from their observations. However, that firms observe each others’prices
does not, in itself, speak to why they might do so. If, for example, firms experience significant
costs in developing optimal price plans in the style of Mankiw and Reis (2002, 2006, 2007) and
Reis (2006), then observing one’s competitors may occur if by doing so a lower cost is incurred
and a fair approximation of the optimal price achieved. Alternatively, if firms face strategic
complementarity in their price-setting and there are unobservable aggregate state variables in
the style of Woodford (2003a) and Nimark (2008), observing other firms’decisions may be used
to inform businesses of the (average) actions or beliefs of their compeititors.

Fortunately, the surveys also queried firms as to their opinions regarding the reasons for
price stickiness, from which four theories stand out as being significant: implicit contracts,
explicit contracts, cost-based pricing and coordination failure. All of these were among the top
five recognised reasons in all 14 surveys when they were included in the options put to surveyed

3Countries included were: Austria (Kwapil, Baumgartner, and Scharler (2005)), Belgium (Aucremanne and
Druant (2005)), France (Loupias and Ricart (2004)), Germany (Stahl (2005)), Luxembourg (Lunnemann and
MathÃ

,
d (2006)), the Netherlands (Hoeberichts and Stokman (2006)), Portugal (Martins (2005)) and Spain

(ÃĄlvarez and Hernando (2005)).
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firms. In stark contrast, menu costs and its more recent variant, information costs, were among
the least supported ideas, being in the bottom three reasons for most European surveys and
Canada. Only in America and Austria were these costs placed in the middle of the group,
menu costs being cited as the sixth most proximate cause of price rigidity in the United States
and seventh in Austria and information costs coming sixth in Austria.

The low importance attached to information costs suggests that while there may be imperfect
information, it does not manifest in the form of infrequently updated information sets. On the
contrary, the strong recognition of coordination concerns and cost-based pricing are supportive
of this paper’s underlying model: the former suggests that businesses are subject to some form
of strategic complementarity in price-setting and the latter that (presumably marginal) costs
drive movements in prices.

2.2 Stylised facts from observed price changes

Although early work suggested that most prices change around once per year,4 the seminal
work by Bils and Klenow (2004) observed that the median duration of prices in CPI data from
the U.S. Bureau of Labor Statistics (BLS) was 4.3 months, a frequency almost three times
higher than previously thought. This triggered a rush of further work exploring and broadly
characterising microeconomic price changes. Klenow and Malin (2010) provide an excellent
survey of this literature and provide a summary in the form of ten stylised facts. Among these
are that:

• prices change at least once a year, twice in America;

• temporary price changes —both reductions and increases —around more rigid "reference
prices" are common and do not cancel out in aggregation, suggesting that some macroe-
conomic content is present in the more frequent updates;

• price changes are typically larger than those needed to keep up up with inflation, suggest-
ing that idiosyncratic factors weigh more heavily on a firm’s price-setting decision than
aggregate factors;

• changes in relative prices tend to be short lived, suggesting that idiosyncratic shocks are
less persistent than aggregate disturbances; and

• price changes are generally linked to changes in marginal costs, particularly wages.

The first of these necessitates some form of structural, or real rigidity in addition to firms’
nominal rigidities — a "contract multiplier", in the words of Taylor (1980) — to explain the
sluggish responses observed aggregate price indicies.5 The second and third points show that
even if firms’ idiosyncratic shocks have zero mean and "cancel out" when averaged, average
temporary price changes (that are presumably based on them) do not cancel out.

The model presented in this paper is consistent with all of the above stylised facts and with
observations of rigidity in aggregate prices. Because firms are able to observe the prices of
any other firm, it also represents a framework for the transmission of inflation (and hence, its
persistence) across industries or geographies and not simply along production chains.

4See, for example, Taylor (1999).
5See, for example, Christiano, Eichenbaum, and Evans (1999) or Romer and Romer (2004) for the USA, or

Peersman and Smets (2003) for the Euro area.
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3 A generalised model of learning across opaque networks

We here develop a generalised model of Bayesian learning across opaque networks. Although
the current paper is focused primarily on price-setting, this section is presented largely free
of context because the model may, in general, be applied to any setting in macroeconomics or
finance where agents’expected payoffs depend on the (average) actions of their competitors and
some unobserved aggregate state.6

A simple roadmap of how this section will proceed may be of some assistance. First, in
subsection 3.1, we will provide a comprehensive characterisation of higher-order expectations
(beyond the simple treatement found in other papers in the literature that focus only on hier-
archies of average expectations), together with an explanation of how these have traditionally
defeated attempts to model Bayesian learning over social networks. Next, in subsection 3.2,
we will describe the agents’problem, the information available to them and how they make
their decisions. Subsection 3.3 will characterise agents’ average action and briefly describe
the informational assumptions used in previous research and how they differ to the current
paper. The main result of this paper —a model of learning when agents observe the actions of
individual competitors —is then developed, and its main consequences discussed, in subsection
3.4. Finally, subsection 3.6 demonstrates that the model may be readily extended to dynamic
settings where agents decision rules include consideration of past or future variables.

3.1 Higher-order expectations

Because agents observe the actions of individual competitors, the common description of higher-
order expectations as only including average expectations is insuffi cient for our needs. We
therefore first provide a generalised definition of a hierarchy of expectations.

Definition 1 Let θt be an (m× 1) vector of random variables, E [θt|It (i)] be the expectation of
θt conditioned on the information set of agent i and Et [θt] ≡

[
E [θt|It (1)] · · · E [θt|It (N)]

]
be the (m×N) matrix containing all agents’expectations of the same. Let w be an (N × 1)
vector of weights across all agents such that wi ∈ [0, 1] and

∑N
i=1wi = 1. We then define a

compound expectation to be a weighted sum of all agents’expectations:

Ew,t [θt] ≡ Et [θt]w (1)

Note that this nests both simple, or unweighted, average expectations (e.g. wA =
[
1
N · · · 1

N

]′
)

and individual expectations (e.g. wB =
[
0′ 1 0′

]′
).

Definition 2 Let W ≡
[
wA wB · · ·

]
be the (N × p) matrix formed of all weights of interest

in a given problem and p be the number of those weights (i.e. the number of columns in W ).

6Two examples may be of interest: First, when posting vacancies in a labour search model in the style of
Mortensen and Pissarides (1994), firms’probability of finding a successful match is dependent on the number of
vacancies that other firms post. When firms’productivity includes both aggregate and idiosyncratic components,
observing the number of vacancies posted by their competitors allows firms to be able to predict the component of
their productivity that is common to all and their expected gain from posting an additional vacancy themselves.
Alternatively, in the asset pricing model of Singleton (1987), traders’ individual demand for a risky asset is

dependent on their expectation of the next-period price, itself a function of all traders’actions and (unobserved
in advance) shocks to the supply of the asset. Observing the actions of (some of) their competitors allows traders
to learn about the (higher-order) expectations of other traders and adjust their responses accordingly.
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We then define higher-order expectations as follows, using a blackboard-bold E(k) to denote the
vector containing all expectations of the k-th order:

E(0)t [θt] ≡ θt

E(k)t [θt] ≡


EwA,t

[
E(k−1)t [θt]

]
EwB ,t

[
E(k−1)t [θt]

]
...

 = vec

(
Et
[
E(k−1)t [θt]

]′
W

)
∀k ≥ 1 (2)

Note that if we are interested in p different compound expectations, there are pk different
permutations of k-th order expectations. For example, if θt is scalar and p = 2, then the
vector describing the set of second-order expectations will be of size (4× 1) and arranged in the
following way:

E(2)t [θt] =

EwA,t [E(1)t [θt]
]

EwB ,t

[
E(1)t [θt]

] =

EwA,t
[
EwA,t [θt]
EwB ,t [θt]

]
EwB ,t

[
EwA,t [θt]
EwB ,t [θt]

]


Definition 3 A hierarchy of expectations, from order 0 to k, is defined recursively as:

E(0:k)t [θt] =


θt

EwA,t

[
E(0:k−1)t [θt]

]
EwB ,t

[
E(0:k−1)t [θt]

]
...

 (3)

Note that this is not simply the stacking each order of expectations on top of each other.
For example, if θt is scalar and p = 2, the hierarchies (0 : 1) and (0 : 2) are given by:

E(0:1)t [θt] =

 θt
EwA,t [θt]
EwB ,t [θt]

 E(0:2)t [θt] =



θt

EwA,t

 θt
EwA,t [θt]
EwB ,t [θt]


EwB ,t

 θt
EwA,t [θt]
EwB ,t [θt]




The benefit of depicting hierarchies in this manner is that it becomes simple to extract sub-

hierarchies comprised of a single compound expectation. For example, if wA =
[
1
N · · · 1

N

]′
so

that EwA,t [θt] = Et [θt] is the average expectation, the sub-hierarchy of θ
(0:k)
t ≡

[
θ′t, Et [θ′t] , Et

[
Et [θ′t]

]
, · · ·

]′
may be extracted as

θ
(0:k)
t =

[
I 0

]
E(0:k)t [θt]

In solving our model of learning over an opaque network, E(0:k
∗)

t [θt] will represent the un-
known state vector about which agents attempt to learn.

Temporarily dropping the time subscript, it is clear that if θ contains m elements, E(k) [θ] —
the set of k-th order expectations —will contain mpk distinct elements. However, it is worth
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emphasising that it does not in general follow that E(0:k∗) [θ] will contain m
(∑k∗

k=0 p
k
)
unique

elements. This is because if one of the compound expectations, say EwB [·], is an individual
expectation —i.e. formed from a single information set —then the law of iterated expectations
implies that EwB [EwB [θ]] = EwB [θ]. In general, when q ≤ p is the number of individual
expectations in W , the number of unique elements in the hierarchy E(0:k∗) [θ] will be given by:7

m

(
pk
∗

+
k∗−1∑
k=0

(
pk − q

k∑
s=0

ps

))
< m

(
k∗∑
k=0

pk

)
Nevertheless, even when q = p, the size of an expectation hierarchy explodes (goes to infinity)

in both p and k∗ (see figure 1).
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An infinite dimension state vector need not be a problem, per se, provided that the researcher
is able to make a reasonable approximation of agents’actions by restricting attention to a finite
subset of the state. In most models —including that of the current paper —imposing a finite
upper limit, k∗, on the number of orders of expectation will be acceptable as in order to ensure
stability in agent actions, decreasing weight is placed on higher order expectations.

Allowing the number of compound expectations to increase can be more problematic, how-
ever, as there is rarely an obvious reason for weighting them differently. Previous literature
has generally avoided this diffi culty by setting up their problems in a manner that implicitly
assumes that p = 1. That is, that no matter the number of agents, they each only care about
the average expectation of their competitors. However, this avenue is not available when con-
sidering learning via networks, where it is typically the case that p is given by the number of
agents in the network.

3.2 The general setting

There is a countably infinite number of agents,8 indexed in a continuum between zero and
unity.9

7

m

 [1]︸︷︷︸
0-th order

+ [p]︸︷︷︸
1-st order

+
[
p2 − q

]︸ ︷︷ ︸
2-nd order

+
[
p ∗
(
p2 − q

)
− q
]︸ ︷︷ ︸

3-rd order

+
[
p ∗
(
p ∗
(
p2 − q

)
− q
)
− q
]︸ ︷︷ ︸

4-th order

+ · · ·


= m

((
k∗∑
k=0

pk
)
− q

(
k∗−1∑
k=0

k∑
s=0

ps
))

, which rearranges to the equation in the text

8An infinite number of agents is assumed to allow an appeal to relevant laws of large numbers when considering
simple averages of zero-mean shocks.

9The assumption of indexing agents from zero to one is innocuous and made only to simplify the calculation
of averages.
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(a) Linear scale

(b) Cross-section by p (log scale) (c) Cross-section by k∗ (log scale)

Figure 1: The number of elements in an expectation hierarchy (q = 0, θ scalar)

The underlying state follows a vector autoregressive process:

xt = Axt−1 + Put (4)

where ut is a vector of shocks with mean zero, while A and P are appropriately dimensioned
matricies of fixed and publicly known parameters.

Agents simultaneously determine their individual actions according to a common decision
rule:10

gt (i) = η′sst (i) + η′xEt (i) [xt] + ηyEt (i) [gt] (5)

10The derivation of the decision rule will invariably be context-specific. For example, in the context of price-
setting to be explored in the next section, the underlying state will include aggregate shocks to marginal cost
and demand, while agents’actions will be the price they choose and the "signal" they receive will include their
private marginal cost and the previous-period price of a competitor.
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where st (i) is agent i’s vector of observables (defined below), Et (i) [·] ≡ E [·|It (i)] is agent i’s
(first-order) expectation of the element within the square brackets conditional on all information
available to her in period t (defined below), gt ≡

∫ 1
o gt (i) di is the (simple, or unweighted)

average action of all agents in period t, and ηs, ηx and ηy are vectors of parameters and a scalar
parameter respectively, all fixed and publicly known. ηy may be thought of as a measure of
agents’strategic complementarity (ηy > 0) or substitutability (ηy < 0) in actions.

Note that more general decision rules can be accomodated (see section 3.6), but we proceed
with that specified in (5) for the sake of clarity. We impose only two constraints:

• that |ηy| ∈ (0, 1) in order to ensure that agents place successively lower weight on higher-
order expectations; and

• that only contemporaneous elements of agents’signals affect their actions directly, so that
signal components obtained with a lag serve only an informational role (by helping agents
construct their expectations).

Each agent’s signal vector is made up of two, distinct components —a private signal based
on the current-period underlying state and a social signal derived from observing competitors’
actions with a one-period lag:

st (i) =

[
spt (i)
sst (i)

]
(6)

spt (i) = Bxt +Qvt (i)

sst (i) = Wt−1 (i)gt−1

It is assumed that private signals are noisy, with vt (i) a vector of shocks specific to agent i
in period t, drawn from independent and identical Gaussian distributions with mean zero and
variance Σvv. The dimensions of B and Q are left unspecified, depending on the number of
observables made available from the underlying state. Social signals are assumed to be observed
perfectly, where gt−1 is the (∞× 1) vector of all agents’actions from the previous period and
Wt−1 (i) is i’s (potentially stochastic) observation matrix. For example, if in period t agent i
observes the period (t− 1) actions of agents 1 and 2, then Wt−1 (i) would be given by:

Wt−1 (i) =

[
1 0 0 · · ·
0 1 0 · · ·

]
The assumption that observations based on the previous period serve only an informational

role in the current period (by helping agents construct their expectations) and do not directly
affect actions therefore gives the following form to ηs:

η′s ≡
[
α′ 0

]
(7)

Note, in particular, that this implies that η′sst (i) = α′ (Bxt +Qvt (i)) ∀i, t. Finally, we
have that agent i’s information set evolves as follows:

I0 (i) = {A,P,B,Q,Φ,W0 (i)} (8)

It (i) = {It−1 (i) , st (i) ,Wt (i)}
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That is, in each period, agent i is informed of their private signal, their social signal and the
identity of the competitors whose actions they will receive in the next period. Φ : [0, 1]→ [0, 1]
is the (cumulative) distribution from which observees are drawn, assumed to be identical and
independent for every agent. Φ (j) is absolutely continuous over the range [0, 1] and has p.d.f.
φ.

3.3 Average actions and imperfect common knowledge

At first glance, obtaining Et (i) [gt] in the agent’s decision rule may appear implausible, as it
would seem to require the formation of an expectation regarding the action of every competitor.
However, we can greatly simplify matters by noting that the average action —i.e., the average
of equation (5) —can be written as

gt = η′sst + η′xEt [xt] + ηyEt [gt]

Making use of the law of large numbers, we can next see that η′sst = α′Bxt. Repeatedly
substituting our expression for the average action back into itself, we therefore obtain

gt = α′Bxt + β′x
(1:∞)
t|t (9)

where x(1:∞)t|t is a vector containing the hierarchy of simple-average expectations regarding
xt and the vector β is given by:

β′ =
[
(η′x + ηyα

′B) ηy (η′x + ηyα
′B) η2y (η′x + ηyα

′B) · · ·
]

(10)

Note that as |ηy| ∈ (0, 1), successively lower weight is placed on higher-order expectations.
Substituting this into (5), we are then able to write agent i’s decision rule as:

gt (i) = α′(Bxt +Qvt (i))︸ ︷︷ ︸
Private signal

+ β′Et (i)
[
x
(0:∞)
t|t

]
(11)

That is, each agent constructs their action as a linear combination of their private signal
and their expectation of the entire hierarchy of simple average expectations of the underlying
state. Agents therefore need to estimate an expanded state vector of interest that includes not
just the underlying state, but also the higher-order average expectations of the same.

Because of the linearity of the underlying system, the best linear estimator —in the sense of
minimising the mean squared error —will be a Kalman filter.11 12 Denoting the state vector
to be estimated as Zt (which will include x

(0:∞)
t|t but may, depending on the model, have other

components), the signal equation will be able to be rewritten in the following form

st (i) = LZt +

[
Q
0

]
vt (i)

Supposing an AR(1) process for Zt’s law of motion

11 If all shocks are drawn from Gaussian distributions, it will be the best such estimator, linear or otherwise.
12The derivation of the standard Kalman filter may be found in most texts on dynamic macroeconomics (e.g.

Ljungqvist and Sargent (2004)) or timeseries analysis (e.g. Hamilton (1994)).
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Zt = MZt−1 +N

[
ut
vt

]
agent i’s period-t expectation of Zt will be formed recursively in the following manner

Et (i) [Zt] = Kst (i) + (M −KLM)Et−1 (i) [Zt−1] (12)

where K is a time-invariant Kalman gain matrix. As in other models of imperfect common
knowledge, since Zt includes x

(0:∞)
t|t , we have that (a) the state vector to be estimated is of

infinite dimension; and (b) the Kalman filter serves a dual role, both as estimator and as part of
the law of motion for the state vector. Solving the system then requires finding the coeffi cients
in K,M , N , L and V (the variance-covariance of the agents’estimates). This, in turn, depends
on the exact signal structures faced by the agents.

Woodford (2003a), looking at firms’ static price-setting decisions, supposed that agents
receive only a private signal from the underlying state and no social signal from other agents
(Wt (i) = 0 ∀i, t). In such a setting, where Zt = x

(0:∞)
t|t , Woodford showed that M will

be lower-triangular: each order of simple average expectations will be a linear combination
of lower order expectations and current period shocks. Consequently, M may be constructed
sequentially, first finding an expression for Et (i) [xt], then averaging it and repeating the process
to find Et (i)

[
Et [xt]

]
and so forth.

Nimark (2008), who focused on a context of dynamic price-setting, extended Woodford’s
(2002) work to allow agents to observe the simple-average action from the previous period in
addition to their private signals. In the nomenclature above, this amounts to

Wt−1 (i)gt−1 = lim
N→∞

[
1
N · · · 1

N

]
gt−1 = gt−1 ∀i

In this case, agents’signals are linear combinations of the entire hierarchy of previous-period
expectations (since actions are based on the entire hierarchy and agents observe the average
previous action) and as a result, the solution must be found for all higher-order expectations
simultaneously. Note, too, that since the Kalman filter requires that agents form prior expec-
ations about the signals they receive, this typically requires that the state vector also include

x
(0:∞)
t−1|t−1 so that Zt =

[
x
(0:∞)′
t|t x

(0:∞)′
t−1|t−1

]′
.13

It is perhaps worth empahsising that the signal structures assumed by Woodford (2003a) and
Nimark (2008) both result in agents only being concerned with the simple average expectation
of their peers (or higher-order versions of the same). In the language of this paper, they have

13An alternative to including x(0:∞)t−1|t−1 in the state vector of interest is to use a slightly different specification
of the signal vector:

st (i) = L1x
(0:∞)
t|t + L2x

(0:∞)
t−1|t−1 +

[
Q
0

]
vt (i)

and correspondingly modify the Kalman filter:

Et (i)
[
x
(0:∞)
t|t

]
= Kst (i) + (M −K (L1M + L2))Et−1 (i)

[
x
(0:∞)
t−1|t−1

]
See Nimark (2011b) for more detail.
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chosen signal structures that explicitly set p = 1, thereby having the infinite dimensionality
of the state vector arising only from the presence of higher-order expectations. With the
condition that |ηy| ∈ (0, 1), successively lower weight is placed on higher-order expectations and
so a finite system can be made arbitrarily accurate in approximating the full system by defining
a threshold for the upper limit of orders of expectation.

3.4 Observing individual competitors’actions

Suppose that agents observe the previous-period actions of q competitors. We introduce the
function δt : [0, 1] → [0, 1]q to map each agent to their observational target(s). For presenta-
tional simplicity, in what follows we will typically assume that q = 1 (i.e. that all agents observe
a single competitor) and simply write j = δt (i) to mean that agent j’s period-t action will be
observed by agent i. To speak of the the observee of an observee, we write δs (δt (i)): the
identity of the agent whose period-s action is observed by the agent whose period-t action is
observed by agent i. The function δt (i) is related to Wt (i) in the following way:

Wt (i) =

[
0 · · · 0 1︸︷︷︸

Column j=δt(i)

0 · · · 0
]

In this setting, agent i’s signal vector for period t will have two elements in it:

st (i) =

[
Bxt +Qvt (i)
gt−1 (δt−1 (i))

]
Agent i’s prior will therefore include Et−1 (i) [gt−1 (δt−1 (i))] and, stepping forward one

period, we have that agent i must form Et (i) [gt (δt (i))] as part of her prior for period t+ 1.

To allow us to solve the general agent’s problem, we make the following assumptions regard-
ing the agents’observation network:

Assumption 1 The network is stochastic and opaque, in that:

• all agents observe the same number of competitors;

• observees are drawn from identical, independent distributions with p.d.f. φ (i);

• agents know the identity of the other agents they observe;

• agents do not know who they are observed by; and

• agents do not learn about the network topology over time.

To obtain this last point, we might either suppose that agents make a fresh draw of whom
to observe every period,14 in which case nothing could be learned about the network topology
(since it changes every period), or allow the network to be drawn once and assume a form of
bounded rationality in the agents, in that they focus only on the game in front of them and not
the structure of the network. We are then in a position to assert the following:

Lemma 1 Given assumption 1, agents’use of a linear estimator implies that all agents treat
all other agents as though they observe a common, weighted average of previous-period actions,
with the weights given by the distribution φ.
14 In such a setting, it may be better to imagine agents not operating in a network so much as a search model.
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Proof. The proof may be found in appendix A.2.

From equation (11), we see that the weighted-average action, g̃t, is given by:

g̃t = α′Bxt + α′Qṽt + β′Ẽt
[
x
(0:∞)
t|t

]
(13)

where Ẽt [·] ≡
∫ 1
0 Et (j) [·]φ (j) dj is the weighted-average expectation and the last term is

the weighted average of private expectations regarding the hierarchy containing only unweighted
average expectations.

Note that we cannot, in general, make use of some law of large numbers to disregard the effect
of idiosyncratic shocks in the weighted-average action —that is, we cannot assume that ṽt ≡∫ 1
0 vt (j)φ (j) dj will be equal to zero —because the weights applied to each agent may not be
suffi ciently close to equal. As an extreme example, if all agents were to observe agent 1 and
nobody else (i.e. φ (1) = 1 and φ (i) = 0 ∀i 6= 1), we would then have that ṽt = vt (1) which
will, with probability one, be not equal to zero.

Identifying laws of large numbers for weighted sums of i.i.d. random variables (i.e. the
limiting behaviour of

∑N
i=1 aN,iXi when E [X] = 0) remains an area of active research. See,

for example, Wu (1999), Sung (2001) or Cai (2006). However, it is not necessary for us to have
an exact characterisation of the necessary conditions for the weighted sum to converge to zero,
as there are a broad range of functions for the weights under which the weighted sum will not
converge to zero. In particular, we make the following assumption:

Assumption 2 The network is asymmetric. That is, defining ζ (N) ≡
∑N

i=1 φN (i)2, the p.d.f.
φN (i) is such that:

• limN→∞ φN (i) = 0 ∀i

• limN→∞ ζ (N) = ζ∗ where ζ∗ ∈ (0,∞).

This assumption then allows us to assert the following lemma regarding limiting properties
of aggregate (random) variables derived from agents’idiosyncratic shocks:

Lemma 2 Suppose that vt (i) ∼ i.i.d.N (0,Σvv) ∀i, t. For a finite number of agents (N), let
ṽN,t ≡

∑N
i=1 vt (i)φN (i) denote the weighted average of agents’own idiosyncratic shocks; v̈N,t ≡

1
N

∑N
i=1 vt (δt (i)) denote the simple average of the idiosyncratic shocks of agents’observees; and

v̂N,t ≡
∑N

i=1 vt (δt (i))φN (i) denote the weighted average of agents’ observees’ idiosyncratic
shocks. Given assumption 2, we have the following results in the limit (as N →∞):

• ṽN,t
d−→ ṽt where ṽt ∼ N (0, ζ∗Σvv)

• v̈N,t
L2−→ ṽt

• v̂N,t
d−→ v̂t where v̂t ∼ N (0, ζ∗ (2− ζ∗) Σvv)

• Cov (ṽt, v̂t) = ζ∗Σvv
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Figure 2: A plot of ζ∗ for power law (Zeta) distributions with shape parameter γ

Proof. The proof may be found in appendix A.3.

The first result in this lemma shows that assumption 2 is suffi cient to ensure that idio-
syncratic shocks do not "wash out" in the weighted-average action. The set of distributions
satisfying this assumption is quite broad. In particular, it is satisfied by the discrete power law
distribution (the Zipf distribution)

φN (i) = cN i
−γ ; where cN =

(
N∑
i=1

i−γ

)−1
and γ > 1

and it’s equivalent for infinite N, the Zeta distribution. The shape parameter, γ > 1, governs
the scaling of the distribution’s tail: larger values of γ correspond to greater asymmetry in the
distribution and, as such, the greater the variance that survives aggregation. Figure 2 plots
the values of ζ∗ for a range of values of γ for the Zeta distribution.

A great many observed networks, from webpages on the internet to established relationships
in social networks, have been shown to have degree distributions well approximated by power
law distributions (i.e. the networks are scale free). See, for example, Albert and BarabÃąsi
(2002), Jackson and Rogers (2007) or Clauset, Shalizi, and Newman (2009).

Finally, we now present the following main result of this section:

Proposition 1 Given assumptions 1 and 2, and the generalised setting described above, agents’
need only consider a hierarchy of p = 3 compound expectations and a solution may be obtained
in two steps:

• First, for a given set of weights that are common knowledge, obtain a solution to a model
where all agents observe the same weighted average of everybody’s previous-period action;
and
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• Second, solve the individual problem supposing that information from any target comes
from the setting in the first stage, where the weights used are the distribution from which
agents’ observation targets are drawn. The hierarchy of expectations of the underlying
state will evolve according to the following ARMA(1,1) process:

Xt ≡ E(0:∞)t [xt]

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

x
(0:∞)
t|t =

[
I 0

]
Xt

Proof. Although the complete derivation is provided in appendix A.4, an outline of the agents’
learning process may be of expositional interest.

3.4.1 Stage One: When all agents observe the same weighted-average action

In the first stage, we solve a model where all agents observe the same weighted average of
previous-period actions, so that agents’signal vectors are given by:

st (j) =

[
Bxt +Qvt (j)

g̃t−1

]
Equation (13) shows us that agents will therefore need to consider weighted-average expect-

ations in addition to simple-average expectations. We define the state vector of interest, Zt, as
the full hierarchy of expectations regarding the underlying state, expressed recursively as:

Zt ≡

 xt
Et [Zt]

Ẽt [Zt]

 (14)

We also define S, Ts and Tw as the matricies that select xt, Et [Zt] and Ẽt [Zt] from Zt
respectively. Using this, we can rewrite agents’observation vectors as:

st (j) = D1Zt +D2Zt−1 +R1vt (j) +R2ṽt−1 (15a)

In the context of the model presented above, the parameters here are given by:

D1 =

[
BS
0

]
(16a)

D2 =

[
0

α′BS + β′Tw
[
I 0

]] (16b)

R1 =

[
Q
0

]
(16c)

R2 =

[
0
α′Q

]
(16d)

where, within the description of D2, the matrix Tw
[
I 0

]
selects Ẽt−1

[
x
(0:∞)
t−1|t−1

]
from Zt−1.

We conjecture (and verify below in appendix A) that the state vector may be written in the
following ARMA(1,1) law of motion:

Zt = MZt−1 +N1ut +N2ṽt +N3ṽt−1 (17)
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There are two complications in this system over a classic Kalman filtering problem. The
first is that agents’signal vectors include observations available only with a lag, and the second,
related to the first, is presence of lagged shocks (the MA(1) component). The most common
approach is to stack the state vector with it’s lag

[
Zt
Zt−1

]
=

[
M 0
I 0

] [
Zt−1
Zt−2

]
+

[
N1 N2
0 0

] [
ut
ṽt

]
+

[
0 N3
0 0

] [
ut−1
ṽt−1

]
However, to do so doubles the size of the state vector —which may present problems when

simulating the system with finite computing resources —and still requires accounting for the
lagged disturbances. Instead, the derivation of expressions for the M and N∗ coeffi cients in
appendix A follows Nimark (2011b) in finding a modified Kalman filter that does not require
the stacking of the system and explicitly allows for the presence of lagged shocks. That is,
starting from an expression of agent j’s filtering problem in recursive form

Et (j) [Zt] = Et−1 (j) [Zt] +Kt {st (j)− Et−1 (j) [st (j)]}

we substitute in the state law of motion (17) and the signal (15a); find the optimal Kalman
gain (Kt) and its time-invariant form; and then take averages to obtain expressions for Et [Zt]
and Ẽt [Zt], which in turn allows us to identify the elements of M and N∗.

3.4.2 Stage Two: Solving the agents’problem in an opaque network

In the general problem for an agent that observes the previous period action of specific com-
petitors,15 agent i’s social observation matrix will be given by:

Wt (i) =

[
0 · · · 0 1︸︷︷︸

Column j=δt(i)

0 · · · 0
]

so that her period-t social signal will be given by:

sst (i) = gt−1 (δt−1 (i)) = α′Bxt−1 + α′Qvt−1 (δt−1 (i)) + β′Et−1 (δt−1 (i))
[
x
(0:∞)
t−1|t−1

]
We can therefore see that agent i will need to keep track of three compound expectations:

the simple-average (Et [·]), the weighted-average (Ẽt [·]) and that of her observee (Et (δt (i)) [·]).
However, since the observee is treated the same no matter who they are, we have that the ex-
pectations will update in a common manner for every agent and denote an expectation obtained
from stage one as Et (δt (i)) [·] = E̊t [·] ∀i:

Xt ≡


xt

Et [Xt]

Ẽt [Xt]

E̊t [Xt]

 (18)

We can then write agent i’s observation vector as

st (i) = C1Xt + C2Xt−1 + S1vt (i) + S2vt−1 (δt−1 (i)) (19)

15For the sake of brevity, we shall assume that agent i observes the previous-period action of only one compet-
itor, δt (i), but how to increase that number should be readily apparant.
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In the context of the model presented above, these coeffi cients are given by:

C1 =

[
BS
0

]
(20a)

C2 =

[
0

α′BS + β′To
[
I 0

]] (20b)

S1 =

[
Q
0

]
(20c)

S2 =

[
0
α′Q

]
(20d)

where, within the description of C2, the matrix To
[
I 0

]
selects E̊t−1

[
x
(0:∞)
t−1|t−1

]
from Xt−1.

We conjecture (and verify in appendix A) that the state vector may be written in the following
law of motion:

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1 (21)

The solution is found in the same manner as in stage 1, with the exception that the coeffi -
cients for the expression of E̊t [Xt] are taken from stage 1.16

3.4.3 Finding the solution

For a given set of D∗, R∗, C∗, S∗ matricies and initial guesses forM , N∗, F and G∗, the solution
is found via the following algorithm:

1. In stage one

(a) Find the time-invariant Kalman Gain (K) and Variance (V ) matricies by iterating
equations (A.6), (A.7) and (A.8) until convergence is achieved

(b) Update the M and N∗ matricies

(c) Repeat steps 1a and 1b until convergence is achieved

2. In stage two

(a) Find the time-invariant Kalman Gain (J) and Variance (U) matricies by iterating
equations (A.16), (A.17) and (A.18) until convergence is achieved

(b) Update the F and G∗ matricies, including use of the individual agent results from
stage one for E̊t [·]

(c) Repeat steps 2a and 2b until convergence is achieved

16More strictly, the first stage is expanded to also include E̊t [Zt] (the expectation of any generic competitor)
in its state vector. Although it is not referenced by the stage-one expressions for Et [Zt] and Ẽt [Zt], this is
necessary to ensure conformability between the two stages.
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3.5 An initial discussion

The presence of ṽt and v̂t in agents’ learning represent a network-based origin of volatility
in aggregate beliefs, independent of "true" aggregate shocks. The first of these represents a
first-order effect: the idiosyncratic shocks of the most frequently observed agents have outsized
effects on average beliefs and, hence, average actions. The second captures a second-order
effect: observed agents also make observations themselves and so transmit volatility in addition
to creating it. That we need not consider effects beyond these two emerges directly from the
assumed opacity of the network. Three broad consequences of the model are immediately
apparent from proposition 1.

First, it is possible to simulate the effects of network learning without having to model the
network explicitly: the shocks ṽt and v̂t together represent a suffi cient statistic for the effect
of the network on agents’aggregate beliefs. This makes the model particularly amenable to
nesting within broad General Equilibrium models of the economy.

Second, because the network has a distribution of links that is suffi ciently far from uniform,
mean zero idiosyncratic shocks do not wash out in aggregation, thereby leading to a network-
based source of aggregate volatility. The scale of this additional volatility depends on the
asymmetry of the network, which is captured simply in a single parameter: ζ∗.

Third, the aggregate effects of idiosyncratic shocks are persistent. This comes about for two
reasons. First, because agents observe competitors’actions with a one-period lag, the timing
of their immediate impact will be delayed mechanically. Second, the aggregate effects, once
present, become persistent because of the recursive nature of agents’learning. The degree of
persistence will naturally vary with the parameterisation of the model, but broadly increases
with the persistence of true aggregate shocks and with the degree of strategic complementarity
in agents’actions.

3.6 A generalisation and extension to dynamic actions

Extending the model of the previous section to consideration of dynamic actions is relatively
straightforward. In the static setting, the agents’decision rule was combined with the expression
for their signals to obtain the following:

gt (i) = α′(Bxt +Qvt (i))︸ ︷︷ ︸
Private signal

+ β′Et (i)
[
x
(0:∞)
t|t

]

It should be clear that this may be written more generally as

gt (i) = γ′1wt−1 + γ′2Xt + γ′3Et (i) [Xt] + γ′4vt (i) (22)

where wt−1 is any commonly and perfectly observed variable from period t−1. Note that Xt

includes x(0:∞)t|t by construction, which itself includes xt. Any setting that can be expressed in
this reduced form can be applied to the network learning environment of the previous section.
The solution developed in appendix A.4 to prove proposition 1 remains unchanged, although
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the coeffi cients used in each stage’s signal vectors are slightly different. In the first stage, they
will be:

st (j) =

[
Bxt +Qvt (j)

g̃t−1

]
= D1Zt +D2Zt−1 +D3wt−2 +R1vt (j) +R2ṽt−1 (23a)

D1 =

[
BS
0

]
D2 =

[
0

γ′2 + γ′3Tw

]
D3 =

[
0
γ′1

]
(23b)

R1 =

[
Q
0

]
R2 =

[
0
γ′4

]
(23c)

while in the second stage, they will be:

st (i) =

[
Bxt +Qvt (j)
gt−1 (δt−1 (i))

]
= C1Xt + C2Xt−1 + S1vt (i) + S2vt−1 (δt−1 (i)) (24a)

C1 =

[
BS
0

]
C2 =

[
0

γ′2 + γ′3To

]
C3 =

[
0
γ′1

]
(24b)

S1 =

[
Q
0

]
S2 =

[
0
γ′4

]
(24c)

Note that because the variable wt−2 is commonly and perfectly observed, it is known with
certainy in period t − 1 when agents are forming their priors in preparation for period t. As
such, it will drop out in the Kalman filter, which updates beliefs on the basis of unexpected
information in the signal.

Because of agents’joint rationality, equation (22) includes a wide array possible of forward-
and backward-looking decision rules. For example, suppose that individual decisions are made
according to the following rule:

gt (i) = η′sst (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)
[
gt+1

]
Note that the previous section’s setup is nested within this by imposing that (a) η′x have

non-zero elements against xt and zero against all other components of Xt; and (b) ηz = 0. It
is shown in appendix A.5 that this may be expressed as

gt (i) = α′BS︸ ︷︷ ︸
γ′2

Xt +
(
η′x + ηya

′ + ηza
′F
)︸ ︷︷ ︸

γ′3

Et (i) [Xt] + α′Q︸︷︷︸
γ′4

vt (i)

where γ′1 = 0 and

a′ ≡
(
α′BS + η′xTs

)
(I − ηyTs)−1

(
I − ηzFTs (I − ηyTs)−1

)−1
while S selects xt from Xt and Ts selects the simple-average expectation of Xt from Xt (i.e.

E
(1)
t [Xt] = TsXt). This is, of course, by no means the only dynamic setting that may be mod-

elled here. The dynamic price-setting model explored in section ?? considers an environment
with an infinite sum of forward-looking variables in the individual firm’s decision rule.
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4 Price setting with network learning

In this section we construct and analyse a dynamic, stochastic, general equilibrium (DSGE)
model in which firms make use of network learning in their pricing decisions. The real economy
is presented here in an entirely standard model with no capital. A representative house-
hold purchases differentiated goods via a Dixit-Stiglitz aggregator and supplies labour to firms.
Monopolistic firms produce the goods and sell them to the household, but are restricted to using
Calvo (1983) pricing. Aggregate shocks occur within the household’s preferences, the central
bank’s interest rate policy and economy-wide TFP, while firms also face idiosyncratic shocks to
their TFP. Only the main results are presented here; readers interested in the full derivation
are referred to appendix B. In what follows, lower-case letters are used to denote (natural) log
deviations from the long-run steady state values of the corresponding upper-case letters.

The model presented here deviates from the basic New Keynesian framework in two key
respects. The first is that the presence of imperfect common knowledge gives rise to higher-order
expectations within the Phillips Curve and prevents the Phillips Curve from being expressed in
recursive form. The second is that network learning gives rise to persistent, aggregate effects
from firms’idiosyncratic shocks. These aspects are therefore presented first, before the bulk of
the model.

4.1 The New Keynesian Phillips Curve under Imperfect Common Know-
ledge

In a linearised setting, firms operating under Calvo (1983) pricing will, when able, choose their
reset price, gt (j), according to:

gt (j) = (1− βθ)
∞∑
s=0

(βθ)sEt (j) [pt+s + υyt+s + ωt+s (j)] (25)

where β is the discount factor used by households in their objective function; θ is the
probability of not being able to update their price each period (so θs is the probability of a
price still being in effect s periods hence); Et (j) [·] is the mathematical expectation conditional
on firm j’s information in period t; pt and yt are aggregate (i.e. average) prices and aggregate
output respectively; υyt + ωt (j) is the marginal cost that firm j would incur if they were to
produce the average quantity of output (i.e. if yt (j) = yt); and ωt (j) ≡ λt + Qvt (j) is a
shock to firm j’s marginal cost comprised of a persistent aggregate component and a transitory
idiosyncratic component, both with unconditional means of zero.

We suppose that firms observe ωt (j) and some combination of signals based on previous-
period prices (detailed below). In this case, the following Phillips Curve arises:

πt =

(
θ
∞∑
k=0

(1− θ)k E(k)t [pt−1]

)
− pt−1 (26)

+ (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k E(k)t
[
υE

(1)
t [yt] + λt

]
+
∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k E(k)t [πt+s + (1− βθ)mct+s]

where πt ≡ pt − pt−1 is the net rate of inflation and mct = υyt + λt is the marginal cost
any firm would experience if they produced the average quantity of output and experienced the
average TFP.
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The first line of this expression represents any contribution to current-period inflation from
uncertainty regarding pt−1. If pt−1 is observed perfectly by all firms in period t, then the first
line cancels out exactly. The second line represents the hierarchy of simple-average expectations
of period t marginal costs for the average firm. Note that the additional order of expectation
regarding yt emerges because although firms observe ωt (j) before resetting their prices, they do
not know yt ahead of time and so must estimate it. The average marginal cost for the purpose
of determining reset prices is therefore υE

(1)
t [yt] + λt. The third line represents the period-t

hierarchy of simple-average expectations regarding future inflation and future average marginal
costs. Note that we cannot express the Phillips Curve in a recursive form here because each
firm has their own information set so that Et

[
Et+1 [·]

]
6= Et

[
Et [·]

]
in general.

It may be observed that this expression of the NKPC differs from that derived by Nimark
(2008) in two respects. First, we here generalise slightly to a setting where pt−1 is not observed
perfectly. Second, we correct an error in Nimark (2008) that effectively pre-supposed that
in period t, agents expect on average that period t + 1 expectations will be accurate (see the
appendix for more detail). Although our preferred modelling setup is to suppose that agents do
not observe pt−1 perfectly,17 to make use of this is to build in inflation persistence by assumption.
As the focus of the present paper is to highlight learning-based persistence, we will turn this
channel off by assuming that pt−1 is indeed observed without noise.

4.2 Firms’network learning

We gather all aggregate-sourced shocks in the vector, xt, so that

λt = Bxt (27)

We suppose that xt follows an AR(1) process:

xt = Axt−1 + Put

where ut is a vector of period-t innovations identically and independently distributed as
N (0, I) and A and P are matricies of fixed and common-knowledge parameters. Idiosyncratic
shocks to firms’ marginal costs, vt (j), are entirely transitory, independent and distributed
identically as N (0, 1).

Each period, firms observe ωt (j) (but not its constituent components), the previous period’s
aggregate price and a competitor’s reset price from the previous period. That is, it is assumed
that the network is destroyed and redrawn each period and that the distribution of observees is
over the subset of firms that updated their price in the previous period. Firm j’s information
set therefore evolves as

I0 (j) = {A,P,B,Q,Φ} (28)

It (j) = {It−1 (j) , st (j) , δt−1 (j)}

where

st (j) =

Bxt +Qvt (j)
pt−1

pt−1 (δt−1 (j))

 (29)

17Any public signal of aggregate prices is, after all, necessarily compiled from an incomplete sample and subject
to ongoing revision as statistical agencies gather more data and update their methodologies.
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The hierarchy of firms’ expectations of xt includes three compound expectations: the
simple-average (Et [·]), the weighted-average (Ẽt [·]) and that of a generic observee (E̊t [·]):

Xt ≡


xt

Et [Xt]

Ẽt [Xt]

E̊t [Xt]

 (30)

It is shown in appendix B.3 that in this setting, firm j’s decision rule for their reset prices
can be expressed as:

gt (j) = pt−1 (31)

+ (1− βθ)BS︸ ︷︷ ︸
γ′2

Xt

+
(
f ′ + (1− θ) (1− βθ)BS

)
(1− (1− θ)Ts)−1︸ ︷︷ ︸

γ′3

Et (j) [Xt]

+ (1− βθ)Q︸ ︷︷ ︸
γ′4

vt (j)

where

f ′ = (1− βθ) υa′ +
(
c′ + (1− βθ)

(
υa′ +BS

))
βθF (I − βθF )−1 (32)

and a′ and c′ are from the reduced form expressions of yt and πt respectively (see below).
As this is in the generalised form of section (3.6), proposition 1 applies and firms’hierarchy of
expectations will evolve according to the ARMA(1,1) process:

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1 (33)

where the idiosyncratic-derived aggregate innovations are given by

ṽt =

∫ 1

0
vt (j)φ (j) dj ; v̂t =

∫ 1

0
vt (δt (j))φ (j) dj (34)

The vector Xt may therefore be considered the state vector of the entire system.

4.3 The model

4.3.1 The household

Each period, the representative household maximises

EHHt

 ∞∑
s=0

βs

eεCt+sC
1− 1

σ
t+s − 1

1− 1
σ

− eεHt+s
H
1+ 1

ψ

t+s

1 + 1
ψ


 (35)

subject to a standard budget constraint and where EHHt [·] is the mathematical expectation
conditional on the household’s information set in period t (defined below); Ct is aggregate
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consumption; Ht is the aggregate labour supply; σ is the elasticity of intertemporal substitution;
ψ is the Frisch elasticity of labour supply; and εCt and εHt are persistent, mean zero shocks
(specified below) to the utility of consumption and the disutility of labour respectively. The
shock to the disutility of labour may be considered a reduced-form way of capturing broad
shocks to the labour supply, such as a temporary impairment to labour mobility. Aggregate
consumption is given by the Dixit and Stiglitz (1977) aggregator over individual consumption
goods:

Ct =

(∫
Ct (j)

ε−1
ε dj

) ε
ε−1

(36)

where ε is the elasticity of substitution. The household’s subsequent first-order conditions
are:

Wt

Pt
eεCtC

− 1
σ

t = eεHtH
1
ψ

t (37)

eεCtC
− 1
σ

t = β (1 + it)E
HH
t

[
eεCt+1C

− 1
σ

t+1

1

Πt+1

]
(38)

where Wt/Pt is the real wage; it is the net nominal interest rate; and Πt ≡ Pt/Pt−1 is the
gross rate of inflation. It can also be shown that household demand for good j is given by:

Ct (j) =

(
Pt (j)

Pt

)−ε
Ct (39)

and the aggregate price level by:

Pt =

(∫
Pt (j)1−ε dj

) 1
1−ε

(40)

4.3.2 Firms

Each good is produced by a single firm according to a common production function that deploys
labour with decreasing marginal productivity:

Yt (j) = At (j)Ht (j)1−α (41)

Each firm’s productivity, At (j), is given by

ln (At (j)) = εAt + vt (j)

where εAt is a persistent aggregate shock and vt (j) is a transitory idiosyncratic shock (each
specified below) to the firm’s productivity, broadly defined. Firm j’s real marginal cost is then

MCt (j) = (1 + η)
Wt

Pt

1

At (j)

(
Yt (j)

At (j)

)η
(42)

where η ≡ α
1−α is the elasticity of marginal cost w.r.t. output. Shocks to At (j) may

therefore be considered a reduced-form means of capturing shocks to firms’ marginal costs
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other than those that act through demand or the (real) wage. Following Calvo (1983), each
firm faces a constant, common and exogenous probability, 1−θ, of being able to adjust its price
in any given period. When they are able, firms’choose a new price, Gt (j), to maximise their
discounted flow of real profits

Et (j)

[ ∞∑
s=0

θs
(
βsQt+s|t

){Gt (j)

Pt+s
Yt+s (j)− Wt+s

Pt+s

(
Yt+s (j)

At+s (j)

)1+η}]
(43)

subject to demand (39) and where Et (j) [·] ≡ E [·|It (j)] is the mathematical expectation
conditional on firm j’s information set in period t (defined below); θs is the probability that
Gt (j) will still be in effect s periods hence; and βsQt+s|t is the stochastic discount factor
imposed by the shareholder (the household). The firm’s corresponding first-order condition
may be written as

Gt (j)Et (j)

[ ∞∑
s=0

(βθ)sQt+s|tYt+sP
ε−1
t+s

]
=

(
ε

ε− 1

)
Et (j)

[ ∞∑
s=0

(βθ)sQt+s|tMCt (j)Yt+sP
ε
t+s

]
(44)

4.3.3 Market clearing

Markets clear each period, so that

Yt (j) = Ct (j) ∀t, j
Ht =

∫
Ht (j) dj ∀t (45)

This implies that aggregate output is given by

Yt = ZtH
1−α
t (46)

where aggregate TFP, Zt, combines individual firm productivities and a distortion from
relative prices

Zt ≡
(∫

At (j)−(1+η)
(
Pt (j)

Pt

)−ε(1+η)
dj

) 1
1+η

(47)

4.3.4 The central bank

To close the model, we assume that the central bank sets nominal interest rates according to
the policy function

it = κyE
CB
t [yt] + κπ0E

CB
t [πt] + κπ1E

CB
t [πt+1] + εMt (48)

where ECBt [·] is the mathematical expectation conditional on the central bank’s information
set in period t (defined below) and εMt is a persistent, mean zero shock to monetary policy
(specified below).
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4.4 Solving the model

The underlying state of the economy, xt, therefore contains four aggregate shocks:

x′t ≡
[
εAt εCt εHt εMt

]
(49)

Of these, the shocks to productivity (εAt) and the disutility of labour (εHt) are pure supply
shocks as they enter the model only through firms’marginal costs (although note that the latter
acts via higher real wages); the shock to monetary poliy (εMt) is a pure demand shock as it
only enters through the IS relation; and the shock to the utility of consumption (εCt) has both
supply and demand aspects in that it affects both the spending/saving decision and the labour
supply.

Combining the household intratemporal constraint (37) with market clearly conditions (45)
- (47) and firms’reset prices (44), we obtain the linearised expression for firms’reset prices (25)
presented in section 4.1 above, with the parameters υ, B and Q given by:

υ =
1

1 + εη

(
1

σ
+

1 + η

ψ
+ η

)
B =

1

1 + εη

[
−
(
1+η
ψ + 1 + η

)
−1 1 0

]
Q = −

(
1 + η

1 + εη

)
Households and the central bank are assumed to have complete information18 and to update

their beliefs rationally, so that

ECBt [Xt+s] = EHHt [Xt+s] = Et [Xt+s] =

{
Xt when s = 0

F s−1 (FXt +G3ṽt +G4v̂t) when s ≥ 1

We therefore have that the economy is described by the Phillips curve (26) with perfect
knowledge of previous-period prices:

πt = (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k
(
υE

(k+1)
t [yt] + E

(k)
t [λt]

)
+

∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k E(k)t [πt+s + (1− βθ)mct+s]

and, making use of the fact that both have complete information, the household’s Eular
equation (B.4) and the central bank’s policy function (48):

yt = Et [yt+1]− σEt [it − πt+1] + σ (εCt − Et [εCt+1])

it = κyyt + κπ0πt + κπ1Et [πt+1] + εMt

We posit a solution of the following form:

18An arguably more plausible (and certainly more interesting) scenario would be to restrict the household and
central bank to less than complete information so that dynamics might arise from their higher-order expectations
of each others’and firms’beliefs. Exploration of such a setting is held for future research.
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yt = a′Xt + b′
[
ṽt
v̂t

]
(50)

πt = c′Xt (51)

so that the dynamics of inflation and output are characterised entirely by equations (33),
(50) and (51). It is shown in appendix B.4 that the following conditions must hold for this
solution to apply:

a′ = a′F − σ
(
κya

′ + κπ0c
′ + (κπ1 − 1) c′F

)
+ d′ (52a)

b′ = a′
[
G3 G4

]
− σκyb′ (52b)

c′ = (1− θ)
{

(1− βθ) (υa′Ts +BS)

+βθ (c′ + (1− βθ) (υa′ +BS))F (I − βθF )−1 Ts

}
(I − (1− θ)Ts)−1

(52c)

d′ = σ
([[

0 1 0 −1
]

01×∞
]
−
[[

0 1 0 0
]

01×∞
]
F
)

(52d)

where S is such that SXt = xt and Ts is such that TsXt = Et [Xt].

4.4.1 Finding the solution

Finding the true solution to the model requires working with expectations of infinite order,
which cannot be handled in practice. However, as the model places decreasing weight on higher
order expectations (a weight of (1− θ)k is applied to the average k-th order expectation),19 an
arbitrarily accurate approximation of the solution may be found by truncating firms’expectation
hierarchy at an upper limit, k∗, of the number of orders to include.

For a given set of parameters and an upper limit for the number of orders of higher-order
expectations to include, k∗, the solution is obtained by finding the fixed point of the system
(33), (52):

1. Start with initial guesses for a, b, c and d

2. Find the corresponding coeffi cients for C1, C2, C3, R1, R2, D1, D2, D3, S1 and S2

3. Solve the agents’ network learning problem (i.e. find F , G1, G2, G3 and G4 and the
corresponding Kalman gain and Variance matricies) via the technique outlined in section
3.4.3

4. Update a, b, c and d via equation (52)

5. Repeat steps 2-4 until convergence is achieved

4.5 Simulation

Unless otherwise specified, the following baseline parameters are used to calibrate the simulation:

19For example, if xt were only a single variable and E(k)t [xt] contained only simple-average expectations so
that Ts =

[
0∞×1 I∞

]
, then (I − (1− θ)Ts)−1 would be given by

(I − (1− θ)Ts)−1 =


1 (1− θ) (1− θ)2 · · ·
0 1 (1− θ) · · ·
0 0 1
...

...
. . .
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Parameter Value Description
β 0.99 The household’s discount factor
ε 4 The elasticity of substitution in the household’s consumption aggregator
σ 0.25 The household’s elasticity of intertemporal substitution
ψ 1.1 The Frisch elasticity of labour supply
κy 0.5 Coeffi cient against the output gap in the central bank’s policy function
κπ0 1.1 Coeffi cient against current inflation in the central bank’s policy function
κπ1 0.4 Coeffi cient against expected next-period inflation in the central bank’s

policy function
η 0.54 The elasticity of marginal cost (≡ α

1−α , corresponds to α = 0.35)
θ 0.5 The probability of a firm not updating their price in a given period

(corresponds to 2 periods)
ζ∗ 0.2 The degree of asymmetry in the distribution from which agents’ ob-

servees are drawn (0 = uniform, 1 = degenerate)
A 0.9I4 The (AR(1)) transition matrix for the underlying state
P I4 The mapping from aggregate innovations to the underlying state
Σu I4 The variance-covariance matrix for aggregate shocks
σ2v 4 The variance of idiosyncratic shocks

Table 1: Baseline parameterisation

Figure 3 illustrates the primary result of this paper: the aggregate effects of a one-period
shock to firms’idiosyncratic shocks in the absense of any aggregate shocks. Note that these arise
from two, correlated aggregate variables derived from firms’idiosyncratic shocks. The first, from
ṽt =

∫
vt (i)φ (i) di, is the weighted average of all firms’shocks, while v̂t =

∫
vt (δ (i))φ (i) di

may be thought of as a double-weighted average that captures second order effects (observees
of observees). The impulse responses presented are for a one standard deviation shock to ṽt
and the corresponding conditional expected value of v̂t. The top row plots the hierarchy of
simple-average expectations regarding aggregate TFP and the aggregate shock to the disutility
of labour. Despite their true values (k = 0) remaining at zero, firms mistakenly attribute the
observed increases in visible firms’prices to a combination of these aggregate shocks. The
bottom row plots the impulse responses for real GDP and inflation. The aggregate effect of the
idiosyncratic shocks is larger on inflation than on real GDP, but is equally persistent across the
two. Note that there is an impact response on GDP when the more visible firms experience
the shock to costs, but inflation responds only with a one-period lag as firms only observe each
others’prices with a one-period lag.

Next, figure 4 displayes the equivalent plot following a shock to aggregate productivity
(εA). Firms are unable to differentiate between a shock to aggregate TFP and a shock to the
disutility of labour, so these remain in fixed proportion throughout the response window. The
impulse responses of real GDP and inflation are notably hump-shaped, a consequence of the
shock’s innate persistence (recall that εA has an AR(1) coeffi cient of 0.9). In order to illustrate
the additional volatility created by the presence of idiosyncratic shocks, the dashed lines in
the aggregate IRFs represent the two-standard deviation boundaries for idiosyncratic shocks
around the aggregate IRF.20 It is important to realise that these do not represent confidence
intervals, but rather bounds on the distribution of impulse responses. Instead, were a researcher
to simulate the economy described here by giving a persistent shock to aggregate TFP (εA),
holding all other aggregate shocks at zero and having a full gamut of idiosyncratic shocks to

20To find these boundaries, we assume that all period t− 1 variables are zero; that the aggregate variable has
a unit shock in period t and then stays at zero forever; and that starting in period t, there is a full gamut of
idiosyncratic shocks. We denote this scenario by Ω. The variance of Xt+s conditional on Ω is be given by
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Figure 3: Hierarchy of simple average expectations regarding εA and εH , and impulse responses
of Real GDP and Inflation following a one-period set of idiosyncratic shocks to firms’marginal
costs.
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Figure 4: Hierarchy of simple average expectations regarding εA and εH , and impulse responses
of Real GDP and Inflation following a shock to εA.

TFP each period, the subsequent impulse responses would fall within the dashed lines 95% of
the time.

Returning to the effects of idiosyncratic shocks, figure 5 illustrates how the aggregate effects
of such shocks varies with the rigidity of firms’prices. As θ increases, the average duration
of any given price increases and, as might be expected, the magnitude and persistence of the
responses to idiosyncratic shocks correspondingly rises.

Recall that the variances of ṽt and v̂t are given by ζ∗σ2v and ζ
∗ (2− ζ∗)σ2v respectively, with

low values of ζ∗ (close to 0) corresponding to relatively uniform network distributions and high
values of ζ∗ (close to 1) to highly asymmetric networks. As might therefore be expected,
increasing either of these causes the aggregate responses of real GDP and inflation to be larger
and more persistent in entirely similar ways. Figure 6 plots these impulse responses.

However, varying ζ∗ and σ2v produces notably different results in the impulse responses
following a shock to aggregate TFP, as shown in figure 7. Increasing the variance of idiosyn-
cratic shocks reduces the information that may be gleaned from both firms’private signals and

V ar (Xt|Ω) = ζ∗σ2vG2G
′
2

V ar (Xt+s|Ω) = ζ∗σ2vG2G
′
2 + ζ∗σ2v

s∑
i=1

F s−1

 (FG2 +G3) (FG2 +G3)
′

+ (2− ζ∗)G4G
′
4

+2G4 (FG2 +G3)
′

F s−1
′
∀s ≥ 1

The conditional variance of yt and πt then immediately follows from the reduced-form solution.

32



Figure 5: Impulse responses for Real GDP and Inflation following a one-standard deviation
shock to

[
ṽt v̂t

]′
for various measures of nominal price rigidity (θ).

(a) Varying network asymmetry (ζ∗)

(b) Varying idiosyncratic variance (σ2v)

Figure 6: Impulse responses for Real GDP and Inflation following a one-standard deviation
shock to

[
ṽt v̂t

]′
.
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(a) Varying network asymmetry (ζ∗)

(b) Varying idiosyncratic variance (σ2v)

Figure 7: Impulse responses for Real GDP and Inflation following a one-standard deviation
shock to aggregate TFP (εA).

the prices of their competitors, thereby lengthening the time required for them to learn that
the shock they experience is indeed aggregate in nature. In marked contrast, increasing the
asymmetry of the network has very little effect on learning about an aggregate shock. This is
because, in the absense of

[
ṽt v̂t

]
shocks, the observation of any one competitor is as good as

another when estimating underlying aggregate shocks.

5 Conclusion

This paper has argued that firms set their prices while operating in an observation network,
making use of competitors’prices to learn about hidden aggregate states of the world. That
firms operate in a network and that they do so in a model of imperfect common knowledge is
motivated by the observation that when surveyed, a large fraction of firms across North America
and Europe admit to looking to other firms in deciding both the timing and the magnitude of
price changes and do so out of a desire to coordinate pricing changes with competitors.

The paper’s central contribution is to present and solve a generalised linear model of social
learning over a network. It is shown that when the network is opaque, in that agents do
not know the full structure of the network but instead only the identity of their observees
and the distribution from which observees are drawn, the social learning problem becomes
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computationally tractable and admits simulation to an arbitrary degree of accuracy. When
the distribution of links within the network is suffi ciently asymmetric, the effects of agents’
mean zero idiosyncratic shocks will not "wash out" in aggregation and agents’ expectations
will follow an ARMA(1,1) process with current and lagged values of weighted sums of agents’
idiosyncratic shocks entering at an aggregate level. The recursive nature of agents’ learning
then implies that the aggregate effects of idiosyncratic shocks will be persistent, despite the
individual agents’shocks being entirely transitory, with this persistence increasing in the degree
of strategic complementarity, the asymmetry of the network and the persistence of any aggregate
shocks.

In the context of firms’price-setting decisions, these persistent aggregate effects therefore
represent a learning-based microfoundation for cost push shocks, with inflation able to persist-
ently deviate from it’s long-run trend entirely in the absence of any aggregate shocks to the
economy. Because firms may choose to observe the prices of other firms with whom they are are
not direct competitors, this also represents a novel transmission mechanism for inflation across
industries or geographies independent of it’s path along production chains. It should be noted
that recent work by Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Saleh (2011) has previously
illustrated the possibility of aggregate volatility emerging through this latter "real" network.

In contrast to the common assumption that idiosyncratic shocks cancel out in aggrega-
tion, the emergence of aggregate-level price changes based on short-lived idiosyncratic shocks
is consistent with recent evidence garnered from a variety of observed panels of micro price
changes. The level of aggregate volatility induced through network learning is increasing in the
degree of strategic complementarity, the asymmetry of the network and the relative variance of
idiosyncratic shocks.

This model clearly calls for future work to estimate the parameters of the model — par-
ticularly ζ∗ and σ2v . While the obvious choice in this would be to pursue data on a panel of
firms, the differential responses of aggregate variables predicted here following aggregate and
idiosyncratic shocks may permit such an estimation even in the absence of individual firm data.
The implications for monetary policy are a second area of research that warrants further work.
In the model presented here, firms were able to observe the combined supply-side shock (and so
could differentiate it from any monetary policy shock). Future work would grant firms some-
what less knowledge of, say, only the nominal wage and examine the real effects of shocks to
monetary policy. There are also potential implications for optimal monetary policy. Just has
previous work has suggested that monetary authorities focus their attention on the "stickiest"
prices, it may also be necessary to focus on the most visible prices in the economy. Finally,
further research into the origins of firms’observation networks would seem prudent.
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Appendix A Network Learning Proofs

A.1 Symbol Reference

Table 2 provides a description of common symbols used in section 3.

A.2 Proof of lemma 1.

Using the equation for each agent’s decision rule (11), we have that agent i will construct her
prior expectation of her social signal as follows:

Et (i) [gt (δt (i))] = Et (i)
[
α′ (Bxt +Qvt (δt (i))) + β′Et (δt (i))

[
x
(0:∞)
t|t

]]
= α′BEt (i) [xt] + β′Et (i)

[
Et (δt (i))

[
x
(0:∞)
t|t

]]
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Symbol Description
A Transition matrix for the underlying state
B Mapping from the underlying state to a private signal
C Mapping from the full state to individual signals in stage two
D Mapping from the full state to individual signals in stage one
E Expectation operator (always linear)
F Transition matrix for the full state in stage two
G Mapping from aggregate shocks to the full state in stage two
I The Identity matrix
J Kalman Gain in stage two
K Kalman Gain in stage one
M Transition matrix for the full state in stage one
N Mapping from aggregate shocks to the full state in stage one
P Mapping from aggregate shocks to the underlying state
Q Mapping from an idiosyncratic shock to a private signal
R Mapping from shocks to individual signals in stage one
S Mapping from shocks to individual signals in stage two
T∗ Selects ∗ from the full state (Ts selects Et [Xt], Tw selects Ẽt [Xt])
U Variance of the full state in stage two
V Variance of the full state in stage one
W Mapping from the previous-period actions to social signals
X The full state in period two
Z The full state in period one
α Coeffi cients against private signals in agents’decision rule; the exponent on labour

in production
β Coeffi cients against the hierarchy of expectations in agents’decision rule; the house-

hold’s discount factor
γ Coeffi cients in the agents’generalised decision rule
δ Mapping from one agent to their observee(s)
ε The elasticity substitution in the household’s consumption aggregator
ε Aggregate shocks in the dynamic price-setting model
ζ∗ Degree of asymmetry in the distribution of observees across the network
η Coeffi cients in agents’decision rule; the elasticity of marginal cost
θ The probability of a firm not updating their price in a given period
κ The parameters in the central bank’s policy function
λ The aggregate component of the shock to firms’marginal costs
π Inflation in the dynamic price-setting model
σ The household’s elasticity of intertemporal substitution
φ The p.d.f. from which agents’observees are drawn;
ω The combined shock (aggregate and idiosyncratic) to firms’marginal costs

Table 2: Symbol reference
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where we have used the lack of persistence in idiosyncratic shocks to give Et (i) [vt (δt (i))] =

0. Supposing that x(0:∞)t|t is the top-most portion of the common state vector of interest (Zt),
common knowledge of rationality then allows agent i to substitute in the Kalman filter (12) for
agent δt (i)’s expectation:

Et (i)
[
Et (δt (i))

[
x
(0:∞)
t|t

]]
=
[
I 0

]
Et (i)

 (M −KLM)Et−1 (δt (i)) [Zt−1]

+
[
K1 K2

] [Bxt +Qvt (δt (i))
gt−1 (δt−1 (δt (i)))

] 
=
[
I 0

]
(M −KLM)Et (i) [Et−1 (δt (i)) [Zt−1]]
+K1BEt (i) [xt]
+K2Et (i) [gt−1 (δt−1 (δt (i)))]


The final term shows if agent i is going to observe the period-t action of agent δt (i), then in

order to form her prior, she must also consider whomever agent δt (i) observed in period-(t− 1).
This recursion of expectations (and expectations of expectations) across agents and backwards
through time leads to an explosion in the dimensionality (this is the explosion of p) and typically
prevents closed-form analysis in anything other than trivially small networks.

However, by denying agents knowledge of the full network and, instead, granting them
knowledge of the distribution from which inbound links are drawn (φ) and using the assumption
that this distribution is independent of other shocks, we can observe that:

Et (i) [gt−1 (δt−1 (δt (i)))] =

∫ 1

0
Et (i) [gt−1 (j)]φ (j) dj

= Et (i)

[∫ 1

0
gt−1 (j)φ (j) dj

]
= Et (i) [g̃t−1]

where the second line exploited the linearity of the expectation operator and g̃t ≡
∫ 1
0 gt (j)φ (j) dj

is a weighted average of all agents’actions in period t using the observation p.d.f. as the weights.
Substituting this back in above gives:

Et (i)
[
Et (δt (i))

[
x
(0:∞)
t|t

]]
=
[
I 0

]
Et (i)


(M −KLM)Et−1 (δt (i)) [Zt−1]
+K1Bxt
+K2g̃t−1


From agent i’s perspective, their observee’s own expectation updates recursively with no

idiosyncratic information. This is, in effect, agent i treating agent δt (i) as though they receive
a weighted average of everybody’s period-(t− 1) actions. We can then replace Et (δt (i)) [·] with
a common expectation E̊t [·] as ex ante, from i’s perspective, all other agents are forming the
same expectation. Agent i’s prior expectation of their social signal can therefore be written as:

Et (i) [gt (δt (i))] = α′BEt (i) [xt] + β′
[
I 0

]
Et (i)

[
E̊t [Zt]

]
with

E̊t [Zt] = (M −KLM) E̊t−1 [Zt−1] +K

[
Bxt
g̃t−1

]
40



Note, too, that by identical logic we also have that when considering their observee’s ob-
servee’s observee, agent i will expect that:

Et (i) [Et−1 (δt (i)) [gt−2 (δt−2 (δt−1 (δt (i))))]] = Et (i) [Et−1 (δt (i)) [g̃t−2]]

This, in turn, amounts to agent i treating agent δt−1 (δt (i)) —that is, whoever δt (i) observed
—as though they also received a weighted average of everybody’s period-(t− 2) actions. The
ongoing application backwards through time should be clear. So long as the weights used (the
observation p.d.f.) are constant over time and common across agents —that is, so long as agents
do not learn about the topology of the network —then we have that agent i’s problem may be
summarised as follows: observe the action of agent δt (i), but treat them as though they and
and all information obtained through them comes from a setting in which all agents observe the
weighted average action.

A.3 Proof of lemma 2.

Denoting ζ (N) ≡
∑N

i=1 φN (i)2 and assuming that limN→∞ ζ (N) = ψ∗ where ζ∗ ∈ (0,∞), we
here demonstrate the following four results regarding agents’idiosyncratic shocks:

• ṽN,t
d−→ ṽt where ṽt ∼ N (0, ζ∗Σvv)

• v̈N,t
L2−→ ṽt

• v̂N,t
d−→ v̂t where v̂t ∼ N (0, ζ∗ (2− ζ∗) Σvv)

• Cov (ṽt, v̂t) = ζ∗Σvv

where the three weighted sums are defined as

ṽN,t ≡
N∑
i=1

vt (i)φN (i)

v̈N,t ≡
1

N

N∑
i=1

vt (δt (i))

v̂N,t ≡
N∑
i=1

vt (δt (i))φN (i)

First, note that since the vector vt (i) is drawn from independent and identical Gaussian
distributions for each i and t, the sums ṽN,t , v̈N,t and v̂N,t must all be distributed Normally
and since E [vt (i)] = 0 ∀i, t it must be that E [ṽN,t] = E [v̈N,t] = E [v̂N,t] = 0 ∀N, t.

A.3.1 ṽN,t
d−→ ṽt

The variance of ṽN,t will then be given by
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V ar [ṽN,t] = V ar

[
N∑
i=1

vt (i)φN (i) di

]

=
N∑
i=1

V ar [vt (i)φN (i)] di

=

N∑
i=1

ΣvvφN (i)2 di

= ζ (N) Σvv

where in moving to the second line we use the independence of each vector to ignore the
covariance terms. The limiting variance as N →∞ is therefore ζ∗Σvv, giving the first result.

A.3.2 v̈N,t
L2−→ ṽt

We next demonstrate that v̈N,t converges to ṽt in mean square error (a stronger form of con-

vergence than in probability). That is, we show that limN→∞E
[
(v̈N,t − ṽt)2

]
= 0. First, see

that

E
[
(v̈N,t − ṽt)2

]
= E

[
(v̈N,t)

2 − 2v̈N,tṽt + (ṽt)
2
]

= V ar [v̈N,t]− 2Cov [v̈N,t, ṽt] + V ar [ṽt]

The third term was shown above to be given by ζ∗Σvv. We now consider the first and
second terms in turn. The variance of v̈N,t is given by:

V ar [v̈N,t] =
1

N2
V ar [vt (δt (1)) + vt (δt (2)) + · · ·+ vt (δt (N))]

=
1

N2

N∑
i=1

N∑
j=1

E [vt (δt (i))vt (δt (j))]

=
1

N2

NΣvv +
N∑
i=1

N∑
j 6=i

E [vt (δt (i))vt (δt (j))]


However, when i 6= j, given the full independence of the distributions of agents’observees,

it must be that

E [vt (δt (i))vt (δt (j))] =

N∑
k=1

φN (k)E [vt (k)vt (δt (j))]

=

N∑
k=1

φN (k)

(
N∑
l=1

φN (l)E [vt (k)vt (l)]

)

=

N∑
k=1

φN (k)2E [vt (k)vt (k)]

= ζ (N) Σvv
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where in moving from the second line to the third we again make use of the independence
of agents’idiosyncratic shocks. We therefore have that

V ar [v̈N,t] =
1

N2

NΣvv +

N∑
i=1

N∑
j 6=i

ψ (N) Σvv


=

1

N2

(
NΣvv +

(
N2 −N

)
ζ (N) Σvv

)
=

1

N
Σvv +

(
N − 1

N

)
ζ (N) Σvv

and thus, in the limit, that

lim
N→∞

V ar [v̈N,t] = ζ∗Σvv

Next, we consider the covariance of ṽM,t and v̈N,t for a general setting where M > N :

Cov [ṽM,t, v̈N,t] = E [ṽM,tv̈N,t]

= E

( M∑
i=1

vt (i)φN (i)

) 1

N

N∑
j=1

vt (δt (j))


=

1

N
E

 M∑
i=1

N∑
j=1

φM (i)vt (i)vt (δt (j))


=

1

N

M∑
i=1

N∑
j=1

φM (i)E [vt (i)vt (δt (j))]

=
1

N

M∑
i=1

N∑
j=1

φM (i)

(
N∑
k=1

φN (k)E [vt (i)vt (k)]

)

=
1

N

M∑
i=1

N∑
j=1

φM (i) (φM (i)E [vt (i)vt (i)])

=

M∑
i=1

φM (i)2
1

N

N∑
j=1

Σvv

= ζ (M) Σvv

where moving from the fifth to the sixth line again used the independence of each agents’
idiosyncratic shocks. We can then note that

Cov [ṽt, v̈N,t] = lim
M→∞

Cov [ṽM,t, v̈N,t]

= lim
M→∞

ζ (M) Σvv

= ζ∗Σvv

We therefore have that
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lim
N→∞

E
[
(v̈N,t − ṽt)2

]
= V ar [v̈N,t]− 2Cov [v̈N,t, ṽt] + V ar [ṽt]

= ζ∗Σvv − 2ζ∗Σvv + ζ∗Σvv

= 0

as required for the second result.

A.3.3 v̂N,t
d−→ v̂t

Next, the variance of v̂N,t is:

V ar [v̂N,t] = V ar

[
N∑
i=1

φN (i)vt (δt (i))

]

= E

 N∑
i=1

N∑
j=1

φN (i)φN (j)vt (δt (i))vt (δt (j))


=

N∑
i=1

N∑
j=1

φN (i)φN (j)E [vt (δt (i))vt (δt (j))]

=

N∑
i=1

φN (i)2 Σvv +

N∑
i=1

N∑
j 6=i

φN (i)φN (j)E [vt (δt (i))vt (δt (j))]

From the analysis of v̈N,t in the previous subsection, we have that when i 6= j,

E [vt (δt (i))vt (δt (j))] = ζ (N) Σvv

We therefore have that

V ar [v̂N,t] = ζ (N) Σvv + ζ (N) Σvv

N∑
i=1

N∑
j 6=i

φN (i)φN (j)

Next, consider that

N∑
i=1

N∑
j=1

φN (i)φN (j) =

N∑
i=1

φN (i)

 N∑
j=1

φN (j)


=

N∑
i=1

φN (i)

= 1

as φN (i) and φN (j) are p.d.f’s. We must therefore have that

N∑
i=1

N∑
j 6=i

φN (i)φN (j) = 1−
N∑
i=1

φN (i)2 = 1− ζ (N)
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so that

V ar [v̂N,t] = ζ (N) Σvv (1 + (1− ζ (N)))

and, in the limit,

lim
N→∞

V ar [v̂N,t] = ζ∗ (2− ζ∗) Σvv

therefore giving the third result. Note that since ζ∗ ∈ (0, 1), we also have that

1 > ζ∗ (2− ζ∗) > ζ∗

so that the variance of v̂t is larger than that of ṽt, but still smaller than that of vt (i).

A.3.4 Cov (ṽt, v̂t) = ζ∗Σvv

The covariance of ṽN,t and v̂N,t is given by

Cov [ṽN,t, v̂N,t] = E

( N∑
i=1

vt (i)φN (i)

) N∑
j=1

vt (δt (j))φN (j)


= E

 N∑
i=1

N∑
j=1

φN (i)φN (j)vt (i)vt (δt (j))


=

N∑
i=1

N∑
j=1

φN (i)φN (j)E [vt (i)vt (δt (j))]

=
N∑
i=1

N∑
j=1

φN (i)φN (j)

(
N∑
k=1

φN (k)E [vt (i)vt (k)]

)

=
N∑
i=1

N∑
j=1

φN (i)φN (j) (φN (i)E [vt (i)vt (i)])

= Σvv

N∑
i=1

N∑
j=1

φN (i)2 φN (j)

= Σvv

N∑
i=1

φN (i)2

 N∑
j=1

φN (j)


= Σvv

N∑
i=1

φN (i)2

= ζ (N) Σvv

so that, in the limit,

Cov (ṽt, v̂t) = lim
N→∞

Cov (ṽN,t, v̂N,t) = ζ∗Σvv

therefore giving the fourth result.
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A.4 Proof of proposition 1.

That the general agent’s problem may be solved in the two stages described in the proposition
follows immediately from lemma 1. We here provide a full derivation of the learning in each
stage.

A.4.1 Solving stage one

We have the following state space system

Zt = MZt−1 +N1ut +N2ṽt +N3ṽt−1 (A.1)

st (j) = D1Zt +D2Zt−1 +D3wt−2 +R1vt (j) +R2ṽt−1 (A.2)

where wt−2 is a vector of observables known to the agent in period t − 1. We will first
develop a modified Kalman filter for agent j’s estimation of Zt and then turn to considering the
evolution of Zt itself (i.e. the coeffi cients of M and N).

The (modified) Kalman filter The filter here closely follows that developed by Nimark
(2011b) as a means of avoiding the doubling-up of the state vector more typical in the literature,
thereby allowing more accurate simulation results when working with finite computing resources.

Denoting j’s expectation formed with period-t information as Et (j) [·] = E [·|It (j)], our
goal is to find a mean square error minimising21 formula for Et (j) [Xt]. To begin, we first
substitute the state equation into the observation equation to get:

st (j) = D1 (MZt−1 +N1ut +N2ṽt +N3ṽt−1) +D2Xt−1 +D3wt−2 +R1vt (j) +R2ṽt−1

= (D1M +D2)Zt−1 +D3wt−2 +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1

Next, note that the contemporaneous expectation of the weighted-average idiosyncratic
shock must be zero:

Et (j) [ṽt] = lim
N→∞

N∑
i=1

Et (j) [vt (i)]φN (i)

= lim
N→∞

Et (j) [vt (j)]φN (j) +
N∑

i=1,i 6=j
E [vt (i)]φN (i)


= lim

N→∞
Et (j) [vt (j)]φN (j)

= 0

where moving from the first line to the second uses the fact that idiosyncratic shocks are
independent, so the best that agent j can do with respect to other agents’shocks is to use the
unconditional expectation, and in moving from the third line to the fourth we have used the
assumption that limN→∞ φN (j) = 0. This then allows us to note that j’s best estimate of
st (j) given period-(t− 1) information is simply

21And hence, given that all shocks are mean zero, a variance-minimising estimator.
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Et−1 (j) [st (j)] = (D1M +D2)Et−1 (j) [Zt−1] +D3wt−2

Note that there is no expectation around the term in wt−2 as it is observed directly in period
t− 1. Define the innovation in st (j) —that is, the unexpected component —to be:

−→s t (j) ≡ st (j)− Et−1 (j) [st (j)]

Since −→s t (j) contains only new information available in period t, it must be orthogonal to
any of j’s estimates based on information from earlier periods. We can therefore use the result
that E [w|y, z] = E [w|y] + E [w|z] when y⊥z, so that

Et (j) [Zt] = Et−1 (j) [Zt] +Kt
−→s t (j) (A.3)

= MEt−1 (j) [Zt−1] +Kt {st (j)− (D1M +D2)Et−1 (j) [Xt−1]}
= (M −Kt (D1M +D2))Et−1 (j) [Zt−1] +Ktst (j)

for some matrix, Kt (the Kalman gain). Note that Kt does not require an agent subscript
as the problem is symmetric for all agents. For this to be the best linear estimator, we require
Kt to be such that

−→s t (j) is orthogonal to the projection error, Zt − Kt
−→s t (j). That is, we

require that

E
[(
Xt −Kt

−→s t (j)
)−→s t (j)′

]
= 0 (A.4)

Rearranging gives

Kt = E
[
Zt
−→s t (j)′

] (
E
[−→s t (j)−→s t (j)′

])−1
(A.5)

Before evaluating this, note that we can rewrite the relevant vectors as:

−→s t (j) =

st(j)︷ ︸︸ ︷
(D1M +D2)Zt−1 +D3wt−2 +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1

−
Et−1(j)[st(j)]︷ ︸︸ ︷

(D1M +D2)Et−1 (j) [Zt−1]−D3wt−2

= (D1M +D2) Ẑt−1 (j) +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1

where Ẑt (j) ≡ Zt−Et (j) [Zt] is j’s contemporaneous error in estimating Zt. Note that the
terms in wt−2 have dropped out as they are known with certainty in period t− 1. We can also
rewrite the law of motion for the hidden state as

Zt = M
(
Ẑt−1 (j) + Et−1 (j) [Zt−1]

)
+N1ut +N2ṽt +N3ṽt−1

The first term of equation (A.5) thus expands to:

E
[
Zt
−→s t (j)′

]
= E

 (M (
Ẑt−1 (j) + Et−1 (j) [Zt−1]

)
+N1ut +N2ṽt +N3ṽt−1

)
×
(

(D1M +D2) Ẑt−1 (j) +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1
)′


= MVt−1|t−1 (D1M +D2)
′ +N1ΣuuN

′
1D
′
1 + ζ∗N2ΣvvN

′
2D
′
1 + ζ∗N3Σvv (D1N3 +R2)

′
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where I have used Vt|t ≡ E
[
Ẑt (j)Ẑt (j)

′]
as the variance-covariance matrix associated with

Et (j) [Zt]. Given the symmetry of the problem across agents, although individual expectations
may differ the variance of each estimate will be common. For the second term, we have that

E
[−→s t (j)−→s t (j)′

]
= E

 (
(D1M +D2) Ẑt−1 (j) +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1

)
×
(

(D1M +D2) Ẑt−1 (j) +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1
)′


= (D1M +D2)Vt−1|t−1 (D1M +D2) +D1N1ΣuuN
′
1D
′
1

+ ζ∗D1N2ΣvvN
′
1D
′
2 +R1ΣvvR

′
1 + ζ∗ (D1N3 +R2) Σvv (D1N3 +R2)

′

so that, all together, the Kalman gain is given by

Kt =
(
MVt−1|t−1 (D1M +D2)

′ +N1ΣuuN
′
1D
′
1 + g∗N2ΣvvN

′
2D
′
1 + g∗N3Σvv (D1N3 +R2)

′)
(A.6)

×
[

(D1M +D2)Vt−1|t−1 (D1M +D2) +D1N1ΣuuN
′
1D
′
1

+ζ∗D1N2ΣvvN
′
2D
′
1 +R1ΣvvR

′
1 + ζ∗ (D1N3 +R2) Σvv (D1N3 +R2)

′

]−1

Evolution of the gain and variance matricies First, since we can rewrite the state equa-
tion as

Zt − Et−1 (j) [Zt] = MZt−1 +N1ut +N2ṽt +N3ṽt−1 − Et−1 (j) [Zt]

= M (Zt−1 − Et−1 (j) [Zt−1]) +N1ut +N2ṽt +N3ṽt−1

we have that

Vt|t−1 = MVt−1|t−1M
′ +N1ΣuuN

′
1 + ζ∗N2ΣvvN

′
2 + ζ∗N3ΣvvN

′
3 (A.7)

Next, add Zt to each side of equation (A.3) and rearrange to get

Zt − Et (j) [Zt] = Zt − Et−1 (j) [Zt]−Kt
−→s t (j)

Since the innovation is orthogonal to both the prior error, Zt−Et−1 (j) [Zt], and the posterior
error, Zt−Et (j) [Zt], the variance of the left-hand side must equal the sum of the variances on
the right-hand side, thereby giving

Vt|t = Vt|t−1 −KtV ar
(

(D1M +D2) Ẑt−1 (j) +D1N1ut +D1N2ṽt +R1vt (j) + (D1N3 +R2) ṽt−1
)
K ′t

(A.8)

= Vt|t−1 −Kt

[
(D1M +D2)Vt−1|t−1 (D1M +D2)

′ +D1N1ΣuuN
′
1D
′
1

+ζ∗D1N2ΣvvN
′
2D
′
1 +R1ΣvvR

′
1 + ζ∗ (D1N3 +R2) Σvv (D1N3 +R2)

′

]
K ′t

Provided that M represents a contraction, then there will exist steady state (i.e. time-
invariant) Kalman gain and Variance matricies, found by iterating equations (A.6), (A.7) and
(A.8) forward until convergence is achieved. The form of these matricies will be:
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K =
(
MV (D1M +D2)

′ +N1ΣuuN
′
1D
′
1 + ζ∗N2ΣvvN

′
2D
′
1 + ζ∗N3Σvv (D1N3 +R2)

′)
×
[

(D1M +D2)V (D1M +D2) +D1N1ΣuuN
′
1D
′
1

+ζ∗D1N2ΣvvN
′
2D
′
1 +R1ΣvvR

′
1 + ζ∗ (D1N3 +R2) Σvv (D1N3 +R2)

′

]−1

V = M

(
V −K

[
(D1M +D2)V (D1M +D2)

′ +D1N1ΣuuN
′
1D
′
1

+ζ∗D1N2ΣvvN
′
1D
′
2 +R1ΣvvR

′
1 + ζ∗ (D1N3 +R2) Σvv (D1N3 +R2)

′

]
K ′
)
M ′

+N1ΣuuN
′
1 + ζ∗N2ΣvvN

′
2 + ζ∗N3ΣvvN

′
3

Identifying the state law of motion We seek the coeffi cients of the state vector’s law of
motion:

Zt = MZt−1 +N1ut +N2ṽt +N3ṽt−1

First note that the state vector is defined recursively as

Zt ≡

 xt
Et [Zt]

Ẽt [Zt]


and define the matricies Ts and Tw as extracting the simple-average and weighted-average

expectations of Zt from Zt. That is, TsZt = Et [Zt] and TwZt = Ẽt [Zt]. Next, note that we
can break the M and N∗ matricies down as

M =

[A 0 0
]

Ψ1

Υ1

 [
N1 N2 N3

]
=

 P 0 0
Ψ2 Ψ3 Ψ4

Υ2 Υ3 Υ4


Further, we have that agents update their estimates of the state vector according to

Et (j) [Zt] = (M −K (D1M +D2))Et−1 (j) [Zt−1] +Kst (j) (A.9)

with the Kalman gain matrix (K) defined above. Signals are comprised as

st (j) = D1Zt +D2Zt−1 +R1vt (j) +R2ṽt−1

Combining these two equations gives

Et (j) [Zt] = (M −K (D1M +D2))Et−1 (j) [Zt−1]+K (D1Zt +D2Zt−1 +R1vt (j) +R2ṽt−1)

Expanding the Zt on the right hand side and gathering like terms then gives
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Et (j) [Zt] = K (D1M +D2)Zt−1 (A.10)

+ (M −K (D1M +D2))Et−1 (j) [Zt−1]

+KD1N1ut

+KD1N2ṽt

+K (D1N3 +R2) ṽt−1

+KR1vt (j)

Taking the simple average of equation (A.10) gives

Et [Zt] = {MTs +K (D1M +D2) (I − Ts)}Zt−1 (A.11)

+KD1N1ut

+KD1N2ṽt

+K (D1N3 +R2) ṽt−1

Similarly, the weighted average of equation (A.10) is:

Ẽt [Zt] = {MTw +K (D1M +D2) (I − Tw)}Zt−1 (A.12)

+KD1N1ut

+K (D1N2 +R1) ṽt

+K (D1N3 +R2) ṽt−1

From these we may immediately read that

Ψ1 = MTs +K (D1M +D2) (I − Ts)
Ψ2 = KD1N1

Ψ3 = KD1N2

Ψ4 = K (D1N3 +R2)

and that

Υ1 = MTw +K (D1M +D2) (I − Tw)

Υ2 = KD1N1

Υ3 = K (D1N2 +R1)

Υ4 = K (D1N3 +R2)

Finding the solution involves finding the fixed point of the system for a pre-chosen upper
limit (k∗) on the number of orders of expectations to include.

A.4.2 Solving stage two

We have the following state space system

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1 (A.13)

st (i) = C1Xt + C2Xt−1 + C3wt−2 + S1vt (i) + S2vt−1 (δt−1 (i)) (A.14)
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where, as in stage one, wt−2 is a vector containing information relating to period t− 2 and
earlier that is observed in period t − 1 (or earlier). We will again first develop a modified
Kalman filter for agent i’s estimation of Yt and then turn to considering the evolution of Yt
itself.

The (modified) Kalman filter Substituting the state law of motion into the signal equation
gives

st (i) = (C1F + C2)Xt−1+C3wt−2+C1G1ut+C1G2ṽt+S1vt (i)+C1G3ṽt−1+C1G4v̂t−1+S2vt−1 (δt−1 (i))

with a prior expectation of the signal given by

Et−1 (i) [st (i)] = (C1F + C2)Et−1 (i) [Xt−1] + C3wt−2

Denote the innovation in st (i) as

←−s t (i) ≡ st (i)− Et−1 (i) [st (i)]

= (C1F + C2) X̂t−1 (i) + C1G1ut + C1G2ṽt + S1vt (i)

+ C1G3ṽt−1 + C1G4v̂t−1 + S2vt−1 (δt−1 (i))

The orthogonality of ←−s t (i) gives us that

Et (i) [Xt] = (F − Jt (C1F + C2))Et−1 (i) [Xt−1] + Jtst (i)

for some matrix, Jt (the Kalman gain), while optimality in the sense of minimising mean
square error gives us that

Jt = E
[
Xt
←−s t (i)′

] (
E
[←−s t (i)←−s t (i)′

])−1
(A.15)

The first term in this expression expands as

Xt = F
(
X̂t−1 (i) + Et−1 (i) [Xt−1]

)
+G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

E
[
Xt
←−s t (i)′

]
= E


(
F
(
X̂t−1 (i) + Et (i) [Xt−1]

)
+G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

)
×
(

(C1F + C2) X̂t−1 (i) + C1G1ut + C1G2ṽt
+S1vt (i) + C1G3ṽt−1 + C1G4v̂t−1 + S2vt−1 (δt−1 (i))

)′


= FUt−1|t−1 (C1F + C2)
′ +G1ΣuuG

′
1C
′
1 + ζ∗G2ΣvvG

′
2C
′
1

+ ζ∗G3ΣvvG
′
3C
′
1 + ζ∗ (2− ψ∗)G4ΣvvG

′
4C
′
1 + 2ζ∗G3ΣvvG

′
4C
′
1

where Ut|t ≡ E
[
X̂t (i)X̂t (i)

′]
as the variance-covariance matrix associated with Et (i) [Xt].

The second term expands as:
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E
[←−s t (i)←−s t (i)′

]
= E


(

(C1F + C2) X̂t−1 (i) + C1G1ut + C1G2ṽt
+S1vt (i) + C1G3ṽt−1 + C1G4v̂t−1 + S2vt−1 (δt−1 (i))

)

×
(

(C1F + C2) X̂t−1 (i) + C1G1ut + C1G2ṽt
+S1vt (i) + C1G3ṽt−1 + C1G4v̂t−1 + S2vt−1 (δt−1 (i))

)′


= (C1F + C2)Ut−1|t−1 (C1F + C2)
′ + C1G1ΣuuG

′
1C
′
1 + ζ∗C1G2ΣvvG

′
2C
′
1

+ S1ΣvvS
′
1 + ζ∗C1G3ΣvvG

′
3C
′
1 + ζ∗ (2− ζ∗)C1G4ΣvvG

′
4C
′
1

+ 2ζ∗C1G3ΣvvG
′
4C
′
1 + S2ΣvvS

′
2

Together, these give the Kalman gain for stage two as

Jt =

(
FUt−1|t−1 (C1F + C2)

′ +G1ΣuuG
′
1C
′
1 + ζ∗G2ΣvvG

′
2C
′
1

+ζ∗G3ΣvvG
′
3C
′
1 + ζ∗ (2− ζ∗)G4ΣvvG

′
4C
′
1 + 2ζ∗G3ΣvvG

′
4C
′
1

)
(A.16)

×



(C1F + C2)Ut−1|t−1 (C1F + C2)
′

+C1G1ΣuuG
′
1C
′
1

+ζ∗C1G2ΣvvG
′
2C
′
1

+S1ΣvvS
′
1

+ζ∗C1G3ΣvvG
′
3C
′
1

+ζ∗ (2− ζ∗)C1G4ΣvvG
′
4C
′
1

+2ζ∗C1G3ΣvvG
′
4C
′
1

+S2ΣvvS
′
2



−1

Evolution of the gain and variance matricies The prior variance will be given by

Ut|t−1 = FUt−1|t−1F
′+G1ΣuuG

′
1+ζ

∗G2ΣvvG
′
2+ζ

∗G3ΣvvG
′
3+ζ

∗ (2− ζ∗)G4ΣvvG
′
4+2ζ∗G3ΣvvG

′
4

(A.17)

And the posterior variance will update as

Xt − Et (j) [Xt] = Xt − Et−1 (j) [Xt]−Kt
−→s t (j)

Since the innovation is orthogonal to both the prior error,Xt−Et−1 (j) [Xt], and the posterior
error, Xt − Et (j) [Xt], the variance of the left-hand side must equal the sum of the variances
on the right-hand side, thereby giving

Ut|t = Ut|t−1 − JtV ar
(←−s t (j)

)
J ′t (A.18)

= Ut|t−1 − Jt



(C1F + C2)Ut−1|t−1 (C1F + C2)
′

+C1G1ΣuuG
′
1C
′
1

+ζ∗C1G2ΣvvG
′
2C
′
1

+S1ΣvvS
′
1

+ζ∗C1G3ΣvvG
′
3C
′
1

+ζ∗ (2− ζ∗)C1G4ΣvvG
′
4C
′
1

+2ζ∗C1G3ΣvvG
′
4C
′
1

+S2ΣvvS
′
2


J ′t
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Provided that F represents a contraction, then there will exist steady state (i.e. time-
invariant) Kalman gain and variance matricies, found by iterating equations (A.16), (A.17) and
(A.18) forward until convergence is achieved.

Identifying the state law of motion We seek the coeffi cients of the state vector’s law of
motion:

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

First note that the state vector is defined recursively as

Xt ≡


xt

Et [Xt]

Ẽt [Xt]

E̊t [Xt]


and so break the F and G∗ matrices down as

F =


[
A 0 0 0

]
Θ1

Ω1
Γ1

 [
G1 G2 G3 G4

]
=


P 0 0 0
Θ2 Θ3 Θ4 Θ5

Ω2 Ω3 Ω4 Ω5
Γ2 Γ3 Γ4 Γ5


and define the matricies Ts, Tw and To as such that TsXt = Et [Xt] and TwXt = Ẽt [Xt] and

ToXt = E̊t [Xt]. Next, note that we have that agents update their estimates of the state vector
according to

Et (i) [Xt] = (F − J (C1F + C2))Et−1 (i) [Xt−1] + Jst (i) (A.19)

and individual signals are comprised as

st (i) = C1Xt + C2Xt−1 + S1vt (i) + S2vt−1 (δt−1 (i))

Combining these last two equations with the state vector’s law of motion gives

Et (i) [Xt] = J (C1F + C2)Xt−1 (A.20)

+ (F − J (C1F + C2))Et−1 (i) [Xt−1]

+ JC1G1ut

+ JC1G2ṽt

+ JC1G3ṽt−1

+ JC1G4v̂t−1

+ JS1vt (i)

+ JS2vt−1 (δt−1 (i))

Taking the simple average of equation (A.20) gives
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Et [Xt] = {FTs + J (C1F + C2) (I − Ts)}Xt−1 (A.21)

+ JC1G1ut

+ JC1G2ṽt

+ J (C1G3 + S2) ṽt−1

+ JC1G4v̂t−1

where I have used lemma (2) to replace
∫ 1
0 vt−1 (δt−1 (i)) di with ṽt−1. Taking the weighted

average of equation (A.20) gives

Et (i) [Xt] = {FTw + J (C1F + C2) (I − Tw)}Xt−1 (A.22)

+ JC1G1ut

+ J (C1G2 + S1) ṽt

+ JC1G3ṽt−1

+ J (C1G4 + S2) v̂t−1

where I have used lemma (2) to replace
∫ 1
0 vt−1 (δt−1 (i))φ (i) di with v̂t−1. We can then

immediately read that

Θ1 = FTs + J (C1F + C2) (I − Ts)
Θ2 = JC1G1

Θ3 = JC1G2

Θ4 = J (C1G3 + S2)

Θ5 = JC1G4

and

Ω1 = FTw + J (C1F + C2) (I − Tw)

Ω2 = JC1G1

Ω3 = J (C1G2 + S1)

Ω4 = JC1G3

Ω5 = J (C1G4 + S2)

and

Γ1 = MTo +K (D1M +D2) (I − To)
Γ2 = KD1N1

Γ3 = KD1N2

Γ4 = K (D1N3 +R2)

Γ5 = 0

where I have ignored the element K1Qvt (j) from equation (A.10) as, from agent i’s per-
spective, it is expected to be equal to zero.

Finding the solution involves finding the fixed point of the system for a pre-chosen upper
limit (k∗) on the number of orders of expectations to include.
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A.5 Extending the model to a dynamic setting

We here consider an important extension to the basic model of the previous section: consider-
ation of dynamic actions. In particular, we here allow agents’decision rules to be somewhat
more general, including a consideration of the future average action. We still have that the
underlying state follows an AR(1) process:

xt = Axt−1 + Put

and still suppose that the full hierarchy of expectations regarding the underlying state is
given by:

Xt = E(0:∞)t [xt]

We also leave individual signals unchanged as:

st (i) =

[
Bxt +Qvt (i)
gt−1 (δt−1 (i))

]
We then suppose that individual decisions are made according to the following rule:

gt (i) = η′sst (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)
[
gt+1

]
(A.23)

and maintain the assumption that η′s =
[
α′ 0

]
. It is required to show that gt (i) may be

expressed in the general form

gt (i) = γ′1wt−1 + γ′2Xt + γ′3Et (i) [Xt] + γ′4vt (i)

To do this, we start by taking the simple average of equation (A.23) to give:

gt = η′sst + η′xEt [Xt] + ηyEt [gt] + ηzEt
[
gt+1

]
To keep the notation clean, define θt ≡ η′sst + η′xEt [Xt] so that

gt = θt + ηyEt [gt] + ηzEt
[
gt+1

]
We now substitute this equation back into itself in the second element (ηyEt [gt]):

gt = θt + ηyEt [θt] + η2yE
(2)
t [gt] + ηzEt

[
gt+1

]
+ ηyηzE

(2)
t

[
gt+1

]
Repeating this process, in the limit (and using the fact that ηy ∈ (0, 1) and assuming that

average expectations don’t explode), this becomes:

gt =

( ∞∑
k=0

ηkyE
(k)
t [θt]

)
+

(
ηz

∞∑
k=1

ηk−1y E
(k)
t

[
gt+1

])
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Now briefly consider θt and simple-average expectations of θt. First note that s′t =
[
(Bxt)

′ g̃t−1
]

and we maintain our assumption that η′s =
[
α′ 0

]
so that

η′sst = α′Bxt

Therefore, we can write that:

θt = α′Bxt + η′xE
(1)
t [Xt]

E
(1)
t [θt] = α′BE

(1)
t [xt] + η′xE

(2)
t [Xt]

E
(2)
t [θt] = α′BE

(2)
t [xt] + η′xE

(3)
t [Xt]

· · ·

Next, suppose that the matrix Ts selects the simple-average expectation of Xt from Xt:

E
(1)
t [Xt] = TsXt

and that the matrix S selects xt from Xt (obviously S =
[
Il 0l×∞

]
where l is the number

of elements in xt):

xt = SXt

Then we can write:

θt =
(
α′BS + η′xTs

)
Xt

E
(1)
t [θt] =

(
α′BS + η′xTs

)
TsXt

E
(2)
t [θt] =

(
α′BS + η′xTs

)
T 2sXt

· · ·

or, in general,

E
(k)
t [θt] =

(
α′BS + η′xTs

)
T ks Xt

The average period-t action can therefore be written as

gt =
(
α′BS + η′xTs

)( ∞∑
k=0

(ηyTs)
k

)
Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
gt+1

]
=
(
α′BS + η′xTs

)
(I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
gt+1

]
= β′Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
gt+1

]
where β′ ≡ (α′BS + η′xTs) (I − ηyTs)−1. Next, substitute this back into itself for the next-

period average action:
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gt = β′Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
β′Xt+1 + ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
gt+2

]]

= β′Xt + ηz

∞∑
k=1

ηk−1y β′E
(k)
t [Xt+1] + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
gt+2

]]
Next, we use the following conjectured aspect of the law of motion for Xt:

Et (i) [Xt+1] = Et (i) [FXt]

for some matrix of parameters F . This implies that

E
(k)
t [Xt+1] = FE

(k)
t [Xt]

and hence that

gt = β′Xt + ηzβ
′F
∞∑
k=1

ηk−1y E
(k)
t [Xt] + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
gt+2

]]

= β′Xt + ηzβ
′F

( ∞∑
k=1

ηk−1y T ks

)
Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
gt+2

]]

= β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
gt+2

]]
Next, expand the gt+2 term to give

gt = β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt

+ ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
β′Xt+2 + ηz

∞∑
m=1

ηm−1y E
(m)
t+2

[
gt+3

]]]
= β′Xt

+ ηzβ
′FTs (I − ηyTs)−1Xt

+ β′
(
ηzFTs (I − ηyTs)−1

)2
Xt

+ ηz

∞∑
k=1

ηk−1y E
(k)
t

[
ηz

∞∑
l=1

ηl−1y E
(l)
t+1

[
ηz

∞∑
m=1

ηm−1y E
(m)
t+2

[
gt+3

]]]
Continued substitution then arrives at:

gt = β′
∞∑
j=0

(
ηzFTs (I − ηyTs)−1

)j
Xt

which, in turn, becomes

gt =
(
α′BS + η′xTs

)
(I − ηyTs)−1

(
I − ηzFTs (I − ηyTs)−1

)−1
︸ ︷︷ ︸

a′

Xt
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Using this simple expression of gt = a′Xt, we can substitute it back into the agents’indi-
vidual decision rule to obtain

gt (i) = α′ (Bxt +Qvt (i)) +
(
η′x + ηya

′ + ηza
′F
)
Et (i) [Xt]

= α′BS︸ ︷︷ ︸
γ′2

Xt +
(
η′x + ηya

′ + ηza
′F
)︸ ︷︷ ︸

γ′3

Et (i) [Xt] +α′Q︸︷︷︸
γ′4

vt (i)

which is now in the necessary form. As an aside, taking a simple average of this gives

gt = α′BSXt +
(
η′x + ηya

′ + ηza
′F
)
Et [Xt]

which implies the following constraint on the coeffi cients of the decision rule (α, ηx, ηy, ηz)
and the expectation transition matrix (F ):

a′ = α′BS +
(
η′x + ηya

′ + ηza
′F
)
Ts

Appendix B Dynamic price setting with network learning

This appendix provides a full derivation of the model of dynamic price setting with network
learning presented in the text.

B.1 Getting to mct (j) = υyt + ωt (j)

The treatment of the household is entirely standard and omitted. For firms’ price-setting
problem, note that (40) implies that the aggregate price must evolve as

Pt =

(
θ

∫
Pt−1 (j)1−ε dj + (1− θ)

∫
Gt (j)1−ε dj

) 1
1−ε

which, in linearised form, is

pt = θpt−1 + (1− θ) gt (B.1)

Substituting the demand function (39) into the firm’s objective function (43), a generic
firm’s problem when able to update their price in period t is given by:

max
Gt(j)

Et (j)

[ ∞∑
s=0

(βθ)sQt+s|t

{(
Gt (j)

Pt+s

)1−ε
Yt+s −

Wt+s

Pt+s

1

At+s (j)1+η

(
Gt (j)

Pt+s

)−ε(1+η)
Y 1+ηt+s

}]

The first-order condition, after some tweaking, may be expressed as:

Et (j)

[ ∞∑
s=0

(βθ)sQt+s|t

(
Gt (j)

Pt+s

)−ε
Yt+s

{
Gt (j)

Pt+s
−
(

ε

ε− 1

)(
Gt (j)

Pt+s

)−εη
(1 + η)

Wt+s

Pt+s

1

At+s (j)1+η
Y η
t+s

}]
= 0

Further use of (39) and the definition of marginal cost (42), this can be written as
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Gt (j)Et (j)

[ ∞∑
s=0

(βθ)sQt+s|tYt+sP
ε−1
t+s

]
=

(
ε

ε− 1

)
Et (j)

[ ∞∑
s=0

(βθ)sQt+s|tMCt (j)Yt+sP
ε
t+s

]

In steady state, there are no shocks, technology and real output are constant, prices are
constant and all firms make the same decisions:

Yt+s (j) = Y ss

At+s (j) = Ass

Πt = Πss = 1

Wt+s = W ss
t+s = W ss

Gt (j) = Gss = P ss

MCt (j) = MCss

Qt+s|t = Qss = 1

We normalise P ss = 1. Denoting lower-case letters as log-deviations from the steady-state
(xt ≡ ln (Xt)− ln (X∗t )) then (44) can be written as:

Y ssegt(j)Et (j)

[ ∞∑
s=0

(βθ)s eqt+s+yt+s+(ε−1)pt+s

]
=

(
ε

ε− 1

)
MCssY ssEt (j)

[ ∞∑
s=0

(βθ)s eqt+s+mct(j)+yt+s+εpt+s

]

In steady state, we therefore have that

1 =

(
ε

ε− 1

)
MCss

A first-order approximation of (44) can then be written as:

Et (j)

[ ∞∑
s=0

(βθ)s (gt (j) + qt+s + yt+s + (ε− 1) pt+s)

]
= Et (j)

[ ∞∑
s=0

(βθ)s (qt+s +mct (j) + yt+s + εpt+s)

]

Which rearranges to the standard:

gt (j) = (1− βθ)Et (j)

[ ∞∑
s=0

(βθ)s (pt+s +mct+s (j))

]

The firm’s linearised marginal cost is given by:

mct (j) = wt − pt + ηyt − εη (pt (j)− pt)− (1 + η) at (j)

If we had linear production technology (α = 0) then we would have that η = 0 and that
would be the end of it. However, because we want to speak of decreasing marginal productivity,
we also need to linearise the firms’demand function (39):

yt (j) = yt − ε (pt (j)− pt)
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So that

mct (j) = wt − pt + ηyt − εη (pt (j)− pt)− (1 + η) at (j)

Subsituting this in and collecting terms in gt (j) then gives:

gt (j) = (1− βθ)
∞∑
s=0

(βθ)sEt (j)

[
pt+s +

1

1 + εη
((wt+s − pt+s) + ηyt+s − (1 + η) at+s (j))

]
(B.2)

To obtain the aggregate production function, substitute the firm’s production function (41)
into the labour market clearing condition (45) to obtain

Ht =

∫ (
Yt (j)

At (j)

)1+η
dj

Further substituting in the firm’s demand function (39) gives

Ht =

∫ 
(
Pt(j)
Pt

)−ε
Yt

At (j)


1+η

dj

= Y 1+ηt

∫
At (j)−(1+η)

(
Pt (j)

Pt

)−ε(1+η)
dj︸ ︷︷ ︸

≡Z1+ηt

Rearranging (recall that 1 + η = 1
1−α), we arrive at

Yt = ZtH
1−α
t

Substituting the market-clearing requirements into the household’s labour supply and Euler
equation gives:

Wt

Pt
= eεHt−εCtY

1
σ
+ 1+η

ψ

t Z
1+η
ψ

t

eεCtY
− 1
σ

t = β (1 + it)E
HH
t

[
eεCt+1Y

− 1
σ

t+1

1

Πt+1

]
Linearising these gives:

wt − pt =

(
1

σ
+

1 + η

ψ

)
yt +

1 + η

ψ
zt + εHt − εCt (B.3)

yt = EHHt [yt+1]− σEHHt [it − πt+1] + σ
(
εCt − EHHt [εCt+1]

)
(B.4)

While the aggregate TFP linearises as:
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(1 + η) zt =

∫
− (1 + η) at (j)− ε (1 + η) (pt (j)− pt) dj

But since pt =
∫
pt (j) dj in a linear approximation, this is just

zt = −
∫
at (j) dj = −εAt

so that the equilibrium real wage in period t is given by:

wt − pt =

(
1

σ
+

1 + η

ψ

)
yt + εHt − εCt −

1 + η

ψ
εAt (B.5)

For reference, recall that σ is the elasticity of intertemporal substitution, ψ is the Frisch
elasticity of labour supply and η is the elasticity of marginal cost.22 Next, we can substitute
the equilibrium real wage (B.5) into the firms’reset price (B.2) to give:

gt (j) = (1− βθ)
∞∑
s=0

(βθ)sEt (j) [pt+s + υyt+s + ωt+s (j)]

where υ =
(
1
σ + 1+η

ψ + η
)
, which is equation (25) in the main text, with ωt (j) given by

ωt (j) = λt +Qvt (j)

λt =
1

1 + εη

(
εHt+s − εCt+s −

(
1 + η

ψ
+ 1 + η

)
εAt+s

)
Q = −

(
1 + η

1 + εη

)

B.2 Deriving the Phillips Curve

Given that firms observe ωt (j) each period and the idiosyncratic shocks are entirely transitory,
we can write:

gt (j) = (1− βθ) {Et (j) [pt + υyt] + ωt (j)}+ (1− βθ)
∞∑
s=1

(βθ)sEt (j) [pt+s +mct+s] (B.6)

where mct+s = υyt+s + λt+s represents the marginal cost that any generic firm would
experience if they produced the average quantity of goods and had the average level of TFP.
Take the (simple) average of this expression:

gt = (1− βθ)
{
E
(1)
t [pt + υyt] + λt

}
+ (1− βθ)

∞∑
s=1

(βθ)sE
(1)
t [pt+s +mct+s] (B.7)

22As an aside, if we instead supposed that wages were negotiated prior to prices being set or markets clearing,
then we would be best to rearrange this to describe aggregate demand in period t as a function of the wage, the
aggregate price level and period-t shocks:

yt =

(
σψ

ψ + σ (1 + η)

)(
wt − pt +

1 + η

ψ
εAt + εCt − εHt

)
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Next, denote by g∗t the average reset price that would prevail if all firms had perfect foresight:

g∗t ≡ (1− βθ)
∞∑
s=0

(βθ)s (pt+s +mct+s) (B.8)

It is important to recognise that gt 6= E
(1)
t [g∗t ] in general. Indeed, we can combine the

previous two equations to express gt as a function of g
∗
t :

gt = E
(1)
t [g∗t ] + (1− βθ)

(
λt − E

(1)
t [λt]

)
(B.9)

Alternatively, we might reverse the process and write g∗t as a function of gt:

g∗t = gt+ (1− βθ)
{(
pt − E

(1)
t [pt]

)
+ υ

(
yt − E

(1)
t [yt]

)}
+ (βθ)

(
g∗t+1 − E

(1)
t

[
g∗t+1

])
(B.10)

Nimark (2008) inadvertantly made the mistake of replacing E
(k+1)
t

[
g∗t+1

]
with E

(k+1)
t

[
gt+1

]
(which can, in turn, be replaced by E

(k+1)
t

[
pt + 1

1+θπt+1

]
). In essence, this is to pre-suppose

that in period t, agents expect on average that period t+ 1 expectations will be accurate.

To see this, consider agent j’s period-t expectation regarding yt+1−E
(1)
t+1 [yt+1]. If, for some

state vector Xt, we have that yt = a′Xt and E
(1)
t [Xt] = TsXt and Et (j) [Xt+1] = FEt (j) [Xt]

then:

Et (j)
[
yt+1 − E

(1)
t+1 [yt+1]

]
= Et (j)

[
a′Xt+1 − E

(1)
t+1

[
a′Xt+1

]]
= a′Et (j) [Xt+1 − TsXt+1]

= a′ (I − Ts)FEt (j) [Xt]

In the setting of Nimark (2008), Ts =
[
0 I

]
(in the current paper it is Ts =

[
0 I 0 0

]
),

so that I − Ts 6= 0.

Instead, we proceed by first converting equation (B.8) into a sum of future marginal costs
and inflation:

g∗t ≡ pt +

∞∑
s=1

(βθ)s πt+s + (1− βθ)
∞∑
s=0

(βθ)smct+s

Substituting this into (B.9) gives:

gt = (1− βθ)
(
λt − E

(1)
t [λt]

)
+

∞∑
s=1

(βθ)sE
(1)
t [πt+s]+(1− βθ)

∞∑
s=0

(βθ)sE
(1)
t [mct+s]+E

(1)
t [pt]

Combining this with the evolution of the aggregate price level (B.1) then gives:

pt = θpt−1 + (1− θ) (1− βθ)
(
λt − E

(1)
t [λt]

)
+ (1− θ)

∞∑
s=1

(βθ)sE
(1)
t [πt+s] + (1− θ) (1− βθ)

∞∑
s=0

(βθ)sE
(1)
t [mct+s] + (1− θ)E(1)t [pt]
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Repeated substituting this back into itself then gives:

pt =
∞∑
k=0

(1− θ)k E(k)t

[
θpt−1 + (1− θ) (1− βθ)

(
λt − E

(1)
t [λt]

)
+ (1− θ)

∑∞
s=1 (βθ)sE

(1)
t [πt+s] + (1− θ) (1− βθ)

∑∞
s=0 (βθ)sE

(1)
t [mct+s]

]

Subtracting pt−1 from both sides and rearranging then gives

πt =

(
θ
∞∑
k=0

(1− θ)k E(k)t [pt−1]

)
− pt−1

+ (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k
(
υE

(k+1)
t [yt] + E

(k)
t [λt]

)
+
∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k E(k)t [πt+s + (1− βθ)mct+s]

which is the New Keysian Phillips Curve under Imperfect Common Knowledge (equation
(26) in the main text).

B.3 Firms’learning and the evolution of Xt

Combining equation (B.6) and the definition of g∗t (B.8) gives

gt (j) = (1− βθ) {Et (j) [pt + υyt] + ωt (j)}+ βθEt (j)
[
g∗t+1

]
But since g∗t+1 can be written as

g∗t+1 ≡ pt +

∞∑
s=1

(βθ)s−1 πt+s + (1− βθ)
∞∑
s=1

(βθ)s−1mct+s

we combine these two with the evolution of the aggregate price level to get

gt (j) = θpt−1 + (1− βθ)ωt (j) + (1− βθ) υEt (j) [yt] + (1− θ)Et (j) [gt]

+ Et (j)

[ ∞∑
s=1

(βθ)s πt+s + (1− βθ)
∞∑
s=1

(βθ)smct+s

]

Using the conjectured solution (50) - (51), this becomes

gt (j) = θpt−1 + (1− βθ)ωt (j) + (1− βθ) υa′Et (j) [Xt] + (1− θ)Et (j) [gt]

+ Et (j)

[ ∞∑
s=1

(βθ)s c′Xt+s + (1− βθ)
∞∑
s=1

(βθ)s
(
υa′Xt +BSXt+s

)]

where I have made use of the fact that Et (j) [ṽt] = Et (j) [v̂t] = 0. Using the conjectured
law of motion for the state, we obtain
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gt (j) = θpt−1 + (1− βθ)ωt (j) + (1− βθ) υa′Et (j) [Xt] + (1− θ)Et (j) [gt]

+ Et (j)

[
c′
∞∑
s=1

(βθ)s F sXt + (1− βθ)
(
υa′ +BS

) ∞∑
s=1

(βθ)s F sXt

]
Collecting terms, we get

gt (j) = θpt−1 + (1− βθ)ωt (j) (B.11)

+
{

(1− βθ) υa′ +
(
c′ + (1− βθ)

(
υa′ +BS

))
βθF (I − βθF )−1

}
︸ ︷︷ ︸

f ′

Et (j) [Xt]

+ (1− θ)Et (j) [gt]

Taking the simple average gives

gt = θpt−1 + (1− βθ)BSXt + f ′E
(1)
t [Xt] + (1− θ)E(1)t [gt]

where I have used the law of large numbers to write
∫
ωt (j) dj = λt +Q

∫
vt (j) dj = Bxt =

BSXt, where S is a matrix that selects xt from Xt. Repeatedly substituting this equation back
into itself gives

gt = θpt−1 + (1− βθ)BSXt + f ′E
(1)
t [Xt]

+ (1− θ)E(1)t
[
θpt−1 + (1− βθ)BSXt + f ′E

(1)
t [Xt]

]
+ (1− θ)2E(2)t

[
θpt−1 + (1− βθ)BSXt + f ′E

(1)
t [Xt]

]
+ · · ·

In the limit, this becomes

gt =
θ

1− (1− θ)pt−1

+ (1− βθ)BSXt

+
(
f ′ + (1− θ) (1− βθ)BS

)
E
(1)
t [Xt]

+ (1− θ)
(
f ′ + (1− θ) (1− βθ)BS

)
E
(2)
t [Xt]

+ (1− θ)2
(
f ′ + (1− θ) (1− βθ)BS

)
E
(3)
t [Xt]

+ · · ·

Substituting this back into (B.11) gives

gt (j) = θpt−1+(1− βθ)ωt (j)+f ′Et (j) [Xt]+(1− θ)Et (j)



θ
1−(1−θ)pt−1

+ (1− βθ)BSXt

+ (f ′ + (1− θ) (1− βθ)BS)E
(1)
t [Xt]

+ (1− θ) (f ′ + (1− θ) (1− βθ)BS)E
(2)
t [Xt]

+ (1− θ)2 (f ′ + (1− θ) (1− βθ)BS)E
(3)
t [Xt]

+ · · ·
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(B.12)

Expanding ωt (j) and rearranging, this gives

gt (j) = pt−1+(1− βθ) (BSXt +Qvt (j))+Et (j)

[(
f ′ + (1− θ) (1− βθ)BS

) ∞∑
k=0

(1− θ)k E(k)t [Xt]

]
(B.13)

and, eventually,

gt (j) = pt−1+(1− βθ)BS︸ ︷︷ ︸
γ′2

Xt+
(
f ′ + (1− θ) (1− βθ)BS

)
(1− (1− θ)Ts)−1︸ ︷︷ ︸

γ′3

Et (j) [Xt]+(1− βθ)Q︸ ︷︷ ︸
γ′4

vt (j)

(B.14)

which is in the generalised format detailed in section (3.6) of the main text. Proposition 1
therefore applies and firms’hierarchy of expectations will evolve according to:

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

As an aside, we can take the average of (B.14) and plug it into the linearised expression for
the evolution of the price level to obtain an alternative expression for inflation as a function of
the current state:

pt = θpt−1 + (1− θ) gt
= θpt−1 + (1− θ)

(
pt−1 + γ′2Xt + γ′3Et [Xt]

)
= pt−1 + (1− θ)

(
γ′2 + γ′3Ts

)
Xt︸ ︷︷ ︸

πt

B.4 Solving the model

At this point, we have that the economy is described by the Phillips curve (26) with perfect
knowledge of previous-period prices:

πt = (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k
(
υE

(k+1)
t [yt] + E

(k)
t [λt]

)
+
∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k E(k)t [πt+s + (1− βθ)mct+s]

and, making use of the fact that both have complete information, the household’s Eular
equation (B.4) and the central bank’s policy function (48):

yt = Et [yt+1]− σEt [it − πt+1] + σ (εCt − Et [εCt+1])

it = κyyt + κπ0πt + κπ1Et [πt+1] + εMt
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In addition, we have that endogenous variables are linear functions of the state ((50) - (51)):

yt = a′Xt + b′
[
ṽt
v̂t

]
(B.15)

πt = c′Xt (B.16)

and that the state follows an ARMA(1,1) process (33):

Xt = FXt−1 +G1ut +G2ṽt +G3ṽt−1 +G4v̂t−1

with ṽt and v̂t defined in equation (34).

To obtain the necessary conditions on the vectors a, b and c, start by substituting the
central bank policy into the household Eular equation

yt = Et [yt+1]− σ {(κyyt + κπ0πt + (κπ1 − 1)Et [πt+1])}+ σ (εCt − Et [εCt+1]− εMt)

Substituting in the conjectured solutions for yt and πt on the right hand side and gathering
the underlying shocks together into xt then gives

yt = a′Et [Xt+1]− σ
{(

κy

(
a′Xt + b′

[
ṽt
v̂t

])
+ κπ0c

′Xt + (κπ1 − 1) c′Et [Xt+1]

)}
+ σ

([
0 1 0 −1

]
−
[
0 1 0 0

]
A
)
xt

Finally, making use of the definition of Xt and its law of motion, we have

yt = a′ (FXt +G3ṽt +G4v̂t)

− σ
{(

κy

(
a′Xt + b′

[
ṽt
v̂t

])
+ κπ0c

′Xt + (κπ1 − 1) c′ (FXt +G3ṽt +G4v̂t)

)}
+ d′Xt

where

d′ = σ
([[

0 1 0 −1
]

01×∞
]
−
[[

0 1 0 0
]

01×∞
]
F
)

This then simplifies to

yt =
{
a′F − σ

(
κya

′ + κπ0c
′ + (κπ1 − 1) c′F

)
+ d′

}
Xt

+
{
a′
[
G3 G4

]
− σκyb′

} [ṽt
v̂t

]
from which we can immediately read off that a and b must satisfy:

a′ = a′F − σ
(
κya

′ + κπ0c
′ + (κπ1 − 1) c′F

)
+ d′

b′ = a′
[
G3 G4

]
− σκyb′
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Repeating the process with the Phillips Curve, we substitute in the conjectured solutions
for yt and πt on the right hand side

πt = (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k
(
υE

(k+1)
t

[
a′Xt + b′

[
ṽt
v̂t

]]
+ E

(k)
t [BSXt]

)

+

∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k E(k)t
[
c′Xt+s + (1− βθ)

(
υ

(
a′Xt+s + b′

[
ṽt+s
v̂t+s

])
+BSXt+s

)]
where the matrix S selects xt from Xt. Crucially, note that the expectations within the

Phillips Curve are the average of those formed by firms. As such, we have that Et (j) [ṽt+s] =
Et (j) [v̂t+s] = 0 ∀j and ∀s ≥ 0,23 so that

πt = (1− θ) (1− βθ)
∞∑
k=0

(1− θ)k
(
υa′E

(k+1)
t [Xt] +BSE

(k)
t [Xt]

)
+
∞∑
k=1

∞∑
s=1

(βθ)s (1− θ)k
{
c′F s + (1− βθ)

(
υa′F s +BSF s

)}
E
(k)
t [Xt]

Next, using Ts as the matrix that selects E
(1)
t [Xt] from Xt, this becomes

πt = (1− θ) (1− βθ)
( ∞∑
k=0

(1− θ)k
(
υa′T k+1s +BST ks

))
Xt

+
(
c+ (1− βθ)

(
υa′ +BS

))
βθF (I − βθF )−1

( ∞∑
k=1

(1− θ)k T ks

)
Xt

Further simplification and equalisation of coeffi cients then eventually yields the following
constraint

c′ = (1− θ)
{

(1− βθ) (υa′Ts +BS)

+βθ (c′ + (1− βθ) (υa′ +BS))F (I − βθF )−1 Ts

}
(I − (1− θ)Ts)−1

23Recall that Et (j) [ṽt] = Et (j) [v̂t] = 0 because, despite having Et (j) [vt (j)] 6= 0, in the limit each firm
receives a weight of zero (limN→∞ φN (j) = 0) and they have no information about other firms’shocks.
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