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I will mention open problems in my talk, which can also be found in

https://arxiv.org/abs/1805.07781.

Allan Lo

Topic: Codegree threshold for a large K
r
t -tiling.

Let H be an r-graph on n vertices, and K
r
t be the complete r-graph on t vertices. A

K
r
t -tiling in H is a collection of vertex-disjoint copies of K

r
t .

Question: Does there exist a constant C = C(r) such that: For large t, every r-

graph H with codegree �r�1(H) �
⇣
1� C

log t
tr�1 + ✏

⌘
|V (H)| contains a K

r
t -tiling covering

all but at most ✏
0
n vertices?

The statement holds for

�r�1(H) �
 
1� 1�t�1

r�1

� + ✏

!
|V (H)| .

Note that this is the natural bound for constructing a K
r
t greedily. On the other hand,

�r�1(H) �
✓
1� C

0
log t

tr�1
+ ✏

◆
|V (H)|

implies a copy of K
r
t . (Answering this question would also lead to a codegree threshold

for the existence of perfect K
r
t -tiling.)
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Oliver Cooley and Mihyun Kang

Let Hk(n, p) denote the binomial random k-uniform hypergraph, where the vertex set is

[n] := {1, . . . , n} and each k-element subset of [n] forms a hyperedge with probability p

independently. For 1  j  k� 1, a j-tight path of length ` is a sequence e0, . . . , e`�1 of

` distinct hyperedges such that ei = {vi(k�j)+1, . . . vi(k�j)+k} for some distinct vertices

for 0  i  `� 1.

(Q1) Determine the asymptotic behaviour of the number of j-tight paths/cycles of

length ` in Hk(n, p).

(Q2) Determine the asymptotic order of the longest j-tight path/cycle in Hk(n, p).

Maya Stein

Problem 1: Given a k-uniform complete hypergraph on n vertices whose edges are

coloured with two colours, we would like to cover all or almost all of its vertices by two

disjoint monochromatic l-paths of distinct colours (an l-path is one where consecutive

edge intersect in exactly l vertices). We know that we can cover all but ⇡ 4k vertices if

l  k/2. We also know that for k = 3 (and l = 1 or l = 2) we can cover all but o(n).

(And the latter result implies that for l = 2k/3 we can also cover all but o(n).) It would

be nice to find some more results for l > k/2, when k > 3. (Also, we can ask the same

question for paths, we know that all but k � 2 vertices can be covered by two disjoint

loose paths, and something similar is true for l-paths with l le k/2. For k = 3, we know

how to cover all vertices with tight or loose paths.)

Problem 2: Given i and j, what is the maximum n = n(i, j) such that Kn is the

union of j triangle-free graphs Hj , and each edge of Kn is covered by at least i of the

graphs Hj? If i = 1 this is the j-colour Ramsey number of the triangle minus 1, but if

i > 2j/3, then n(i, j) = 2, so at some point the problem seems to become easier. Other

known numbers are n(2, 3) = 4 and n(2, 4) = 8. The smallest not known pair (i, j) is

(2, 5).
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1 The minimum number of triangles in graphs
with n vertices m =

⇣
n

2

⌘
�O(n) edges

A special case of the Erdős-Rademacher problem asks for g3(n,m), the min-
imum number of triangles in a graph G with n vertices and m edges. Due to
the results in [Raz08, PR17, LPS17], we know g3(n,m) for all pairs (n,m)
except when m =

�n
2

�
� o(n2).

Erdős [Erd62] observed if m �
�n
2

�
� n

2 then, trivially, all extremal graphs
are obtained from the n-clique by removing a matching. While solving the
rangem =

�n
2

�
�O(n) seems to be as di�cult as the whole range (see [LPS17,

Lemma 10.1]), it may be worth to try to push Erdős’ observation as far as
possible.
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Open problem

Christina Goldschmidt

November 30, 2018

Consider a random hypergraph on n vertices such that each possible 2-edge is present
independently with probability a/n and every possible 3-edge is present independently with
probability b/n

2, where a > 0 and b � 0 are fixed constants. A vertex chosen uniformly at
random is infected with a disease. The disease always spreads along 2-edges but may only
spread along a 3-edge if two of its three vertices have already been infected. We are interested
in the size of the infected set. (Let I(v) be the set of vertices infected by the vertex v and, more
generally, I(S) the set of vertices infected by a set S of initially infected vertices. One might
want to think of I(v) as the “component” of v, but this isn’t particularly natural here because
of a lack of symmetry: we may have w 2 I(v) but v /2 I(w).)

If a < 1, then only a vanishing proportion of the vertices gets infected. If a > 1, on the
other hand, there is strictly positive probability that a positive proportion of the vertices gets
infected. This is, of course, essentially the emergence of the giant component in the Erdős-
Rényi random graph G(n, a/n): for a > 1, with non-vanishing probability, the infected vertex
lies in the giant component of the underlying 2-graph and infects all of it. (Note, however,
that the infected set for b > 0 is strictly larger than the 2-edge giant – the 3-edges do make a
difference.)

The behaviour when a = 1 is much more delicate, and depends crucially on the value
of b. The largest 2-edge components are on the order of n2/3 now, and collectively contain a
vanishing proportion of the vertices. So for b = 0 our single uniform infected vertex will whp
infect only an O(1) number of other vertices and it’s not hard to convince yourself that the same
is true for any b > 0 also. But for b = 0 if we allow ourselves to add O(n1/3) infected vertices
one by one, we will find some of the largest 2-components, and generate a total infection of size
⇥(n2/3). That turns out to be true also for 0 < b < 1. However, genuinely different behaviours
are possible. If b = 1, by adding O(n2/5) infected vertices one by one, we will generate a total
infection of size ⇥(n4/5). On the other hand, if b > 1, then adding ⇥(n2/5) infected vertices
one by one is sufficient to generate a total infection of size ⇥(n). Indeed, the proportion of
vertices infected converges in probability to ✓ > 0 (where ✓ the solution to some equation). In
this regime, the phase transition at a = 1 is discontinuous, although the formulation in which
we keep adding single infected vertices until the process of infection “gets going” feels a little
unsatisfactory. (Although it did help to get me a PhD...!)

Open problem. Suppose a = 1 and b > 1. What is the size of the smallest set S? of vertices
such that |I(S?)|/n

p! ✓? Might it even be the case that there exists a vertex v? such that
|I(v?)|/n

p! ✓?
(This model and its phase transition were first studied by Darling and Norris [2] and Dar-

ling, Levin and Norris [3]. The a = 1 size-scaling results were proved in [4] using an adapted
version of Aldous’ exploration-process approach to the critical Erdős-Rényi random graph [1].
There are analogous results, with a whole series of different critical size-scalings, in the setting
where we allow possible k-edges to be present with probability ak/n

k�1 independently, for
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any k � 2.)
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Let F be a collection of (hyper)graphs. We say that a graph is F -free if it
does not contain, as a subgraph, any member of F . Further, we say that
elements of F are forbidden subgraphs for the class of F -free graphs.
Many families of graphs can be characterized in terms of forbidden substruc-
tures, for example:

• Forests, F = {cycles};

• Bipartite graphs, F := {odd cycles};

The examples above have in common that they have a specific structural
characterization, but one can give an alternative definition in terms of for-
bidden subgraphs.
We are interested in generalize the characterization of bipartite graphs to
higher uniformities, which, as far as we know, has not been studied yet.
Let H3 be the family of 3-partite 3-uniform graphs.

Question 0.1. Is there an explicit family F such that H3 is the class of
F-free graphs?

One could think that H3 is the class of C 6⌘3-free 3-graphs, where C 6⌘3 denotes
the collection of 3-uniform tight cycles whose length is not divisible by 3. It
is clear that every member of H3 is C 6⌘3-free. However, there are C 6⌘3-free
graphs which are not 3-partite. For instance, let C be the 3-graph obtained
by taking a tight cycle of length 11 and identifying each vertex at a position
divisible by 3(see Figure 1 below).

Figure 1: The vertices 3, 6, 9 are mapped to 0.

Note that C is C 6⌘3-free but is not 3-partite. Therefore, H3 is strictly con-
tained in the family of C 6⌘3-free graphs. On the other hand, observe that C
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is actually an surjective homomorphism of C(3)
11 , the 3-uniform tight cycle of

length 11. So, if C 6⌘3 denotes the class of graphs which are obtained by a
surjective homomorphism of members of C 6⌘3, so in particular C 6⌘3 ⇢ C 6⌘3, one
could conjecture that H3 is characterized by forbidding all graphs from C 6⌘3

1.

Let X and Y be disjoint sets and let H be 3-graph with vertex set V (H) =
X [Y and edge set consisting only of triples of the form xx

0
y with x, x

0
2 X

and y 2 Y . Note that H can only have cycles of length divisible by 3. Fur-
ther, if some vertex y 2 Y has a non-bipartite link graph, then H is not
3-partite.

This leads to the following natural questions:

Question 0.2. Is there a structural characterization for the family of C 6⌘3-
free graphs ?

Question 0.3. Generalize Question 0.1 and Question 0.2 to higher unifor-
mities.

1For bipartite graphs is equivalent to forbid odd cycles and homomorphisms of odd
cycles.
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