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Abstract. The chromatic threshold δχ(H) of a graph H is the infimum of d > 0 such
that there exists C = C(H, d) for which every H-free graph G with minimum degree at
least d|G| satisfies χ(G) 6 C. We prove that

δχ(H) ∈
{

r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}

for every graph H with χ(H) = r > 3. We moreover characterise the graphs H with a
given chromatic threshold, and thus determine δχ(H) for every graph H. This answers
a question of Erdős and Simonovits [Discrete Math. 5 (1973), 323–334], and confirms a
conjecture of  Luczak and Thomassé [preprint (2010), 18pp].

1. Introduction

Two central problems in Graph Theory involve understanding the structure of graphs
which avoid certain subgraphs, and bounding the chromatic number of graphs in a given
family. For more than sixty years, since Zykov [42] and Tutte [5] first constructed triangle-
free graphs with arbitrarily large chromatic number, the interplay between these two
problems has been an important area of study. The generalisation of Zykov’s result, by
Erdős [12], to H-free graphs (for any non-acyclic H), was one of the first applications of
the probabilistic method in combinatorics.

In 1973, Erdős and Simonovits [14] asked whether such constructions are still possible
if one insists that the graph should have large minimum degree. As a way of investigating
their problem, they implicitly defined what is now known as the chromatic threshold of a
graph H as follows (see [14, Section 4]):

δχ(H) := inf
{

d : ∃C = C(H, d) such that if G is a graph on n vertices,

with δ(G) > dn and H 6⊆ G, then χ(G) 6 C
}

.
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That is, for d < δχ(H) the chromatic number of H-free graphs with minimum degree dn
may be arbitrarily large, while for d > δχ(H) it is necessarily bounded. In this paper we
shall determine δχ(H) for every graph H, and thus completely solve the problem of Erdős
and Simonovits.

The chromatic threshold has been most extensively investigated for the triangle H = K3,
where in fact much more is known. Erdős and Simonovits [14] conjectured that δχ(K3) = 1

3
,

which was proven in 2002 by Thomassen [39], and that moreover if G is triangle-free and
δ(G) > n/3 then χ(G) 6 3. This stronger conjecture was disproved by Häggkvist [18],
who found a (10n/29)-regular graph with chromatic number four. However, Brandt and
Thomassé [8] recently showed that the conjecture holds with χ(G) 6 3 replaced by χ(G) 6
4. Hence the situation is now well-understood for triangle-free graphs G (see [3, 7, 8, 9,
18, 20, 30]), and can be summarised as follows:

δ(G) > 2n/5 10n/29 n/3 (1/3 − ε)n

χ(G) 6 2 3 4 ∞

For bipartite graphs H, it follows trivially from the Kövári-Sós-Turán Theorem [26] that
δχ(H) = 0, and for larger cliques, Goddard and Lyle [16] determined the chromatic thresh-
old, proving that δχ(Kr) = 2r−5

2r−3
for every r > 3. Erdős and Simonovits also conjectured

that δχ(C5) = 0, which was proven (and generalised to all odd cycles) by Thomassen [40].
For graphs other than cliques and odd cycles, very little was known until the recent

work of Lyle [31] and the breakthrough of  Luczak and Thomassé [30] who introduced a
new technique which allows the study of δχ(H) for more general classes of graphs. In order
to motivate their results, let us summarise what was known previously for 3-chromatic
graphs H. We have seen that there are such graphs with chromatic threshold 0 (the odd
cycle C5), and chromatic threshold 1

3
(the triangle). A folklore result is that there are

also 3-chromatic graphs with chromatic threshold 1
2
, such as the octahedron K2,2,2. Indeed,

given a graph H with χ(H) = r > 3, the decomposition family M(H) of H is the set of
bipartite graphs which are obtained from H by deleting r − 2 colour classes in some r-
colouring of H. Observe that K2,2,2 has the property that its decomposition family contains
no forests (in fact, M(K2,2,2) = {C4}). It is not difficult to show that whenever there are
no forests in M(H), the graph H has chromatic threshold 1

2
(see Proposition 5).

Thus it remains to consider those 3-chromatic graphs whose decomposition family does
contain a forest; in other words, graphs which admit a partition into a forest and an
independent set (such as all odd cycles). Lyle [31] proved that these graphs have chromatic
threshold strictly smaller than 1

2
. In fact, as we shall show, they have chromatic threshold

at most 1
3

(see Theorem 2).  Luczak and Thomassé [30] described a large sub-family of these
graphs with chromatic threshold strictly smaller than 1

3
. More precisely they considered

triangle-free graphs which admit a partition into a (not necessarily perfect) matching and
an independent set; they called a graph (such as C5) near-bipartite if it is of this form, and
proved that if H is near-bipartite then δχ(H) = 0.
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T2

S

Figure 1. An illustration of near-acyclic graphs with partition into an in-
dependent set S and a forest F consisting of two trees T1 and T2.

However,  Luczak and Thomassé did not believe that the near-bipartite graphs are the
only graphs with chromatic threshold zero. Generalising near-bipartite graphs, they de-
fined H to be near-acyclic if χ(H) = 3 and H admits a partition into a forest F and an
independent set S such that every odd cycle of H meets S in at least two vertices. Equiva-
lently, for each tree T in F with colour classes V1(T ) and V2(T ), there is no vertex of S with
neighbours in both V1(T ) and V2(T ) (see also Figure 1). Observe that the near-bipartite
graphs are precisely the near-acyclic graphs in which every tree is a single edge or vertex.
The first graph in Figure 2 is near-acyclic (as illustrated by the highlighted forest), but
has no matching in its decomposition family and thus is not near-bipartite.

Lyle [31] proved that δχ(H) = 0 for a sub-family of near-acyclic graphs H which are not
necessarily near-bipartite, and  Luczak and Thomassé gave a construction (see Section 4)
showing that every graph which is not near-acyclic has chromatic threshold at least 1

3
.

They made the following conjecture.

Conjecture 1 ( Luczak and Thomassé [30]). Let H be a graph with χ(H) = 3. Then
δχ(H) = 0 if and only if H is near-acyclic.

We shall prove Conjecture 1, and moreover determine δχ(H) for every graph H. In this
theorem, we use the following generalisation of near-acyclic graphs. We call a graph H
r-near-acyclic if χ(H) = r > 3, and there exist r− 3 independent sets in H whose removal
yields a near-acyclic graph. Note in particular that if H is r-near-acyclic, then there is a
forest in M(H). Our main theorem is as follows.

Theorem 2. Let H be a graph with χ(H) = r > 3. Then

δχ(H) ∈
{

r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}

.

Moreover, δχ(H) 6= r−2
r−1

if and only if H has a forest in its decomposition family, and

δχ(H) = r−3
r−2

if and only if H is r-near-acyclic.

For example, the dodecahedron is 3-chromatic and near-bipartite, hence it has chromatic
threshold 0 (Figure 2 shows the dodecahedron together with a corresponding matching).
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Figure 2. A near-acyclic graph that is not near-bipartite, the dodecahe-
dron, and the icosahedron.

The icosahedron on the other hand has chromatic threshold 3
5

because it is four-chromatic
and has a forest in its decomposition family (a partition of the icosahedron into this forest
and two independent sets is also displayed in Figure 2), but is not 4-near-acyclic.

For easier reference, given H with χ(H) = r, we define

θ(H) :=
r − 3

r − 2
, λ(H) :=

2r − 5

2r − 3
and π(H) :=

r − 2

r − 1
.

Observe that π(H) is precisely the Turán density of H, and therefore the Erdős-Stone
Theorem [15] yields δχ(H) 6 π(H) for all H. Furthermore, the constructions giving the
lower bounds in Theorem 2 are straightforward extensions of those given in [30, 31]. It
follows that our main challenge is to prove that δχ(H) 6 λ(H) when M(H) contains a
forest, and that δχ(H) 6 θ(H) when H is r-near-acyclic.

The recent results of both Lyle [31] and  Luczak and Thomassé [30] contain important new
techniques, which we re-use and extend here. Most significantly,  Luczak and Thomassé [30]
introduced a concept which they termed paired VC-dimension, which is based on the
classical Vapnik-Červonenkis dimension of a set-system [41]. Our proof of Conjecture 1
relies on an extension of this technique (see Section 6), together with a new embedding
lemma (see Section 5) which allows us to find a copy of H in sufficiently many ‘well-
structured’ copies of the ‘Zykov graph’, which is a universal near-bipartite graph.

Lyle [31] introduced a novel graph partitioning method based on the celebrated Sze-
merédi Regularity Lemma. We shall use his partition in Section 3, together with averaging
arguments similar to those in [1], to prove that δχ(H) 6 λ(H) for any graph H such that
M(H) contains a forest. In Section 7 we shall combine and extend both techniques in
order to generalise Conjecture 1 to arbitrary r > 3.

Organisation. In Section 2 we state the Regularity Lemma in the form in which we
shall use it, together with some auxiliary tools, and provide some notes on notation. In
Section 3 we prove that δχ(H) 6 λ(H) for any graph H such that M(H) contains a
forest. In addition we give a construction which shows that if M(H) does not contain a
forest, then δχ(H) > π(H). In Section 4 we provide a construction (using the Borsuk-
Ulam Theorem) which shows that for graphs H which are not r-near-acyclic, we have
δχ(H) > λ(H). In Section 5 we introduce a generalisation of the class of Zykov graphs, a
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class of universal near-bipartite graphs which were used in [30]. We show that for every
near-acyclic graph H, if G contains a suitably well-structured collection of Zykov graphs,
then G contains H. Complementing this, in Section 6 we refine  Luczak and Thomassé’s
paired VC-dimension argument to show that every graph with linear minimum degree and
sufficiently large chromatic number indeed contains such a well-structured collection of
Zykov graphs. Completing the proof of Theorem 2, in Section 7 we give a construction
which shows that for any r-chromatic graph H we have δχ(H) > θ(H), and combine
the results of Sections 5 and 6 with the Regularity Lemma in order to show that for r-
near-acyclic graphs H, we have δχ(H) 6 θ(H). Finally, in Section 8 we conclude with a
collection of open problems.

2. Tools and the Regularity Lemma

In this section we shall state some of the tools used in the proof of Theorem 2. In par-
ticular, we shall recall the Szemerédi Regularity Lemma, which is one of the most powerful
and important results in Graph Theory. Introduced in the 1970s by Szemerédi [38] in order
to prove that sets of positive density in the integers contain arbitrarily long arithmetic pro-
gressions (a result known as Szemerédi’s Theorem [37]), it says (roughly) that any graph
can be approximated well by a bounded number of ‘quasi-random’ graphs. The lemma
has turned out to have an enormous number of applications, and many important exten-
sions and variations have been proved (see for example [17, 23, 29, 34] and the references
therein). The reader who is unfamiliar with the Regularity Lemma is encouraged to see
the excellent surveys [24, 25].

We begin by stating the Regularity Lemma in the form in which we shall use it. Let

(A,B) be a pair of subsets of vertices of a graph G. We write d(A,B) = e(A,B)
|A||B|

, and call

d(A,B) the density of the pair (A,B). (Here e(A,B) denotes the number of edges with
one endpoint in A and the other in B.) For each ε > 0, we say that (A,B) is ε-regular if
|d(A,B) − d(X, Y )| < ε for every X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|.

A partition V0 ∪ V1 ∪ . . . ∪ Vk of V (G) is said to be an ε-regular partition (or sometimes
a Szemerédi partition of G for ε) if |V0| 6 εn, |V1| = . . . = |Vk|, and all but at most εk2 of
the pairs (Vi, Vj) are ε-regular. We will often refer to the partition classes V1, . . . , Vk as the
clusters of the regular partition. In its simplest form, the Regularity Lemma is as follows.

Szemerédi’s Regularity Lemma. For every ε > 0 and every k0 ∈ N, there exists a
constant k1 = k1(k0, ε) such that the following holds. Every graph G on at least k1 vertices
has an ε-regular partition into k parts, for some k0 6 k 6 k1.

We shall in fact use a slight extension of the statement above, which follows easily
from [24, Theorem 1.10] (a proof can be found in, e.g., [27, Proposition 9]). Given 0 < d < 1
and a pair (A,B) of sets of vertices in a graph G, we say that (A,B) is (ε, d)-regular if it
is ε-regular and has density at least d.

Given an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vk of V (G) and 0 < d < 1, we define a
graph R, called the reduced graph of the partition, as follows: V (R) = [k] = {1, . . . , k} and
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ij ∈ E(R) if and only if (Vi, Vj) is an (ε, d)-regular pair. We shall occasionally omit the
partition, and simply say that G has (ε, d)-reduced graph R.

Szemerédi’s Regularity Lemma (minimum degree form). Let 0 < ε < d < δ < 1,
and let k0 ∈ N. There exists a constant k1 = k1(k0, ε, δ, d) such that the following holds.
Every graph G on n > k1 vertices, with minimum degree δ(G) > δn, has an (ε, d)-reduced
graph R on k vertices, with k0 6 k 6 k1 and δ(R) >

(

δ − d− ε
)

k.

Thus the reduced graph R of G ‘inherits’ the high minimum degree of G. The main
motivation for the definition of ε-regularity is the following so-called ‘counting lemma’
(see [24, Theorem 3.1], for example).

Counting Lemma. Let G be a graph with (ε, d)-reduced graph R whose clusters contain
m vertices, and suppose that there is a homomorphism φ : H → R. Then G contains at
least

1
∣

∣Aut(H)
∣

∣

(

d− ε|H|
)e(H)

m|H|

copies of H, each with the property that every vertex x ∈ V (H) lies in the cluster corre-
sponding to the vertex φ(x) of R.

Note that since we count unlabelled copies of H, it is necessary to correct for the possi-
bility that two different maps from H to G may yield the same copy of H (precisely when
they differ by some automorphism of H). In fact, such an automorphism of H must also
preserve φ, but dividing by the number of elements of the full automorphism group Aut(H)
provides a lower bound which is sufficient for our purposes. We state one more useful fact
about subpairs of (ε, d)-regular pairs.

Fact 3. Let (U,W ) be an (ε, d)-regular pair and U ′ ⊆ U , W ′ ⊆ W satisfy |U ′| > α|U | and
|W ′| > α|W |. Then (U ′,W ′) is (ε/α, d− ε)-regular.

We shall also use the following straightforward and well-known fact several times.

Fact 4. Let F be a forest and G be a graph on n > 1 vertices. If e(G) > |F |n, then F ⊆ G.

Proof. Since G has average degree at least 2|F |, it contains a subgraph G′ with minimum
degree at least |F |. It is easy to show that G′ contains F ; for example, remove a leaf and
apply induction. �

2.1. Notation. We finish this section by describing some of the notation which we shall
use throughout the paper. Most is standard (see [6], for example); we shall repeat non-
standard definitions when they are first used.

For each t ∈ N, let [t] = {1, . . . , t}. We say that we blow up a vertex v ∈ V (G) to size t
if we replace v by an independent set of size t, and replace each edge containing v by a
complete bipartite graph. Given disjoint sets X and Y , we shall write K[X, Y ] for the edge
set of the complete bipartite graph on X ∪ Y , that is, the set of all pairs with one end in
X and the other in Y . We write Ks(t) for the complete s-partite graph with t vertices in
each part: that is, the graph obtained from Ks by blowing up each of its vertices to size t.
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Given a graph G, we write E(G) for the set of edges of G, and e(G) for |E(G)|. We use
both |G| and v(G) to denote the number of vertices of G. Given a set X ⊆ V (G), we write
E(X) for the set of edges of G with both ends in X, and N(X) for the set of common
neighbours of the vertices in X. If D ⊆ E(G), then N(D) denotes the set of common
neighbours of V (D), the set of the endpoints of edges in D. (In particular, if e = xy is an
edge then N(e) = N

(

{x, y}
)

= N(x) ∩ N(y).) Further, we let G[D] denote the subgraph

of G with vertex set V (D) and edge set D, and write d(D) for the average degree of G[D]
and δ(D) for the minimum degree of G[D].

A graph G is said to be C-degenerate if there exists an ordering (v1, . . . , vn) of V (G)
such that vk+1 has at most C neighbours in {v1, . . . , vk} for every 1 6 k 6 n− 1. Finally,
if e1, . . . , eℓ ∈ E(G), then we shall write eℓ for the tuple (e1, . . . , eℓ).

3. Graphs with large chromatic threshold

In this section we shall categorise the graphs H with chromatic threshold greater than
λ(H). First observe that a trivial upper bound on δχ(H) is given by the Turán density
of H,

π(H) = lim
n→∞

ex(n,H)
(

n
2

) =
χ(H) − 2

χ(H) − 1
,

since if δ(G) = δn with δ > π(H)n then H ⊆ G, by the Erdős-Stone Theorem [15].
Moreover, it is not hard to prove the following sufficient condition for equality, which can
be found, for example, in [31]. Recall that M(H) denotes the decomposition family of H.

Proposition 5. Let H be a graph with χ(H) = r > 3. If M(H) does not contain a forest,
then δχ(H) = π(H) = r−2

r−1
.

For each k, ℓ ∈ N, we shall call a graph G a (k, ℓ)-Erdős graph if it has chromatic number
at least k, and girth (length of the shortest cycle) at least ℓ. In one of the first applications
of the probabilistic method, Erdős [12] proved that such graphs exist for every k and ℓ.

Proof of Proposition 5. Let H be a graph with χ(H) = r > 3 such that M(H) contains
no forest, let C ∈ N, and let G′ be a (C, |H| + 1)-Erdős graph; that is, χ(G′) > C and
girth(G′) > |H| + 1. Let G be the graph obtained from the complete, balanced (r − 1)-
partite graph on (r− 1)|G′| vertices by replacing one of its partition classes with G′. Then
δ(G) = r−2

r−1
v(G), H 6⊆ G, and χ(G) > C. �

We remark that the same construction, with the complete balanced (r−1)-partite graph
replaced by a complete balanced (r− 2)-partite graph, shows that, whatever the structure
of H, its chromatic threshold is at least r−3

r−2
(see Proposition 35).

Lyle [31] showed that the condition of Proposition 5 is necessary.

Theorem 6 (Lyle [31]). If χ(H) = r > 3, then δχ(H) < π(H) = r−2
r−1

if and only if the
decomposition family of H contains a forest.

In this section we shall strengthen this result by proving that if δχ(H) < π(H), then it
is at most λ(H).
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Theorem 7. Let H be a graph with χ(H) = r > 3. If M(H) contains a forest, then

δχ(H) 6
2r − 5

2r − 3
.

The proof of Theorem 7 is roughly as follows. Let γ > 0, and let G be a sufficiently
large graph with

δ(G) >

(

2r − 5

2r − 3
+ γ

)

v(G).

For some suitably small ε and d, let V0 ∪ . . . ∪ Vk be the partition of V (G) given by the
minimum degree form of the Szemerédi Regularity Lemma, and R be the (ε, d)-reduced
graph of this partition. Define, for each I ⊆ [k],

XI :=
{

v ∈ V (G) : i ∈ I ⇔ |N(v) ∩ Vi| > d|Vi|
}

.

We remark that this partition was used by Lyle [31]. We show that χ
(

G[XI ]
)

is bounded
if H 6⊆ G. We distinguish two cases. If |I| > (2r − 4)/(2r − 3), then it is straightforward
to show that R[I] contains a copy of Kr−1, and hence, by the Counting Lemma, that N(x)
contains ‘many’ (i.e., a positive density of) copies of Kr−1(t) for every x ∈ XI . We then
use the pigeonhole principle (see Lemma 9, below), to show that either |XI | is bounded,
or H ⊆ G.

If |I| 6 (2r−4)/(2r−3), then set VI =
⋃

j∈I Vj, and observe that every pair x, y ∈ XI has

‘many’ common neighbours in VI . We use a greedy algorithm (in the form of Lemma 9(a ))
to conclude that every edge is contained in a positive density of copies of Kr. Finally, we
shall use a counting version of a lemma of Erdős (Lemma 8) together with the pigeonhole
principle to show that when H 6⊆ G, χ(G[XI ]) is bounded (see Lemma 10).

We begin with some preliminary lemmas. The following lemma from [1] will be an
important tool in the proof; it is a counting version of a result of Erdős [13].

Lemma 8 (Lemma 7 of [1]). For every α > 0 and s, t ∈ N there is an α′ = α′(α, s, t) > 0
such that the following holds. Let G be a graph on n vertices with at least αns copies of Ks.
Then G contains at least α′nst copies of Ks(t).

We shall also use the following easy lemma, which is just an application of a greedy
algorithm and the pigeonhole principle. Let G + H denote the graph obtained by taking
disjoint copies of G and H, and adding a complete bipartite graph between the two.

Lemma 9. Let α, δ > 0 and s, t ∈ N, let F be a forest, and suppose that H ⊆ F + Ks(t).
Let G be a graph on n vertices, and X ⊆ V (G).

(a ) If δ(G) > δn and

|X| >
(

α1/ss + (1 − δ)(s− 1)
)

n ,

then G[X] contains at least αns copies of Ks.
(b ) If G

[

N(x)
]

contains at least αn(s+1)|H| copies of Ks+1(|H|) for every x ∈ X, then
either H ⊆ G or |X| 6 |H|/α.
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Proof. For part (a ), we construct copies of Ks in G[X] using the following greedy algorithm:
First choose an arbitrary vertex x1 ∈ X, then a vertex x2 ∈ X in the neighbourhood of x1,
then x3 ∈ N(x1)∩N(x2)∩X, and so on, until we find xs ∈ X in the common neighbourhood
of x1, . . . , xs−1. Clearly, G

[

{x1, . . . , xs}
]

is a copy of Ks.
Now we simply count: for choosing xi we have at least

|X| − (i− 1)(1 − δ)n > α1/ss · n > (s!α)1/s · n
possibilities, so in total we have at least s!αns choices. Since the algorithm can construct
a particular copy of Ks at most in s! different ways, we have found at least αns distinct
Ks-copies in G[X].

For part (b ), simply observe that, by the pigeonhole principle, there is a copy T of
Ks+1(|H|) in G such that T ⊆ G

[

N(x)
]

for at least α|X| vertices of X. Since H ⊆
Ks+2(|H|) this implies that either H ⊆ G or α|X| < |H|. �

The following result follows easily from Lemma 8. For a forest F and H ⊆ F +Ks(t), it
will enable us to draw conclusions about the chromatic number of an H-free graph which
contains many Ks+2-copies arranged in a suitable way.

Lemma 10. For every α > 0 and s, t ∈ N, there exists α′ = α′(α, s, t) such that for every
forest F and every graph H ⊆ F + Ks(t), the following holds. Let G be an H-free graph
on n vertices, and let X ⊆ V (G) be such that every edge xy ∈ E

(

G[X]
)

is contained in at
least αns copies of Ks+2 in G.
Then G[X] is (2|F |/α′)-degenerate, and hence χ

(

G[X]
)

6 (2|F |/α′) + 1.

Given a subgraph K of G, we say that an edge e = xy of G extends to e + K if
V (K) ⊆ N(x, y). We say e extends to a copy of e + Ks(t) if e extends to e + K for some
copy K of Ks(t) in G.

Proof of Lemma 10. Let α′ = α′(α, s, t) be the constant provided by Lemma 8, let xy ∈
E(G[X]) and let G′ = G[N(x)∩N(y)]. Then, by our assumption, G′ contains at least αns

copies of Ks. By Lemma 8, it follows that G′ contains α′nst copies of Ks(t), so xy extends
to at least α′nst copies of e + Ks(t) in G.

Now, let x1, . . . , x|X| be an ordering of the vertices of X with the property that xi has
minimum degree in Gi := G[X \ {x1, . . . , xi−1}] for each 1 6 i 6 |X|. In order to show
that G[X] is (2|F |/α′)-degenerate, it suffices to prove that

e(Gi) 6
|F |
α′

· |Gi|,
since then δ(Gi) 6 2|F |/α′, as desired.

Since each edge e ∈ E(Gi) extends to at least α′nst copies of e + Ks(t), it follows, by
the pigeonhole principle, that there is a copy K ′ of Ks(t) and a set Ei ⊆ E(Gi) with
|Ei| > α′e(Gi), such that e extends to e + K ′ for every e ∈ Ei. Let G∗

i be the graph with
vertex set V (Gi) and edge set Ei. Since H 6⊆ G, it follows that F 6⊆ G∗

i . Thus, by Fact 4,
we have

|F | · |Gi| > e(G∗
i ) > α′e(Gi),

as required. �
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We are ready to prove Theorem 7. We shall apply the minimum degree form of the
Szemerédi Regularity Lemma, together with the Counting Lemma and Lemmas 9 and 10.

Proof of Theorem 7. Let F be a forest, let r > 3, and let H be a graph with χ(H) = r
and F ∈ M(H). Observe that we have H ⊆ F + Kr−2(|H|). Let γ > 0, and let G be an
H-free graph with

δ(G) >

(

2r − 5

2r − 3
+ 2γ

)

n,

where n = |G|. We shall show that χ(G) is bounded above by some constant C = C(H, γ).
The first step is to apply the minimum degree form of Szemerédi’s Regularity Lemma

to G, with

(1) d :=
γ

2
, k0 := r2 and ε := min

{

γ

2
,

d2

2d + 2|H|

}

.

We obtain a partition V (G) = V0 ∪ V1 ∪ . . . ∪ Vk, where k0 6 k 6 k1 = k1(ε, d, k0), with
an (ε, d)-reduced graph R such that

δ(R)
(1)

>

(

2r − 5

2r − 3
+ γ

)

k.

We now partition the vertices of V (G) depending upon the collection of the sets Vi to
which they send ‘many’ edges. More precisely, define V (G) =

⋃

I⊆[k] XI by setting

XI :=
{

v ∈ V (G) : i ∈ I ⇔ |N(v) ∩ Vi| > d|Vi|
}

,

for each I ⊆ [k]. We claim that χ
(

G[XI ]
)

6 max{C1, C2 + 1} for all I ⊆ [k], where
C1 = C1(H, γ) and C2 = C2(H, γ) are constants defined below. Since the XI form a
partition, this implies that χ(G) 6 2k max{C1, C2 + 1} 6 2k1 max{C1, C2 + 1} = C(H, γ)
as desired.

In order to establish this claim we distinguish two cases.

Case 1: |I| >
(

2r − 4

2r − 3

)

k.

In this case we shall show that |XI | 6 C1 (where C1 is a constant defined below, and
independent of n), and thus trivially χ

(

G[XI ]
)

6 C1. We first claim that R[I] contains a
copy of Kr−1. Indeed, by our minimum degree condition on R, we have

δ
(

R[I]
)

> δ(R) −
(

k − |I|
)

> |I| −
(

2

2r − 3
− γ

)

k >

(

r − 3

r − 2
+ γ

)

|I|.

Thus, by Turán’s Theorem (or simply by proceeding greedily), R[I] contains a copy of Kr−1,
as claimed. Let {W1, . . . ,Wr−1} ⊆ {V1, . . . , Vk} be the set of parts corresponding to this
copy of Kr−1.

Now let x ∈ XI , set W ′
i = N(x) ∩Wi for each i ∈ [r − 1], and note that |W ′

i | > d|Wi|,
by the definition of XI . By Fact 3, each pair (W ′

i ,W
′
j), i 6= j, is (ε/d, d − ε)-regular. By
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the Counting Lemma and (1), it follows that G[N(x)] contains at least

α1n
(r−1)|H|

copies of Kr−1(|H|), for some α1 = α1(H, γ) > 0.
Thus, by Lemma 9(b ) (applied with α = α1, s = r − 2 and X = XI), we have either

H ⊆ G, a contradiction, or |XI | 6 |H|/α1 = C1(H, γ), as claimed.

Case 2: |I| 6
(

2r − 4

2r − 3

)

k.

In this case we shall show that G[XI ] is C2-degenerate (where C2 is defined below and
independent of n), using Lemma 10. It follows that χ

(

G[XI ]
)

6 C2 + 1. First, we shall
show that every edge of G[XI ] is contained in at least γr−2nr−2 copies of Kr.

Let VI :=
⋃

i∈I Vi denote the set of vertices in clusters corresponding to I, and let
xy ∈ E(G[XI ]). By the definition of XI , x and y each have at most (d + ε)n neighbours
outside VI , and thus, since d+ ε < γ, they each have at least

(

2r−5
2r−3

+γ
)

n neighbours in VI .

It follows that they have at least 2
(

2r−5
2r−3

+ γ
)

− |VI | common neighbours in VI . Finally,

since |I| 6
(

2r−4
2r−3

)

k, we have |VI | 6
(

2r−4
2r−3

)

n, and thus x and y have at least
(

2r − 6

2r − 3
+ γ

)

n

common neighbours in VI .
Now, apply Lemma 9(a ) with α = γr−2, δ = 2r−5

2r−3
+ γ, s = r− 2, and X = N(x)∩N(y).

We have
2r − 6

2r − 3
+ γ = (r − 2)γ + (r − 3)

(

1 − 2r − 5

2r − 3
− γ

)

,

and so G[N(x) ∩N(y)] contains at least γr−2nr−2 copies of Kr−2, i.e., every edge of G[XI ]
is contained in γr−2nr−2 copies of Kr. Hence, by Lemma 10 (applied with α = γr−2,
s = r − 2 and t = |H|), there exists α′ = α′(γr−2, r − 2, |H|) > 0 such that G[XI ] is
2|H|/α′ = C2-degenerate, and so χ

(

G[XI ]
)

6 C2 + 1, as required. �

4. Borsuk-Hajnal graphs

In this section we shall describe the constructions (based on those in [30]) which provide
the lower bounds on δχ(H) in Theorem 2. One of the main building blocks in these
constructions is a class of graphs which also mark the first (and most famous) application
of algebraic topology in combinatorics: the Kneser graphs Kn(n, k), which are defined as

follows. Given n, k ∈ N, let Kn(n, k) have vertex set
(

[n]
k

)

, the family of k-vertex subsets of
[n], and let {S, T} be an edge if and only if S and T are disjoint. (For example, Kn(5, 2)
is the well-known Petersen graph.) These graphs were first studied by Kneser [21], who
conjectured that χ

(

Kn(n, k)
)

= n − 2k + 2 for every n and k. This problem stood open
for 23 years, until it was solved by Lovász [28], whose proof led eventually to a new area,
known as Topological Combinatorics (see [32], for example).
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Hajnal (see [14]) used the Kneser graphs in order to give the first examples of dense
triangle-free graphs with high chromatic number. Given k, ℓ,m ∈ N such that 2m + k
divides ℓ, let the Hajnal graph, denoted H(k, ℓ,m), be the graph obtained as follows:
first take a copy of Kn(2m + k,m), and a complete bipartite graph K2ℓ,ℓ, with vertex set
A ∪ B, where |A| = 2ℓ, and |B| = ℓ; next partition A into 2m + k equally sized pieces
A1, . . . , A2m+k; finally, add an edge between S ∈ V

(

Kn(2m + k,m)
)

and y ∈ Aj whenever
j ∈ S.

The following theorem, which appeared in [14], implies that δχ(K3) > 1/3.

Theorem 11 (Hajnal, 1973). For all ν > 0 and k ∈ N there exist integers m and ℓ0 such
that, for every ℓ > ℓ0, the Hajnal graph G = H(k, ℓ,m) satisfies v(G) = 3ℓ +

(

2m+k
m

)

,

χ(G) > k + 2 and δ(G) > (1
3
− ν)v(G), and is triangle-free.

In order to generalise Theorem 11 from triangles to arbitrary 3-chromatic graphs which
are not near-acyclic,  Luczak and Thomassé [30] defined the so-called Borsuk-Hajnal graphs.
We shall next describe their construction.

The Borsuk graph Bor(k, ε) has vertex set Sk, the k-dimensional unit sphere, and edge
set {xy : ∡(x, y) > π− ε}, where ∡(x, y) denotes the angle between the vectors x and y. It
follows from the Borsuk-Ulam Theorem (see [32], for example) that χ

(

Bor(k, ε)
)

> k + 2
for any ε > 0.

In order to construct Borsuk-Hajnal graphs from Borsuk graphs, we also need the fol-
lowing theorem, which follows easily from a result of of Nešetřil and Zhu [33].

Theorem 12. Given ℓ ∈ N and a graph G, there exists a graph G′ with girth at least ℓ,
such that χ(G′) = χ(G), and such that there exists a homomorphism φ from G′ to G.

Now, given k ∈ N, a set W ⊆ Sk with |W | even, and ε, δ > 0, we define the Borsuk-
Hajnal graph, BH = BH(W ; k, ε, δ), as follows.

First, let B = Bor(k, ε) be the Borsuk graph, and let U ⊆ Sk = V (B) be a finite
set, with U chosen such that χ(B[U ]) = k + 2. (This is possible by the de Bruijn-Erdős
Theorem [11], which states that every infinite graph with chromatic number k′ has a finite
subgraph with chromatic number k′.) Let B′ denote the graph given by Theorem 12,
applied with G = B[U ] and ℓ = k, let φ be the corresponding homomorphism from B′

to B[U ], and let U ′ be the vertex set of B′.
Let X be a set of size |W |/2, and recall that K[W,X] denotes the edge set of the complete

bipartite graph with parts Wand X.

Definition 13 (The Borsuk-Hajnal graph). Define BH = BH(W ; k, ε, δ) to be the graph
on vertex set U ′∪W ∪X, where U ′, W and X are pairwise disjoint and as described above,
with the following edges:

E(B′) ∪K[W,X] ∪
{

{u, w} : u ∈ U ′, w ∈ W and ∡
(

φ(u), w
)

<
π

2
− δ
}

.

Observe that χ(BH) > χ
(

B[U ]
)

> k.
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Theorem 14 ( Luczak and Thomassé [30]). For every k ∈ N and ν > 0, there exist ε, δ > 0
and W ⊆ Sk, such that, setting BH = BH(W ; k, ε, δ), we have

χ(BH) > k and δ(BH) >

(

1

3
− ν

)

v(BH).

Moreover every subgraph H ⊆ BH with v(H) < k and χ(H) = 3 is near-acyclic.
Hence, for any H with χ(H) = 3 which is not near-acyclic, we have δχ(H) > 1/3.

We shall generalise the  Luczak-Thomassé construction further, as follows, to give our
claimed lower bound on δχ(H) for r-chromatic H which are not r-near-acyclic.

Definition 15 (The r-Borsuk-Hajnal graph). Define BHr(W ; k, ε, δ) to be the graph ob-
tained from the Borsuk-Hajnal graph BH = BH(W ; k, ε, δ) by adding r − 3 independent
sets Y1, . . . , Yr−3 of size |Y1| = . . . = |Yr−3| = |W |, and the following edges:

⋃

16i<j6r−3

K[Yi, Yj] ∪
r−3
⋃

i=1

K[Yi, V (BH)].

That is, we add the complete (r − 2)-partite graph on V (BH) ∪ Y1 ∪ . . . ∪ Yr−3.

The following result extends Theorem 14 to arbitrary r > 3.

Theorem 16. For every r > 3, k ∈ N and ν > 0, there exist ε, δ > 0 and W ⊆ Sk, such
that, setting BHr = BHr(W ; k, ε, δ), we have

χ(BHr) > k and δ(BHr) >

(

2r − 5

2r − 3
− ν

)

v(BHr).

Moreover every subgraph H ⊆ BHr with v(H) < k and χ(H) = r is r-near-acyclic.
Hence, for any H with χ(H) = r which is not r-near-acyclic, we have δχ(H) > 2r−5

2r−3
.

Theorem 16 follows easily from  Luczak and Thomassé’s argument for Theorem 14; for
completeness, we shall provide a proof here.

Proof of Theorem 16. As noted above, we have χ
(

BHr(W ; k, ε, δ)
)

> k for every choice of
W , ε and δ. For the other properties, we shall choose W randomly, and ε, δ > 0 as follows.

Let r > 3, k ∈ N, and ν > 0 be arbitrary, and choose δ > 0 such that the spherical cap
of Sk (centred around the pole) with polar angle π

2
− δ covers a (1

2
− ν

2
)-fraction of Sk. Set

ε = δ/(2k),
u0 := v

(

BHr(∅; k, ε, δ)
)

= |U ′|,
and choose w0 sufficiently large such that

(2) exp

(

−ν2w0

4

)

<
1

u0

and

(

2r − 5

2
− ν

)

w0 >

(

2r − 5

2r − 3
− ν

)(

2r − 3

2
w0 + u0

)

,

which is possible because (2r − 3)/2 > 1. Draw w0 points uniformly at random from Sk,
call the resulting set W and consider the graph BHr = BHr(W ; k, ε, δ).

We show first that, with positive probability, BHr has the desired minimum degree. Let
Y = Y1∪ . . .∪Yr−3, and recall that BHr has vertex set U ′∪W ∪X ∪Y and that |U ′| = u0.
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Claim 17. With positive probability the following holds. For every v ∈ V (BHr),

degBHr
(v) >

(

2r − 5

2
− ν

)

|W |.

Proof of Claim 17. For v ∈ W ∪ X ∪ Y , it is easy to check that degBHr
(v) >

(

2r−5
2

)

|W |.
Moreover, if v ∈ U ′ then Y ⊆ N(v) and |Y | = (r − 3)|W |. Thus it will suffice to show
that the following event σ holds with positive probability: For every v ∈ U ′ we have
degBHr

(v,W ) > (1
2
− ν)|W |.

To this end observe that, for a given v ∈ U ′, the value of degBHr
(v,W ) is a random

variable B with distribution Bin
(

|W |, 1
2
− ν

2

)

. This follows because W was chosen uniformly

at random from Sk, by our choice of δ, and since by Definition 13, v is adjacent to w ∈ W if
and only if ∡(φ(v), w) 6 π

2
− δ. Thus, by Chernoff’s inequality (see, e.g., [19, Chapter 2]),

P

(

degBHr
(v,W ) <

(

1
2
− ν
)

|W |
)

6 exp
(

− ν2|W |
4

) (2)
<

1

|U ′| .

By the union bound, the event σ holds with positive probability, as required. �

Using (2), we have
(

2r − 5

2
− ν

)

|W | >
(

2r − 5

2r − 3
− ν

)

v(BHr),

and so the desired lower bound on δ(BHr) follows immediately from the claim.

Finally, let us show that every subgraph H ⊆ BHr with v(H) < k and χ(H) = r is
r-near-acyclic. We begin by showing that H ′ := H[U ′ ∪W ∪X] is near-acyclic.

Observe first that H ′[W ] is independent, and recall (from Definition 13) that BHr[U
′]

has girth at least k > v(H). Thus H ′[U ′∪X] is a forest, since all of its edges are contained
in U ′. It therefore suffices to prove the following claim.

Claim 18. Every odd cycle in H ′ contains at least two vertices of W .

Proof of Claim 18. Let C be an odd cycle in H ′. (Hence v(C) < k.) If V (C) ∩ X 6= ∅
then |V (C)∩W | > 2 since e(U ′, X) = 0 and X is independent. Thus we may assume that
V (C) ∩X = ∅. Similarly, since H ′[U ′] is a forest, we must have |V (C) ∩W | > 1.

Let P = v1 . . . vp be a path in U ′ with p < k and p even. Recall that φ(v1), . . . , φ(vp)
are vectors from Sk such that ∡

(

φ(vi), φ(vi+1)
)

> π − ε for all i ∈ [p− 1]. We shall show
that NBHr

(v1) ∩ NBHr
(vp) ∩ W = ∅, i.e., that φ(v1) and φ(vp) do not lie in a common

spherical cap with angle π
2
− δ. Indeed, we have ∡

(

φ(v1), φ(v3)
)

6 2ε, and, in general,

∡
(

φ(v1), φ(v2j)
)

> π− 2jε for every j ∈ [p/2]. Hence ∡
(

φ(v1), φ(vp)
)

> π− kε > 2(π
2
− δ),

and so, by Definition 13, v1 and vp do not have a common neighbour in W , as required.
This implies that V (C)∩U ′ cannot be a path on v(C)−1 vertices and thus we conclude

|V (C) ∩W | > 2. �

Finally, note that as H[Yi] is an independent set for each i ∈ [r− 3], and H ′ is obtained
by removing these sets, H is indeed r-near-acyclic, as required. �
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5. Zykov graphs

In this section we shall prove a key result on Zykov graphs (see Definition 19 and Propo-
sition 22, below), which will be an important tool in our proof of Theorem 2. Let G′ be
a graph with connected components C1, . . . , Cm, and let G be the graph obtained from G′

by adding, for each m-tuple u = (u1, . . . , um) ∈ C1 × · · · × Cm, a vertex vu adjacent to
each uj. This construction was introduced by Zykov [42] in order to obtain triangle-free
graphs with high chromatic number.

We shall use the following slight modification of Zykov’s construction. Recall that to
blow up a vertex v ∈ V (G) to size t means to replace v by an independent set of size t, and
replace each edge containing v by a complete bipartite graph, and that K(v,X) denotes
the set of pairs {vx : x ∈ X}.

Definition 19 (Modified Zykov graphs). Let T1, . . . , Tℓ be (disjoint) trees, and let Tj have
bipartition Aj ∪ Bj. We define Zℓ(T1, . . . , Tℓ) to be the graph on vertex set

V
(

Zℓ(T1, . . . , Tℓ)
)

:=

(

⋃

j∈[ℓ]

Aj ∪ Bj

)

∪
{

uI : I ⊆ [ℓ]
}

and with edge set

E
(

Zℓ(T1, . . . , Tℓ)
)

:=
ℓ
⋃

j=1

(

E(Tj) ∪
⋃

j∈I⊆[ℓ]

K
(

uI , Aj

)

∪
⋃

j 6∈I⊆[ℓ]

K
(

uI , Bj

)

)

.

For each r > 3 and t ∈ N, the modified Zykov graph Zr,t
ℓ (T1, . . . , Tℓ) is the graph obtained

from Zℓ(T1, . . . , Tℓ) by performing the following two operations:

(a ) Add vertices W = {w1, . . . , wr−3}, and all edges with an endpoint in W .
(b ) Blow up each vertex uI with I ⊆ [ℓ] and each vertex wj in W to a set SI or S ′

j,
respectively, of size t.

Finally, we shall write Zr,t
ℓ for the modified Zykov graph obtained when each tree Ti, i ∈ [ℓ],

is a single edge; that is, Zr,t
ℓ = Zr,t

ℓ (e1, . . . , eℓ).

Note that Zr,t
ℓ has (2ℓ + r − 3)t + 2ℓ vertices, and that, in the special case r = 3 and

t = 1, the graph Zr,t
ℓ coincides with that obtained by Zykov’s construction (described

above) applied to a matching of size ℓ.
The following observation motivates (and follows immediately from) Definition 19.

Observation 20. Let χ(H) = r. Then H is r-near-acyclic if and only if there exist trees
T1, . . . , Tℓ and t ∈ N such that H is a subgraph of Zr,t

ℓ (T1, . . . , Tℓ).

Proof. Recall that H is r-near-acyclic if and only if there exist r − 2 independent sets
U1, . . . , Ur−3,W such that H \

(

W ∪ ⋃j Uj

)

is a forest F whose components are trees

T1, . . . , Tℓ with the following property. For each i ∈ [ℓ], there is no vertex of W adjacent
to vertices in both partition classes of Ti. If H ⊆ Zr,t

ℓ (T1, . . . , Tℓ) then we can take W =
⋃

I⊆[ℓ] SI and U1, . . . , Ur−3 to be the sets S ′
1, . . . , S

′
r−3, and so H is r-near-acyclic, as claimed.
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Conversely if H is r-near-acyclic, then H ⊆ Zr,t
ℓ (T1, . . . , Tℓ), where t = |H| and T1, . . . , Tℓ

are the components of the forest F . �

It will be convenient for us to provide a compact piece of notation for the adjacencies
in Zr,t

ℓ . For this purpose, given a graph G and a set Y ⊆ V (G), and integers ℓ, t ∈ N and
r > 3, define Gr,t

ℓ (Y ) to be the collection of functions

S : 2[ℓ] ∪ [r − 3] →
(

Y

t

)

.

It is natural to think of S as a family {SI : I ⊆ [ℓ]} ∪ {S ′
j : j ∈ [r − 3]} of subsets of Y

of size t. We say that S ∈ Gr,t
ℓ (Y ) is proper if these sets are pairwise disjoint and E(G)

contains all edges xy with x ∈ SI ∪ S ′
j and y ∈ S ′

j′ , whenever j 6= j′. We shall write

F r,t
ℓ (Y ) for the collection of proper functions in Gr,t

ℓ (Y ). The idea behind this definition is
that we will later want to consider a vertex set Y ⊆ V (G) and a family of disjoint subsets
{SI : I ⊆ [ℓ]} ∪ {S ′

j : j ∈ [r − 3]} of size t in Y that we want to extend to a copy of Zr,t
ℓ .

For an ordered pair (x, y) of vertices of G, a function S ∈ F r,t
ℓ (Y ), and i ∈ [ℓ], we write

(x, y) →i S, if S ′
j ⊆ N(x, y) for every j ∈ [r − 3] and

⋃

I : i∈I

SI ⊆ N(x) and
⋃

I : i 6∈I

SI ⊆ N(y) .

For an edge e = xy ∈ E(G), we write e →i S if either (x, y) →i S or (y, x) →i S. Recall
that eℓ denotes the ℓ-tuple (e1, . . . , eℓ), with e0 the empty tuple. Define

eℓ → S ⇔ ei →i S for each i ∈ [ℓ] .

Observe that the graph Zr,t
ℓ consists of a set of pairwise disjoint edges e1, . . . , eℓ and an

S ∈ F r,t
ℓ (Y ) such that eℓ → S. An advantage of this notation is that we can write eℓ → S

even if the edges in eℓ are not pairwise disjoint. This will greatly clarify our proofs.
In Section 6, we shall show how to find a well-structured set of many copies of Zr,t

ℓ inside
a graph with high minimum degree and high chromatic number. The following definition
(in which we shall make use of the compact notation just defined) makes the concept of
‘well-structured’ precise. Recall that, given X ⊆ V (G), we write E(X) for the edge set of
G[X], and that if D ⊆ E(G), then δ(D) denotes the minimum degree of the graph G[D].

Definition 21 ((C, α)-rich in copies of Zr,t
ℓ ). Let X and Y be disjoint vertex sets in a

graph G, let C ∈ N and α > 0, and let s := (2ℓ + r− 3)t. We say that (X, Y ) is (C, α)-rich
in copies of Zr,t

ℓ if

∃D = D(e0) ⊆ E(X) ∀ e1 ∈ D ∃D(e1) ⊆ E(X) ∀ e2 ∈ D(e1) . . .

. . . ∀ eℓ−1 ∈ D(eℓ−2) ∃D(eℓ−1) ⊆ E(X) ∀ eℓ ∈ D(eℓ−1)

the following properties hold:

(a ) δ(D), δ
(

D(e1)
)

, . . . , δ
(

D(eℓ−1)
)

> C, and

(b )
∣

∣

{

S ∈ F r,t
ℓ (Y ) : eℓ → S

}∣

∣ > α|Y |s.
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If (X, Y ) is (C, α)-rich in copies of Zr,t
ℓ , then, for each q ∈ [ℓ], define

(3) Dq(X, Y ) :=
{

eq ∈ E(X)q : ej ∈ D(ej−1) for each j ∈ [q]
}

,

where D(e0) := D.

The aim of this section is to prove the following proposition, which says that if some pair
(X, Y ) in G is (C, α)-rich in copies of Zr,t

ℓ (where α > 0 and C is sufficiently large), then
for any ‘small’ T1, . . . , Tℓ we have Zr,t

ℓ (T1, . . . , Tℓ) ⊆ G, and hence (by Observation 20) G
is not H-free for any r-near-acyclic graph H.

Proposition 22. Let G be a graph, and let X and Y be disjoint subsets of its vertices. Let
r, ℓ, t ∈ N, with r > 3, and let α > 0. Let T1, . . . , Tℓ be trees, and set C := 2ℓ+3α−1

∑ℓ
i=1 |Ti|.

If (X, Y ) is (C, α)-rich in copies of Zr,t
ℓ , then Zr,t

ℓ (T1, . . . , Tℓ) ⊆ G.

The proof of Proposition 22 uses a double counting argument and proceeds by induction.
We shall find a set of functions S ⊆ F r,t

ℓ (Y ) such that, for each S ∈ S, we can construct
(one by one) a collection of subgraphs E1, . . . , Eℓ of G[X] with the following properties:
each subgraph has large average degree, and for any choice e1 ∈ E1, . . . , eℓ ∈ Eℓ, we have
eℓ → S. Recall that this simply says that ei →i S for every ei ∈ Ei.

Let the graph G, disjoint subsets X, Y ⊆ V (G), constants α > 0 and r, ℓ, t ∈ N with

r > 3, and trees T1, . . . , Tℓ be fixed for the rest of the section. Set C := 2ℓ+3α−1
∑ℓ

i=1 |Ti|
and s := (2ℓ + r−3)t, and let 0 6 q 6 ℓ. For our induction hypothesis we use the following
definition.

Definition 23 (Good function, (C, α)-dense). A function S ∈ F r,t
ℓ (Y ) is (r, ℓ, t, C, α)-good

for a tuple eq and (X, Y ) if there exist sets

Eq+1, . . . , Eℓ ⊆ E(X), with d(Ej) > 2−ℓαC for each q + 1 6 j 6 ℓ,

such that for every eq+1 ∈ Eq+1, . . . , eℓ ∈ Eℓ, we have eℓ → S.
When the constants (r, ℓ, t, C, α) and the sets (X, Y ) are clear from the context, we shall

omit them. We shall abbreviate ‘(r, ℓ, t, C, α)-good for e0 and (X, Y )’ to ‘(r, ℓ, t, C, α)-good
for (X, Y )’.

The pair (X, Y ) is (C, α)-dense in copies of Zr,t
ℓ if there exist at least 2−ℓα|Y |s families

S ∈ F(Y ) which are (r, ℓ, t, C, α)-good for (X, Y ).

The next lemma constitutes the inductive argument in the proof of Proposition 22. The
final assertion we shall also need in Section 7.

Lemma 24. For any 0 6 q 6 ℓ, if (X, Y ) is (C, α)-rich in copies of Zr,t
ℓ , then

∣

∣

{

S ∈ F r,t
ℓ (Y ) : S is good for eq

}∣

∣ > 2q−ℓα|Y |s

for every eq ∈ Dq(X, Y ).
In particular, if (X, Y ) is (C, α)-rich in copies of Zr,t

ℓ , then (X, Y ) is (C, α)-dense in
copies of Zr,t

ℓ .
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Proof. The proof is by induction on ℓ− q. The base case, q = ℓ, follows immediately from
the definition of (C, α)-rich. Indeed, a function S is good for eℓ if and only if eℓ → S, and
by Property (b ) in Definition 21, we have

∣

∣

{

S ∈ F r,t
ℓ (Y ) : eℓ → S

}∣

∣ > α|Y |s.
So let 0 6 q < ℓ, assume that the lemma holds for q + 1, and let eq ∈ Dq(X, Y ). Set

β = α2q−ℓ. By Definition 21, there exists a set D(eq) ⊆ E(X) with δ
(

D(eq)
)

> C, such
that eq+1 ∈ Dq+1(X, Y ) for every eq+1 ∈ D(eq). Thus, by the induction hypothesis,

(4) ∀eq+1 ∈ D(eq) at least 2β|Y |s functions S ∈ F r,t
ℓ (Y ) are good for eq+1 ,

that is, for each such S there exist sets

Eq+2, . . . , Eℓ ⊆ E(X), with d(Ej) > 2−ℓαC for each q + 2 6 j 6 ℓ,

such that for every eq+2 ∈ Eq+2, . . . , eℓ ∈ Eℓ, we have eℓ → S. It is crucial to observe that
given S, if the edge sets Eq+2, . . . , Eℓ have this last property for some eq+1 ∈ D(eq) with
eq+1 → S, then Eq+2, . . . , Eℓ have this property for all eq+1 ∈ D(eq) with eq+1 → S.

The S ∈ F r,t
ℓ (Y ) that will be good for eq are those which are good for many eq+1. More

precisely, for each S ∈ F r,t
ℓ (Y ), let

WS :=
{

eq+1 ∈ D(eq) : S is good for eq+1
}

,

and let Z =
{

S ∈ F r,t
ℓ (Y ) : |WS| > β|D(eq)|

}

. By (4) the number of pairs (eq+1, S) with
eq+1 in WS is at least |D(eq)| · 2β|Y |s. On the other hand, for every S ∈ Z there are at
most |D(eq)| pairs (eq+1, S) with eq+1 in WS, and for every S ∈ F r,t

ℓ (Y ) \ Z, there are (by
definition of Z) at most β|D(eq)| such pairs. Putting these together, we obtain

|D(eq)| · 2β|Y |s 6 |D(eq)||Z| + β|D(eq)||Y |s

and hence |Z| > β|Y |s.
We claim that every S ∈ Z is good for eq. Indeed, fix S ∈ Z. Set Eq+1 = WS, and

let Eq+2, . . . , Eℓ be the sets defined above (for any, and thus all, eq+1 ∈ Eq+1), i.e., those
obtained by the induction hypothesis. Since S ∈ Z we have |WS| > β|D(eq)|, so it follows
from δ

(

D(eq)
)

> C that d(Eq+1) > βC > 2−ℓαC. Since S is good for eq+1 for every
eq+1 ∈ Eq+1, we have ei →i S for every 1 6 i 6 q + 1, and by the induction hypothesis, we
have ei →i S for every ei ∈ Ei and every q + 2 6 i 6 ℓ. Thus eℓ → S for every such eℓ, as
required. Since |Z| > β|Y |s, this completes the induction step, and hence the proof of the
lemma. �

Lemma 24 shows that richness in copies of Zr,t
ℓ implies denseness in copies of Zr,t

ℓ .
Observe that if (X, Y ) is dense in copies of Zr,t

ℓ , then in particular there is a function
S ∈ F r,t

ℓ (Y ) which is good for (X, Y ). The next lemma now shows that in this case we
have Zr,t

ℓ (T1, . . . , Tℓ) ⊆ G.

Lemma 25. Let X and Y be disjoint vertex sets in G. Given r, ℓ, t ∈ N, α > 0, and trees
T1, . . . , Tℓ, if C > 2ℓ+3α−1

∑ℓ
i=1 |Ti| and S ∈ F r,t

ℓ (Y ) is (r, ℓ, t, C, α)-good for (X, Y ), then

Zr,t
ℓ (T1, . . . , Tℓ) ⊆ G.
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Proof. Let S be (r, ℓ, t, C, α)-good for (X, Y ). Then there exist sets

E1, . . . , Eℓ ⊆ E(X), with d(Ej) > 2−ℓαC for each 1 6 j 6 ℓ,

such that for every e1 ∈ E1, . . . , eℓ ∈ Eℓ, we have eℓ → S.
For each j ∈ [ℓ] and each edge e ∈ Ej, let e = xy be such that (x, y) →j S, and orient

the edge e from x to y. Recall that C > 2ℓ+3α−1
∑ℓ

i=1 |Ti|, and so d(Ej) > 8
∑ℓ

i=1 |Ti| for
each j ∈ [ℓ]. For each j ∈ [ℓ], by choosing a maximal bipartite subgraph of Ej, and then
removing at most half the edges, we can find a set E ′

j ⊆ Ej such that,

(a ) E ′
j is bipartite, with bipartition (Aj, Bj),

(b ) every edge e ∈ E ′
j is oriented from Aj to Bj, and

(c ) d(E ′
j) > 2

∑ℓ
i=1 |Ti|.

Thus, by Fact 4, there exists, for each j ∈ [ℓ], a copy T ′
j of Tj in

E ′
j −

(

V (T ′
1) ∪ . . . ∪ V (T ′

j−1)
)

,

since removing a vertex can only decrease the average degree by at most two. These trees,
together with S, form a copy of Zr,t

ℓ (T1, . . . , Tℓ) in G, so we are done. �

It is now easy to deduce Proposition 22 from Lemma 24 and Lemma 25.

Proof of Proposition 22. Let (X, Y ) be (C, α)-rich in copies of Zr,t
ℓ , and apply Lemma 24

to (X, Y ) with q = 0. Note that D0(X, Y ) = {e0} consists of the tuple of length zero, and
let S =

{

S ∈ F r,t
ℓ (Y ) : S is good for e0

}

. Then |S| > α2−ℓ|Y |s, and so in particular S is

non-empty. Let S ∈ S, and apply Lemma 25 to obtain a copy of Zr,t
ℓ (T1, . . . , Tℓ) in G. �

6. The paired VC-dimension argument

In this section we shall modify and extend a technique which was introduced by  Luczak
and Thomassé [30], and used by them to prove Conjecture 1 in the case where H is near-
bipartite. This technique is based on the concept of paired VC-dimension, which generalises
the well-known Vapnik-Červonenkis dimension of a set-system (see [35, 41]). We shall not
state our proof in the abstract setting of paired VC-dimension, which is more general than
that which we shall require, but we refer the interested reader to [30] for the definition and
further details.

We shall use the paired VC-dimension (or ‘booster tree’) argument of  Luczak and
Thomassé in order to prove the following result, which may be thought of as a ‘count-
ing version’ of Theorem 5 in [30]. The case r = 3 of Theorem 2 will follow as an easy
consequence of Propositions 26 and 22 (see Section 7).

Proposition 26. For every ℓ, t ∈ N and d > 0, there exists α > 0 such that, for every
C ∈ N, there exists C ′ ∈ N such that the following holds. Let G be a graph and let X and
Y be disjoint subsets of V (G), such that |N(x) ∩ Y | > d|Y | for every x ∈ X.
Then either χ

(

G[X]
)

6 C ′, or (X, Y ) is (C, α)-rich in copies of Z3,t
ℓ .
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In order to prove Proposition 26, we shall break X up into a bounded number of suitable
pieces, X1, . . . , Xm, and show that either G[Xj] has bounded chromatic number, or (Xj, Y )

is (C, α)-rich in copies of Z3,t
ℓ .

Let d(x, Y ) := d
(

{x}, Y
)

=
∣

∣N(x) ∩ Y
∣

∣/|Y | = e
(

{x}, Y
)

/|Y | be the density of the
neighbours of x in Y . The key definition, which will allow us to choose the sets Xj, is as
follows.

Definition 27 (Boosters). Let G be a graph, let X and Y be disjoint subsets of V (G),
and let ε > 0. We say that x ∈ X is ε-boosted by Y ′ ⊆ Y if d(x, Y ′) > (1 + ε)d(x, Y ).

Now let C, p ∈ N, and let β > 0. Let Y1∪. . .∪Yp of Y be a partition of Y , and X0∪. . .∪Xp

be a partition of X. We say that (X0, ∅), (X1, Y1), . . . , (Xp, Yp) is a (p, C, ε, β)-booster of
(X, Y ) if

(a ) G[X0] is C-degenerate.
(b ) Every x ∈ Xj is ε-boosted by Yj, for each j ∈ [p].
(c ) |Yj| > β|Y | for every j ∈ [p].

We say that a partition {Y1, . . . , Yp} of Y induces a (p, C, ε, β)-booster of (X, Y ) if there
exists a partition X0∪ . . .∪Xp of X such that (X0, ∅), (X1, Y1), . . . , (Xp, Yp) is a (p, C, ε, β)-
booster of (X, Y ).

We remark that this is slightly different from the definition of a p-booster in Section 5
of [30], where Condition (a ) was replaced by ‘G[X0] is independent’, and Condition (c )
was missing.

Using Definition 27, we can now state the second key definition.

Definition 28 (Booster trees). Let C, p0 ∈ N and β, ε > 0. A (p0, C, ε, β)-booster tree for
(X, Y ) is an oriented rooted tree T , whose vertices are pairs (X ′, Y ′) such that X ′ ⊆ X and
Y ′ ⊆ Y , and all of whose edges are oriented away from the root, such that the following
conditions hold:

(a ) The root of T is (X, Y ).
(b ) No vertex of T has more than p0 out-neighbours.
(c ) The out-neighbourhood of each non-leaf (X ′, Y ′) of T forms a (p, C, ε, β)-booster of

(X ′, Y ′) for some p 6 p0.
(d ) If (X ′, Y ′) is a leaf of T , then either G[X ′] is C-degenerate, or there does not exist

a (p, C, ε, β)-booster for (X ′, Y ′) for any p 6 p0.

A vertex (X ′, Y ′) of T is called degenerate if it is a leaf of T and G[X ′] is C-degenerate.

The following lemma is immediate from the definitions.

Lemma 29. Let C, p0 ∈ N, and β, ε > 0, let G be a graph, and let X and Y be disjoint
subsets of V (G). If d(x, Y ) > d for every x ∈ X, then there exists a (p0, C, ε, β)-booster
tree T for (X, Y ) such that |T | is bounded as a function of ε, d and p0.
Moreover, if (X ′, Y ′) is a non-degenerate vertex of T , then d(x, Y ′) > d for all x ∈ X ′,

and |Y ′| > β|T ||Y |.
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Proof. We construct T , with root (X, Y ), as follows: We simply repeatedly choose a
(p, C, ε, β)-booster (X0, ∅), (X1, Y1), . . . , (Xp, Yp) for each leaf (X ′, Y ′) of T such that G[X ′]
is not C-degenerate, until this is no longer possible for any p 6 p0. We add to T the vertices
(X0, ∅), (X1, Y1), . . . , (Xp, Yp) as out-neighbours of (X ′, Y ′).

By the definition of ‘ε-boosted’ and the construction of T , if (X ′, Y ′) is a non-degenerate
vertex of T at distance t from the root, we have d(x, Y ′) > (1 + ε)td for every x ∈ X ′,
and we have |Y ′| > βt|Y | > β|T ||Y |. This both establishes that the height h(T ) of T is
bounded in terms of ε and d, and that we have d(x, Y ′) > d for every x ∈ X ′. Since T has
no vertex of out-degree greater than p0 and h(T ) is bounded by a function of ε and d, it
follows that |T | is bounded as a function of ε, d and p0. �

The following lemma is the key step in the proof of Proposition 26.

Lemma 30. Let ℓ, t ∈ N and d > 0. Let β =
(

d
4

)ℓ
and ε = β/2. There exists α > 0 such

that the following holds for every C ∈ N. Let G be a graph, let X and Y be disjoint subsets
of V (G), and suppose that |N(x) ∩ Y | > d|Y | for every x ∈ X.
If there does not exist a (p, C, ε, β)-booster of (X, Y ) for any p 6 2ℓ, then (X, Y ) is

(C, α)-rich in copies of Z3,t
ℓ .

Lemma 30 is proved by repeating a fairly straightforward algorithm ℓ times, at each step
q ∈ [ℓ] finding a set D(eq) as in the definition of (C, α)-richness (see Definition 21). In
order to make the proof more transparent, we shall state a slightly more technical lemma,
which is proved by induction on q, and from which Lemma 30 follows immediately.

The following definition will simplify the statement. It is a slight strengthening of the
concept of (C, α)-richness in the case r = 3. Recall that eℓ is just a shorthand for (e1, . . . , eℓ)
and e0 is the empty tuple. Further, recall the definitions of F r,t

ℓ and eℓ → S from Section 5.

Definition 31 ((C, α, ℓ)-Zykov). Let X and Y be disjoint vertex sets in a graph G, let
C, ℓ ∈ N and α > 0. We say that (X, Y ) is (C, α, ℓ)-Zykov if

∃D = D(e0) ⊆ E(X) ∀ e1 ∈ D ∃D(e1) ⊆ E(X) ∀ e2 ∈ D(e1) . . .

. . . ∀ eℓ−1 ∈ D(eℓ−2) ∃D(eℓ−1) ⊆ E(X) ∀ eℓ ∈ D(eℓ−1)

the following properties hold:

(a ) δ
(

D
)

, δ
(

D(e1)
)

, . . . , δ
(

D(eℓ−1)
)

> C, and

(b ) ∃S ∈ F3,α|Y |
ℓ (Y ) such that eℓ → S.

We remark that the requirement (b ) of Definition 21 that each tuple eℓ should extend to
many copies of Z3,t

ℓ is replaced in this definition by the requirement that eℓ should extend

to one much bigger copy of Z
3,α|Y |
ℓ . In particular, if (X, Y ) is (C, α, ℓ)-Zykov, then, for any

t ∈ N, it is (C, α′)-rich in copies of Z3,t
ℓ , where α′ =

(

α
t

)2ℓt
(this is shown in the proof of

Lemma 30).

Lemma 32. Let ℓ ∈ N and d > 0. For β =
(

d
4

)ℓ
and ε = β/2, the following holds for

every C ∈ N. Let G be a graph, let X and Y be disjoint subsets of V (G), and suppose that
|N(x) ∩ Y | > d|Y | for every x ∈ X.
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If there does not exist a (p, C, ε, β)-booster of (X, Y ) for any p 6 2ℓ, then (X, Y ) is
(C, αq, q)-Zykov for every q ∈ [ℓ], where αq =

(

d
4

)q
.

Proof. Let C, ℓ ∈ N and d > 0, and let β =
(

d
4

)ℓ
and ε = β/2. Let G and X, Y be as

described in the statement, and suppose that there does not exist a (p, C, ε, β)-booster of
(X, Y ) for any p 6 2ℓ. We proceed by induction.

We begin with the base case, q = 1. We are required to find a set D = D(e0) ⊆ E(X),

with δ(D) > C, such that, for every e1 = xy ∈ D, there exists S(e1) ∈ F3,α1|Y |
1 such

that e1 → S(e1); that is, there exist disjoint sets S∅(e
1) and S{1}(e

1) in Y , both of size

α1|Y | = d
4
|Y |, such that S{1}(e

1) ⊆ N(x) and S∅(e
1) ⊆ N(y). Since there is no (1, C, ε, β)-

booster of (X, Y ), it follows that G[X] is not C-degenerate, and so there exists a subgraph
G0 ⊆ G[X] with δ(G0) > C. We choose D := E(G0). Now for each e1 = xy ∈ D, let
A∅(e

1) := N(y) ∩ Y and A{1}(e
1) := N(x) ∩ Y . Since |A∅(e

1)|, |A{1}(e
1)| > d|Y | by the

assumption of the lemma, there exist disjoint sets S∅(e
1) ⊆ A∅(e

1) and S{1}(e
1) ⊆ A{1}(e

1)

with |S∅(e
1)|, |S{1}(e

1)| = d
4
|Y |, as required.

For the induction step, let 1 < q 6 ℓ and assume that the result holds for q− 1. By this
induction hypothesis

∃D(e0) ⊆ E(X)∀ e1 ∈ D(e0) ∃D(e1) ⊆ E(X) ∀ e2 ∈ D(e1) . . .

. . . ∀ eq−2 ∈ D(eq−3) ∃D(eq−2) ⊆ E(X) ∀ eq−1 ∈ D(eq−2)

we have

(a* ) δ
(

D(e0)
)

, δ
(

D(e1)
)

, . . . , δ
(

D(eq−2)
)

> C, and

(b* ) ∃S(eq−1) ∈ F3,αq−1|Y |
q−1 (Y ) such that eq−1 → S(eq−1).

As in Definition 21, set

Dq(X, Y ) :=
{

eq ∈ E(X)q : ej ∈ D(ej−1) for each j ∈ [q]
}

.

We shall show that for every eq−1 ∈ Dq−1(X, Y ), there exists a set of edges D(eq−1) ⊆
E(X), with δ

(

D(eq−1)
)

> C, such that for every eq ∈ D(eq−1) there exists an S(eq) ∈
F3,αq |Y |

q (Y ) such that eq → S(eq).
Indeed, given eq−1 ∈ Dq−1(X, Y ), by (b* ) there exists

{

SI(e
q−1) ⊆ Y : I ⊆ [q − 1]

}

= S(eq−1) ∈ F3,αq−1|Y |
q−1 (Y )

with eq−1 → S(eq−1). In particular, note that by definition of F3,αq−1|Y |
q−1 (Y ), the sets

SI(e
q−1) are disjoint, and that |SI(e

q−1)| = αq−1|Y | for every I ⊆ [q − 1]. Let R =
Y \⋃I SI(e

q−1), and recall that q 6 ℓ, and that there is no (p, C, ε, β)-booster of (X, Y ) for
any p 6 2ℓ. Thus the partition S(eq−1) ∪ {R} of Y does not induce a (p, C, ε, β)-booster
of (X, Y ).

By our choice of β, we have β 6 αq−1, and thus |SI(e
q−1)| > β|Y | for all I ⊆ [q − 1].

Similarly, since 2q−1αq−1 = 2q−1(d/4)q−1 6 1/2 < 1 − β, we have |R| > β|Y |. Let X ′ ⊆ X
be the set of vertices which are not ε-boosted by any of the sets S(eq−1) ∪ {R}. Since
S(eq−1) ∪ {R} does not induce a (2q−1 + 1, C, ε, β)-booster of (X, Y ), the graph G[X ′]
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is not C-degenerate, and hence there exists a set of edges D(eq−1) ⊆ E(X ′) such that
δ
(

D(eq−1)
)

> C. We claim that this is the set we are looking for.
In order to verify this, let eq = xy ∈ D(eq−1) be arbitrary. Our task is to show that

there exists S(eq) ∈ F3,αq |Y |
q such that eq → S(eq). Recall that x and y are not ε-boosted

by S(eq−1) ∪ {R}. Hence d(x, U) < (1 + ε)d(x, Y ) for each U ∈ S(eq−1) ∪ {R}, and so, for
every I ⊆ [q − 1],

e
(

x, SI(e
q−1)

)

= e(x, Y ) − e
(

x, Y \ SI(e
q−1)

)

> e(x, Y ) −
(

1 + ε
)

(

1 −
(

d
4

)q−1
)

e(x, Y ) >
1

2

(

d

4

)q−1

e(x, Y ) ,
(5)

where we used |SI(e
q−1)| = αq−1|Y | =

(

d
4

)q−1 |Y | for the first inequality, and ε = 1
2

(

d
4

)ℓ
for

the second. By the same argument, y has at least 1
2

(

d
4

)q−1
e(y, Y ) neighbours in SI(e

q−1)
for each I ⊆ [q − 1].

Define, for each I ⊆ [q], the set AI(e
q) ⊆ Y as follows:

AI(e
q) := N(x) ∩ SI\{q}(e

q−1) if q ∈ I

AI(e
q) := N(y) ∩ SI(e

q−1) if q 6∈ I.
(6)

Since e(x, Y ), e(y, Y ) > d|Y |, we conclude from (5), that we have |AI(e
q)| > 2

(

d
4

)q |Y | for
every I ⊆ [q]. Moreover, the sets AI(e

q) and AJ(eq) are disjoint unless I \ {q} = J \ {q}.
Hence we may choose disjoint sets SI(e

q) ⊆ AI(e
q) with |SI(e

q)| =
(

d
4

)q |Y | for each I ⊆ [q].

Let S(eq) =
{

SI(e
q) : I ⊆ [q]

}

. We claim that this is the desired family; that is, that

S(eq) ∈ F3,αq |Y |
q (Y ) and eq → S(eq). Indeed, the sets SI(e

q) are disjoint, and

|SI(e
q)| =

(

d

4

)q

|Y | = αq|Y |

for each I ⊆ [q], by construction. Finally, we prove that eq → S(eq), i.e., that ei →i S(eq)
for each i ∈ [q]. For i 6 q − 1, this follows because eq−1 → S(eq−1), and

SI(e
q) ∪ SI∪{q}(e

q) ⊆ SI(e
q−1)

for every I ⊆ [q − 1] by (6). For i = q, it follows since SI(e
q) ⊆ N(x) if q ∈ I ⊆ [q] and

SI(e
q) ⊆ N(y) if q 6∈ I ⊆ [q] by (6). Hence eq → S(eq), as required. This completes the

induction step, and hence the proof of the lemma. �

We can now easily deduce Lemma 30.

Proof of Lemma 30. By Lemma 32 (applied with q = ℓ), it suffices to show that if (X, Y )

is (C, αℓ, ℓ)-Zykov, then it is (C, α)-rich in copies of Z3,t
ℓ , where αℓ =

(

d
4

)ℓ
and α =

(

αℓ

t

)2ℓt
.

In other words, we want to prove that if there exists S ∈ F3,αℓ|Y |
ℓ (Y ) with eℓ → S, then

∣

∣

{

S ′ ∈ F3,t
ℓ (Y ) : eℓ → S ′

}∣

∣ > α|Y |s ,
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where s = 2ℓt. Indeed, this is true because |SI | = αℓ|Y | for I ⊆ [ℓ], and the number of
ways of choosing, for each I ⊆ [ℓ], a t-subset of SI is

∏

I⊆[ℓ]

(|SI |
t

)

=

(

αℓ|Y |
t

)2ℓ

>

(

αℓ|Y |
t

)2ℓt

= α|Y |s ,

as claimed. �

It is now straightforward to prove Proposition 26.

Proof of Proposition 26. Let C, ℓ, t ∈ N and d > 0, and set β =
(

d
4

)ℓ
and ε = β/2. Let G

and (X, Y ) be as described in the statement, so |N(x) ∩ Y | > d|Y | for every x ∈ X. By
Lemma 29 there exists a (2ℓ, C, ε, β)-booster tree for (X, Y ), and moreover |T | is bounded
as a function of d, ε and ℓ.

Recall that the leaves of T correspond to a partition of X (and a partition of Y ). If
every leaf (X ′, Y ′) of T is degenerate then χ(G[X]) 6 |T |(C + 1) =: C ′, where C ′ depends
only upon C, ℓ and d. So we may assume that some leaf (X ′, Y ′) ∈ V (T ) is not degenerate.

By the definition of a (2ℓ, C, ε, β)-booster tree, it follows that there is no (p, C, ε, β)-
booster of (X ′, Y ′) for any p 6 2ℓ. Further, |N(x) ∩ Y ′| = d(x, Y ′)|Y ′| > d|Y ′| for every
x ∈ X ′ by Lemma 29. Then, by Lemma 30 (applied with ℓ, t and d), (X ′, Y ′) is (C, α′)-rich
in copies of Z3,t

ℓ , for some α′ = α′(d, ℓ, t) > 0. Since (again by Lemma 29) |Y ′| > β|T ||Y |, it

follows that (X, Y ) is (C, α)-rich in copies of Z3,t
ℓ , where α = α′β|T |s is a constant depending

only on d, ℓ and t, as required. �

7. The proof of Theorem 2

In this section we shall complete the proof of Theorem 2. As a warm-up, we begin with
the case r = 3, which is an almost immediate consequence of the results of the last four
sections.

The following theorem proves Conjecture 1. The proof does not use the Regularity
Lemma; it follows from Propositions 22 and 26.

Theorem 33. If H is a near-acyclic graph, then δχ(H) = 0.

Proof. Let H be a near-acyclic graph (so in particular χ(H) = 3), let γ > 0 be arbitrary,
and let G be an H-free graph on n vertices, with δ(G) > 2γn. We shall prove that the
chromatic number of G is at most C ′, for some C ′ = C ′(H, γ).

First, using Observation 20, choose t ∈ N and a collection T1, . . . , Tℓ of trees such that
H ⊆ Z3,t

ℓ (T1, . . . , Tℓ). Choose a maximal bipartition (X, Y ) of G, assume without loss of
generality that χ(G[X]) > χ(G[Y ]), and note that |N(x) ∩ Y | > γ|Y | for every x ∈ X.

Let α > 0 be given by Proposition 26 (applied with ℓ, t and γ), let C := 2ℓ+3α−1
∑ℓ

i=1 |Ti|,
and apply Proposition 26. We obtain a C ′ = C ′(H, γ) > 0 such that either χ(G) 6

2χ
(

G[X]
)

6 2C ′, or (X, Y ) is (C, α)-rich in copies of Z3,t
ℓ .

In the former case we are done, and so let us assume the latter. By Proposition 22
and our choice of C, it follows that Z3,t

ℓ (T1, . . . , Tℓ) ⊆ G. But then H ⊆ G, which is a
contradiction. Thus χ(G) is bounded, as claimed. �
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The case r = 3 of Theorem 2 now follows from Proposition 5, and Theorems 7, 14 and 33.

Proof of the case r = 3 of Theorem 2. Let H be a graph with χ(H) = 3, and recall that
M(H) denotes the decomposition family of H. By Proposition 5, if M(H) does not contain
a forest then δχ(H) = 1

2
, and by Theorem 7, if M(H) does contain a forest then δχ(H) 6 1

3
.

Now, by Theorem 14, if H is not near-acyclic then δχ(H) > 1
3
, and by Theorem 33, if H

is near-acyclic then δχ(H) = 0. Thus

δχ(H) ∈
{

0, 1/3, 1/2
}

,

where δχ(H) 6= 1
2

if and only if H has a forest in its decomposition family, and δχ(H) = 0
if and only if H is near-acyclic, as required. �

The rest of this section is devoted to the proof of the following theorem, which generalises
Theorem 33 to arbitrary r > 3.

Theorem 34. Let H be a graph with χ(H) = r > 3. If H is r-near-acyclic, then

δχ(H) =
r − 3

r − 2
.

We begin with the lower bound, which follows by essentially the same construction as
in Proposition 5.

Proposition 35. For any graph H with χ(H) = r > 3, we have δχ(H) > r−3
r−2

.

Proof. We claim that, for any such H, n0 and C, there exist H-free graphs on n > n0

vertices, with minimum degree r−3
r−2

n, and chromatic number at least C. Recall that we
call a graph a (k, ℓ)-Erdős graph if it has chromatic number at least k and girth at least ℓ,
and that such graphs exist for every k, ℓ ∈ N.

Let G′ be a (C, |H| + 1)-Erdős graph on at least n0 vertices, and let G be the graph
obtained from the complete, balanced (r − 2)-partite graph on (r − 2)|G′| vertices by
replacing one of its partition classes with G′. Then G is H-free, since every |H|-vertex
subgraph of G has chromatic number at most r−1. Moreover, δ(G) = r−3

r−2
n and χ(G) > C,

as required. �

We now sketch the proof of the upper bound of Theorem 34. Let G be an n-vertex, H-free
graph with minimum degree

(

2r−5
2r−3

+3γ
)

n. Let T1, . . . , Tℓ be such that H ⊆ Zr,t
ℓ (T1, . . . , Tℓ).

First, we take an (ε, d)-regular partition, using the degree form of the Regularity Lemma
(where ε and d will be chosen sufficiently small given γ). We then construct a second
partition P of V (G), similar to that used in the proof of Theorem 7. Our aim is to show
that χ(G[X]) 6 C ′ for each X ∈ P .

In the next step, we observe that the minimum degree condition guarantees that for
each X ∈ P , there are clusters Y and Z1, . . . , Zr−3 of the (ε, d)-regular partition with the
following properties. First, for each v ∈ X we have dY (v) > γ|Y |, and for each i ∈ [r − 3]
we have dZi

(v) >
(

1
2

+ γ
)

|Zi|. Second, Y, Z1, . . . , Zr−3 forms a clique in the reduced graph
of the (ε, d)-regular partition.
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Now recall that Zr,t
ℓ (T1, . . . , Tℓ) contains independent sets SI for each I ⊆ [ℓ], and inde-

pendent sets Si for each i ∈ [r − 3]. The idea now is to show that if χ(G[X]) 6 C ′ does
not hold, then we find a copy of Zr,t

ℓ (T1, . . . , Tℓ) in which the trees T1, . . . , Tℓ lie in X, the
independent sets SI lie in Y , and Si lies in Zi for each i ∈ [r − 3], which contradicts the
assumption that G is H-free.

In order to achieve this, we work as follows. We apply the paired VC-dimension argument
(Proposition 26) to (X, Y ), with constants ℓ∗ and t∗ which are much larger than ℓ and t,
and a very large C∗. This yields our C ′ and an α > 0 such that either χ(G[X]) 6 C ′ (in

which case we are done), or (X, Y ) is (C∗, α)-rich in copies of Z3,t∗

ℓ∗ .
In the latter case, we apply Lemma 24 to conclude that (X, Y ) is (C∗, α)-dense in copies

of Z3,t∗

ℓ∗ . The main work of this section then is to show (in Proposition 36) that this
implies that there is an S ∈ F r,t

ℓ (Y ∪ Z1 ∪ · · · ∪ Zr−3) such that S is (r, ℓ, t, C, α)-good
for (X, Y ∪ Z1 ∪ · · · ∪ Zr−3). Finally, applying Lemma 25 we find that there is a copy of
Zr,t

ℓ (T1, . . . , Tℓ) in G.

As just explained, the following proposition is the main missing tool for the proof of
Theorem 34.

Proposition 36. For every r > 3, ℓ, t ∈ N and d, γ > 0 there exist ℓ∗, t∗ ∈ N such that for
every α > 0 and C ∈ N, there exist ε1 > 0 and C∗ ∈ N, such that for every 0 < ε < ε1 the
following holds.
Let G be a graph, and let X, Y and Z1, . . . , Zr−3 be disjoint subsets of V (G), with

|Y | = |Zj| for each j ∈ [r− 3]. Let Z := Z1 ∪ · · · ∪Zr−3. Suppose that (Y, Zj) and (Zi, Zj)
are (ε, d)-regular for each i 6= j, and that

|N(x) ∩ Zj| >
(

1

2
+ γ

)

|Zj|

for every x ∈ X and j ∈ [r − 3].

If (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ , then there is some S ∈ F r,t
ℓ (Y ∪ Z) such

that S is (r, ℓ, t, C, α)-good for (X, Y ∪ Z).

For the proof of this proposition, we combine an application of the Counting Lemma
and two uses of the pigeonhole principle. As a preparation for these steps we need to
show that there exists a family S∗ ∈ F3,t∗

ℓ∗ which is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ) and
‘well-behaved’ in the following sense. For each of the sets S∗

I ⊆ Y given by S∗
I only a small

positive fraction of the (r − 3)t-element sets in Z has a common neighbourhood in S∗
I of

less than t vertices. To this end we shall use the following lemma.
Recall that for a set T of vertices in a graph G, we write

N(T ) : =
⋂

x∈T

N(x) .

Lemma 37. For all r, t ∈ N and µ, d > 0, there exist t∗ = t∗(r, t, µ, d) ∈ N and ε0 =
ε0(r, t, µ, d) > 0 such that for all 0 < ε < ε0 the following holds.
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Let G be a graph, and suppose that Y and Z1, . . . , Zr−3 are disjoint subsets of V (G) such
that (Y, Zj) is (ε, d)-regular for each j ∈ [r − 3]. Let Z := Z1 ∪ . . . ∪ Zr−3, and define

B(S) :=
{

T ∈
(

Z

(r − 3)t

)

: |N(T ) ∩ S| < t
}

for each S ⊆ Y . Then we have

S :=
{

S ∈
(

Y

t∗

)

: |B(S)| > µ|Z|(r−3)t
}

6
√
ε|Y |t∗ .

Proof. Choose t∗ sufficiently large such that

(7) P

(

Bin
(

t∗, (d/2)(r−3)t
)

< t
)

6 µ ,

where Bin(n, p) denotes a random variable with binomial distribution, and set

(8) ε0 := min
{(d

2

)t∗

,
(

t∗ · 2t∗(r − 3)
)−2
}

.

In the first part of the proof we shall construct a family S ′ of at least
(

|Y |
t∗

)

− √
ε|Y |t∗

sets S ∈
(

Y
t∗

)

. In the second part we will then show that S ′ ⊆
(

Y
t∗

)

\ S, which proves
the lemma. For constructing the sets S ∈ S ′ we proceed inductively and shall choose the
vertices v1, . . . , vt∗ of S one by one, in each step k ∈ [t∗] avoiding a set Yk ⊆ Y of size

at most ε2k(r − 3)|Y |. Clearly, by (8), this gives at least
(

|Y |
t∗

)

−√
ε|Y |t∗ choices for S as

desired.
Indeed, suppose we have already chosen the vertices v1, . . . , vk−1. In addition we have

chosen for each j ∈ [r − 3] a partition P k−1
j of Zj with the following property (we shall

make use of these partitions in part two of the proof): for each I ⊆ {v1, . . . , vk−1} we have
chosen a part P k−1

j (I) of size (d − ε)|I|(1 − d + ε)k−1−|I||Zj| such that P k−1
j (I) ⊆ N(I).

Now we will explain how vk can be chosen together with partitions P k
j satisfying the above

conditions. For this purpose consider the set Yk ⊆ Y of vertices y such that for some
j ∈ [r − 3] and some I ⊆ {v1, . . . , vk−1} we have

|N(y) ∩ P k−1
j (I)| < (d− ε)k|Zj| ,

where P 0
j := {Zj} is the trivial partition of Zj. The possible choices for vk now are the

vertices in Y \ Yk. The partitions P k
j with j ∈ [r− 3] are defined as follows. For each I ′ ⊆

{v1, . . . , vk−1} we choose an arbitrary subset P of N(vk)∩P k−1
j (I) with |P | = (d− ε)k|Zj|,

which is possible by the choice of vk, and set

P k
j (I ′) := P k−1

j (I ′) \ P and P k
j

(

I ′ ∪ {zk}
)

:= P .

Clearly, the partitions defined in this way satisfy that each part P k
j (I) is of size (d−ε)|I|(1−

d + ε)k−|I||Zj| and that P k
j (I) ⊆ N(I) as desired.

It remains to show that |Yk| 6 ε2k(r − 3)|Y | as claimed above. If this is not true, then
for some j ∈ [r − 3] and I ⊆ [k − 1], there exist ε|Y | vertices in Y which have at most
(d− ε)|P k

j (I)| neighbours in P k−1
j (I). Since |P k−1

j (I)| > (d− ε)k−1|Zj| > ε|Zj| by (8), this
contradicts (ε, d)-regularity of (Y, Zj).
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We now turn to the second part of the proof: We claim that for every S ∈ S ′ we have
|B(S)| < µ|Z|(r−3)t. To see this, simply choose a random multiset T ⊆ Z of size (r − 3)t,
and observe that N(T ) ∩ S is given by the intersection of (r − 3)t sets S1, . . . , S(r−3)t ⊆ S
chosen (independently) according to the distribution

P
(

Si = I
)

=

∣

∣{z ∈ Z : I = N(z) ∩ S}
∣

∣

|Z| for I ⊆ S .

By construction we have |P t∗

j (I)| = (d − ε)|I|(1 − d + ε)t
∗−|I||Zj| for every j ∈ [r − 3] and

I ⊆ S. Hence

P(I ⊆ Si) >

∣

∣

⋃r−3
j=1

⋃

I⊆I′⊆S P
t∗

j (I ′)
∣

∣

|Z| =
∑

I⊆I′⊆S

(d− ε)|I
′|(1 − d + ε)t

∗−|I′| = (d− ε)|I| .

This implies that for every I ⊆ S, we have P(I ⊆ Si) > P(I ⊆ S ′
i) for the random

variable S ′
i with the following distribution: for every u ∈ S we take u ∈ S ′

i independently
with probability d− ε. We conclude that

P
(

|S1 ∩ . . . ∩ S(r−3)t| > t
)

= P
(

I ⊆ S1 ∩ · · · ∩ S(r−3)t for some I ⊆ S with |I| > t
)

> P
(

I ⊆ S ′
1 ∩ · · · ∩ S ′

(r−3)t for some I ⊆ S with |I| > t
)

= P
(

|S ′
1 ∩ . . . ∩ S ′

(r−3)t| > t
)

= P

(

Bin
(

t∗, (d− ε)(r−3)t
)

> t
)

> 1 − µ ,

where the last inequality follows from (7). This proves |B(S)| < µ|Z|(r−3)t and hence
finishes the proof of the lemma. �

We shall now prove Proposition 36.

Proof of Proposition 36. We start by defining the constants. Given r > 3, ℓ, t ∈ N and
γ, d > 0, we set

(9) µ :=
γ(r−3)t

8
(

(r − 3)t
)

!(r − 3)(r−3)t

(d

2

)(r−3

2
)t2

and ℓ∗ :=
ℓ

2µ
.

Let t∗ and ε0 be given by Lemma 37 with input r, t, µ′ := 2−ℓ∗µ, d. Given α > 0 and C, we
choose

(10) ε1 := min
( α2

24ℓ∗+1
,

dγ

4(γ + 1)(r − 3)t
, ε0

)

and C∗ :=
2ℓ∗C

αµ
.

Now let 0 < ε < ε1, let G be a graph, and let X, Y and Z1, . . . , Zr−3 be disjoint subsets
of V (G) as described in the statement, so in particular, (X, Y ) is (C∗, α)-dense in copies of

Z3,t∗

ℓ∗ . The goal is to show that there exists S ∈ F r,t
ℓ (Y ∪Z) such that S is (r, ℓ, t, C, α)-good

for (X, Y ∪ Z).

Our first step is to show that there is a ‘well-behaved’ function S∗ ∈ F3,t∗

ℓ∗ (Y ).
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Claim 38. There is a function S∗ ∈ F3,t∗

ℓ∗ (Y ) which is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ) and
has the property that for every I ⊆ [ℓ∗], the set

B(S∗
I ) =

{

T ∈
(

Z

(r − 3)t

)

:
∣

∣N(T ) ∩ S∗
I

∣

∣ 6 t
}

in
(

Z
(r−3)t

)

has size at most 2−ℓ∗µ|Z|(r−3)t.

Proof of Claim 38. By Lemma 37 (with input r, t, µ′ = 2−ℓ∗µ, d), the total number of ‘bad’
t∗-subsets S ′ of Y , i.e., those for which B(S ′) > 2−ℓ∗µ|Z|(r−3)t, is at most

√
ε|Y |t∗ . Let

S be the set of functions S∗ in F3,t∗

ℓ∗ (Y ) which do not have the property that for every
I ⊆ [ℓ∗] we have B(S∗

I ) < 2−ℓ∗µ|Z|(r−3)t. We can obtain any function S∗ in S by taking a
set I ⊆ [ℓ∗] and one of the at most

√
ε|Y |t∗ ‘bad’ t∗-sets to be S∗

I , and choosing the 2ℓ∗ − 1
remaining sets of S∗ in any way from

(

Y
t∗

)

. It follows that

|S| 6 2ℓ∗
√
ε|Y |t∗ |Y |(2ℓ

∗

−1)t∗ = 2ℓ∗
√
ε|Y |2ℓ

∗

t∗ .

Since (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ , there are at least 2−ℓ∗α|Y |2ℓ
∗

t∗ functions in

F3,t∗

ℓ∗ (Y ) which are (3, ℓ∗, t∗, C∗, α)-good for (X, Y ). Since by (10) we have 2−ℓ∗α > 2ℓ∗
√
ε,

at least one of these functions is not in S, as required. �

For the remainder of the proof, S∗ will be a fixed function satisfying the conclusion of
Claim 38. Since S∗ is (3, ℓ∗, t∗, C∗, α)-good for (X, Y ), there exist sets

E∗
1 , . . . , E

∗
ℓ∗ ⊆ E(X), with d(E∗

j ) > 2−ℓ∗αC∗ for each 1 6 j 6 ℓ∗ ,

such that for every e1 ∈ E∗
1 , . . . , eℓ∗ ∈ E∗

ℓ∗ , we have eℓ
∗ → S∗.

Our next claim comprises two applications of the pigeonhole principle to find a copy of
Kr−3(t) in Z.

Claim 39. There exists a copy T of Kr−3(t) with t vertices in Zj for each j ∈ [r − 3], and
a set L ⊆ [ℓ∗] of size |L| = ℓ such that:

(i ) |N(T ) ∩ S∗
I | > t for every I ⊆ [ℓ∗],

(ii ) N(T ) contains at least µ|E∗
j | edges of E∗

j , for each j ∈ L.

Proof of Claim 39. By assumption, for every x ∈ X and j ∈ [r − 3] we have

|N(x) ∩ Zj| >
(

1

2
+ γ

)

|Zj| ,

and so each edge e ∈ E∗
1 ∪ . . . ∪ E∗

ℓ∗ has at least γ|Zj| common neighbours in Zj. By
Fact 3, the common neighbours of e in Zi and Zj form an (ε/γ, d− ε)-regular pair for each
1 6 i < j 6 r−3. By (10) we have d−ε−(r−3)tε/γ > d/2. Hence, applying the Counting
Lemma with d replaced by d−ε and ε replaced by ε/γ to the graph H = Kr−3(t), it follows
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that there are at least

1

Aut(H)

(

d− ε− ε

γ
|H|
)e(H)( γ|Z|

r − 3

)|H|

>
1

(

(r − 3)t
)

!

(d

2

)(r−3

2
)t2( γ|Z|

r − 3

)(r−3)t (9)

> 8µ|Z|(r−3)t

copies of Kr−3(t) in N(e) ∩ Z, each with t vertices in each Zj.
There are therefore, for each j ∈ [ℓ∗], at least 8µ|Z|(r−3)t|E∗

j | pairs (e, T ), where e ∈ E∗
j

and T is a copy of Kr−3(t) as described, such that T ⊆ N(e), or equivalently e ⊆ N(T ).
Since we have

8µ|Z|(r−3)t|E∗
j | = 4µ|Z|(r−3)t|E∗

j | + 4µ|E∗
j ||Z|(r−3)t ,

by the pigeonhole principle, it follows that there are at least 4µ|Z|(r−3)t copies of Kr−3(t)
in Z each of which has at least 4µ|E∗

j | edges of E∗
j in its common neighbourhood. Let

us denote by Tj the collection of such copies of Kr−3(t). For a copy T of Kr−3(t), let
L(T ) =

{

j : T ∈ Tj

}

.

We claim that there is a set T containing at least 2µ|Z|(r−3)t copies T of Kr−3(t) in Z,
each with |L(T )| > ℓ. Indeed, this follows once again by the pigeonhole principle, since
there are at least

ℓ∗ · 4µ|Z|(r−3)t (9)
= ℓ|Z|(r−3)t + ℓ∗ · 2µ|Z|(r−3)t

pairs (T, j) with T ∈ Tj .
Now, recall that S∗ satisfies the conclusion of Claim 38, i.e., for each I ⊆ [ℓ∗], there are

at most 2−ℓ∗µ|Z|(r−3)t sets T ∈
(

Z
(r−3)t

)

such that |N(T ) ∩ S∗
I | 6 t. Since |T | > 2µ|Z|(r−3)t,

there is a copy T of Kr−3(t) ∈ T such that for each I ⊆ [ℓ∗], we have |N(T ) ∩ S∗
I | > t. If

we let L be any subset of L(T ) of size ℓ, then T and L satisfy the conclusions of the claim.
�

Let T and L be as given by Claim 39 and for each j ∈ L let Ej ⊆ X be a set of µ|E∗
j |

edges of E∗
j contained in N(T ) as promised by Claim 39(ii ). We construct a function

S ∈ F r,t
ℓ (Y ) by choosing, for each I ⊆ L, a subset SI ⊆ S∗

I of size t in N(T ) ∩ Y (which is
possible by Claim 39(i )), and letting the sets Si, i ∈ [r − 3], be the parts of T .

Claim 40. S is (r, ℓ, t, C, α)-good for (X, Y ∪ Z).

Proof of Claim 40. Recall that |L| = ℓ, and assume without loss of generality that L =
{1, . . . , ℓ}. By the choice of T and the definition of the sets SI with I ⊆ L and the sets Si

with i ∈ [r − 3], we have that Si is completely adjacent to each Si′ with i 6= i′, to each SI ,
and to each edge e ∈ ⋃j∈LEj. Since eℓ

∗ → S∗ for each eℓ
∗ ∈ E∗

1 × . . .×E∗
ℓ∗ , it follows that

eℓ → S for each eℓ ∈ E1 × . . .× Eℓ. Finally, for each j ∈ L, since |Ej| > µ|E∗
j |, we have

d(Ej) > µd(E∗
j ) > µ2−ℓ∗αC∗ (10)

= C ,

as required. �
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Thus there exists a function S ∈ F r,t
ℓ (Y ) which is (r, ℓ, t, C, α)-good for (X, Y ∪ Z), as

required. �

Remark 41. It is possible to strengthen the conclusion of Proposition 36: under the
same conditions, (X, Y ∪ Z1 ∪ · · · ∪ Zr−3) is (C, α′)-dense in copies of Zr,t

ℓ , for some α′ =
α′(r, ℓ, t, d, γ, α) > 0. To see this, observe that the proofs of Claims 38 and 39 both in fact

yield a positive density of functions S∗ in F3,t∗

ℓ∗ (Y ) and of copies T of Kr−3(t), respectively.
From any such S∗ and T can be obtained a function S which is (r, ℓ, t, C, α)-good for
(X, Y ∪ Z).

We can now deduce Theorem 34.

Proof of Theorem 34. The lower bound is given by Proposition 35, so we are only required
to prove the upper bound. Let H be an r-near-acyclic graph, with r > 4, and let γ > 0.
Because H is r-near-acyclic, by Observation 20 there exist trees T1, . . . , Tℓ and a number
t ∈ N such that H ⊆ Zr,t

ℓ (T1, . . . , Tℓ). We now set constants as follows. First, we choose
d = γ. Given r, ℓ, t, d and γ, Proposition 36 returns integers ℓ∗ and t∗. Now Proposition 26,
with input ℓ∗, t∗ and d, returns α > 0. Next, consistent with Lemma 25 we set C :=
2ℓ+3α−1

∑ℓ
i=1 |Ti|. Feeding α and C into Proposition 36 yields ε1 > 0 and C∗. Putting C∗

into Proposition 26 yields a constant C ′. We choose

(11) k0 := 2r/γ and ε := min(ε1, γ) .

Finally, from the minimum degree form of the Szemerédi Regularity Lemma, with input ε,
d, δ = ( r−3

r−2
+ 3γ) and k0, we obtain a constant k1.

Let G be an H-free graph on n > k1 vertices, with δ(G) >
(

r−3
r−2

+ 3γ
)

n. We shall

prove that χ(G) 6 2 · 22k1C ′. First, applying the minimum degree form of the Szemerédi
Regularity Lemma, we obtain a partition V0 ∪ . . . ∪ Vk of V (G), with reduced graph R,
where δ(R) >

(

r−3
r−2

+ γ
)

k. We form a second partition by setting

X(I1, I2) :=

{

v ∈ V (G) : i ∈ I1 ⇔ |N(v) ∩ Vi| > γ|Vi|

and i ∈ I2 ⇔ |N(v) ∩ Vi| >
(

1

2
+ γ

)

|Vi|
}

for each pair of sets I2 ⊆ I1 ⊆ [k]. It obviously suffices to establish that for each I1 and I2
we have χ

(

G[X(I1, I2)]
)

6 2C ′.

Hence let I2 ⊆ I1 ⊆ [k] be fixed. Since χ
(

G[X(I1, I2)]
)

6 2C ′ is obvious when X(I1, I2)
is empty, assume it is non-empty. Then the minimum degree condition on G allows us to
establish the following claim.

Claim 42. There exist distinct clusters Y, Y ′ ∈ I1 and Z1, Z
′
1, . . . , Zr−3, Z

′
r−3 ∈ I2 such that

(Y, Zi), (Y
′, Z ′

i), (Zi, Zj) and (Z ′
i, Z

′
j) are (ε, d)-regular for every pair {i, j} ⊆ [r − 3].

Proof of Claim 42. Let x be any vertex in X(I1, I2), and let m = |V1| = · · · = |Vk|. By the
definition of X(I1, I2), we have |N(x) ∩ Vi| > γm iff i ∈ I1, and thus

(

r−3
r−2

+ 3γ
)

n 6 δ(G) 6 d(x) 6 εn +
(

k − |I1|
)

γm + |I1|m 6 (ε + γ)n + |I1|nk .
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Since by (11) we have ε < γ, we deduce |I1| >
(

r−3
r−2

+γ
)

k. Similarly, we have |N(x)∩Vi| >
(1
2

+ γ)m iff i ∈ I2 and therefore
(

r−3
r−2

+ 3γ
)

n 6 d(x) 6 εn +
(

k − |I2|
)(

1
2

+ γ
)

m + |I2|m 6 (ε + 1
2

+ γ)n + |I2| n2k ,
from which we obtain |I2| >

(

r−4
r−2

+ γ
)

k.

Since δ(R) >
(

r−3
r−2

+ γ
)

k, each cluster in R has at most
(

1
r−2

− γ
)

k non-neighbours. It
follows that

δ
(

R[I2]
)

> |I2| − k
r−2

+ γk >
(

r−5
r−4

+ γ
)

|I2| ,
so by Turán’s theorem, R[I2] contains a copy of Kr−3. We let its clusters be Z1, . . . , Zr−3.
Since each Zi is non-adjacent to at most

(

1
r−2

− γ
)

k cluster in I1, there is a cluster Y in I1
adjacent in R to each Zi with i ∈ [r−3]. Since k > k0, by (11) we have γk−(r−2) > γk/2
and therefore

δ
(

R[I2 \ {Y, Z1, . . . , Zr−3}]
)

> |I2| − k
r−2

+ 1
2
γk >

(

r−5
r−4

+ 1
2
γ
)∣

∣I2 \ {Y, Z1, . . . , Zr−3}
∣

∣ .

Thus we can again apply Turán’s theorem to R[I2 \ {Y, Z1, . . . , Zr−3}] to obtain a clique
Z ′

1, . . . , Z
′
r−3 in I2, which has a common neighbour Y ′ ∈ I1 \ {Y, Z1, . . . , Zr−3}, as required.

�

Let Y, Y ′ ∈ I1 and Z1, Z
′
1, . . . , Zr−3, Z

′
r−3 ⊆ I2 be the clusters given by Claim 42. Let X =

X(I1, I2)∩(Y ′∪Z ′
1∪· · ·∪Z ′

r−3), and X ′ = X(I1, I2)\X. Observe that X, Y, Z1, . . . , Zr−3 are
pairwise disjoint (as are X ′, Y ′, Z ′

1, . . . , Z
′
r−3). Our goal now is to show that χ

(

G[X]
)

6 C ′.

Since an analogous argument gives χ
(

G[X ′]
)

6 C ′ and we have X(I1, I2) = X ∪ X ′, this

will imply χ
(

G[X(I1, I2)]
)

6 2C ′, and thus complete the proof.
We apply Proposition 26, with input ℓ∗, t∗, d and C∗, to (X, Y ). Observe that, since

Y ∈ I1 and X ⊆ X(I1, I2), we have |N(x) ∩ Y | > d|Y | for each x ∈ X. Recall that α
and C ′ were defined such that the conclusion of Proposition 26 is the following. Either
χ
(

G[X]
)

6 C ′, or (X, Y ) is (C∗, α)-rich in copies of Z3,t∗

ℓ∗ . In the first case we are done, so
we assume the latter. We will show that this contradicts our assumption that G is H-free.

By Lemma 24 the pair (X, Y ) is (C∗, α)-dense in copies of Z3,t∗

ℓ∗ . We now apply Propo-
sition 36, with input r, ℓ, t, d, γ, α, C, and ε to X, Y, Z1, . . . , Zr−3. Observe that since
Z1, . . . , Zr−3 ∈ I2, we have |N(x) ∩ Zi| > (1

2
+ γ)|Zi| for each x ∈ X and i ∈ [r − 3].

Moreover, by Claim 42, any pair of Y, Z1, . . . , Zr−3 is (ε, d)-regular. Recall that ℓ∗, t∗, ε1
and C∗ were defined such that the conclusion of Proposition 36 is that there exists a func-
tion S ∈ F r,t

ℓ (Y ∪ Z1 ∪ · · · ∪ Zr−3) which is (r, ℓ, t, C, α)-good for (X, Y ∪ Z1 ∪ · · · ∪ Zr−3).
Finally, we apply Lemma 25, with input r, ℓ, t, α and T1, . . . , Tℓ, to X and Y ∪Z1∪· · ·∪Zr−3.
By the definition of C, this lemma gives that H ⊆ Zr,t

ℓ (T1, . . . , Tℓ) is contained in G, a
contradiction. �

Finally, we put the pieces together and complete the proof of Theorem 2.

Proof of Theorem 2. Let H be a graph with χ(H) = r > 3, and recall that M(H) denotes
the decomposition family of H. By Proposition 5, if M(H) does not contain a forest then
δχ(H) = r−2

r−1
, and by Theorem 7, if M(H) does contain a forest then δχ(H) 6 2r−5

2r−3
.
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Now, by Theorem 16, if H is not r-near-acyclic then δχ(H) > 2r−5
2r−3

, and by Theorem 34,

if H is r-near-acyclic then δχ(H) = r−3
r−2

. Thus

δχ(H) ∈
{

r − 3

r − 2
,

2r − 5

2r − 3
,
r − 2

r − 1

}

,

where δχ(H) 6= r−2
r−1

if and only if H has a forest in its decomposition family, and δχ(H) =
r−3
r−2

if and only if H is r-near-acyclic, as required. �

8. Open questions

Although we have determined δχ(H) for every graph H, there are still many important
questions left unresolved. In this section we shall discuss some of these. We begin by
conjecturing that the assumption on the minimum degree can be weakened to force the
boundedness of the chromatic number, as Brandt and Thomassé [8] proved in the case of
the triangle.

Conjecture 43. For every graph H with δχ(H) = λ(H), there exists a constant C(H)
such that the following holds. If G is an H-free graph on n vertices and δ(G) > λ(H)n,
then χ(G) 6 C(H).

We mention that an analogous statement is not true for H with δχ(H) ∈ {θ(H), π(H)}
as a simple modification of our constructions for Propositions 5 and 35 shows: we merely
need to make the partite graphs used in these constructions slightly unbalanced and to
guarantee that the Erdős graphs cover the whole partition class they are pasted into and
have a sufficient minimum degree.

For graphs H with δχ(H) = 0 one could still ask whether the minimum degree condition
can be weakened to some function f(n) = o(n). The following well-known fact shows that
this is not the case.

Proposition 44. Let H be a graph with χ(H) > 3, and let f(n) = o(n). For every
C and n1, there exist H-free graphs G on at least n1 vertices with δ(G) > f

(

v(G)
)

and
χ(G) > C.

Proof. Given H, f , C and n1, let G0 be a (C, v(H) + 1)-Erdős graph. Without loss of
generality, we may assume δ(G0) > 1. Let n0 be such that f(n) 6 n/v(G0) for each
n > n0. Let G be obtained from G0 by blowing up each vertex to a set of size max(n0, n1).
Then G has at least n1 vertices, and we have δ(G) > v(G)/v(G0) > f

(

v(G)
)

. Since
G0 contains no cycle on v(H) or fewer vertices, G contains no odd cycle with v(H) or
fewer vertices. In particular, every v(H)-vertex subgraph of G is bipartite, and hence G is
H-free. �

Proposition 44 also implies that for graphs H with δχ(H) = 0 the upper bound on χ(G)
for H-free graphs G with δ(G) > εn increases as ε goes to zero. This suggests the following
problem. Set

δχ(H, k) := inf
{

d : δ(G) > d|G| and H 6⊆ G ⇒ χ(G) 6 k
}

,



34 P. ALLEN, J. BÖTTCHER, S. GRIFFITHS, Y. KOHAYAKAWA, AND R. MORRIS

or, equivalently,

χδ(H, d) := max
{

χ(G) : δ(G) > d|G| and H 6⊆ G
}

,

and call this the chromatic profile of H.

Problem 45. Determine the chromatic profile for every graph H.

As noted in the Introduction, we have, by the results of Andrásfai, Erdős and Sós [3],
Brandt and Thomassé [8], Häggkvist [18] and Jin [20], that

δχ(K3, 2) =
2

5
, δχ(K3, 3) =

10

29
and δχ(K3, k) =

1

3
for every k > 4.

We remark that this problem was also asked by Erdős and Simonovits [14], who remarked
that it seemed (in full generality) ‘too complicated’ to study; despite the progress made
in recent years, we still expect it to be extremely difficult. Note that although our results
give explicit upper bounds on χδ(H, d) for every graph H, even in the case δχ(H) = 0,
where we do not use the Szemerédi Regularity Lemma, these bounds are very weak.

 Luczak and Thomassé [30] suggested the following more general problem. Given a (with-
out loss of generality monotone) family F of graphs, we define

δχ(F) := inf
{

δ : ∃C = C(F , δ) such that if G ∈ F is a graph on n vertices

with δ(G) > δn, then χ(G) 6 C
}

.

Problem 46. What values can δχ(F) take?

Our results settle this question completely when F is defined by finitely many minimal
forbidden subgraphs (in which case δχ(F) is precisely the minimum of δχ(H) over all
minimal forbidden subgraphs H). For families F defined by infinitely many forbidden
subgraphs, however, this minimum provides only an upper bound on δχ(F).

 Luczak and Thomassé [30] suggested in particular to determine δχ(B), where B is the
family of graphs G such that for every vertex v ∈ G, the graph G

[

N(v)
]

is bipartite (as a
natural generalisation of the family of triangle-free graphs, in which every neighbourhood is
an independent set). This family is indeed defined by infinitely many forbidden subgraphs:
to be precise, by the odd wheels.  Luczak and Thomassé gave a construction showing that
δχ(B) > 1

2
, and conjectured that δχ(B) = 1

2
. Since the wheel W5 (i.e., the graph obtained

from C5 by adding a vertex adjacent to all its vertices) is a forbidden graph for B, and
δχ(W5) = 1

2
by Theorem 2, our results confirm that their conjecture is true.

One can generalise the concept of chromatic threshold to uniform hypergraphs. Recently,
Balogh, Butterfield, Hu, Lenz and Mubayi [4] extended the  Luczak-Thomassé method to
uniform hypergraphs H, and thereby proved that δχ(H) = 0 for a large family of such H.
To quote from their paper, ‘Many open problems remain’.

Finally, we would like to introduce a new class of problems relating to the chromatic
threshold. There has been a recent trend in Combinatorics towards proving ‘random
analogues’ of extremal results in Graph Theory and Additive Number Theory (see, for
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example, the recent breakthroughs of Conlon and Gowers [10] and Schacht [36]). We
propose the following variation on this theme: for each graph H and every function p =
p(n) ∈ [0, 1], define

δχ
(

H, p
)

:= inf
{

d : ∃C(H, d) such that for G = Gn,p, asymptotically almost surely,

if G′ ⊆ G, δ(G′) > dpn and H 6⊆ G′, then χ(G′) 6 C(H, d)
}

,

where Gn,p is the Erdős-Rényi random graph. Note that when p(n) = 1, we recover the
definition of δχ(H).

Problem 47. Determine δχ(H, p) for every graph H, and every p = p(n).

In a forthcoming paper [2] we intend to show that for every constant p > 0 and every
graph H, we have δχ(H) = δχ(H, p). This is of course trivial in the case δχ(H) = 0, when
it follows from the results of this paper together with the well-known fact that for constant
p, the minimum degree of Gn,p is asymptotically almost surely at least pn/2. In the case
δχ(H) > 0, the result is not trivial: but much of the machinery developed in this paper
can be used unchanged. The following construction shows that the result is best possible,
in the sense that it fails to hold for p = o(1).

Theorem 48. Let r > 3 and C ∈ N, and let H be a graph with χ(H) = r and δχ(H) >

λ(H) = 2r−5
2r−3

. If ε > 0 is sufficiently small, the following holds. If n−ε < p < ε2, then
asymptotically almost surely the graph G = Gn,p contains an H-free subgraph G′ with
χ(G′) > C and δ(G′) > (1 − ε) r−2

r−1
pn.

Proof (sketch). Given r, H and C, we let F be a fixed (C, v(H) + 1)-Erdős graph. We
choose a sufficiently small ε > 0.

We now construct an H-free subgraph G′ of G = Gn,p as follows. Let V1, . . . , Vr−1

be an arbitrary balanced partition of [n]. We fix a copy of F within G[V1] (which exists
asymptotically almost surely). Then we delete all edges within each part Vi with i ∈ [r−1],
except those in the copy of F . Moreover, for each pair of vertices u, v ∈ V (F ), we delete
the edges from u and v to the common neighbours of u and v in each of V2, . . . , Vr−1.

It follows that χ(G′) > C and that G′ asymptotically almost surely has minimum degree
(1 − ε) r−2

r−1
pn. In addition it can easily be checked from our characterisation of graphs H

with δχ(H) > λ(H) that G′ is also H-free. �

Theorem 48 can be significantly strengthened, and we intend to do so in [2]. However,
results of Kohayakawa, Rödl and Schacht [22] show that we cannot increase the value r−2

r−1

in the minimum degree, i.e, δχ(H, p) 6 π(H). Thus, by Theorem 48, and in contrast to
the p = Θ(1) case, if δχ(H) > λ(H) and n−o(1) < p = o(1), then δχ(H, p) = r−2

r−1
= π(H).
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36 P. ALLEN, J. BÖTTCHER, S. GRIFFITHS, Y. KOHAYAKAWA, AND R. MORRIS
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[14] P. Erdős and M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973),

323–334.
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[34] V. Rödl and M. Schacht, Regularity lemmas for graphs, Fete of Combinatorics and Computer Science,
Bolyai Society Mathematical Studies, vol. 20, Springer, 2010, pp. 287–325.

[35] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147.
[36] M. Schacht, Extremal results for random discrete structures, Submitted.
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