The bandwidth conjecture for 3-colourable graphs

Julia Böttcher

Technische Universität München

Sixth Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms, and Applications

(with Mathias Schacht & Anusch Taraz)

Outline

Let G be a graph. We are interested in sufficient degree conditions on G for the appearance of a given graph H in G.

- 1 Introduction / Preliminary Results
- 2 The Bandwidth Conjecture
- 3 The Main Result
- 4 Outline of the Proof

5 Summary

Small Graphs

Theorem (follows from Turán 1941)

If $\delta(G) > \frac{r-2}{r-1}n$ then $K_r \subseteq G$.

Theorem (follows from Turán 1941)

If $\delta(\mathbf{G}) > \frac{r-2}{r-1}n$ then $K_r \subseteq \mathbf{G}$.

Theorem (follows from Erdős, Stone;Simonovits 1946;1966)

For all graphs H and constants γ there is an n_0 s.t. for all graphs $|G| = n \ge n_0$ the following holds. If $\delta(G) \ge \left(\frac{r-2}{r-1} + \gamma\right) n$ then $H \subseteq G$, where $r = \chi(H)$.

From Small Graphs to Big Graphs

■ A graph *H* of constant size is forced in *G*, when

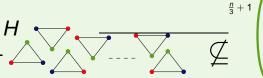
$$\delta(\mathbf{G}) \geq \left(\frac{\chi(H)-2}{\chi(H)-1}+\gamma\right) n.$$

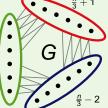
From Small Graphs to Big Graphs

■ A graph *H* of constant size is forced in *G*, when

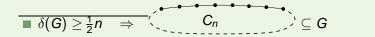
$$\delta(\mathbf{G}) \geq \left(\frac{\chi(H)-2}{\chi(H)-1}+\gamma\right) n.$$

Spanning graphs *H* are not, because:



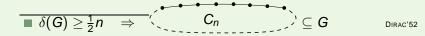


Big Graphs



DIRAC'52

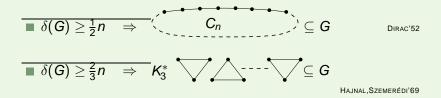
Big Graphs



• $\delta(G) \geq \frac{r-1}{r} n \Rightarrow \frac{n}{r}$ disj. copies of $K_r \subseteq G$.

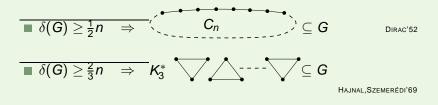
HAJNAL, SZEMERÉDI'69

Big Graphs



Julia Böttcher

Big Graphs

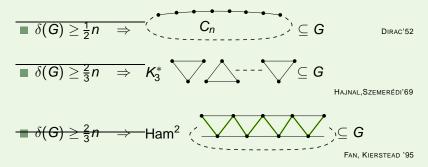


$$\delta(\mathbf{G}) \geq \frac{r-1}{r} n \Rightarrow (\mathbf{C}_n)^r \subseteq \mathbf{G}.$$

FAN, KIERSTEAD '95

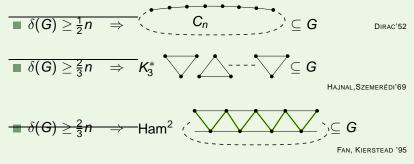
KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '98

Big Graphs



KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '98

Big Graphs



KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '98

other results: trees, F-factors, planar graphs ...

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '95

ALON, YUSTER '96

KÜHN, OSTHUS, TARAZ '05

The Bandwidth Conjecture

A Generalization

Conjecture (naïve)

Forall Δ and γ there is an n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$ and $\delta(G) \ge \left(\frac{r-1}{r} + \gamma\right)$ n then $H \subseteq G$ where $r = \chi(H)$. The Bandwidth Conjecture

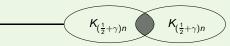
A Generalization

Conjecture (naïve)

Forall Δ and γ there is an n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$ and $\delta(G) \ge \left(\frac{r-1}{r} + \gamma\right)$ n then $H \subseteq G$ where $r = \chi(H)$.

Counterexample:

- *H* : random bipartite graph with $\Delta(H) \leq \Delta$.
- **G**: two cliques of size $(\frac{1}{2} + \gamma) n$ sharing $2\gamma n$ vertices.



The Bandwidth Conjecture

A Generalization

Conjecture (naïve)

Forall Δ and γ there is an n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$ and $\delta(G) \ge \left(\frac{r-1}{r} + \gamma\right)$ n then $H \subseteq G$ where $r = \chi(H)$.

Bandwidth:

■ bw(G) ≤ b if there is a labelling of V(G) by 1,..., n s.t. for all $\{i, j\} \in E(G)$ we have $|i - j| \le b$.

A Generalization

Conjecture (Bollobás & Komlós)

Forall Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw(H) $\le \beta n$, and $\delta(G) \ge \left(\frac{r-1}{r} + \gamma\right) n$ then $H \subseteq G$ where $r = \chi(H)$.

Bandwidth:

■ bw(G) ≤ b if there is a labelling of V(G) by 1,..., n s.t. for all $\{i, j\} \in E(G)$ we have $|i - j| \le b$.

The 3-chromatic Case

Theorem

For all Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw $(H) \le \beta n$, $\chi(H) = 3$, and $\delta(G) \ge \left(\frac{2}{3} + \gamma\right) n$ then $H \subseteq G$.

The 3-chromatic Case

Theorem

For all Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw $(H) \le \beta n$, $\chi(H) = 3$, and $\delta(G) \ge \left(\frac{2}{3} + \gamma\right) n$ then $H \subseteq G$.

Remarks:

■ The 2-chromatic case was announced by Abbasi (1998).

The 3-chromatic Case

Theorem

For all Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw $(H) \le \beta n$, $\chi(H) = 3$, and $\delta(G) \ge \left(\frac{2}{3} + \gamma\right) n$ then $H \subseteq G$.

Remarks:

- The 2-chromatic case was announced by Abbasi (1998).
- $\blacksquare \left(\frac{2}{3} + \gamma\right) n \text{ cannot be replaced by } \frac{2}{3}n.$

The 3-chromatic Case

Theorem

For all Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw $(H) \le \beta n$, $\chi(H) = 3$, and $\delta(G) \ge \left(\frac{2}{3} + \gamma\right) n$ then $H \subseteq G$.

Remarks:

- The 2-chromatic case was announced by Abbasi (1998).
- $\blacksquare \left(\frac{2}{3} + \gamma\right) n \text{ cannot be replaced by } \frac{2}{3}n.$
- The proof is constructive.

The 3-chromatic Case

Theorem

For all Δ and γ there are β and n_0 s.t. for all $|H| = |G| = n \ge n_0$: If $\Delta(H) \le \Delta$, bw $(H) \le \beta n$, $\chi(H) = 3$, and $\delta(G) \ge \left(\frac{2}{3} + \gamma\right) n$ then $H \subseteq G$.

Remarks:

- The 2-chromatic case was announced by Abbasi (1998).
- $\blacksquare \left(\frac{2}{3} + \gamma\right) n \text{ cannot be replaced by } \frac{2}{3}n.$
- The proof is constructive.
- For the proof we use the regularity and the blow-up lemmma.

The Proof

Strategy:

Prepare G with the help of the regularity lemma to get a regular vertex partition. (Lemma for G)

The Proof

- Prepare G with the help of the regularity lemma to get a regular vertex partition. (Lemma for G)
- Prepare *H* by exploiting its structure and find an assignment of V(H) to the partition classes of *G*. (Lemma for *H*)

The Proof

- Prepare G with the help of the regularity lemma to get a regular vertex partition. (Lemma for G)
- Prepare *H* by exploiting its structure and find an assignment of V(H) to the partition classes of *G*. (Lemma for *H*)
- 3 Take care of edges between the different parts of H with the help of (a variant of) the embedding lemma.

The Proof

- Prepare *G* with the help of the regularity lemma to get a regular vertex partition. (Lemma for *G*)
- Prepare *H* by exploiting its structure and find an assignment of V(H) to the partition classes of *G*. (Lemma for *H*)
- 3 Take care of edges between the different parts of *H* with the help of (a variant of) the embedding lemma.
- 4 Complete the embedding with the blow-up lemma.

The Lemma for G

Lemma (Lemma for G)

Let G be a suff. large graph with $\delta(G) \ge (\frac{2}{3} + \gamma)n$. There is a regular partition $V(G) = V'_1 \cup \cdots \cup V'_k$ of G with reduced graph R with the following properties:

- $\delta(R) \ge (\frac{2}{3} + \gamma/2)|V(R)|$ and thus $R \supseteq Ham^2 \supseteq K_3^*$,
- $V'_1 \dot{\cup} \cdots \dot{\cup} V'_k$ is super-regular on K_3^* ,

The parts V'_i are almost of equal size.

Moreover, if we are asked to change the sizes of the parts V'_i by ξn , we can do so. (resulting partition: $V_1 \cup \cdots \cup V_k$)

The Lemma for G

Lemma (Lemma for G)

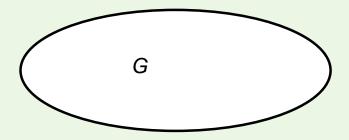
Let G be a suff. large graph with $\delta(G) \ge (\frac{2}{3} + \gamma)n$. There is a regular partition $V(G) = V'_1 \cup \cdots \cup V'_k$ of G with reduced graph R with the following properties:

- $\delta(R) \ge (\frac{2}{3} + \gamma/2)|V(R)|$ and thus $R \supseteq Ham^2 \supseteq K_3^*$,
- $V'_1 \dot{\cup} \cdots \dot{\cup} V'_k$ is super-regular on K_3^* ,

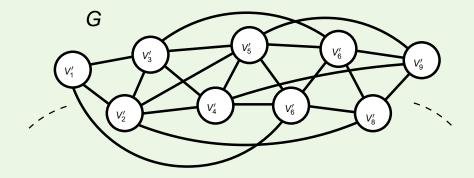
■ The parts V'_i are almost of equal size.

Moreover, if we are asked to change the sizes of the parts V'_i by ξn , we can do so. (resulting partition: $V_1 \cup \cdots \cup V_k$)

The Lemma for G



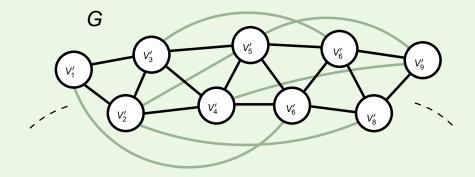
The Lemma for G



A regular partition of *G* with parts of almost equal size.

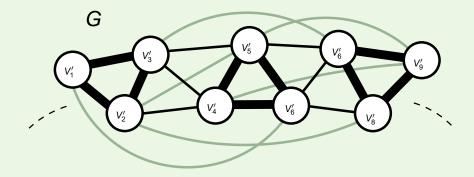
	lia			

The Lemma for G



Since $\delta(R) \ge (\frac{2}{3} + \gamma/2)|V(R)|$ we have $R \supseteq \operatorname{Ham}^2 \supseteq K_3^*$.

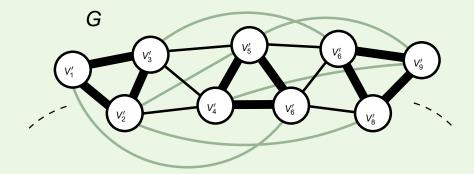
The Lemma for G



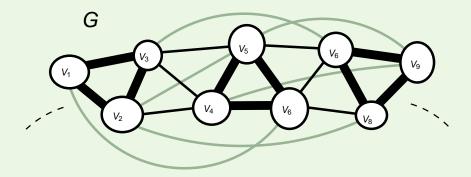
We make the partition super-regular on K_3^* .

			he	

The Lemma for G



The Lemma for G



We can change the partition by moving some vertices to obtain $V_1 \dot{\cup} \cdots \dot{\cup} V_k$.

The Lemma for H

Lemma (Lemma for H)

Let H be a graph with $\Delta(H) \leq \Delta$, bandwidth $\leq \beta n$ and $\chi(H) \leq 3$, and let $R \supseteq Ham^2 \supseteq K_3^*$ be a graph with $\delta(R_k) > 2k/3$. Then there is a homomorphism f from H to R such that

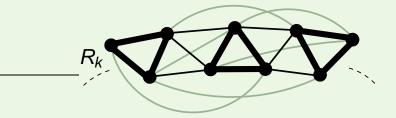
- f sends roughly the same number of vertices to each $v \in V(R)$,
- Almost all edges of H are mapped to edges of K_3^* .

Moreover, the set of special vertices

 $X := \{v \in V(H) : \text{ some edge } uv \text{ is not mapped to } K_3^*\}$

is very small.

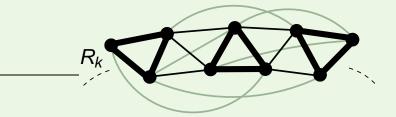
The Lemma for H



H is given in an order respecting the bandwidth bound.

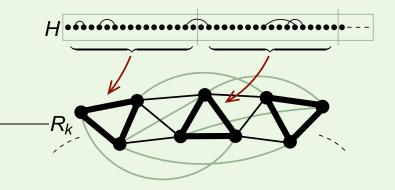
		n		u.	-1			
UI	ia	в	O	10	e	a	е	г

The Lemma for H



Idea: Cut H into pieces

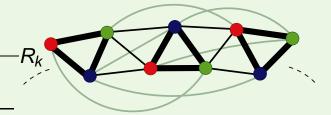
The Lemma for H



Idea: Cut *H* into pieces and map each piece to a triangle of K_3^* .

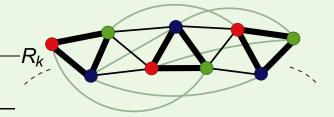
Julia	

The Lemma for H



This is possible, since $\chi(H) = 3$. But the colour classes of *H* may vary in size a lot.

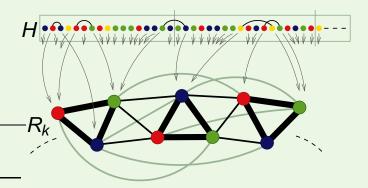
The Lemma for H



We can find a large subgraph of *H* with a balanced 3-colouring.

Juli		

The Lemma for H



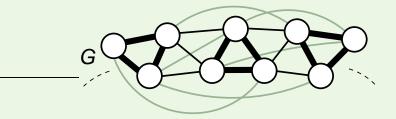
We map all edges of H to R, and most of them to K_3^* .

Proof of the Main Theorem

H is given in an order respecting the bandwidth bound.

- 1		ia	D	ä	+0	ь.	~ "
J	u	la	D	υ	.ιυ		εı

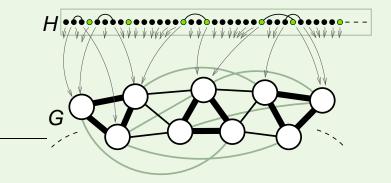
Proof of the Main Theorem



The Lemma for G constructs a regular partition $V'_1 \dot{\cup} \cdots \dot{\cup} V'_k$ of G.

		n		u.	-1			
UI	ia	в	O	10	e	a	е	г

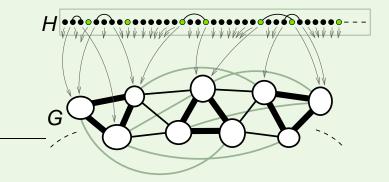
Proof of the Main Theorem



The Lemma for H constructs a homomorphism f and a set of special vertices X.

Julia Böttcher

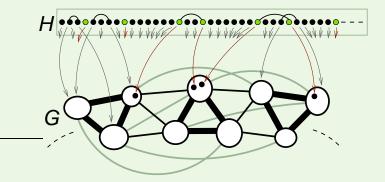
Proof of the Main Theorem



The Lemma for G adjusts the partition of G s.t. $|V_i| = f^{-1}(i)$.

- 1		ia	D	ä	+0	ь.	~ "
J	u	la	D	υ	.ιυ		εı

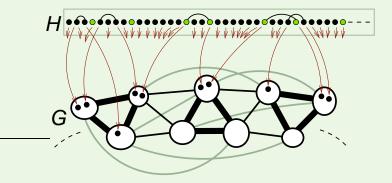
Proof of the Main Theorem



We embed the special vertices *X* into *G* using the embedding lemma.

Julia Böttcher

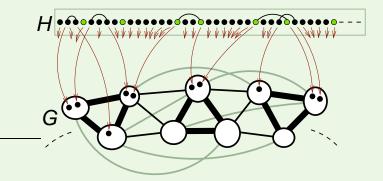
Proof of the Main Theorem



We embed all other vertices using the blow-up lemma.

Ju			

Proof of the Main Theorem



 $H \subseteq G$

Summary

Summary/Outlook

- The bandwidth conjecture generalizes many known results about sufficient degree conditions for the appearance of spanning subgraphs.
- We proved the bandwidth conjecture for $\chi(H) = 3$.
- The proof does not (quite) carry over to $\chi(H) > 3$.
- What happens if we replace bandwidth by pathwidth / treewidth?