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Extremal combinatorics was invented and is loved by hungarians.
BÉLA BOLLOBÁS

Good jazz is when the leader jumps on the piano, waves his arms, and
yells.

Fine jazz is when a tenorman lifts his foot in the air.

Great jazz is when he heaves a piercing note for 32 bars and collapses on
his hands and knees.

A pure genius of jazz is manifested when he and the rest of the orchestra
run around the room while the rhythm section grimaces and dances
around their instruments.

CHARLES MINGUS
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Subgraph containment problem

Question

Given a graph H or family H = {Hn : n ∈ N}. Which conditions on an
n-vertex graph G = (V , E) ensure H ⊆ G or Hn ⊆ G?

Our aim: every graph G = (V , E) with minimum degree δ(G) ≥??
contains a given graph H.

Classical example:

δ(G) ≥ 1
2n ⇒ Ham ⊆ G DIRAC’52
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Subgraph containment problem

Question

Given a graph H or family H = {Hn : n ∈ N}. Which conditions on an
n-vertex graph G = (V , E) ensure H ⊆ G or Hn ⊆ G?

Our aim: every graph G = (V , E) with minimum degree δ(G) ≥??
contains a given graph H.

H of small/fixed size

Erdős–Stone: δ(G) ≥
(

χ(H)−2
χ(H)−1 + o(1)

)

n .
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Subgraph containment problem

Question

Given a graph H or family H = {Hn : n ∈ N}. Which conditions on an
n-vertex graph G = (V , E) ensure H ⊆ G or Hn ⊆ G?

Our aim: every graph G = (V , E) with minimum degree δ(G) ≥??
contains a given graph H.

H of small/fixed size

Erdős–Stone: δ(G) ≥
(

χ(H)−2
χ(H)−1 + o(1)

)

n .

This talk

Hn is a spanning subgraph of G.
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Big Graphs

δ(G) ≥ 1
2n ⇒ Ham ⊆ G DIRAC’52

δ(G) ≥ r−1
r n ⇒ n

r disj. copies of Kr ⊆ G.
HAJNAL,SZEMERÉDI’69
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δ(G) ≥ 1
2n ⇒ Ham ⊆ G DIRAC’52

δ(G) ≥ 2
3n ⇒ K ∗

3 ⊆ G
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δ(G) ≥ 1
2n ⇒ Ham ⊆ G DIRAC’52

δ(G) ≥ 2
3n ⇒ K ∗

3 ⊆ G
HAJNAL,SZEMERÉDI’69

δ(G) ≥ r−1
r n ⇒ (Ham)r ⊆ G.

FAN, KIERSTEAD ’95
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Big Graphs

δ(G) ≥ 1
2n ⇒ Ham ⊆ G DIRAC’52

δ(G) ≥ 2
3n ⇒ K ∗

3 ⊆ G
HAJNAL,SZEMERÉDI’69

δ(G) ≥ 2
3n ⇒ Ham2 ⊆ G

Pósa’s conjecture FAN, KIERSTEAD ’95

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI ’98

other results: trees, F -factors, planar triangulations . . .
KOMLÓS, SÁRKÖZY, AND SZEMERÉDI ’95

ALON, YUSTER ’96

KÜHN, OSTHUS, TARAZ ’05
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From Small Graphs to Big Graphs

A graph H of constant size is forced in G, when

δ(G) ≥
(

χ(H) − 2
χ(H) − 1

+ o(1)

)

n.
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A graph H of constant size is forced in G, when

δ(G) ≥
(

χ(H) − 2
χ(H) − 1

+ o(1)

)

n.

Spanning graphs H are not, because:

H
6⊆

G
n
3 + 1

n
3 + 1

n
3 − 2
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From Small Graphs to Big Graphs

A graph H of constant size is forced in G, when

δ(G) ≥
(

χ(H) − 2
χ(H) − 1

+ o(1)

)

n.

Spanning graphs H are not, because:

H
6⊆

G
n
3 + 1

n
3 + 1

n
3 − 2

What about χ(H)−1
χ(H)

?
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Naı̈ve conjecture

For all k , ∆ ≥ 1, and γ > 0 exists n0

H
G
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Julia Böttcher TU München SODA’07



On the bandwidth conjecture for 3-colourable graphs

Generalizing conjecture
Naı̈ve conjecture

For all k , ∆ ≥ 1, and γ > 0 exists n0

H

χ(H) = k

∆(H) ≤ ∆

G

δ(G) ≥ ( k−1
k + γ)n

=⇒ G contains H.
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Generalizing conjecture
Naı̈ve conjecture

For all k , ∆ ≥ 1, and γ > 0 exists n0

H

χ(H) = k

∆(H) ≤ ∆

G

δ(G) ≥ ( k−1
k + γ)n

=⇒ G contains H.

Counterexample:

H : random bipartite graph with ∆(H) ≤ ∆.

G : two cliques of size
(

1
2 + γ

)

n sharing 2γn vertices.

K(1
2 +γ)nK(1

2 +γ)n
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Generalizing conjecture

Conjecture of Bollobás and Komlós

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0
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G
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Generalizing conjecture

Conjecture of Bollobás and Komlós

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1
k + γ)n

=⇒ G contains H.

Bandwidth:

bw(G) ≤ b if there is a labelling of V (G) by 1, . . . , n
s.t. for all {i, j} ∈ E(G) we have |i − j | ≤ b.

i j
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Generalizing conjecture

Conjecture of Bollobás and Komlós

For all k , ∆ ≥ 1, and γ > 0 exists n0 and β > 0

H

χ(H) = k

∆(H) ≤ ∆

bw(H) ≤ βn

G

δ(G) ≥ ( k−1
k + γ)n

=⇒ G contains H.

Examples for H:

Hamiltonian cycles (bandwidth 2)

square grid (bandwidth
√

n), binary trees (bandwidth n/ log(n))

graphs of constant tree width
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New result

The 3-chromatic case

For all ∆ and γ there are β and n0 s.t. for all n ≥ n0 and all n-vertex
graphs H and G the following holds.
If ∆(H) ≤ ∆, bw(H) ≤ βn, χ(H) = 3, and δ(G) ≥

(

2
3 + γ

)

n then G
contains H.
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New result

The 3-chromatic case

For all ∆ and γ there are β and n0 s.t. for all n ≥ n0 and all n-vertex
graphs H and G the following holds.
If ∆(H) ≤ ∆, bw(H) ≤ βn, χ(H) = 3, and δ(G) ≥

(

2
3 + γ

)

n then G
contains H.

Abbasi ’98 annouced 2-chromatic case

additional γn is necessary
Proof uses

regularity lemma
blow-up lemma

affirmative solution of Pósa’s conjecture
G ⊇

proof gives O(n3.376) algorithm for embedding H into G
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Strategy of the proof
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2 partition H and assign parts of H to parts of G

3 take care of edges of H that run between
different parts
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Lemma for H

partial embedding
lemma
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Strategy of the proof

1 partition G with the regularity lemma

2 partition H and assign parts of H to parts of G

3 take care of edges of H that run between
different parts

4 embed the parts of H into the corresponding
parts of G

Lemma for G

Lemma for H

partial embedding
lemma

blow-up lemma
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The Lemma for G

G
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The Lemma for G

R

V ′

1

V ′

2

V ′

3

V ′

4

V ′

5

V ′

6

V ′

7

V ′

8

V ′

9

regular partition of G
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The Lemma for G

R

V ′

1

V ′

2

V ′

3

V ′

4

V ′

5

V ′

6

V ′

7

V ′

8

V ′

9

Since δ(R) ≥ (2
3 + γ/2)|V (R)| we have R ⊇ Ham2 ⊇ K ∗

3
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The Lemma for G

R

V ′

1

V ′

2

V ′

3

V ′

4

V ′

5

V ′

6

V ′

7

V ′

8

V ′

9

Make the partition super-regular on K ∗

3 .
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The Lemma for G

R

V1

V2

V3

V4

V5

V6

V7

V8

V9

Change the partition by moving some vertices to obtain V1 _∪ · · · _∪Vk
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Lemma for H

R

H

H is given in an order respecting the bandwidth bound.
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Lemma for H

R

H

Idea: Cut H into pieces
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Lemma for H

R

H
︸ ︷︷ ︸ ︸ ︷︷ ︸

Idea: Cut H into pieces and map each piece to a triangle of K ∗

3 .
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Lemma for H

R

H

This is possible, since χ(H) = 3.
But the colour classes of H may vary in size a lot.
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Lemma for H

R

H

We can find a large subgraph H \ X of H with a balanced 3-colouring.
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Lemma for H

R

H

f : V (H) → V (R) maps all edges of H to edges of R, and most of them to
K ∗

3 .
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On the bandwidth conjecture for 3-colourable graphs

Proof of the theorem

H

H is given in an order respecting the bandwidth bound.
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Proof of the theorem

R

H

The Lemma for G constructs a regular partition V ′

1 _∪ · · · _∪V ′

k of G.
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Proof of the theorem

R

H

The Lemma for H constructs a homomorphism f : V (H) → V (R) and a set
of special vertices X .
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Proof of the theorem

R

H

The Lemma for G adjusts the partition of G s.t. |Vi | = f −1(i).
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Proof of the theorem

R

H

We embed the special vertices X into G
using the embedding lemma.
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Proof of the theorem

R

H

We embed all other vertices using the blow-up lemma.
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Proof of the theorem

R

H

H ⊆ G
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Concluding remarks

What about k -chromatic H? work in progress

What is the correct dependency of γ and β?

Which graphs have bandwidth at most βn?
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