
Coloring Sparse Random k-colorable Graphs in

Polynomial Expected Time

Julia Böttcher

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

boettche@informatik.hu-berlin.de

Abstract. Feige and Kilian [5] showed that finding reasonable approx-
imative solutions to the coloring problem on graphs is hard. This mo-
tivates the quest for algorithms that either solve the problem in most
but not all cases, but are of polynomial time complexity, or that give a
correct solution on all input graphs while guaranteeing a polynomial run-
ning time on average only. An algorithm of the first kind was suggested
by Alon and Kahale in [1] for the following type of random k-colorable
graphs: Construct a graph Gn,p,k on vertex set V of cardinality n by
first partitioning V into k equally sized sets and then adding each edge
between these sets with probability p independently from each other.
Alon and Kahale showed that graphs from Gn,p,k can be k-colored in
polynomial time with high probability as long as p ≥ c/n for some suf-
ficiently large constant c. In this paper, we construct an algorithm with
polynomial expected running time for k = 3 on the same type of graphs
and for the same range of p. To obtain this result we modify the ideas
developed by Alon and Kahale and combine them with techniques from
semidefinite programming. The calculations carry over to general k.

1 Introduction

The coloring problem on graphs remains one of the most demanding algorith-
mic tasks in graph theory. Since it is one of the classical NP-hard problems
(see [7]) it is unlikely that efficient coloring algorithms exist. If no exact answer
to a problem can be found within a reasonable amount of time, one alternative
is to search for approximation algorithms. However, for the coloring problem
even this suboptimal approach fails. While the standard greedy heuristic with
high probability does not use more than 2χ(G) colors on a random input graph
G, guaranteeing a similar performance ratio for all graphs is intractable under
reasonable computational assumptions. In fact, Feige and Kilian [5] proved that
for all ǫ > 0 it is impossible to approximate the coloring problem within n1−ǫ,
provided ZPP 6= NP , where n is the number of vertices of the input graph.
Moreover, Khanna, Linial, and Safra [9] showed that coloring 3-colorable graphs
with 4 colors is NP-hard.

Accordingly, different approaches must be pursued. One possibility is to ask
for algorithms that work with high probability. While finding algorithms of this

type is not too difficult for dense k-colorable graphs [4,11,13], it turns out to
be harder for sparse k-colorable graphs. For constructing such sparse graphs set
p = c/n for a constant c in the following process: Partition the vertex set V
into k sets Ci of equal size and allow only edges between these sets, taking each
one independently with probability p. We denote graphs obtained in this way by
Gn,p,k. The sets Ci are also called the color classes of Gn,p,k.

In 1997, Alon and Kahale [1] established the following result for Gn,p,k.

Theorem 1 (Alon and Kahale [1]). Let p > c/n for some sufficiently large
constant c. Then there is a polynomial time algorithm for k-coloring Gn,p,k with
high probability.

But an algorithm that works with high probability has one drawback: For some
inputs it does not provide any solution at all. Alternatively, we could require
that the algorithm always gives a correct answer to the problem under study but
performs well only on average: An algorithm A with running time tA(G) on input
G has polynomial expected running time on Gn,p,k if

∑

G tA(G) · P[Gn,p,k = G]
remains polynomial. Here, the sum ranges over all graphs on n vertices. Observe
that this is a stronger condition than to work correctly with high probability: An
algorithm that k-colors Gn,p,k in polynomial expected running time also solves
the k-coloring problem with high probability in polynomial time.

In this paper we present an algorithm for coloring sparse 3-colorable graphs
with 3 colors in polynomial expected time.

Theorem 2. If p > c/n for some sufficiently large constant c, then there is an
algorithm COLOR that 3-colors Gn,p,3 in polynomial expected time.

This improves on results of Subramanian [12] and Coja-Oghlan [2] and answers
a question of Subramanian [12] and Krivelevich [10]. The calculations carry over
to general k. The best known previous algorithm is due to Coja-Oghlan [2] and
k-colors graphs from Gn,p,k in polynomial expected time if np ≥ c·max

(
k lnn, k2

)

for a sufficiently large constant c.
The main philosophy of COLOR can be described as follows. On input G, we

start by executing a polynomial time algorithm A: In the first step A determines
an initial coloring of G which colors all but a constant fraction of G correctly
with high probability. A then refines this initial coloring by using different com-
binatorial methods which are modifications of the methods used by Alon and
Kahale. With high probability this results in a valid coloring of G. However,
since we are interested in returning a valid coloring for all graphs, COLOR also
has to take care of exceptional cases. In the case that A does not produce a valid
coloring of G, we therefore proceed by removing a set Y of vertices from G, rerun
A on G \ Y and treat Y with brute force coloring methods. In the beginning, Y
contains only a single vertex. We repeat this procedure and gradually increase
|Y | until G is finally properly colored. We verify that COLOR has polynomial
expected running time by showing that A can handle all but a small number of
vertices for most graphs from Gn,p,3.

In addition, and in contrast to Alon and Kahale, we apply the concept of
semidefinite programming in order to obtain a good initial coloring of Gn,p,3 in

the first stage of COLOR. To this end we use the semidefinite program SDP3

introduced by Frieze and Jerrum [6]. The value of SDP3 on Gn,p has been inves-
tigated by Coja-Oghlan, Moore, and Sanwalani [3]. We use their result to show
that SDP3 behaves similarly on Gn,p,3. This will then allow us to construct a
coloring of Gn,p,3 from a solution of SDP3 that already colors all but a small
linear fraction of the input graph correctly. Similar methods have been used by
Coja-Oghlan [2].

The remainder of this paper is structured as follows: In Section 2 we inves-
tigate the behaviour of SDP3 on Gn,p,3, in Section 3 we give the details of our
coloring algorithm, in Section 4 its analysis and in Section 5 some concluding
remarks.

2 The Value of SDP3 on Graphs from Gn,p,3

Recall that a k-cut of a graph G is a partition of V (G) into k disjoint sets
V1, . . . , Vk, its weight is the total number of edges crossing the cut, and that
MAX-k-CUT is the the problem of finding a k-cut of maximum weight.

In the algorithm COLOR we make use of the following SDP relaxation SDP3

of MAX-3-CUT due to Frieze and Jerrum [6] which provides an upper bound
for MAX-3-CUT:

max
∑

vw∈E(G)

2

3
(1 − 〈xv |xw〉)

s.t. ‖xv‖ = 1 ∀v ∈ V,

〈xv |xw〉 ≥ −1

2
∀v, w ∈ V.

Here, the maximum runs over all vector assignments (xv)v∈V (G) obeying xv ∈
IR|V |. Observe that, if G1 is a subgraph of G2, then SDP3(G1) ≤ SDP3(G2).
One way to realize a feasible solution of SDP3 corresponding to a 3-cut V1, V2, V3

of G is to assign the same vector si to each vertex in Ci in such a way that
〈si |sj〉 = −1/2 for i 6= j.

Moreover, there is an obvious connection between maximum 3-cuts and 3-
colorings: In the case of a 3-colorable graph G a maximum 3-cut simply contains
all edges. Then, we know that each edge contributes exactly 1 to the value
of SDP3. In this case, the special feasible solution to SDP3 discussed above
is optimal. Conversely, if the optimal solution of SDP3(G) has this structure,
then it is clearly easy to read off a proper 3-coloring of G from this solution.
Unfortunately, the position of the vectors xv can get “far away” from this ideal
picture in general. In this section we show however that with high probability
such a scenario does not occur in the case of random 3-colorable graphs from
Gn,p,3. Although for such graphs the vectors corresponding to vertices of one
color class do not necessarily need to be equal, most of them will be comparably
close. Similar techniques were used in [2].

In [3] Coja-Oghlan, Moore, and Sanwalani studied the behaviour of SDP3

on Gn,p. They obtained the following result, which will be the key ingredient to
our analysis of SDP3 on graphs from Gn,p,3.

Theorem 3 (Coja-Oghlan, Moore & Sanwalani [3]). If p ≥ c/n for suffi-
ciently large c then

SDP3(Gn,p) ≤
2

3

(
n

2

)

p + O
(√

n3p(1 − p)
)

(1)

with probability at least 1 − exp(−3n).

Note that 2
(
n
2

)
p/3 is also the size of a random 3-cut in Gn,p. So Theorem 3

estimates the difference of the sizes of a maximum 3-cut and a random 3-cut in
Gn,p.

Let G = (V, E) ∈ Gn,p,3. We can construct a random graph G∗ ∈ Gn,p from
G by inserting additional edges with probability p within each color class. The
following lemma investigates the effect of this process on the value of SDP3.

Lemma 1. Consider a graph G∗ = (V, E∗) from Gn,p with V = [n] and let
G = (V, E) be the subgraph of G∗ with edges E = E∗ ∩{vw | ⌈3v/n⌉ 6= ⌈3w/n⌉}.
Then for some constant c′ not depending on d

SDP3(G
∗) − SDP3(G) ≤ c′

√

n3p (2)

with probability at least 1 − exp(−5n/2).

Proof. In order to establish this result we prove that

2

3

(
n

2

)

p − c′

2

√

n3p ≤ SDP3(G) ≤ SDP3(G
∗) ≤ 2

3

(
n

2

)

p +
c′

2

√

n3p

holds with the same probability. In fact, the second inequality holds by con-
struction since G is a subgraph of G∗ and the third inequality is asserted by
Theorem 3 if we choose c′ accordingly. Thus it remains to show the first inequal-
ity. This is obtained by a straightforward application of the Chernoff bound and
the fact that SDP3(G) = |E| as mentioned earlier.

Equation (2) asserts that the values of SDP3 for G and G∗ are not likely to
differ much, if the additional edges within the color classes Ci of G are chosen at
random. It follows that in an optimal solution to SDP3(G), most of the vectors
corresponding to vertices of Ci for a particular i can not be far apart. This is
shown in the next lemma.

If not stated otherwise, we consider SDP3 on input G from now on. Let
(xv)v∈V (G) be an optimal solution to SDP3(G). Then we call

Nµ(v) := {v′ ∈ V | 〈xv |xv′〉 > 1 − µ}

the µ-neighborhood of v.

Lemma 2. For fixed ǫ with 0 < ǫ < 1/2 there is a constant 0 < µ < 1/2 such
that for any µ′ with µ ≤ µ′ < 1/2 the following holds with probability greater
than 1 − exp(−7n/3): For each i ∈ {1, 2, 3} there is a vertex vi ∈ Ci such that
the set Nµ(vi) contains at least (1− ǫ)n/3 vertices of the color class Ci and the
set Nµ′

(vi) contains at most ǫn/3 vertices from other color classes Cj (j 6= i).

For proving this lemma, we first observe that the edges uv of G∗ with u, v
in one color class Ci of G and 〈xu |xv〉 small, form a random subgraph of G∗.
From Lemma 1 we can then deduce the first statement of Lemma 2. The second
statement follows since Nµ′

(v) induces an empty graph in G for µ′ < 1/2. We
omit the details.

In the following we will call a vertex v ∈ Ci obeying the properties asserted
by Lemma 2 an (ǫ, µ, µ′)-representative for color class Ci. In the case µ′ = µ we
omit the parameter µ′.

3 The Algorithm

Roughly speaking, there are two basic principles underlying the mechanisms
of COLOR. On the one hand a number of steps, also called the main steps,
aim at constructing a valid 3-coloring of the input graph with sufficiently high
probability. These are the initial step, the iterative recoloring step, the uncoloring
step and the extension step. However, on atypical graphs this approach might
fail. For guaranteeing a valid output for each input, COLOR also has to handle
this case; possibly by using computationally expensive methods. Accordingly, the
purpose of the remaining operations is to fix the mistakes of the main steps on
such atypical graphs. This constitutes the second principle, the so-called recovery
procedure of COLOR.

The details of COLOR are given in Algorithm 1. We now briefly describe the
main steps and then turn to the recovery procedure.

The initial step: (Steps 1, 5, and 6) This step is concerned with finding
an initial coloring Υ0 of the input graph G = (V, E) such that Υ0 fails on at
most ǫn vertices of G. Here, ǫ is small but constant. To obtain Υ0 we apply the
SDP relaxation SDP3 of MAX-3-CUT. An optimal solution of this semidefinite
program can efficiently be computed within any numerical precision (cf. [8]). This
solution gives rise to the coloring Υ0 by grouping vertices whose corresponding
vectors have large scalar product into the same color class. In the algorithm
COLOR we use a randomized method for this grouping process.

The iterative recoloring step: (Step 8) This step refines the initial color-
ing in order to find a valid coloring of a much larger vertex set by repeating the
following step at most a logarithmic number of times: Assign to each vertex in G
the color that is the least favorite among its neighbors. In Section 4 we will show
that this approach is indeed successful, in the sense that with sufficiently high
probability at most α0n vertices are still colored incorrectly after the iterative
recoloring step, where α0 is of order exp(−np).

The uncoloring step: (Step 9) This step proceeds iteratively as well. In
each iteration, the uncoloring step uncolors all vertices that have less than np/6

Algorithm 1: COLOR(G)

Input: a graph Gn,p,3 = G = (V, E)
Output: a valid coloring of Gn,p,3

begin

let (xv)v∈V (G) be an optimal solution of SDP3(G) ;1

for 0 ≤ y ≤ n do2

foreach Y ⊂ V with |Y | = y and each valid 3-coloring ΥY of Y do3

for O(n) times do4

/∗∗ The initial step ∗∗/
Randomly choose three vectors x1, x2,x3 ∈ {xv|v ∈ V (G)} ;5

Extend ΥY to a coloring Υ0 of G by setting Υ0(v) := i for all6

v ∈ G − Y where i is such that 〈xv |xi〉 is maximal ;
for t = log n downto t = 0 do7

/∗∗ The iterative recoloring step ∗∗/
for 0 ≤ s < t do8

Construct a coloring Υs+1 of G with Υs+1(v) := ΥY (v) for
v ∈ Y and Υs+1(v) := i for v 6∈ Y where i minimizes
|N(v) ∩ Υ−1

s (i)| ;

Set Υ ′ := Υt ;
/∗∗ The uncoloring step ∗∗/
while ∃v ∈ G − Y with Υ ′(v) = i and9

| {w|w ∈ N(v) , Υ ′(w) = j} | < np/6 for some j 6= i do

uncolor v in Υ ′ ;

/∗∗ The extension step ∗∗/
if each component of uncolored vertices is of size at most α0n10

then

Extend the partial coloring Υ ′ to a coloring Υ of G by
exhaustively trying each coloring of each component in the
set of uncolored vertices ;
if Υ is a valid coloring of G then11

return Υ (G) and stop;

end

neighbors of some color other than their own. Observe that in a “typical” graph
from Gn,p,3 a “typical” vertex and its neighbors will not have this property if
they are colored correctly.

The extension step: (Step 10) Here, an exact coloring method is used to
extend the partial coloring obtained to the whole graph Gn,p,3. In this process
the components induced on the uncolored vertices are treated seperately. On
each such component K, the algorithm tries all possible colorings until it finds
one that is compatible to the coloring of the rest of G.

The main steps are all we need for 3-coloring Gn,p,3 with high probability
This will be formally proven in Section 4; the analysis of the recoloring, the
uncoloring and the extension step is similar to that of Alon and Kahale [1].

If the main steps do not produce a valid coloring of G the recovery procedure
(the loops in Steps 2 to 7) comes into play. The concept is as follows. Assume
that for an input graph G the main steps of COLOR produce a correct coloring
on the subgraph induced by V \ Y for some Y ⊂ V but “fail” on Y . Then an
easy way of “repairing” the coloring obtained is to exhaustively test all valid
colorings of Y . Of course, we neither know this set Y nor its size |Y |. To deal
with these two problems, COLOR proceeds by trying all possible subsets Y of V
with |Y | = y. Here, we start with y = 0 and then gradually increase the value of
y until a valid coloring of G is determined. This is performed in Steps 2 and 3 of
the recovery procedure. We also call Step 3, where all colorings of all vertex sets
of size y are constructed, the brute force coloring method or repair mechanism
for these sets.

Since the size of Y in the recovery procedure (Step 3) is increased until a
valid coloring is obtained, the correctness of Algorithm 1 is inherent (ultimately,
a proper coloring will be found in the last iteration, when Y contains all vertices
of G) . An analysis of the expected running time of Algorithm 1 will be presented
in the next section.

4 Analysis of the Algorithm

In the following we assume that G is a graph sampled from Gn,p,3 where d :=
np > c for some sufficiently large constant c. Moreover, let 3-COL (x) := 3x be
the time needed to find all 3-colorings of a graph of order x.

4.1 The Initial Step

Lemma 2 guarantees that, given an optimal solution of SDP3(G), we can con-
struct a reasonably good initial coloring Υ0 via the sets Nµ(vi) by choosing an
appropriate representative vi for each color class Ci and setting Υ0(v) := i for
all v ∈ Nµ(vi). Here, ties are broken arbitrarily and vertices not appearing in
any of the sets Nµ(vi) get assigned an arbitrary color.

Thus it remains to determine appropriate representatives. The easiest way
is to simply try all different triples of vertices from G as representatives. This,
however, introduces an extra factor of n3 in the running time. In order to reduce
this factor to a linear one, Algorithm 1 proceeds differently. Let v1, v2 and v3

be (ǫ′, µ, µ′)-representatives of the color classes C1, C2, and C3, respectively. We
will make use of the following lemma.

Lemma 3. If vi is a (ǫ′, µ, µ′)-representative for Ci and µ′ > 4µ +
√

2µ, then
each vertex v ∈ Nµ(vi) is an (ǫ′, 4µ)-representative of color class Ci.

By choosing µ′ > 4µ +
√

2µ (and µ sufficiently small such that µ′ < 1/2) we
therefore get at least (1 − ǫ′) · n/3 representatives per color class. But then the
probability of obtaining a set of representatives for G by picking three vertices
r1, r2, r3 from V at random is at least (1−3 · ǫ′)/9. Repeating this process raises
the probability of success. More specifically, the probability that in c′n trials

none yields a triple of (ǫ′, 4µ)-representatives is smaller than (8/9 + ǫ′/3)c′n.
Here, c′ > 0 is an arbitrary constant. Observe additionally that if r1, r2, r3 form
a triple of (ǫ′, 4µ)-representatives for G, then 〈xv |xri

〉 >
〈
xv

∣
∣xrj

〉
for at least

(1 − 2ǫ′)n/3 vertices v ∈ Ci if i 6= j. Let 2 · ǫ′ = ǫ. This guarantees a coloring
Υ0 of G that colors at least ǫn vertices of G correctly by assigning each vertex v
the color i such that 〈xv |xri

〉 is maximal.
The strategy just described is applied in Step 4 of Algorithm 1. We conclude

that this randomized approach gives rise to a valid coloring of an (1− ǫ)-fraction
of the graph with probability at least

1 − exp

(

−7

3
n

)

− (8/9 + 2ǫ/3)c′n ≥ 1 − 2 exp

(

−7

3
n

)

≥ 1 − 10−n (3)

for c′ and n sufficiently large and ǫ small enough, e.g. c′ = 30 and ǫ < 1/10.
Here, the probability is taken with respect to the input graphs Gn,p,k and to the
random choices of representatives.

Now, consider the coloring Υ0 constructed in Step 6 of Algorithm 1 and let
FSDP be a vertex set of minimal cardinality such that Υ0 colors at most ǫn/3
vertices incorrectly in each set Ci \FSDP . The following lemma is an immediate
implication of Equation (3) and Lemma 2.

Lemma 4. For all y > 0 the following relation holds: P[|FSDP | ≥ 1] ≤ 10−n.

4.2 The Iterative Recoloring Step

After the initial coloring Υ0(G) is constructed, Step 8 of Algorithm 1 aims at im-
proving this coloring iteratively. We show that this attempt is indeed successful
on a large subgraph H of G with high probability.

Let H be the subgraph of G obtained by the following process:

1. Delete all vertices in H
+

:=
{

v ∈ V
∣
∣
∣ v ∈ Ci, ∃j 6= i : degCj

(v) > (1 + δ)d
3

}

2. Delete all vertices in H
−

:=
{

v ∈ V
∣
∣
∣ v ∈ Ci, ∃j 6= i : degCj

(v) < (1 − δ)d
3

}

3. Iteratively delete all vertices having more than δd/3 neighbors that were

deleted earlier in Ci for some i, i.e., delete all vertices in
⋃

0<l H
l
, where

H
0

:= H
+ ∪ H

−
and

H
l
:=

{

v ∈ V

∣
∣
∣
∣
∣
∃i : N(v) ∩ Ci ∩

⋃

l′<l

H
l′

> δ
d

3

}

for l > 0.

We also denote G − H by H. The lemma below shows that H spans a large
subgraph of G with high probability.

Lemma 5. Let 0 < α < 1
2 and 0 < δ < 1

2 be constant in the definition of H.
Then

P
[
|H | ≥ αn

]
≤ exp(− (log α + Ω (d)) · αn) + exp(Ω (d · log α · αn)) . (4)

This lemma follows from the observation that it is unlikely that many vertices
are deleted in the first two steps of the construction of H . But then it is also
unlikely that many vertices are deleted in the iterative step.

Now, we can use the structural properties of H to show that the algorithm
succeeds on H with high probability. For this, we prove that with high probability
the number of vertices in H that are colored incorrectly decreases by more than
a factor of 2 in each of the iterations of the recoloring step. If this performance is
actually achieved, we call the corresponding iteration successful, otherwise we say
that it fails. Algorithm 1 performs at most log n of these iterations. Afterwards,
either the entire graph H is colored correctly or one of the iterations failed. In
the latter case Algorithm 1 runs the iterative recoloring step until just before
the iteration, say iteration t, when it fails for the first time. The algorithm then
proceeds by exhaustively trying all colorings on all subsets of G of size y and thus
fixes the coloring of H in this way. However, since Algorithm 1 can not discover
whether a particular iteration of the recoloring step succeeds or fails another
iteration is necessary at this point. Algorithm 1 applies the strategy of simply
trying to repair each of the iterations of the recoloring step subsequently, starting
with the last one and proceeding until it reaches iteration t. This explains the
innermost loop of the recovery procedure (Step 7 of Algorithm 1). Once the
recovery procedure repaired iteration t, all vertices of H are colored correctly.

Lemma 6. Consider the first iteration of the recoloring step that fails and let
FH ⊆ H denote the set of vertices of H that were colored incorrectly in H before
this iteration. Then

P[|FH | = αn] ≤ exp(Ω (d · log α · αn))

for δ sufficiently small but constant in the definition of H.

This follows from the fact that H has good expansion properties and that vertices
in H do not have many neighbors outside of H .

4.3 The Uncoloring Step

Note that, if H is colored correctly before the application of the uncoloring step,
no vertex of H gets uncolored by this procedure. Indeed, since each vertex v in
H has at least (1 − δ)d/3 neighbors in Ci ∩ H for each i such that v 6∈ Ci and
all these neighbors are colored with color i, v does not get uncolored as long as
δ < 1/2.

The following Lemma shows that vertices v 6∈ H that were not colored cor-
rectly by the iterative recoloring step are likely to get uncolored in the uncoloring
step.

Lemma 7. Let FΥ ⊂ G − H be the set of vertices that are colored incorrectly
and remain colored after the execution of the uncoloring step. Then

P[|FΥ | = αn] ≤ exp(Ω (d · log α · αn))

for 0 < α < 1
2 .

Proof. If a vertex v in Ci is colored incorrectly, say with color j, and remains
colored after the uncoloring step, v must have at least d/6 neighbors of color i.
Since v is not adjacent to any vertex in its own color class Ci, all these neighbors
are elements of FΥ as well. Hence, the lemma follows from an estimation of the
probability that there is some set Y ⊂ V (G) with |Y | = αn and minimum degree
at least d/6.

4.4 The Extension Step

Knowing that the uncoloring step succeeds in uncoloring all vertices of wrong
color with high probability, we are now left with the task of assigning a new color
to these uncolored vertices. In Algorithm 1 this is taken care of by the extension
step (Step 10). Using similar techniques as those developed by Alon and Kahale
in [1], we show that all components induced on the set of uncolored vertices are
likely to be rather small. Recall that α0 = exp(−O(d)).

Lemma 8. For α < α0,

P
[
there is a component of order αn in H

]
≤
(

d

exp(Ω (d))

)αn

.

From this lemma it follows that with high probability a valid coloring of H can
indeed be extended to the whole graph G by Step 10 of Algorithm 1 as long as
H does not get too large.

Lemma 9. The extension step (Step 10) of Algorithm 1 has polynomial expected
running time.

Proof. As explained, in Step 10 of Algorithm 1 an exact coloring method is used
to extend the partial coloring obtained in earlier steps to the whole graph G. In
this process the components induced on the vertices uncolored by the uncoloring
step are considered independently. On each such component the algorithm tries
all possible colorings until it finds one that is compatible to the coloring of the
rest of G. Trivially there are at most n components in the set of uncolored vertices
and so it suffices to show that the probability that a component of G − H has
αn vertices multiplied by 3-COL (αn) remains small for all α < α0 since the
extension step is only executed for α < α0:

P[there is a component of order αn in G − H] · 3-COL (αn)

≤
(

d

exp(Ω (d))

)αn

· 3αn ≤
(

3d

exp(Ω (d))

)αn

= O(1) .

4.5 The Expected Running Time of COLOR

All main steps of Algorithm 1, i.e., the construction of the initial coloring, the
recoloring step, and the uncoloring step are executed in polynomial time.

Moreover, Lemma 8 guarantees that the extension step of COLOR has poly-
nomial expected running time. It therefore remains to investigate the recovery
procedure consisting of the loops in Steps 2, 3, 4 and 7 of Algorithm 1.

The results derived in the last few subsections estimate the probabilities that
one of the main steps of Algorithm 1 fails on a vertex set Y of size y. As explained
in Section 3, these vertex sets are taken care of by the recovery procedure. The
polynomial expected running time of Algorithm 1 is a consequence of the expo-
nentially small probabilities in the previous lemmas. This is shown in Lemma 10
and it immediately implies Theorem 2.

Lemma 10. The recovery procedure (i.e., Steps 2, 3, 4and 7) of Algorithm 1
has polynomial expected running time.

Proof. Consider the vertex set Y from Algorithm 1 that is colored correctly in
Step 3 of the recovery procedure and let t(y) be the time the algorithm needs
to execute this step in the case |Y | = y. Further, denote by F the set Y used in
the iteration when the algorithm finally obtains a valid coloring. The expected
running time E[t] of the repair mechanism can then be written as

E[t] =
∑

y≤n

P[|F | = y] · t(y)

≤ O(n)
∑

y≤n

P[|F | = y] ·
(

n

y

)

3-COL (y) .

Recall the definition of H in subsection 4.2 and that FH are those vertices in H
which are colored incorrectly after the recoloring step. FSDP are those vertices
that need to be assigned a different color for obtaining a valid coloring on an
(1 − ǫ)-fraction of G after the inital phase and FΥ are those that are colored
incorrectly after the uncoloring step. Moreover, α0 = exp(−O(d)).

We bound P[|F | = y] by rewriting F as sum of FSDP , FH , FΥ and possibly
H . For this, observe that F = FSDP ∪FH∪FΥ . However, we use this partitioning
of F only in the case that |H | ≤ α0n. If |H | > α0n we use F ⊂ FSDP ∪FH ∪H .
Since all probabilities involved are monotone decreasing, we get

P[|F | = y] ≤
∑

y1+y2+y3=y

y3≤α0n

P[|FSDP | = y1, |FH | = y2, |FΥ | = y3]

+
∑

y1+y2+y3=y
y3>α0n

P
[
|FSDP | = y1, |FH | = y2, |H | = y3

]
.

One of the vertex sets involved in the conjunctions of this sum certainly contains
more than y/3 vertices and so

P[|F | = y]

≤ n3

{

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|FΥ | = y

3

])
if y

3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|H | = y

3

])
otherwise.

The lemma then follows from Lemmas 4, 5, 6, and 7. We omit the details.

5 Concluding Remarks

We proved that random 3-colorable graphs taken from Gn,p,3 can be 3-colored in
polynomial expected time if p ≥ c/n, where c is some sufficiently large constant.
The same methods can be used for obtaining a similar result for Gn,p,k with
values of k other than 3. More precisely, the calculations carry over directly to
arbitrary k for pn ≥ ck where ck is a constant depending on k.

One remaining question is whether it is possible to design an algorithm for
coloring Gn,p,k in polynomial expected time for all values of p. In particular, it
is not clear how to deal with the case that pn is constant but much smaller than
ck.

6 Acknowledgements

I am grateful to Amin Coja-Oghlan for many helpful discussions.

References

1. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM Journal on Computing, 26(6):1733–1748, 1997. 1, 1, 1, 3, 4.4, A.8

2. A. Coja-Oghlan. Coloring semirandom graphs optimally. In Proceedings of the

31st International Colloquium on Automata, Languages and Programming, pages
383–395, 2004. 1, 2

3. A. Coja-Oghlan, C. Moore, and V. Sanwalani. MAX k-CUT and approximating
the chromatic number of random graphs. In Proceedings of the 30th International

Colloquium on Automata, Languages and Programming, pages 200–211, 2003. 1,
2, 3

4. M. E. Dyer and A. M. Frieze. The solution of some random NP-hard problems in
polynomial expected time. Journal of Algorithms, 10:451–489, 1989. 1

5. U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal of

Computer and System Sciences, 57(2):187–199, 1998. 1, 1
6. A. M. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT

and MAX BISECTION. Algorithmica, 18:61–77, 1997. 1, 2
7. M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and

Company, 1979. 1
8. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-

rial Optimization. Springer, Berlin, 1993. 3
9. S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic

number. Combinatorica, 20(3):393–415, 2000. 1
10. M. Krivelevich. Deciding k-colorability in expected polynomial time. Information

Processing Letters, 81:1–6, 2002. 1
11. L. Kučera. Expected behavior of graph colouring algorithms. In Proceedings of

the 1977 International Conference on Fundamentals of Computation Theory, pages
447–451, 1977. 1

12. C. R. Subramanian. Algorithms for coloring random k-colorable graphs. Combi-

natorics, Probability and Computing, 9:45–77, 2000. 1
13. J. S. Turner. Almost all k-colorable graphs are easy to color. Journal of Algorithms,

9:253–261, 1988. 1

A Omitted Proofs

A.1 Definitions and Inequalities

For two vertex sets X and Y in a graph G = (V, E) we denote by e(X, Y) the
cardinality of {xy ∈ E|x ∈ X, y ∈ Y }, by deg (v) the degree of a vertex v ∈ V
and by mindeg(X) the minimum of {deg (x) |x ∈ X}.

For bounding binomial coefficients we frequently use the binary entropy func-
tion H(x) = −x log x−(1−x) log(1−x) where x ∈ (0, 1). Note that −x log x has a
unique local maximum at x = 1/2 and −(1/4) log(1/4) > −(1−1/4) log(1−1/4).
By symmetry it follows that

H(x) ≤ −2 · x log x for x ≤ 1

2
.

This implies a bound for binomial coefficients (x ∈ (0, 1)):
(

n

xn

)

≤ exp(H(x) · n) ≤ exp(−2x log x · n) . (5)

For X ∈ Bin(n, p) with expectation λ = np and t ≥ 0, we use the following
Chernoff bounds :

P[X ≥ E[X] + t] ≤ exp

(

− t2

2(λ + t/3)

)

, (6)

P[X ≤ E[X] − t] ≤ exp

(

− t2

2λ

)

. (7)

A.2 Details of the Proof of Lemma 1

For convenience we restate the outline of the proof given in section 2 and add
the missing details.

In order to establish equation (2) we prove that

2

3

(
n

2

)

p − c′

2

√

n3p ≤ SDP3(G) ≤ SDP3(G
∗) ≤ 2

3

(
n

2

)

p +
c′

2

√

n3p

holds with probability 1 − exp(−5n/2). In fact, the second inequality holds by
construction since G is a subgraph of G∗ and the third inequality is asserted
by Theorem 3 if we choose c′ accordingly. Thus it remains to show the first
inequality. This is obtained by a straightforward application of the Chernoff
bound (7) and the fact that SDP3(G) = |E| as mentioned earlier:

The number of edges |E| is a binomially distributed random variable with
expectation 2

(
n
2

)
p/3 and thus

P

[
2

3

(
n

2

)

p − c′

2

√

n3p ≤ |E|
]

= P

[

E[|E|] − c′

2

√

n3p ≤ |E|
]

= 1 − P

[

|E| < E[|E|] − c′

2

√

n3p

]

≥ 1 − exp

(

− c′2n3p

2 · 2
3

(
n
2

)
p

)

> 1 − exp

(

−c′
2 3

2
n

)

.

This settles the proof since we can certainly choose c′ in such a way that c′ > 2
in Theorem 3.

A.3 Proof of Lemma 2

Let d := pn > c. We first show that the first statement of Lemma 2 holds with
probability at least 1− 2 exp(−5n/2) for a fixed i. Then, we proceed by proving
that for any pair i 6= j and appropriate choices of vi and µ′ the probability that
Nµ(vi) contains more than ǫn/6 vertices from Cj is at most exp(−Ω (dn)). Since

3 · 2 · exp

(

−5

2
n

)

+ 6 · exp(−Ω (dn)) < 7 · exp

(

−5

2
n

)

≤ exp

(

−7

3
n

)

for d and n sufficiently large this establishes the lemma (the probabilities are
multiplied by the number of choices for i and j).

For proving the first part of Lemma 2 let Gµ
i = (Ci, E

µ
i) be the graph on

one color class Ci of G with edge set Eµ
i := {vw| 〈xv |xw〉 ≤ 1 − µ} (recall that

(xv)v∈V (G) with xv ∈ IR|V | is an optimal solution to SDP3(G)). Now, consider

the edges Eµ
i ∩ E∗ that this graph shares with the random graph G∗ defined in

Lemma 1. Since Eµ
i only depends on the optimal solution to SDP3(G) and edges

in E∗ \ E do not influence this solution, Eµ
i ∩ E∗ spans a random subgraph of

G∗. Therefore, this edge set contains p|Eµ
i | edges in expectation. Moreover,

P
[

|Eµ
i ∩ E∗| ≤ E[|Eµ

i ∩ E∗|] − 3n
√

d
]

= P
[

|Eµ
i ∩ E∗| ≤ p · |Eµ

i | − 3n
√

d
]

≤ exp

(

− 32n2d

2p · |Eµ
i |

)

≤ exp

(

−9n

2

)

≤ exp(−5n/2)

by the Chernoff bound (7).
Observe that, (xv)v∈V (G) also is a feasible (but not necessarily optimal) so-

lution to SDP3(G
∗). Consequently, we can apply Lemma 1 for concluding that

2

3
µ ·
(

p|Eµ
i | − 3n

√
d
)

≤ 2

3
µ · |Eµ

i ∩ E∗|

≤ 2

3

∑

vw∈Eµ

i ∩E∗

(1 − 〈xv |xw〉) ≤
2

3

∑

vw∈E∗\E

(1 − 〈xv |xw〉) ≤ c′n
√

d

holds with probability at least 1− exp(−5n/2)− exp(−5n/2) where the second
inequality follows from the definition of Gµ

i . By rearranging terms and dividing
by n we arrive at a conclusion about the average degree |Eµ

i |/n of Gµ
i :

|Eµ
i |

n
≤
(

3c′

2µ
+ 3

)
n√
d

=:
c′′√
d
· n

3
.

This implies that there is some vertex vi in Ci with

c′′√
d
· n

3
≥ degGµ

i
(vi) =

n

3
− |Nµ(vi) ∩ Ci|,

and thus we establish the first part of Lemma 2 by choosing µ in such a way
that ǫ ≥ c′′/

√
d It remains to show that at most ǫn/3 vertices of other color

classes are contained in Nµ′

(vi) given that |Nµ(vi) ∩ Ci| ≥ (1 − ǫ)n/3 ≥ n/6.
Assume, for contradiction, that for some color class Cj with i 6= j we have
|Nµ(vi) ∩ Cj | ≥ ǫ/2 · n/3. Since each edge vw of G contributes exactly one to
the optimal value of SDP3(G) we know that 〈xv |xw〉 = −1/2 and so xv and xw

enclose an angle of 120◦. Therefore, the set Nµ′

(v) ⊃ Nµ(v) induces an empty
graph in G (because µ ≤ µ′ < 1/2 and arccos(1/2) = 60◦).

Accordingly, we can bound the desired probability by calculating the prob-
ability that some vertex sets Yi ⊂ Ci and Yj ⊂ Cj exist in G with |Yi| ≥ n/6,
|Yj | ≥ ǫn/6, and e(Yi, Yj) = 0:

P
[

∃Yi ⊂ Ci, Yj ⊂ Cj : |Yi| ≥
n

6
, |Yj | ≥ ǫ

n

6
, e(Yi, Yj) = 0

]

≤
(n

3
n
6

)(n
3

ǫn
6

)(

1 − d

n

)ǫ n2

36

≤ exp

((

H

(
1

2

)

+ H
(ǫ

2

)) n

3

)

· exp
(

−d · ǫ n

36

)

= exp(−Ω (dn))

where the second inequality follows from (1 − d/n)n ≤ exp(−d) for d < n.

A.4 Proof of Lemma 3

This is a consequence of the following lemma. We extend the definition of the
µ-neighborhood to arbitrary vectors x ∈ IRn in the obvious way:

Nµ(x) := {v ∈ V | 〈x |xv〉 > 1 − µ} .

Lemma 11. Let x, x′, x′′, y, and y′ be n-dimensional unit vectors such that
x′,x′′ ∈ Nµ1(x) and y′ ∈ Nµ2(y) with 0 < µ1, µ2 < 1. If moreover x′ =: x+xµ1

and y′ =: y + yµ2 , then

1. ‖xµ1‖ ≤ √
2µ1,

2. x′′ ∈ N4µ1(x′), and
3. | 〈x′ |y′〉 − 〈x |y〉 | ≤ √

2µ1 +
√

2µ2 + 2
√

µ1µ2.

Proof. By evaluating the norm of x′ we find

1 = ‖x′‖2
= ‖x + xµ1‖2 = 〈x + xµ1 |x + xµ1〉 = 1 + 〈xµ1 |xµ1〉 + 2 〈x |xµ1〉

and so

〈xµ1 |xµ1〉 = −2 〈x |xµ1〉 = −2 〈x |x′ − x〉
= −2(〈x |x′〉 − 1) < −2(1 − µ1 − 1) = 2µ1.

Similarly, 〈yµ2 |yµ2 〉 < 2µ2. In addition, the angle enclosed by x′ and x′′ is
certainly less than 2 · arccos(1 − µ1) since these vectors are both in Nµ1(x). It
follows that

〈x′ |x′′〉 ≥ cos(2 · arccos(1 − µ1)) = 2 · cos2(arccos(1 − µ1)) − 1

= 1 − 4µ1 + 2µ2
1 ≥ 1 − 4µ1

implying x′′ ∈ N4µ1(x′). The third relation is a consequence of the Cauchy-
Schwarz inequality which asserts | 〈xµi |y〉 | ≤ ‖xµi‖ · ‖y‖ ≤ √

2µi, for i ∈ {1, 2}
and | 〈xµ1 |yµ2〉 | ≤ ‖xµ1‖ · ‖yµ2‖ ≤ 2

√
µ1µ2. Thus,

| 〈x′ |y′〉 − 〈x |y〉 | = | 〈x + xµ1 |y + yµ2〉 − 〈x |y〉 |
= | 〈xµ1 |y〉 + 〈x |yµ2〉 + 〈xµ1 |yµ2 〉 |
≤
√

2µ1 +
√

2µ2 + 2
√

µ1µ2.

For y′ = y and y 6∈ Nµ′
1(x) for some µ′

1, the third statement of Lemma 11
implies

〈x′ |y〉 ≤ 〈x |y〉 +
√

2µ1 ≤ 1 − µ′
1 +

√

2µ1

and so x′ 6∈ Nµ′
1−

√
2µ1(x). In conjunction with the second statement of Lem-

ma 11, this immediately gives the following result: If x is an (ǫ′, µ, µ′)-represen-
tative with µ′ > 4µ +

√
2µ and x̂ ∈ Nµ(x) then x̂ is an (ǫ′, 4µ, µ′ −√

2µ)-repre-
sentative. This contains Lemma 3 as a special case.

A.5 Proof of Lemma 5

Call steps 1 and 2 of the construction process of H the initial steps and step 3
the iterative deletion process. For step l of this construction, i.e., the step when

H
l
is deleted, let H

it
:=
⋃

0<l′≤l H
l′

. In addition, H
it

may also be used without

reference to a particular step l. It then denotes
⋃

0<l′ H
l′

.
For establishing Equation (4) we distinguish two cases. Either the vertices

H
0

deleted from H initially already contain the majority of vertices from H ,

i.e., |H0| ≥ αn/2. Or H
it

grows beyond the size of H
0
. Following this strategy,

we obtain

P
[
|H | ≥ αn

]
≤ P

[

|H| ≥ αn
∣
∣
∣ |H0| ≥ α

2
n
]

·P
[

|H0| ≥ α

2
n
]

+ P
[

|H | ≥ αn
∣
∣
∣ |H0| <

α

2
n
]

·P
[

|H0| <
α

2
n
]

≤ P
[

|H0| ≥ α

2
n
]

+ P
[

|H | ≥ αn
∣
∣
∣ |H0| <

α

2
n
]

,

and so the lemma follows from

P
[

|H0| ≥ α

2
n
]

≤ exp(− (log α + Ω (d)) · αn)

and
P
[

|Hit| ≥ α

2
n
∣
∣
∣ |H0| <

α

2
n
]

≤ exp(Ω (d · log α · αn)) .

These relations will be established subsequently in Lemma 12 and Lemma 13,
respectively.

Let c(0) be a constant such that the expression log α + Ω (d) in Equation (4)
can be written as log α + c(0)d. As we will see c(0) depends on the constant δ in
the definition of H . If δ is fixed for the construction of H then we will choose
c(0) in such a way that Lemma 5 remains valid if we reduce δ slightly to δ′. This
will be needed in the proof of Lemma 8, where we employ a modification of the
construction process for H . The use of δ′ in the definition of c(0) is justified by
the fact that we are interested in bounding the size of H from below in this
section. This quantity increases with larger δ and so using δ′ instead of δ gives
a stronger condition for the choice of c(0).

Note further that log α+c(0)d gets negative for α < 2−c(0)d and consequently

the bound (4) on P[|H0| ≥ αn/2] gets trivial in this case. As we will see in the
proof of Lemma 17, however, this bound is small enough for our purposes if

α > α0 := 2−c(0)d/10,

i.e., the recovery procedure can extend a coloring of H to the whole graph G in
polynomial expected running time if H > α0n.

Lemma 12. For 0 < α < 1/2 and constant 0 < δ < 1/2,

P
[

|H0| ≥ α

2
n
]

≤ exp(− (log α + Ω (d)) · αn) .

Proof. We start by considering the vertices in H
+

only and give an estimate on

P[|H+| ≥ αn/4]. The corresponding probability for H
−

follows similarly.
Idea: We first calculate the probability p that a vertex in Ci has degree

greater than (1 + δ)d/3 in some partition Cj with i 6= j. Then the probability

distribution of H
+

i := |H+∩Ci| is given by the binomial distribution Bin(p, n/3).
Calculating p: By symmetry we may consider a vertex v ∈ C1 with-

out loss of generality. For computing the desired probability we make use of
E[degC2

(v)] = E[degC3
(v)] = d/3, the fact that δ is constant and d is suffi-

ciently large, and of the Chernoff bound given in (6):

p ≤ P

[

degC2
(v) ≥ (1 + δ)

d

3

]

+ P

[

degC3
(v) ≥ (1 + δ)

d

3

]

≤ 2 exp

(

− δ2d2

6(d + dδ
3)

)

≤ 2 exp

(

−δ2d

7

)

≤ exp

(

−δ2d

8

)

,

for d = pn sufficiently large.
Calculating P[|H+| ≥ αn/4]: Without loss of generality, let C1 be the

partition that maximizes H
+

i , i.e., if |H+| ≥ αn/4 then |H+

1 | ≥ αn/12. Thus

P
[

|H+| ≥ α

4
n
]

≤ 3 · P
[

H
+

1 ≥ αn

12

]

≤ 3

(n
3

α
4 · n

3

)

pαn/12 ≤ 3 exp
(

−α

2
log

α

4
· n

3

)

· exp

(

−δ2d

8
· αn

12

)

≤ 1

2
exp

((

ln 6 − 1

6
log

α

4
− δ2d

96

)

αn

)

≤ 1

2
exp

(

−
(

log α +
δ2d

97

)

αn

)

=
1

2
exp(− (log α + Ω (d))αn)

(8)

for constant δ, α < 0.5 and d sufficiently large.
Since P[|H0| ≥ αn] ≤ P[|H+| ≥ αn] + P[|H−| ≥ αn] it remains to argue

that an analogue of (8) holds for |H−| in order to establish Lemma 12. For this
purpose, notice that the Chernoff bound (6) exceeds the corresponding lower

tail bound (7). Thus, by the definition of H
−

and H
+
, the probability that H

−

reaches a certain size can be estimated using the same methods as above for H
+

and so

P
[

|H−| ≥ αn
]

≤ 1

2
exp(− (log α + Ω (d))αn) .

The iterative deletion process removes vertices having too many neighbors
in the set of formerly deleted vertices. The aim of the following calculations is
to estimate the probability that the number of these vertices gets considerably
bigger than the set of vertices deleted in the initial steps. For this purpose we

condition on the event |H0| ≤ 3 · |Hit|. The constant 3 in this bound is not
required for analyzing the performance of the recovery procedure on H . We
introduce it for obtaining calculations robust enough to allow certain changes to
the construction of H . This will be needed for the proof of Lemma 8.

Lemma 13. Assume that 0 < α < 1/2 and that 0 < δ < 1/2 is constant in the
definition of H. Then

P
[

|Hit| ≥ α

2
n
∣
∣
∣ |H0| ≤ α

2
n
]

≤ P

[

|Hit| ≥ α

2
n

∣
∣
∣
∣
|H0| ≤ 3α

2
n

]

≤ exp(Ω (d · log α · αn)) .

Proof. The first inequality holds since edges are chosen independently in G and
by the construction of H . For the second inequality, consider the first step in the
deletion process, say step k, when more than αn/2 vertices have been deleted in

addition to H
0

and denote the vertices deleted prior to step k by H
<k

. Then

H
<k ≤ 2αn

since |H0| ≤ 3αn/2 by assumption. Observe that each vertex in H
<k \ H

0

was deleted because it had more than δd/3 neighbours in H
<k

(since H
<k \

H
0 ⊂ H

it
). Accordingly the graph induced on H

<k
contains more than δd/3 ·

αn/2 edges. We bound the desired probability from above by calculating the
probability that there exists any set Y ⊂ V of size at most 2αn in G with
e(Y, Y) ≥ δd/3 · αn/2. We show that with high probability a subgraph of this
density does not even exist in Gn,p and therefore the same result follows for
Gn,p,3:

P

[

|Hit| ≥ α

2
n

∣
∣
∣
∣
|H0| ≤ 3α

2
n

]

≤ P

[

∃Y ⊂ V : |Y | ≤ 2αn, e(Y, Y) ≥ δ
d

3
· α

2
n

]

≤ P

[

∃Y ⊂ V : |Y | = 2αn, e(Y, Y) ≥ δ
d

3
· α

2
n

]

≤
(

n

2αn

)((2αn
2

)

δ d
3 · α

2 n

)

pδ d
3 ·α

2 n

≤
(e

2α

)2αn
(

3e · 2αn(2αn − 1)

δd · αn

)δ d
3 ·α

2 n(
d

n

)δ d
3 ·α

2 n

≤
(
(e

2α

)12
(

12e · α
δ

)δd
)α

6 n

=

(
(e

2α

)12
(

12e · α
δ

)12(
12e · α

δ

)δd−12
)α

6 n

= exp(Ω (d · log α · αn)) .

A.6 Proof of Lemma 6

Let F s ⊆ H be the set of vertices in H colored incorrectly after iteration s of the
iterative recoloring step. Consider iteration t of the recoloring step and assume
that all previous iterations were successful, but iteration t fails, i.e., F t−1 = FH

and |F t| ≥ |F t−1|/2. More precisely we just consider an arbitrary subset of F t of
size |F t−1|/2. For simplicity we refer to this subset by F t. Let i 6= j and v ∈ F t

be a vertex in color class Ci that received color j in iteration t. Observe that,
as v remains colored incorrectly after iteration t, v can have at most degG(v) /3
neighbors that were colored j in the previous iteration. But by construction, H
contains only vertices which have at most (1+δ)d/3 neighbors in each color class
other than their own and so degG(v) ≤ 2·(1+δ)d/3 and degCj∩H(v) ≥ (1−δ)d/3.

This implies that v has at most (2 · (1 + δ)d/9) neighbors in Cj ∩H − F t−1 and
so all other neighbors of v in Cj ∩ H , namely, at least

(1 − δ)
d

3
− 2 · (1 + δ)

d

9
= (1 − 5δ)

d

9

are contained in F t−1. We conclude that the graph induced on F t−1 ∪ F t con-
tains at least (1 − 5δ)d/9 · |F t| edges. We can therefore bound P[|FH | = αn] by
calculating the probability that some vertex set Y exists in V with |Y | = 3αn/2

such that e(Y, Y) ≥ (1 − 5δ)d/9 · αn/2.

P

[

∃Y ⊂ V : |Y | =
3α

2
n, e(Y, Y) ≥ (1 − 5δ)

d

9
· α

2
n

]

≤
(

n
3α
2 n

)((
αn
2

)

(1 − 5δ)d
9 · α

2 n

)

· p(1−5δ) d
9 ·α

2 n

≤
(

2e

3α

)αn(
9e · αn(αn − 1)

(1 − 5δ)d · αn

)(1−5δ) d
9 ·α

2 n(
d

n

)(1−5δ) d
9 ·α

2 n

≤
((

2e

3α

)18(
9e · α
1 − 5δ

)(1−5δ)d
) α

18 n

≤
((

2e

3α

)18(
9e · α
1 − 5δ

)18(
9e · α
1 − 5δ

)(1−5δ)d−18
) α

18 n

= exp(Ω (d · log α · αn)) ,

for δ sufficiently small and d sufficiently large. As argued above, this implies

P[|FH | = αn] ≤ exp(Ω (d · log α · αn))

as desired.

A.7 Details of the Proof of Lemma 7

We determine the probability that there is some set Y ⊂ V (G) with |Y | = αn
and minimum degree at least d/6 as follows:

P[|FΥ | ≥ αn] ≤ P[∃Y ⊂ V (G) : |Y | = αn,mindeg(Y) ≥ d/6]

≤ P

[

∃Y ⊂ V (G) : |Y | = αn, e(Y, Y) ≥ d

12
αn

]

≤
(

n

αn

)((αn
2

)

d
12αn

)

pd·αn/12 ≤
(e

α

)αn
(

6e(αn − 1)

d

)d·αn/12(
d

n

)d·αn/12

≤
(e

α
(6eα)

d/12
)αn

≤
(

6e2 (6eα)
d/12−1

)αn

= exp(Ω (d · log α · αn)) .

A.8 Proof of Lemma 8

Some preparation is needed before we can turn to the proof of Lemma 8. Let αn
be the size of the largest component induced on the uncolored vertices. Clearly

P[there is a component of order αn in G − H]

≤ P[∃ a tree T ⊆ G − H of order αn]

= P[∃ a tree T with |T | = αn : E(T) ⊂ E(G), T ∩ H = ∅] .

(9)

Unfortunately the two events occuring on the last line of Equation (9) are not
independent of each other since H is not a random subgraph of G. For this

reason, we modify the construction of H depending on the tree T under study,
resulting in a new subgraph H ′ of G. For this subgraph the corresponding events
can be seperated, giving an upper bound on the probability we are interested in.

So, consider a fixed tree T with V (T) ⊂ V (G) and all edges between different
color classes of G, but not necessarily satisfying E(T) ⊂ E(G). Denote by T<4

all vertices v of T obeying degT (v) < 4, set T≥4 := T − T<4, and let H ′ be the
graph obtained from G by the following process:

1. Construct a graph G′ = (V, E′) from G by discarding all edges in E(T)
and then reconsidering their occurence by throwing a new die, i.e., E′ =
(E \ E(T)) ∪ E′(T) where E′(T) ⊂ E(T) contains each edge of T with
probability p.

2. Delete all vertices in T≥4 from G′.
3. Apply the procedure for constructing H to G′ with δ slightly reduced to δ′

(see page 8).

Again, we refer to Steps 1 and 2 of the construction procedure for H within
this process as the two initial steps. Step 3 of the procedure for H is called the

iterative deletion process, and the corresponding sets are H
0′

and H
it′

.
Note that the graph G′ constructed in Step 1 above still is a 3-colorable

graph with partitions C1, C2, and C3 since all edges of T run between different
partitions of G by definition. When refering to the degree of a vertex v ∈ V into
one of these partitions Ci in G′ we write degC′

i
(v).

The next lemma shows that this revised construction does indeed lead to
independent events. A similar argument was used in [1].

Lemma 14. For any fixed tree T ,

P[E(T) ⊂ E(G) and T ∩ H = ∅] ≤ P[E(T) ⊂ E(G)] · P[T ∩ H ′ = ∅] .

Proof. By

P[E(T) ⊂ E(G) andT ∩ H ′ = ∅]

= P[E(T) ⊂ E(G)] · P[T ∩ H ′ = ∅ | E(T) ⊂ E(G)]

this lemma is a direct consequence of T ∩H ′ ⊂ T ∩H since the events T ∩H ′ = ∅
and E(T) ⊂ E(G) are clearly independent due to Step 1 in the construction of
H ′. Accordingly, it remains to show that v 6∈ H ∩ T implies v 6∈ H ′ ∩ T . We
assert this by comparing the different deletion steps in the construction of H
versus H ′.

First, consider vertices v ∈ H
0

deleted in one of the first two steps while
constructing H (i.e., vertices v with degCi

(v) ≶ (1 ∓ δ)d/3 for some i). If v 6∈ T
then v is clearly deleted in the initial steps of the construction of H ′. All vertices
v ∈ T with v 6∈ T<4 are deleted from H ′ as well. For v ∈ T<4 finally we have
either degC′

i
(v) ≥ (1 + δ)d− 3 ≥ (1 + δ′)d or degC′

i
(v) ≤ (1− δ)d + 3 ≤ (1− δ′)d

by the definition of T<4 and so v ∈ H
0′

in this case too.

Now, let us turn to vertices v ∈ H
it
. By the preceeding arguments we know

that H
0 ⊂ H

0′
. We proceed by induction on the steps in the iterative deletion

process. In each of these steps in the construction of H , those vertices v are
deleted from H that have more than 2δd/3 formerly deleted neighbors. Again,
in the case v 6∈ T such a deletion carries over to a deletion from H ′ since

H
0 ⊂ H

0′
and by applying the induction hypothesis. The case v ∈ T≥4 may

be omitted since these vertices were deleted from H ′ already. Thus, it remains
to consider v ∈ T<4 (observe that we can not use the same argument here as
in the case v 6∈ T since the edges on vertices from T are different in H and
H ′). By induction hypothesis and the definition of T<4 we know that v has at
least 2δd/3− 3 ≤ 2δ′d/3 neighbors that were deleted from H ′ in earlier steps. It
follows that v is deleted from H as well.

This concludes the proof of H ′ ∩ T ⊂ H ∩ T and shows more generally that
H ′ ⊂ H . Therefore, the validity of Lemma 14 is verified.

With this we are ready to prove Lemma 8. There, we are interested in trees
T with |T | = αn. In this case |T<4| ≥ αn/2 because |T<4| ≥ |T |/2 follows from

|T | − 1 = |E(T)| =
1

2

∑

v∈T<4

degT (v) +
∑

v∈T≥4

degT (v)

 ≥ 1

2
· 4|T≥4|.

The following discussion will partly refer to the proof of Lemma 5.

Proof (of Lemma 8).
By Equation (9) and Lemma 14, we can rewrite the probability we are inter-

ested in as follows:

P[∃T with |T | = αn : E(T) ⊂ E(G), T ∩ H = ∅]

≤
∑

T

P[E(T) ⊂ E(G)] ·P[T ∩ H ′ = ∅] .

Since the edges of G (and G′) are chosen independently from each other, the
probability that E(T) ⊂ E(G) for a fixed tree T is simply pαn. So in the main
part of this proof we will investigate the probability P[T ∩ H ′ = ∅] and show
that

P[T ∩ H ′ = ∅] < exp(−α · Ω (dn)) .

This suffices for establishing the desired bound: It is well known that the number
of labeled trees on y vertices is yy−2 and consequently

∑

T

P[E(T) ⊂ E(G)] · P[T ∩ H ′ = ∅]

≤
(

n

αn

)

(αn)
αn−2 · pαn−1 · exp(−α · Ω (dn))

≤
(

e

α
· αn · d

n
· exp(−Ω (d))

)αn

≤
(

d

exp(Ω (d))

)αn

.

Calculating P[T ∩ H ′ = ∅]: H ′ is obviously not a random subgraph of G.
However, the event T ∩ H ′ = ∅ does not depend on the structure of H ′, but
only on the vertices contained in this subgraph. Moreover, the construction of
H ′ is independent of the labeling of the vertices involved. Now, consider a fixed
graph F . Then, by the foregoing remarks, among all graphs from Gn,p,3 the
event that F is induced on a particular set of vertices and forms the graph H ′

has the same probability as the event that this happens for any other set of
vertices. Consequently, we get an invariance under permutation of the labeling
of G (while leaving the labeling of T fixed) and so the only information about
H ′ that is necessary for determining the desired probability is its size. For this
reason, we will next try to estimate |H ′|.

In Lemma 5, the probability that |G − H | exceeds αn was bounded by

exp(− (log α + Ω (d)) · αn) + exp(Ω (d · log α · αn)) .

In this connection we also remarked that the given estimation does not allow
for a nontrivial upper bound when α ≪ α0 = 2−c(0)d/10, where c(0) is the
constant defined on page 17. As mentioned, we will show that we can use the
same bound for a corresponding result on |H ′| which will, again, only be useful
in the case that |G − H ′| is at least of size α0n. This gives a motivation for
rewriting P[T ∩ H ′ = ∅] by conditioning on the event |H ′| ≥ (1 − α0)n :

P[T ∩ H ′ = ∅] = P[T ∩ H ′ = ∅ | |H ′| ≥ (1 − α0)n] ·P[|H ′| ≥ (1 − α0)n]

+ P[T ∩ H ′ = ∅ | |H ′| < (1 − α0)n] · P[|H ′| < (1 − α0)n]

≤ P[T ∩ H ′ = ∅ | |H ′| ≥ (1 − α0)n] + P[|H ′| < (1 − α0)n] .

Since, as discussed above, P[T ∩ H ′] only depends on the size of H ′ we can
bound the first term in this equation in the following way:

P[T ∩ H ′ = ∅ | |H ′| ≥ (1 − α0)n] ≤
(
α0n
|T |
)

(
n
|T |
) ≤

(
e · α0n

|T | · |T |
n

)|T |

≤
(

e · 2− 1
10 c(0)·d

)αn

= exp(−α · Ω (dn)) .

For evaluating the second term, note that the initial steps in the construction of
H and H ′ (i.e., removing vertices of high and low degree in G and G′, respec-
tively) are identical apart from the value of δ and δ′, respectively. The computa-

tions concerning the size of the set H
0 ⊂ G−H of initially deleted vertices have

been performed for δ′ in the proof of Lemma 12. Since G and G′ are both graphs
from Gn,p,3, we consequently can adopt the results derived there for concluding

that |H0′| < α0n/4 holds with probability at least

1 − exp
(

−
(

log
α0

2
+ c(0) · d

)

· α0

2
n
)

= 1 − exp

(

−
(

− 1

10
c(0) · d − 1 + c(0) · d

)

2−
1
10 c(0)·d−1n

)

= 1 − exp

(

− d

2O(d)
Ω (n)

)

.

T≥4 is of order at most αn/2 and therefore this set contains at most α0n/2

vertices. So the number |H0′ ∪ T≥4| of vertices removed from H ′ before the
iterative deletion process starts is certainly less than 3α0n/4 with the same
probability.

Later, in Lemma 13 we calculated P
[

|Hit| ≥ y
∣
∣
∣ |H0| ≤ 3y

]

for the number

|Hit| of vertices removed in the iterative deletion process. Recall that the corre-

sponding analysis solely relied on the probability that a set H
<k \H

0
of vertices

deleted in this procedure has got many neighbors in the set H
<k

of all formerly
deleted vertices. Here, this probability does not depend on the structure induced

on the set H
0

of vertices deleted before the iterative deletion process takes effect.
We therefore conclude in accordance to Lemma 13 that given

|H0′ ∪ T≥4| ≤ 3α0n/4,

the event |Hit′| < α0n/4 holds with probability at least

1 − exp(Ω (d · log α0 · α0n))

= 1 − exp
(

Ω
(

d · log 2−c(0)d/10 · 2−c(0)d/10n
))

≥ 1 − exp
(

Ω
(

−d · d · 2−c(0)d/10 · n
))

= 1 − exp

(

− d

2O(d)
Ω (n)

)

.

It follows that

P[|H ′| ≥ (1 − α0)n] ≥ 1 − exp

(

− d

2O(d)
Ω (n)

)

and so, using the bound on P[T ∩ H ′ = ∅ | |H ′| ≥ (1 − 6 · α0)n] calculated ear-
lier, we finally arrive at

P[T ∩ H ′ = ∅]

≤ P[T ∩ H ′ = ∅ | |H ′| ≥ (1 − 6 · α0)n] + P[|H ′| < (1 − 6 · α0)n]

≤ exp(−α · Ω (dn)) + exp

(

− d

2O(d)
Ω (n)

)

≤ exp(−α · Ω (dn)) .

A.9 Details of the Proof of Lemma 10

Recall that FH are those vertices in H which are colored incorrectly after the
recoloring step of Algorithm 1. FSDP is the set of vertices that need to be
assigned a different color for obtaining a valid coloring on an (1−ǫ)-fraction of G
after the inital phase. The set of vertices colored incorrectly after the uncoloring
step finally is denoted by FΥ and

α0 = 2−c(0)d/10

for some constant c(0) (cf. page 17).

Consider the vertex set Y from Algorithm 1 that is colored correctly in Step 3
of the recovery procedure and let t(y) be the time the algorithm needs to execute
this step in the case |Y | = y. Further, denote by F the set Y used in the iteration
when the algorithm finally obtains a valid coloring. The expected running time
E[t] of the repair mechanism can then be written as

E[t] =
∑

y≤n

P[|F | = y] · t(y)

=
∑

y≤n

P[|F | = y] ·
∑

y′≤y

(
n

y′

)

3-COL (y′)

≤ O(n)
∑

y≤n

P[|F | = y] ·
(

n

y

)

3-COL (y) .

(10)

We proceed by splitting the summands P[|F | = y] ·
(
n
y

)
3-COL (y) into different

components and show that each of them evaluates to a polynomial. To begin
with, we bound P[|F | = y] by rewriting F as sum of FSDP , FH , FΥ and possibly
H . For this, observe that

F = FSDP ∪ FH ∪ FΥ .

However, we use this partitioning of F only in the case that |H | ≤ α0n. If
|H | > α0n we use

F ⊂ FSDP ∪ FH ∪ H.

Since all probabilities involved are monotone decreasing, we get

P[|F | = y] ≤
∑

y1+y2+y3=y

y3≤α0n

P[|FSDP | = y1, |FH | = y2, |FΥ | = y3]

+
∑

y1+y2+y3=y
y3>α0n

P
[
|FSDP | = y1, |FH | = y2, |H | = y3

]
.

One of the vertex sets involved in the conjunctions of this sum certainly contains
more than y/3 vertices and so

P[|F | = y]

≤ n3

{

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|FΥ | = y

3

])
if y

3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|H | = y

3

])
otherwise.

Since the coloring constructed in the initial step of COLOR (possibly with the
help of the recovery procedure) fails on at most ǫn vertices, we can assume
that the size of FH does not exceed ǫn either. Therefore, we can refine the last

equation in the following way:

P[|F | = y]

≤ n3

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|FΥ | = y

3

])
if y

3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|H | = y

3

])
if y

3 ≥ ǫn,

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|H | = y

3

])
otherwise.

(11)

Now, let y = αn and recall that

P[|FH | = αn] ≤ (cHα)
c′Hd·αn

=: fH(α),

P[|FΥ | = αn] ≤ (cΥ α)
c′Υ d·αn

=: fΥ (α),

and

P
[
|H | = αn

]

≤ P
[
|H | ≥ αn

]
≤ exp

(
−αn

(
log α + c(0) · d

))

︸ ︷︷ ︸

=:f(0)(α)

+ (citα)c′itd·αn

︸ ︷︷ ︸

=:fit(α)

=: fH (α)

by Lemmas 6, 7, and 5, respectively, for appropriate constants cH , c′H , cΥ , c′Υ ,
c(0), cit, and c′it. With this we can rewrite (11) as

P[|F | = y] ≤ n3

max
(
P
[
|FSDP | = y

3

]
, fH(y

3n), fΥ (y
3n)
)

if y
3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|H | = y

3

])
if y

3 ≥ ǫn,

max
(
P
[
|FSDP | = y

3

]
, fH(y

3n), P
[
|H | = y

3

])
otherwise.

(12)

We next exploit the fact that fΥ (α), fH(α), and fit(α) are of similar structure.

Lemma 15. Let cmax := max(cH , cΥ , cit). Then there is some constant c′max

such that each of the functions fΥ (α), fH(α), and fit(α) is less than or equal to

fmax(α) := (cmaxα)c′maxd·αn

in the whole interval 0 < α < 1.

Indeed, our estimates on the three probabilities in question are all of the form
(cα)c′d·αn where c > 1 and c′ > 0. Note that for comparing two functions of this
form, we can omit the exponent d·αn. So, consider two functions f1(y) := (c1y)c′1

and f2(y) := (c2y)c′2 with c1, c2 > 1, c′1, c
′
2 > 0, and c1 ≥ c2. Then f1 ≥ f2 for

y < 1 provided that c′1 ≤ c′2 and c1
c′1 ≥ c2

c′2 . These inequalities may be asserted
by choosing c′2 := c′1 + ν with ν sufficiently small since

c
c′1
1 ≥ c

c′1+ν
2 ⇔ ν ≤ c′1

ln c1 − ln c2

ln c2
.

For c1 ≥ c2 this choice is always possible in such a way that ν ≥ 0. If follows
that for each function f ∈ {fΥ , fH , fit}, we can find a constant c′f such that

(cmaxα)c′f αnd ≥ f(α) for α < 1. Then, letting c′max be the maximum of these
constants cf gives a function fmax with the required properties.

Accordingly, (12) can be bounded by

P[|F | = y]

≤ n3

max
(
P
[
|FSDP | = y

3

]
, fmax(y

3n)
)

if y
3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|H | = y

3

])
if y

3 > ǫn,

max
(
P
[
|FSDP | = y

3

]
, fmax(y

3n), P
[
|H | = y

3

])
otherwise.

Returning to the evaluation of P[|F | = y] ·
(
n
y

)
3-COL (y) in Equation (10), we

therefore can certainly guarantee the required polynomial bound on E[t] by
asserting the following three relations

P
[

|FSDP | =
y

3

]

·
(

n

y

)

3-COL (y) = O(1) for all y ≤ n, (13a)

P
[

|H | =
y

3

]

·
(

n

y

)

3-COL (y) = O(1) for all
y

3
> α0n, (13b)

fmax

(y

3n

)

·
(

n

y

)

3-COL (y) = O(1) for all
y

3
< ǫn. (13c)

The first of these equations can be derived with the help of Lemma 4: Let
y = αn. Then

P
[

|FSDP | =
y

3

]

·
(

n

y

)

3-COL (y) = P
[

|FSDP | =
αn

3

]

·
(

n

αn

)

3-COL (αn)

≤ 10−n ·
(e

α

)αn

3αn ≤ 10−n · 10n

since (e · 3/α)α < 10 for all 0 < α ≤ 1.

Moreover, (13b) and (13c) are proven below in Lemma 17 and Lemma 16
respectively. This concludes the proof of Lemma 10. It remains to establishing the
second and the third assertion of (13). We start by showing (13c) in Lemma 16.
Here we make use of the terminology introduced in the proof of Lemma 10.

Lemma 16. For α/3 < ǫ,

fmax

(α

3

)

·
(

n

αn

)

3-COL (αn)

tends to a constant as n goes to infinity.

Proof. A straight forward calculation shows

fmax

(α

3

)

·
(

n

αn

)

3-COL (αn) ≤ (cmaxα/3)c
′
maxd·αn/3 ·

(
n

αn

)

· exp(ln 3 · αn)

≤ exp

((

(ln cmax + lnα − ln 3) c′max

d

3
− 2 logα + ln 3

)

αn

)

≤ exp

((

ln cmax · c′max

3
d + lnα

(

c′max

d

3
− 3

))

αn

)

,

which is of order O(1) for

lnα <
ln cmax · c′max

d
3

3 − c′max
d
3

.

This is satisfied for d sufficiently large and

lnα < 2
ln cmax · c′max

d
3

−c′max
d
3

= ln
1

c2
max

since cmax > 1. Thus, Lemma 16 follows if we choose

ǫ ≤ 1

3c2
max

.

For completing the proof of Lemma 10 it remains to complement the preceeding
result by an argument for (13b).

Lemma 17. For α/3 > α0,

P
[

|H | =
α

3
n
]

·
(

n

αn

)

3-COL (αn)

is of order O(1).

Proof. Set α′ := α/3 and recall that

P
[
|H | = α′n

]
≤ f(0)(α

′) + fit(α
′) (14)

with f(0)(α
′) = exp

(
−α′n

(
log α′ + c(0) · d

))
and fit(α

′) = (citα
′)c′itd·α′n

. Notice

that fit(α
′) ≥ 1 for α′ ≥ 1/cit ≥ 1/cmax > ǫ and so this bound on P

[
|H | = α′n

]

gets trivial for such α′. Therefore, we proceed by discussing the cases α0 ≤ α′ < ǫ
and α′ ≥ ǫ separately. In both cases we will derive a constant bound on

P
[
|H | = α′n

]
·
(

n

αn

)

3-COL (αn) = P
[

|H | =
α

3
n
]

·
(

n

αn

)

3-COL (αn) . (15)

This establishes the lemma.

First, assume α′ < ǫ. We evaluate the two terms f(0)(α
′) and fit(α

′) con-
tributing to the bound in (14) independently. By Lemma 15 and Lemma 16, we
know that

fit

(α

3

)

·
(

n

αn

)

3-COL (3αn) = O(1) .

Using (5) we obtain a corresponding result for f(0)(α
′):

f(0)

(α

3

)

·
(

n

αn

)

3-COL (αn)

≤ exp
(

−α

3
n
(

log
α

3
+ c(0) · d

))

·
(

n

αn

)

· exp(ln 3 · αn)

≤ exp
(

−α

3
n
(
log α − log 3 + c(0) · d + 3 · 2 log(α) − 3 ln 3

))

≤ exp

(

−α

3
n

(

6 log α +
6

10
c(0) · d

))

.

This term tends to a constant for

− log α <
1

10
c(0) · d,

which holds for α/3 = α′ > α0 since we chose α0 = 2−c(0)d/10. This settles the
case α0 < α′ < ǫ.

For α′ ≥ ǫ we need to follow a different strategy. By monotonicity we have

P
[
|H | = α′n

]
≤ P

[
|H | ≥ α′n

]
≤ P

[
|H | ≥ α′′n

]

for α′′ ≤ α′. Moreover,

(
n

αn

)

3-COL (αn) ≤
(e

α

)αn

3αn ≤ 10n

since (e · 3/α)α < 10 for all 0 < α ≤ 1. Accordingly, (15) can be bounded from
above by

P
[
|H | ≥ ǫn

]
· 10n ≤ f(0)(ǫ) · 10n + fit(ǫ) · 10n.

For these two summands we can now easily provide constant bounds:

f(0)(ǫ) · 10n = exp(−ǫn (log ǫ + Ω (d))) exp(ln 10 · n) = exp(n(O(1) − Ω (d)))

fit(ǫ) · 10n = (cit · ǫ)c′itd·ǫn exp(ln 10 · n) = exp(n(O(1) − Ω (d))) .

Observe that the second part of this proof demonstrates in particular that
Algorithm 1 can even afford to use the recovery procedure on the whole graph
G if |H | grows beyond ǫn.

	Coloring Sparse Random k-colorable Graphs in Polynomial Expected Time
	Julia Böttcher

