Coloring sparse random *k***-colorable graphs in polynomial expected time**

Julia Böttcher, TU München, Germany

Definitions

 $V(G) = \{1, ..., n\} =$ vertext set of G. $\chi(G) =$ chromatic number of G.

Definitions

$$V(G) = \{1, ..., n\} =$$
 vertext set of G .
 $\chi(G) =$ chromatic number of G .

Algorithm A runs in polynomial expected running time:

$$\sum_{|G|=n} t_{\mathcal{A}}(G) \cdot \mathbf{P}[G] \quad \text{is polynomial.}$$

($t_{\mathcal{A}}(G)$: running time of \mathcal{A} on input G)

Approximating the chromatic number

Coloring graphs:

THEOREM

HALLDÓRSON 1993

 $\chi(G)$ can be approximated within $\frac{n(\log \log n)^2}{(\log n)^3}$.

Approximating the chromatic number

Coloring graphs:

THEOREM

HALLDÓRSON 1993

 $\chi(G)$ can be approximated within $\frac{n(\log \log n)^2}{(\log n)^3}$.

THEOREM

ENGEBRETSEN, HOLMERIN 2003

Approximating $\chi(G)$ within $n^{1-\mathcal{O}(1/\sqrt{\log \log n})}$ is hard.

Approximating the chromatic number

Coloring graphs:

THEOREM

HALLDÓRSON 1993

 $\chi(G)$ can be approximated within $\frac{n(\log \log n)^2}{(\log n)^3}$.

THEOREM

ENGEBRETSEN, HOLMERIN 2003

Approximating $\chi(G)$ within $n^{1-\mathcal{O}(1/\sqrt{\log \log n})}$ is hard.

Coloring 3-chromatic graphs:

THEOREM

Blum, Karger 1997

G can efficiently be colored with $n^{3/14+o(1)}$ colors.

THEOREM

Khanna, Linial, Safra 1993

MFCS, Gdansk, 2005

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p.

KUCERA 1977; TURNER 1988

In polynomial expected time.

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p.

KUCERA 1977; TURNER 1988

In polynomial expected time.

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p.

KUCERA 1977; TURNER 1988

In polynomial expected time.

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p.

KUCERA 1977; TURNER 1988

In polynomial expected time.

The random k-colorable graph $\mathcal{G}_{n,p,k}$

Construct $\mathcal{G}_{n,p,k}$ as follows:

■ Partition V into k color classesV₁, ..., V_k of equal size.
 ■ For i ≠ j insert edges between V_iand V_j with probability p = d/n.

The random k-colorable graph $\mathcal{G}_{n,p,k}$

Construct $\mathcal{G}_{n,p,k}$ as follows:

■ Partition V into k color classesV₁, ..., V_k of equal size.
 ■ For i ≠ j insert edges between V_i and V_j with probability p = d/n.

The random k-colorable graph $\mathcal{G}_{n,p,k}$

Construct $\mathcal{G}_{n,p,k}$ as follows:

■ Partition V into k color classesV₁, ..., V_k of equal size.
 ■ For i ≠ j insert edges between V_i and V_j with probability p = d/n.

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p.

KUCERA 1977; TURNER 1988

In polynomial expected time.

Coloring uniformly distributed *k*-colorable graphs:

Algorithms that work w.h.p. KUCERA 1977; TURNER 1988 In polynomial expected time. DYER AND FRIEZE 1989 Coloring $\mathcal{G}_{n,p,k}$: W.h.p. • for $p \ge n^{\epsilon}/n$, **BLUM AND SPENCER 1995** • for $p \ge c/n$. ALON AND KAHALE 1997 In polynomial expected time • for $p \ge n^{\epsilon}/n$, SUBRAMANIAN 2000 • for $p \ge c \cdot \ln n/n$, COJA-OGHLAN 2004 • for $p \ge c/n$.

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

3

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

3

4

/** The initial phase **/
Construct a coloring that fails on < \epsilon n vertices;
/** The iterative recoloring procedure **/
Refine the initial coloring;
Repeatedly uncolor vertices having few neighbors of</pre>

Repeatedly uncolor vertices having few neighbors of some other color ;

Color the components of the uncolored vertices ;

end

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

```
for 0 < y < n do
1
     foreach 3-coloring of each Y \subseteq V of size y do
2
        /** The initial phase **/
        Construct a coloring that fails on < \epsilon n vertices ;
3
        /** The iterative recoloring procedure **/
        Refine the initial coloring ;
4
        /** The uncoloring procedure **/
        Repeatedly uncolor vertices having few neighbors of
5
        some other color;
        /** The extension step **/
        Color the components of the uncolored vertices;
6
        if we have a valid coloring of G then return ;
7
 end
```

An SDP for MAX-3-CUT

Problem: Find a 3-cut $\bigcup V_i = [n]$ s.t. $\sum_{i \neq j} e(V_i, V_j)$ is maximal.

Idea: Use variables taking one of 3 different values (3 unit vectors $\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3$ with $\langle \mathbf{s}_i | \mathbf{s}_j \rangle = -1/2$).

An SDP for MAX-3-CUT

Problem: Find a 3-cut $\bigcup V_i = [n]$ s.t. $\sum_{i \neq j} e(V_i, V_j)$ is maximal.

Idea: Use variables taking one of 3 different values (3 unit vectors $\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3$ with $\langle \mathbf{s}_i | \mathbf{s}_j \rangle = -1/2$).

Max-3-cut:

$$\max \sum_{ij \in E(G)} \frac{2}{3} \left(1 - \langle \mathbf{v}_i | \mathbf{v}_j \rangle \right),$$

s.t. $\mathbf{v}_i \in \{\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3\}, \forall i \in V$

An SDP for MAX-3-CUT

Problem: Find a 3-cut $\bigcup V_i = [n]$ s.t. $\sum_{i \neq j} \mathbf{e}(V_i, V_j)$ is maximal.

Idea: Use variables taking one of 3 different values (3 unit vectors $\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3$ with $\langle \mathbf{s}_i | \mathbf{s}_j \rangle = -1/2$).

\mathcal{SDP}_3 and 3-colorable graphs

For a 3-colorable graph Max-3-cut = |E|

\mathcal{SDP}_3 and 3-colorable graphs

- For a 3-colorable graph Max-3-cut = |E|
- Realization of a maximum 3-cut in SDP_3 : map the color classes to the vectors s_1, s_2, s_3 .

An optimal solution for SDP_3 on 3-colorable graphs with color classes V_1, V_2, V_3

SDP_3 and 3-colorable graphs (ctd.)

Positions of the vectors of an optimal solution to SDP_3 are "far away" from this ideal picture in general:

An optimal solution for SDP_3 on a 3-colorable graphs in 3 dimensions

Algorithm 1: COLOR $G_{n,p,3}(G)$

Input: a graph $\mathcal{G}_{n,p,3} = G = (V, E)$ **Output**: a valid coloring for $\mathcal{G}_{n,p,3}$

begin

for $0 \le y \le n$ do 1 **foreach** 3-coloring of each $Y \subseteq V$ of size y **do** 2 /** The initial phase **/ Construct a coloring that fails on $< \epsilon n$ vertices ; 3 /** The iterative recoloring procedure **/ Refine the initial coloring; 4 /** The uncoloring procedure **/ Repeatedly uncolor vertices having few neighbors of 5 some other color; /** The extension step **/ Color the components of uncolored vertices; 6 if we have a valid coloring of G then return; 7 end

 $\blacksquare \mathcal{X} = (\mathbf{x}_v)_{v \in V} : \text{ optimal solution to } SDP_3(G)$

• *µ*-neighborhood of v: $\mathbf{N}^{\mu}(v) := \{v' \in V \mid \langle \mathbf{x}_v \mid \mathbf{x}_{v'} \rangle > 1 - \mu\}$

 $\blacksquare \mathcal{X} = (\mathbf{x}_v)_{v \in V} : \text{ optimal solution to } SDP_3(G)$

• μ -neighborhood of v: $\mathbf{N}^{\mu}(v) := \{v' \in V \mid \langle \mathbf{x}_v \mid \mathbf{x}_{v'} \rangle > 1 - \mu\}$

LEMMA

For all $\epsilon < 1/2$ there is a $\mu < 1/2$ s.t. t.f. holds with probability greater than $1 - \exp(-4n/3)$: For each $i \in \{1, 2, 3\}$ there is a vertex $v_i \in V_i$ with

$$|\mathbf{N}^{\mu}(v_i) \cap V_i| \ge (1-\epsilon)n/3 \text{ and }$$

$$|\mathbf{N}^{\mu}(v_i) \cap V_j| < \epsilon n/3 \text{ for all } j \neq i$$

Goal: A coloring of SDP_3 that fails on $< \epsilon n$ vertices.

THEOREM

Coja-Oghlan, Moore, Sanwalani

With probability at least $1 - \exp(-2n)$ t.f. holds

$$\mathcal{SDP}_3(\mathcal{G}_{n,p}) \le \frac{2}{3} \binom{n}{2} p + \mathcal{O}\left(\sqrt{n^3 p(1-p)}\right)$$

Goal: A coloring of SDP_3 that fails on $< \epsilon n$ vertices.

THEOREM

COJA-OGHLAN, MOORE, SANWALANI

With probability at least $1 - \exp(-2n)$ t.f. holds

$$\mathcal{SDP}_3(\mathcal{G}_{n,p}) \le \frac{2}{3} \binom{n}{2} p + \mathcal{O}\left(\sqrt{n^3 p(1-p)}\right)$$

Idea: Construct $G^* \in \mathcal{G}_{n,p}$ from $G \in \mathcal{G}_{n,p,3}$ by inserting additional edges with probability p within each color class.

LEMMA

With probability at least $1 - \exp(-3n/2)$ t.f. holds

 $\mathcal{SDP}_3(G^*) - \mathcal{SDP}_3(G) \leq \mathcal{O}(n\sqrt{pn}).$

Concluding Remarks

- \blacksquare *k*-coloring is hard / difficult to approximate.
- k-colorable graphs can be k-colored in polynomial expected time.
- On sparse graphs semidefinite programming helps.

Concluding Remarks

- \blacksquare *k*-coloring is hard / difficult to approximate.
- k-colorable graphs can be k-colored in polynomial expected time.
- On sparse graphs semidefinite programming helps.

There are only 3 colors, 10 digits, and 7 notes; it's what we do with them that's important.

RUTH ROSS

MFCS, Gdansk, 2005

Concluding Remarks

- \blacksquare *k*-coloring is hard / difficult to approximate.
- k-colorable graphs can be k-colored in polynomial expected time.
- On sparse graphs semidefinite programming helps.

There are only 3 colors, 10 digits, and 7 notes; it's what we do with them that's important.

RUTH ROSS

MFCS, Gdansk, 2005