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Zusammenfassung

Nach wie vor stellt das Graphenfärbungsproblem eine der anspruchsvollsten algorithmischen
Aufgaben innerhalb der Graphentheorie dar. So blieb bisher nicht nur die Suche nach effizienten
Methoden, die dieses Problem exakt lösen, erfolglos. Gemäß eines Resultates von Feige und
Kilian [22] ist auch die Existenz von signifikant besseren Approximationsalgorithmen als dem
Trivialen, der jedem Knoten eine eigene Farbe zuordnet, sehr unwahrscheinlich.

Diese Tatsache motiviert die Suche nach Algorithmen, die das Problem entweder nicht in allen
sondern nur den meisten Fällen entscheiden, dafür aber von polynomieller Laufzeitkomplexität
sind, oder aber stets eine korrekte Lösung ausgeben, eine polynomielle Laufzeit jedoch nur im
Durchschnitt garantieren.

Ein Algorithmus der ersterem Paradigma folgt, wurde von Alon und Kahale [2] für die fol-
gende Klasse zufälliger k-färbbarer Graphen entwickelt: Konstruiere einen Graphen Gn,p,k mit
einer Knotenmenge V der Kardinalität n durch Partitionierung von V in k Mengen gleicher
Größe und anschließendes Hinzufügen der möglichen Kanten zwischen diesen Mengen mit
Wahrscheinlichkeit jeweils p. Das Ergebnis von Alon und Kahale besagt nun, dass Graphen
aus Gn,p,k mit hoher Wahrscheinlichkeit in polynomieller Zeit k-gefärbt werden können, falls
p ≥ c/n für eine hinreichend große Konstante c ist. In dieser Arbeit wird für die gleichen Klas-
se von Graphen und den selben Bereich von p ein Algorithmus der zweiten Art für den Fall
k = 3 vorgestellt. Genauer gesagt wird nachgewiesen, dass es möglich ist, Gn,p,3 in polynomiell
erwarteter Laufzeit mit drei Farben zu färben, falls p ≥ c/n.

Zur Konstruktion dieses Algorithmuses werden die Ideen von Alon und Kahale mit Techniken
aus dem Gebiet der semidefiniten Programmierung kombiniert und außerdem Mechanismen
zur Behebung von Unzulänglichkeiten der von Alon und Kahale verwendeten Methode bei un-
typischen Graphen entwickelt. Die Berechnungen lassen sich auf beliebiges k verallgemeinern.

Abstract

The coloring problem on graphs remains one of the most demanding algorithmic tasks in graph
theory. It is not only hard to efficiently find exact solutions to this problem, but it is also
extremely unlikely, due to Feige and Kilian [22], that there exist approximation algorithms
which substantially improve over the trivial one, i.e., color each vertex with a separate color.

This motivates the quest for algorithms that either solve the problem in most but not all cases,
but are of polynomial time complexity, or that give a correct solution on all input graphs while
guaranteeing a polynomial running time on average only.

An algorithm of the first kind was suggested by Alon and Kahale in [2] for the following type
of random k-colorable graphs: A graph Gn,p,k on a vertex set V of cardinality n is constructed
by first partitioning V into k equally sized sets and then adding each edge between these sets
with probability p independently from each other. Now, the result of Alon and Kahale shows
that graphs from Gn,p,k can be k-colored in polynomial time with high probability as long as
p ≥ c/n for some sufficiently large constant c. In this thesis, we construct an algorithm of the
second kind for k = 3 on the same type of graphs and for the same range of p. More precisely,
we prove that it is possible to 3-color Gn,p,3 in polynomial expected running time for p ≥ c/n.

To obtain this result we combine the ideas developed by Alon and Kahale with techniques
from semidefinite programming and develop error recovery mechanisms for atypical graphs.
The calculations carry over to general k.
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1 Introduction

“ There are only 3 colors, 10 digits, and

7 notes; it’s what we do with them that’s

important. ”

Ruth Ross

The problem of computing the chromatic number of a graph has drawn much attention in graph
theory. The objective of this problem is to find the minimal number of colors such that one
color can be assigned to each vertex of a given graph without producing unicolored neighbors
(for formal definitions see Chapter 2). While early interest in the subject was motivated by
purely mathematical questions such as the famous 4-coloring problem, the development of the
computer in the twentieth century, and with it the growing importance of algorithms, supplied
practical applications of the problem. These applications include different kinds of scheduling
problems [47, 68] as well as code optimization [9] and hardware design [60].

In compiler optimization for example, the goal is to schedule the usage of a minimal number of
registers. The variables occuring in a given code fragment can be represented as the vertices
of a graph. An edge is drawn between each pair of variables whose life span intersects. The
problem of coloring the resulting graph corresponds to the original problem of assigning the
variables to registers (cf. [61]).

In light of these applications, it would be desirable to have fast algorithms for solving the
graph coloring problem, i.e. algorithms that exhibit a polynomial running time complexity.
Unfortunately however, coloring is one of the classical NP-hard problems (see [26]). As a
consequence, it is rather unlikely that efficient algorithms for this problem exist.

If no exact answer to a problem can be found within a reasonable amount of time, one al-
ternative is to search for fast algorithms that need not necessarily produce correct solutions
but return at least sufficiently good approximations to the truth. However, for the coloring
problem even this suboptimal approach fails. While the standard greedy heuristic, i.e., subse-
quently coloring each vertex with the least color that was not assigned to any of its neighbors,
does not use more than twice of the minimum number of colors on “most” graphs (see Section
3.2 for details), guaranteeing a similar performance for all graphs proved infeasible under rea-
sonable computational assumptions. In fact, Feige and Kilian [22] proved that for all ǫ > 0 it
is impossible to find an efficient algorithm that always uses at most n1−ǫ times the optimum
number of colors provided ZPP 6= NP, where n is the number of vertices of the input graph.
Moreover, Khanna, Linial, and Safra [40] showed that coloring 3-colorable graphs (i.e., graphs
that can be colored with 3 colors) with 4 colors is NP-hard.

Accordingly, different approaches need to be pursued. One possibility is to ask for algorithms
that manage to deal with the majority of graphs, failing only in a few exceptional cases. While
finding algorithms of this type is not too dificult for dense k-colorable graphs (cf. [18, 44, 64];
for further explanations, see also Section 3.2), it turns out harder for sparse k-colorable graphs.
For constructing such sparse graphs consider the following process: Partition the vertices into

1



2 1 Introduction

k sets of equal size and allow only edges between these sets, taking each one independently
with probability p. We denote graphs obtained in this way by Gn,p,k. The number of neighbors
for a vertex of Gn,p,k is np · (k−1)/k on average. Accordingly, we obtain graphs with relatively
few edges, i.e., graphs that are sparse, by setting p = c/n for constant c.

In 1997, Alon and Kahale [2] were able to prove that the k-coloring problem can efficiently be
solved for “most” of these graphs. Here, by “most” we mean that the probability that Gn,p,k

is colored correctly goes to 1 as n tends to infinity. Alternatively, we say that a valid coloring
is constructed with high probability.

Theorem 1 (Alon & Kahale [2])
Let p > c/n for some sufficiently large constant c. Then there is an efficient algorithm for
k-coloring Gn,p,k with high probability.

But an algorithm that works with high probability has one drawback: For some inputs it does
not provide any solution at all. Alternatively, we could require that the algorithm always gives
a correct answer to the problem under study. By the remarks above, we need to compensate for
this accuracy with a concession in running time. This motivates the search for algorithms that
perform well on average (cf. [39]): An algorithm A with running time tA(G) on input G has
polynomial expected running time on Gn,p,k if

∑

G tA(G) ·P[Gn,p,k = G ] remains polynomial.
Here, the sum ranges over all graphs on n vertices. Observe that this is a stronger condition
than the requirement to work correctly with high probability: An algorithm that k-colors Gn,p,k

in polynomial expected running time also solves the k-coloring problem with high probability
in polynomial time.

For dense graphs, algorithms that color Gn,p,k in polynomial expected running time were given
by Subramanian [62] and Coja-Oghlan [14]. In this thesis we modify the algorithm of Alon
and Kahale for obtaining a corresponding result for sparse graphs.

Theorem 2
If p > c/n for some sufficiently large constant c then Gn,p,3 can be 3-colored in polynomial
expected running time.

The calculations carry over to general k. This answers a question of Subramanian [62].

The main philosophy of the algorithm we will develop can be described as follows: In the
beginning, a modified version A of the algorithm of Alon and Kahale is executed on the input
graph G. Then, if no valid coloring is obtained in this way, the graph is split into two parts, one
of them containing the vast majority of G and the other one all remaining vertices. Thereafter,
A is rerun on the bigger part while the other part is treated with brute force coloring methods.
If G is still not colored correctly then this process is repeated, more vertices handled by A are
shifted to those taken care of by the brute force method and so on. This is continued until G
is finally properly colored.

By assuring that on most graphs from Gn,p,3 only a small number of vertices cannot be han-
dled by A, we verify that this procedure exhibits a running time that is polynomial in its
expectation.

In addition, and in contrast to Alon and Kahale, we apply the concept of semidefinite pro-
gramming for constructing a coloring of Gn,p,3. Semidefinite programming is a branch of com-
binatorial optimization that was initiated in 1979 when Lovász [49] established a new bound,
now called the Lovász number, on the independence number of graphs (i.e., the maximal cardi-
nality of a set of vertices having no edges among each other). To this end, he characterized the
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Lovász number in the form of a linear minimization problem over a set of positive semidefinite
matrices with linear constraints. This seminal idea led to improved approximative algorithms
for a number of graph problems and by now, semidefinite programming can be regarded as a
standard tool for optimization problems on graphs.

In this work we use semidefinite programming techniques in order to obtain an initial coloring
of Gn,p,3 that already colors all but a small linear fraction of the input graph correctly (this
method is based on ideas of Coja-Oghlan [14]). This approximative coloring is then refined in
several iterations, leading to a valid coloring as desired.

The remainder of this thesis is structured as follows: In Chapter 2 we introduce some notation
and definitions, and explain basic concepts which will be used later. Next, an outline of
important results in the two fields forming the background of this work, namely algorithmic
graph coloring and the theory of semidefinite programs, is presented in Chapters 3 and 4,
respectively. Chapter 5 contains the main part of this thesis, i.e., the polynomial expected
time coloring algorithm along with its analysis. Finally, in Chaper 6 we give some retrospective
and prospective remarks.



2 Notation and Definitions

“ A definition is the enclosing of a wilder-

ness of idea within a wall of words. ”

Samuel Butler

In this chapter we provide most terminology used in this thesis and fix notational conventions.
Further definitions are sporadically presented later, in special cases where more explanations
are necessary to understand the ideas involved. Most of the terminology is standard for
the field. What follows does therefore not contain a careful introduction to the underlying
concepts. It may rather be regarded as a reference. We start with some general remarks, then
turn to notions from graph theory and finally introduce semidefinite programming.

In the following we write A := B (A =: B) for arbitrary terms A and B in order to express
that the left (right) hand side of this equation is defined to equal the right (left) hand side.

Further, let S and T = {t1, . . . , tk} be two sets. We often also write S −T or S − t1, . . . , tk for
S \ T . Analogously S + T and S + t1, . . . , tk are used for S ∪ T . In addition, we designate the
complement S − S′ of a subset S′ of S also by S′ if S is clear from the context.

In this text, the natural logarithm is denoted by ln, whereas log is used for the logarithm to
basis 2.

2.1 Graphs

An undirected finite graph or simply graph G = (V,E) consists of a finite set of vertices,
or nodes, V and a symmetric binary relation E ⊆

(V
2

)
called its edge set. Here, an edge

between two vertices u, v ∈ V is denoted by uv. From this definition it follows that we
exclusively consider simple graphs, i.e., graphs where E does not contain multiple elements
and is irreflexive. Where no confusion arises, we also refer to the vertex set V by just writing
G and vice versa. In any case |G| denotes the order n := |V | of G and m := |E| is also called
its size. When dealing with different graphs, we set V (G) := V and E(G) := E to distinguish
the vertex and edge sets involved.

An empty graph is a graph with an empty edge set and V 6= ∅. G′ = (V ′, E′) is a subgraph of

G, denoted by G′ � G, if V ′ ⊆ V and E′ ⊆ E ∩
(V ′

2

)
. If E′ = E ∩

(V ′

2

)
, we say that G′ is an

induced subgraph of G or the graph induced by V ′. An independent set I ⊆ V in G is a set of
vertices inducing an empty graph G′ = (I, ∅) in G.

For W ⊆ V , the set NG(W ) := {u ∈ V : ∃v ∈ W with uv ∈ E} is called the neighborhood of W
in G. Where the graph in question is clear from the context, we may omit the subscript G, and
for simplicity, we also write N(v1, . . . , vk) instead of N({v1, . . . , vk}). The degree degG(v) of a
vertex v in G equals the size of its neighborhood in G. We denote the minimum value among
the degrees of vertices in G (in the graph induced on a vertex set V ) by mindeg(G) (mindeg(V ))
and call it the minimal degree of G (of the graph induced on V ). The average degree of G

4
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is the arithmetic mean of its vertex degrees. If W , W ′ are subsets of V , not neccessarily
disjoint, then E(W,W ′) contains all edges ww′ ∈ E such that w ∈ W and w′ ∈ W ′ and
e(W,W ′) = |E(W,W ′)|.
A trail between two vertices u and w in G consists of a sequence v1, v2, . . . , vk of vertices from
V with v1 = u, vk = w, and vivi+1 ∈ E for all 0 < i < k. An inclusion-maximal set of vertices
K is called a component of G if between each pair of vertices from K there exists some trail.

In general we use the term coloring for a mapping Υ : V 7→ Γ from G to some set of colors

Γ ⊂ N. If Υ(u) 6= Υ(v) for all uv ∈ E we say that the coloring Υ is valid or proper. Here, Υ(v)
is the color of v and the sets {v ∈ V : Υ(v) = γ} are called color classes of Υ or partitions of
G. Moreover, if |Γ| = k, then Υ is a k-coloring.

The chromatic number χ(G) of a graph G is defined as χ(G) = minΥ(|Γ|), where the minimum
is taken over all valid colorings Υ : V 7→ Γ of G = (V,E). The problem of finding a coloring
of G that uses χ(G) colors is called the coloring problem of G whereas the term k-coloring

problem is used if we search for a coloring with a predefined number k of colors.

In the following we will occasionally use the term coloring even if Υ is not defined on all
elements of V . If we want to emphasize that this is the case we say that Υ is a partial coloring.
If the domain of a partial coloring Υ is extended by some additional vertices to a set V ′ ⊆ V ,
we say that the coloring obtained in this way is an extension of Υ to V ′ (or to the graph
G(V ′)), or alternatively that Υ is extended to V ′ (or to G(V ′)). Two valid partial colorings Υ
and Υ′ are compatible if they coincide on the vertices which their domains D(Υ) and D(Υ′)
share and if they can additionally be merged (in the obvious way) to form a valid coloring on
D(Υ) ∪ D(Υ′).

A k-cut of G is a partition of V (G) into k disjoint sets V1, . . . , Vk. A 2-cut is also called edge cut

or simply cut. Since the problem referred to is usually clear from the context, we again use the
term partitions for the sets Vi. The weight of a k-cut is the total number of edges crossing the
cut, i.e., edges that are connecting vertices in different partitions. MAXCUT is the problem
of finding a cut of maximum weight in a given graph. Analogously, in MAX-k-CUT we ask
for a maximum k-cut.

Formally, the (vertex) expansion of a connected graph G = (V,E) is the minimal value of
|N(U) \ U |/|U | for U ⊂ V with |U | ≤ |V |/2. In this text we use the term expansion only
in qualitative statements. When we say that a graph has good expansion or good expansion

properties we mean that the expansion of G is not “too small”.

2.2 Random Graphs

A random graph Gn,1/2 on n vertices is a graph that is taken uniformly at random from the set
of all graphs on V = [n] := {1, 2, , . . . , n}. Equivalently we can regard Gn,1/2 as the result of
the following random process: Choose each of the possible

(n
2

)
edges on [n] independently with

probability 1/2. Taking this approach, there is an obvious generalization of Gn,1/2 to the so-
called random graph model Gn,p, where edges now are chosen with probability p. By linearity
of expectation, the expected number of edges incident to a vertex of Gn,p equals (n − 1)p.
Therefore, the parameter p governs the average degree, or what we call the density of the
graph. When used in a numerical context the term density directly refers to the expression
np.

The main part of this thesis is concerned with a different random graph model (although the
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terms random graph and random graph model were introduced in connection with the standard
model Gn,p we will use them in a more general way for various types of randomly generated
graphs). Let Gn,p,k be a graph G = (V,E) with |V | = n that consists of k disjoint vertex sets
or partitions Ci, i ∈ {1, . . . , k}, of equal size, i.e., V =

⋃

1≤i≤k Ci and |Ci| = n/k. Further,
Gn,p,k has possible edges only between different partitions. Each edge occurs independently
with probability p. Although p may take arbitrary values between 0 and 1, in the main part of
this text we will generally assume that p = d/n with d = d(n) ≥ c for some sufficiently large
but constant c. At this, what is “sufficiently large” will be determined by the requirements of
the analysis we will present.

When we refer to the partitions of Gn,p,k in the following with an index variable i we always
assume that i ∈ {1, . . . , k} without mentioning this explicitely. For a coloring

Υ(G) : V (G) 7→ {1, . . . , k}
we say that v ∈ Ci is colored incorrectly or wrongly if Υ(v) 6= i.

Now, let G be one of the graph models described above or a similar one. Then we say that
G ∈ G if G is a random graph taken according to the distribution of G. In times we also denote
such a graph simply by G.

We say that an event σ occurs with high probability (w.h.p.) in a random graph model G, if
P[ σ ] → 1 as n tends to infinity. A graph property holds almost surely if w.h.p. a graph from
G has this property.

For analyzing the properties of random graphs, standard notions from probability theory such
as the expectation E[ X ] or the variance Var [X] of a random variable X are used. Again, for
a random variable X and a distribution Θ we write X ∈ Θ if X is distributed according to Θ.
If a random variable X takes only nonnegative values, then we say that X is a non-negative

random variable.

A uniform distribution is a distribution with constant density function. Essentially the only
other probability distributions we will consider in the following are binomial distributions
and standard normal distributions. Therefore, we finish this section by introducing some
more terminology related to these two distributions. By Bin(n, p) we denote the binomial

distribution with parameters n and p. For the normal distribution with expectation µ and
variance ν we write Φ(µ, ν). Φ(0, 1) is also called the standard normal distribution. The chi-

squared distribution Chi2(n) of dimension n is the distribution derived by taking the sum of
n squared standard normal distributed and independent variables. Therefore, E[ X ] = n for
X ∈ Chi2(n). The square root of an n-dimnesional chi-squared random variable follows a chi

distribution Chi(n) of dimension n (see e.g., [66]). In standard literature Chi(n) and Chi2(n)
are often referred to as χ(n) and χ2(n), respectively. Here, we avoid this notation since χ is
already used for the chromatic number of a graph.

2.3 Algorithmic Aspects

We assume familiarity with basic notions from algorithmic theory such as the concepts of
complexity and hardness or the classes P and NP . In particular, recall that coloring, k-
coloring for k > 2, MAXCUT and MAX-k-CUT for k > 1 are all NP-hard problems (for an
introduction to the field see [26]).

We say that an algorithm A approximates the solution to a minimization problem within ratio

f(n) (occassionally also simply within f(n)) if for each input of size n the optimal solution
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OPT is guaranteed to be at most by a factor of f(n) away from the solution OUT (A) calculated
by A, i.e.,

OUT (A)

OPT
≤ f(n).

For maximization problems this inequality is replaced by OUT (A)/OPT ≥ f(n). f(n) is
also called the approximation ratio of A. Observe that this definition implies f(n) ≥ 1 for
minimization problems and f(n) ≤ 1 for maximization problems.

An algorithm A runs in polynomial expected running time when applied to a distribution G of
graphs if there is a constant l such that

∑

|G|=n tA(G) ·P[ G = G ] ≤ nl for all sufficiently large
n. Here, tA(G) is the running time of A on input G.

For considerations on asymptotic behaviour we use standard notation: Let f(n) and g(n)
be two real-valued functions depending on n. Then f(n) = O(g(n)) if there is a constant c
such that | f(n) | ≤ c · g(n) for all sufficiently large n, f(n) = Ω (g(n)) if g(n) = O(f(n)),
and f(n) ∼ g(n) if | f(n)/g(n) | goes to 1 as n tends to infinity. Additionally, we write
f(n) = o (g(n)) if for all c > 0 there is an nc such that | f(n) | < c · g(n) for n > nc, and
f(n) ≪ g(n) if f(n) ≥ 0 and f(n) = o (g(n)).

2.4 Convex Optimization

Semidefinite programming forms a special class of convex optimization problems, i.e., problems
with a solution set that is convex. The origins of the techniques that evolved in this field can
be found in the study of a simpler class of optimization problems, so-called linear programs
(cf. [46]). For later reference, we will first describe the nature of these problems.

2.4.1 Linear Programming

Any optimization problem of the following form is called a linear program:

min
m∑

i=1

cixi

s.t.

m∑

i=1

aijxi ≥ bj j = 1, . . . , n,

xi ≥ 0 i = 1, . . . ,m.

The minimization refers to the xi, which are also called decision variables, and “s.t.” is short for
subject to. The decision variables may take values from the real numbers. The linear function
∑m

i=1 cixi is called the objective function. The remaining conditions provide the constraints to
the minimization problem.

An assignment of specific values to the decision variables is called a solution. A solution is
feasible, or a feasible point, if it satisfies all of the constraints and optimal if in addition the
desired minimum is attained. The value the objective function attains for a given solution is
also called the objective value for this solution.

To each linear minimization problem there is a corresponding maximization problem, the
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so-called dual linear program:

max

n∑

j=1

bjyj

s.t.

m∑

j=1

aijyj ≥ ci i = 1, . . . ,m,

yj ≥ 0 j = 1, . . . , n.

Of course the maximization in this problem is, again, taken over a set of decision variables
ranging over the real numbers.

It is not difficult to show that the dual of the dual is again the original linear program. In
addition, the most important result in the theory of linear programs states that if either of
the two programs has a (finite) solution then the other program also has a (finite) solution
with the same objective value (see [65]). This property is called strong duality. It plays an
important role in the development of algorithms for solving linear programs since it provides
a convenient tool for checking optimality (e.g., in the case that primal and dual solutions are
constructed successively and with increasing precision; cf. [65]).

2.4.2 Semidefinite Programming

The ideas behind linear programming can be generalized and extended in several ways. One
approach in the direction of a more general class of convex optimization problems that has
attained more and more attention throughout the past years is the concept of semidefinite
programs, also denoted by SDP in the following. This class of problems is somewhat more
difficult to handle, but it still shares the nice properties of linear programming to a large
extent. Moreover, the set of semidefinite programs contains all linear programs as well as
many other well-known generalizations to them, such as convex quadratic programming (see
[33]).

Before explaining the structure of semidefinite programs in detail, we need to fix the notation
for a couple of basic concepts from linear algebra and recall some important properties of
positive semidefinite matrices.

We denote by Mm,n the set of real m × n matrices A = (aij)1≤i≤m,1≤j≤n and by Sn ⊂ Mn,n

those that are symmetric. The rank of a matrix A ∈ Mm,n is the number of its linearly
independent rows or columns. For a symmetric matrix A the trace tr(A) equals the sum of its
diagonal elements. The diagonal matrix diag(v) of a vector v is the symmetric matrix having
the elements of the vector on the diagonal and 0 in all other positions. The all-ones vector is
denoted by 1.

Since Mm,n can be regarded as a vector space in R
m·n the natural inner product between

A,B ∈ Mm,n is given by

〈A |B〉 = tr(BTA) =

m∑

i=1

n∑

j=1

aij · bij.

Consistent with this definition, the scalar product of two vectors x,y ∈ R
n is written as

〈x |y〉 =

n∑

i=1

xi · yi,
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and
√

〈x |x〉 is the (Euclidean) norm ‖x‖ of x.

A matrix A ∈ Sn is positive semidefinite, denoted by A � 0 or A ∈ S+
n , if xTAx ≥ 0 for all

x ∈ R
n. Equivalent definitions of positive semidefiniteness include that all eigenvalues of A

are nonnegative or that A = CTC for some matrix C ∈ Mm,n having the same rank as A.

We return to semidefinite programs shortly. But first we apply the preceeding definitions to
formulate two graph theoretical concepts not introduced so far. Consider a graph G = ([n], E).
Then the adjacency matrix A(G) = (avw)1≤v,w≤n of G is defined by

avw =

{

1 vw ∈ E,

0 otherwise.

An alternative algebraic representation of a graph is the so-called Laplace matrix, given by
L(G) := diag(A(G) · 1) − A(G). Note that, by this definition, the entries on the diagonal of
L equal the degrees of the corresponding vertices.

The following definitions and remarks on semidefinite programming are taken from [33]. Details
and further explanations can be found there.

Semidefinite programming is linear programming over positive semidefinite matrix variables,
i.e., the objective function and the constraints still are given by linear functions. But now
the variables of these functions may take values from S+

n . Accordingly, linear programming
is a special case of semidefinite programming where the matrices involved are restricted to
diagonal matrices.

The standard formulation of a semidefinite program, also called primal semidefinite program

and abbreviated PSDP is of the following structure:

min 〈C |X〉
s.t. AX = b,

X � 0.

As indicated, the minimum is taken over all positive semidefinite matrices X; C, A and b
are given as parameters of the semidefinite program. Here, the linear operator A : Sn 7→ R

m

combines the linear constraints Ai ∈ Sn (1 ≤ i ≤ m) in the form

AX :=






〈A1 |X〉
...

〈Am |X〉




 .

The notions of contraints, the objective function, a feasible point, a solution and the objective
value carry over from linear programs. The matrix C ∈ Sn is also called the cost matrix.

Analogous to the concepts developed for linear programs one can define a dual semidefinite

program DSDP of PSDP. Given the primal program, the dual may be constructed by using
Lagrange multipliers. The resulting maximization problem then reads as follows:

max 〈b |y〉
s.t. ATy + Z = C,

y ∈ R
m, Z � 0.

Here, the maximization runs over both the vector y and the so-called slack matrix Z ∈ S+
n .
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Although not immediately obvious from the representation given here, one can show that
DSDP is a semidefinite program as well, in the sense that it may be reformulated in standard
notation.

One important property of the dual pair PSDP and DSDP of optimization problems is what
is refered to as weak duality.

Theorem 3 (weak duality; see e.g., [33])
The objective of any primal feasible solution is greater than or equal to the objective value of
any dual feasible solution.

In contrast to linear programming, the objective values of optimal solutions for DSDP and
PSDP do not necessarily coincide. However, if the pair of optimization problems fulfills some
further reasonable requirements, strong duality can also be established for semidefinite pro-
grams.

We will not comment on the issues of duality again after this section. But it is not difficult to
check that for all semidefinite programs occuring in this text strong duals do exist.
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“ What good are the colors if I don’t know

how to paint. ”

Michel Eyquem de Montaigne

As discussed in the introduction, both the coloring problem and the k-coloring problem are
NP-hard and therefore no feasible methods for solving them exactly are known. Accordingly,
it is necessary to search for alternative approaches to obtain efficient algorithms.

One possibility is to introduce structural restrictions to the graphs allowed as input. This
method has been considered in great depth and has been developed into many different direc-
tions (see, e.g. [19, 41, 57]). Its main motivation rests upon the fact that if graphs are used
in applications, the structural properties of the problem under investigation lead to special
structural properties in the resulting graphs.

Just to name an example, one class of graphs that is relevant to a number of graph color-
ing applications (see e.g., [4]) is the class of so-called interval graphs. These graphs may be
represented by intersecting intervals over the real line. Given a representation of this form
it is possible to efficiently order the vertices in such a way that the simple greedy heuristic
produces an optimal coloring [54]. Thus the additional structural information on the input
gives rise to fast coloring methods. Another important result of different flavor is provided
by the celebrated strong perfect graph theorem (see e.g., [11]). From this and the possibility
of efficiently calculating the Lovász number mentioned in the introduction it follows that for
graphs containing neither odd cycles nor their complements as induced subgraphs the coloring
problem can be solved in polynomial time. Conversely, for many other important and interest-
ing graph classes negative results have been established over the years. For example, coloring
planar graphs remains NP-hard (although their chromatic number can be approximated very
well). For a detailed treatment of structural results in graph coloring we refer to [35].

If restrictions to the type of graphs accepted as input are not desired, other parameters of the
problem or the requirements on the algorithm need to be altered. In general the theory of
computation knows different approaches for finding good, but possibly suboptimal, solutions to
NP-hard problems within a reasonable running time. We will briefly describe these approaches
here, but solely refer to their application on graph problems.

First of all, there are approximation algorithms. These algorithms guarantee some non-trivial
approximation ratio on any graph by, at least implicitly, constructing both, upper and lower
bounds to the parameter investigated.

If due to non-approximability results it is unlikely that good approximative solutions can be
obtained, then so-called heuristics may be considered as an alternative. Algorithms belonging
to this class share the following properties: They always run in polynomial time and almost
always output a correct or at least good solution to the problem studied.

What is problematic with heuristics is their insufficiency in coping with atypical cases. Al-

11
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gorithms with polynomial expected running time may be seen as a compromise solution. The
running time of such algorithms is polynomial only on average (with respect to some under-
lying graph model) but the output is always a correct or at least reasonably good solution.
These requirements of an algorithm are certainly stronger than those of pure heuristics.

Following this classification we will next comment on the state of the art as far as approximation
algorithms for graph coloring are concerned. Turning to heuristics we will thereafter briefly
sketch what is known about the chromatic number on standard random graph models, which
allows us then to put in perspective the various results on finding exact graph colorings with
high probability. Finally, algorithms with polynomial expected running time will be considered.
The main contribution of this text is an algorithm of the last type. Therefore, we will provide
an outline of this algorithm at the end of this chapter.

3.1 Approximating the Chromatic Number

One of the most discouraging facts in connection with algorithmic graph coloring is that this
problem is not only intractable for itself, but also guaranteeing any modestly good solution
proves to be conceivably hard.

Indeed, as was shown by Feige and Kilian [22], no polynomial time algorithm can approxi-
mate χ(G) within n1−ǫ for any constant ǫ > 0 unless ZPP = NP . Here, ZPP is the class
of problems that can polynomially be decided with zero error probability, i.e., a correspond-
ing algorithm may at times (for an ǫ fraction of all inputs) output the answer “unknown”
but it never produces a wrong result and always halts in polynomial time. Accordingly, it is
unlikely that a polynomial time approximation algorithm can be designed that considerably
improves over the trivial one: Assign a seperate color to each vertex. Recently, Engebretsen
and Holmerin [20] proved that the situation is even worse. According to their result the non-
approximability bound from Feige and Kilian remains valid for non-constant ǫ, more precisely
for ǫ = O

(
1/
√

log log n
)
. This gets rather close to the currently best known positive result in

the field, which is due to Halldórsson [30] who approximated χ(G) within n1−O(log log n/ log n).
In comparison, a relatively simple algorithm with approximation ratio O(n/ log n) was pro-
vided by Johnson as early as 1974 [36]. Johnson’s Algorithm repeatedly constructs maximal
independent sets I by starting at an arbitrary vertex v, putting v into I, then deleting v and
its neighborhood and continuing. Each independent set obtained in this way is assigned a new
color and subsequently removed from the graph.

What is possible for an approximation algorithm significantly improves if we turn to graphs
with small chromatic number. For example, Wigderson [67] developed a simple algorithm to
color 3-colorable graphs with

√
n colors. He exploited the fact that in a 3-colorable graph the

neighborhood of each vertex is bipartite and can therefore easily be colored optimally.

The currently best approximation algorithm for the 3-coloring problem is due to Blum and
Karger [5] and uses n3/14+o(1) colors. The principles building the basis of this algorithm were
developed by Karger, Motwani, and Sudan [37]. Using semidefinite programming techniques,
they proposed a coloring algorithm which achieves an approximation ratio of O

(
n1/4

)
. For

this, they introduced the notion of a vector coloring. Up to date, all those coloring algorithms
for graphs with small chromatic number that achieve the best approximation ratios make use
of vector colorings as well. Therefore, we will review this concept. More details of the approach
of Karger, Motwani, and Sudan are postponed until after the discussion of preliminary results
in Section 4.4.



3.2 Coloring Random Graphs in Polynomial Time 13

A vector k-coloring of a graph G = ([n], E) consists of an assignment −→σ : V 7→ R
n of unit

vectors vi ∈ R
n to the vertices i of the graph such that for any vertices i and j with ij ∈ E

〈vi |vj〉 ≤ − 1

k − 1
.

With this definition the vectors corresponding to two adjacent vertices are required to be
“different”, mimicking the fundamental property of proper colorings in a relaxed way. The
vector chromatic number −→χ (G) of G then is the minimal k such that G is vector k-colorable.

As we will see later, every k-colorable graph has a vector k-coloring and so vector colorings can
be used to construct lower bounds for the chromatic number. In addition, a vector k-coloring
(when it exists) can be found in polynomial time (see [37]).

Despite its success in approximative k-coloring, the vector chromatic number does unfortu-
nately not provide a good approximation ratio for non-constant k. In fact, Feige, Langberg, and
Schechtman [23] showed that there are graphs of vector chromatic number O(log n/ log log n)
whose chromatic number gets as big as n/(log n)c for some constant c.

Turning to negative results on k-coloring for small k, Charikar [10] constructed an infinite
family of vector 2 + ǫ-colorable graphs G for any ǫ > 0 such that χ(G) ≥ nΩ(1). It follows that
vector coloring alone does not give rise to a no(1) approximation for the 3-coloring problem.

The most important non-approximability result for coloring with a constant number of colors
is due to Khanna, Linial, and Safra, who showed that it is NP-hard to 4-color 3-colorable
graphs unless P = NP [40].

3.2 Coloring Random Graphs in Polynomial Time

The properties of the chromatic number have been extensively studied on Gn,p. Early results
on the independence number of a random graph led to a number of consequences for χ(Gn,p).
Then, in 1987, Shamir and Spencer [59] obtained a sharp concentration result for the chromatic
number in this graph model, using martingales. Surprisingly, they showed that for each p
the chromatic number χ(Gn,p) almost surely lies in an interval I(n, p) of roughly length

√
n.

Moreover, for sparse random graphs Gn,p with p < 1/nβ and 1/2 < β < 1 the chromatic
number is concentrated in an interval of constant length. As was observed by  Luczak [51], the
concentration is even in width one in the case that 5/6 < β < 1. Accordingly, for this range
of p the chromatic number of Gn,p is (asymptotically) uniquely determined. This result was
extended by Alon and Krivelevich [3], who showed that χ(Gn,p) is concentrated on two points
if 1/2 < β < 1.

For general p, Bollobás [7] and  Luczak [50] were able to calculate the probable value of χ(Gn,p):

χ(Gn, 1
2
) ∼ n

2 log n
and χ(Gn,p) ∼ np

2 log np
for

c

n
≤ p = o (1) .

Here, c is large but constant (see [34] for a detailed treatment of the methods and ideas used
for obtaining these and related results). Further on, Achlioptas and Friedgut [1] proved that
the property of being k-colorable also exhibits a sharp threshold. More precisely, for any
constant k there exists a sequence dk = dk(n) such that, for any ǫ > 0 the random graph Gn,p

is w.h.p. k-colorable if p < (1 − ǫ)dk(n)/n, and w.h.p. non-k-colorable if p > (1 + ǫ)dk(n)/n.
It is conjectured but not known that for each k the sequence dk(n) converges to a constant as
n goes to infinity (see [34]).
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As far as algorithms are concerned, for p = 1/2 already the linear-time greedy heuristic achieves
a factor 2-approximation, because w.h.p. it does not use more than (1 + o (1))n/ log n colors
on Gn,1/2 (see [34]). Nonetheless, this heuristic fails to guarantee a non-trivial approximation
ratio because it does not provide any lower bound on the chromatic number of the input
graph. As motivated by the remarks in the preceeding section, such algorithms with non-
trivial approximation ratio can only be obtained if a non-polynomial worst case running time
complexity is taken into account. We will turn to results following this approach in the next
section.

Algorithms that color random k-colorable graphs correctly with high probability were devel-
oped by Kučera [44], Turner [64], and Dyer and Frieze [18]. However, as most k-colorable
graphs are quite dense (for a vertex, on average about half of the possible edges to all other
color classes are present) the number of common neighbors of vertices having the same color
considerably exceeds the number of common neighbors of vertices with distinct colors. As a
consequence a coloring algorithm exploiting only this fact already finds the desired coloring
almost surely.

The problem of coloring sparse random graphs turns out to be more difficult. First of all, the
graph model introduced above needs to be modified in order to produce k-colorable graphs of
a prescribed density on average. For this, vertices are assigned to color classes uniformly at
random and the probability for the occurence of valid edges is determined by a parameter p.

For a graph G constructed in this way the partition obtained is balanced w.h.p., that is, all
color classes are roughly of the same size. This follows from elementary considerations in
probability theory and motivates why we restrict ourselves to graphs with equal sized color
classes in the following. This leads to the random graph model Gn,p,k defined earlier. Moreover,
G naturally comes with an associated k-coloring. We will often refer to this coloring as the
coloring of the random k-colorable graph G.

First attempts to investigate the k-coloring problem on Gn,p,k were performed by Petford
and Welsh [55]. They used a randomized heuristic for 3-coloring random 3-colorable graphs
and provided experimental evidence that this heuristic works for most edge probabilities.
Subsequently, Blum and Spencer [6] presented a polynomial time algorithm that colors 3-
colorable graphs optimally w.h.p. provided p ≥ nǫ/n. As usual, ǫ may be chosen arbitrarily
small but is fixed. The solution of Blum and Spencer is based on a path counting technique,
which can be viewed as a generalization of the method of counting common neighbors described
above.

In 1997 Alon and Kahale [2] improved on these early results by analyzing the spectral properties
of Gn,p,k. More specifically, they showed that it is possible to read off a rather accurate
approximation to the color classes from the eigenvectors corresponding to the smallest k − 1
eigenvalues of the adjacency matrix of a large subgraph of Gn,p,k. Several iteratively performed
improvements then produce a proper k-coloring as desired.

The polynomial expected time algorithm presented in this work is inspired by the approach
of Alon and Kahale. Therefore, we will describe their ideas in greater detail in Section 5.1.
But now we turn our attention to previous results on coloring algorithms with non-polynomial
worst case complexity.
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3.3 Coloring Fast on Average

For solving the coloring problem on random graphs Gn,p, successively different algorithms
with non-trivial approximation ratio and polynomial expected running time were developed.
For the case p > 1/

√
n Krivelevich and Vu [43] were able to guarantee a O

(√
np/ log(np)

)

approximation by applying spectral techniques. Coja-Oghlan and Taraz [16] then constructed
lower-bounds via the Lovász number θ in order to approximate the chromatic number within
O
(√

np
)

in polynomial expected running time for p > log7 n/n. They additionally developed
an exact algorithm for p ≤ 1.01/n. A connection between the MAX-k-CUT problem and
graph coloring led to the complementation of these results: In [15] Coja-Oghlan, Moore, and
Sanwalani provided an efficiently computable lower bound on χ(Gn,p) by using a semidefinite
programming relaxation for MAX-k-CUT. With this they extend the O

(√
np
)

approximation
result to 1/n ≤ p, i.e., essentially all values of p. The approximation ratio was subsequently
improved by Kuhtz [45] to O

(√
np/ ln np

)
.

Additional results could be obtained for deciding in polynomial expected time whether a graph
from Gn,p is k-colorable. For p ≥ exp(Ω (k)) /n this problem was addressed by Krivelevich
[42]. Later, Coja-Oghlan [13] solved the case k = o (

√
n) and p ≥ ck2/n for some c > 0.

Turning to random graph models other than Gn,p, Dyer and Frieze [18] provided an algorithm
for k-coloring randomly chosen k-colorable graphs in polynomial expected running time. The
investigation of Gn,p,k in this context was started by Subramanian [62] who proved that, for con-
stant k and p ≥ nǫ/n, graphs from Gn,p,k may be colored optimally in polynomial expected time.
Non-constant values of k were considered by Coja-Oghlan [14], who established a k-coloring
algorithm that terminates in polynomial expected time on Gn,p,k if np ≥ c · max

(
k ln n, k2

)

where k = k(n) and c is constant.

In this work we consider random graphs that are sparser than those studied by Subramanian
and Coja-Oghlan. We provide an algorithm COLORGn,p,3 that runs in polynomial time on
average and outputs a valid 3-coloring for graphs from Gn,p,3 provided that p ≥ c/n for some
sufficiently large constant c.

The main steps of COLORGn,p,3 resemble those that Alon and Kahale designed in [2] for
coloring Gn,p,3. The operation of their algorithm can be summarized as follows: First, the al-
gorithm constructs an initial coloring that already colors most vertices correctly. This coloring
is then refined according to a local majority vote, i.e., each vertex is assigned the color that
is least favorite among its neighbors. After repeating this step a certain number of times, the
algorithm then tries to eliminate peculiarities of the coloring obtained so far. To this end, the
algorithm repeatedly uncolors those vertices which have suspiciously few neighbors of some
color other than their own. The resulting set of uncolored vertices is finally recolored by using
a brute force approach.

For the result of Alon and Kahale it is sufficient to produce a valid coloring on the vast ma-
jority of input graphs. Therefore, the algorithm just described extensively relies on exploiting
probable structures of Gn,p,3. However, we also have to take care of exceptional cases. Thus
algorithm COLORGn,p,3 needs to introduce suitable modifications in the main steps of the al-
gorithm presented above. Here, the basic idea is to combine these main steps with an adequate
though computationally expensive repair mechanism. This mechanism comes into play only
under the unlikely circumstance that no proper coloring can be found via the main steps.

Another central difference between the algorithm of Alon and Kahale and COLORGn,p,3 is
the initial phase. In both algorithms, the purpose of this phase is to construct a coloring



16 3 Coloring Graphs

of the input graph which might fail on a small constant fraction of the vertices but which
is sufficiently good to serve as a starting point for further improvements. In contrast to the
approach of Alon and Kahale which solely relies on the spectrum of the graph to achieve this
goal, our methods are based on semidefinite programming. Similar methods were used by
Coja-Oghlan in [14].



4 Semidefinite Programming

“Narrative is linear, but action has breadth

and depth as well as height and is solid. ”

Thomas Carlyle

As discussed earlier semidefinite programming has its roots in the theory of linear optimization.
This subject in turn goes back to the study of systems of linear inequalities, which already
caught the interest of Fourier in 1826 (this and all following remarks on linear programming are
taken from [12] and [65]). Its popularity in the first half of the twentieth century was in some
sense initiated by the interest in military advancement at the time: In 1947 Danzig invented
the simplex method for solving linear planning problems of the U.S. Air Force. Independently
the Russian mathematician Kantorovich had already developed a rudimentary algorithm for
solving a certain class of linear programs eight years earlier. His work was interrupted by
World War II, however, and his results remained hidden from the western world by an iron
curtain for many years.

The early applications of linear programming also included a huge variety of problems in
production management as well as calculations in connection with classical economic theories.
Later the algebraic methods that were developed along with the theory of linear programs also
lead to mathematical concepts of independent interest. It could be shown, for instance, that
von Neumann’s famous Minimax Theorem may be obtained as a direct consequence of linear
programming duality.

While practically convincing an increasingly automated world of the usefulness of algorithmic
solutions to optimization problems, from a theoretical point of view the simplex method re-
mained unsatisfactory. It shows a good performance for essentially all real world problems, its
worst case complexity, however, is exponential. It was not before 1979 that this insufficiency
could be eliminated. In that year Khachian introduced the ellipsoid method for solving linear
programs in polynomial time. Even so, in applications none of the polynomial time methods
suggested since then can keep up with the simplex algorithm from 1947.

In comparison to linear methods, mastering nonlinear optimization problems is usually consid-
ered much more difficult. Convex problems that can be formulated as semidefinite programs
however, can be regarded as an exception to this general rule of thumb. The systematic study
of this kind of problems over the past decades has led to many new results in the area and
a much better understanding of the topic. Its most important applications can be found in
control theory [8, 21], signal processing [53], eigenvalue optimization [48], and combinato-
rial optimization (cf. [33]). Recently, semidefinte programs also proved useful in 3-D object
recognition [17].

While linear programming is restricted to optimization over the reals a semidefinite program
may additionally use positive semidefinite matrix variables. The introduction of such matrix
variables allows for convex feasible sets other than polyhedral ones. In spite of this difference
the optimization is still subject to linear constraints (for formal definitions see Section 2.4).

17
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It follows, as argued earlier, that linear programming is just a special case of semidefinite
programming.

Moreover, when applied to integer programs, the space of feasible solutions often becomes
smaller when a suitable SDP is used as a relaxation instead of a linear program. Thus the
application of semidefinite programming techniques can also be helpful in the case that solving
a corresponding linear program would consume more time than desirable.

Turning to algorithms, in 1981 Grötschel, Lovász, and Schrijver [28] showed how to apply the
ellipsoid method for solving an optimization problem that can be expressed as a semidefinite
program. Indeed, the ellipsoid method can be used for calculating the solution to a semidefinite
program within any desired precision (cf. [29]). However, as in the case of linear programs
the ellipsoid method is computationally expensive. Therefore, the result of Grötschel, Lovász,
and Schrijver was mainly of theoretical interest. It made it possible to show the feasibility of
certain computational problems by reducing their solution to the calculation of a semidefinite
program.

SDPs were not considered of practical relevance until faster algorithms for solving them became
available. The development of such algorithms got its start in 1984 with Karmarkar’s work
[38] on so-called interior point methods. The algorithms that arose from these and resulting
investigations (cf. [33]) were faster than those based on the ellipsoid method but in general
harder to implement. Fortunately, today a number of standard tools are available for dealing
with semidefinite programs in practice. Among the fastest are the DSDP program by Benson,
Ye, and Zhang, the CSDP package by Borchers, and the SBmethod software by Helmberg (see
[32] for an overview on SDP solver implementations).

In the following sections we explain how semidefinite programming is used in combinatorial
optimization. We follow the presentation of Helmberg [33].

4.1 Semidefinite Programs and Combinatorial Optimization

Problems in combinatorial optimization can be phrased as finding an optimal subset in a given
family of subsets over some finite set. Here, optimality is defined with respect to a cost func-
tion. In general, solving such problems requires complete enumeration of all possible subsets.
But fortunately, often structural properties of the constraints involved may be exploited for
reducing the number of items to be enumerated.

Another approach to efficiently solving combinatorial optimization problems is that of convex

relaxation. The basic idea is to reformulate the problem as an optimization problem of a linear
cost function over a finite set of integral points. In a next step this set of integral points is
relaxed to a convex set containing all these points. Although this method can not be used for
all problems in the field, it has been successfully applied to many important ones.

The tightest convex relaxation to a set of integral points is their convex hull, a polyhedral set
that can be described by linear constraints. Therefore, one possibility for obtaining a relax-
ation to the set of integral points is to use their convex hull or a linear approximation to it.
Unfortunately, the result might be an exponential number of linear inequalities. Therefore, it
is not surprising that often no reasonable linear approximation of the convex hull is available.
In this case, considering other than linear relaxations of the problem’s feasible set may prove
useful. As far as such methods are concerned, the application of semidefinite programs has
recently received considerable attention. As mentioned earlier the properties of these opti-
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mization problems are now well understood and efficient methods for their solution are not
only known but also implemented and used.

With respect to graph theory the application of semidefinite programming in approximation
algorithms was initiated by Lovász [49] and received increasing attention after the work of
Goemans and Williamson [27], who served as a starting point of a series of papers building on
their results.

The basic principle underlying a variety of the semidefinite programs designed for graph prob-
lems is simple and elegant: Each vertex is labeled with a vector and relations between vertices,
e.g., the edges present in the graph, are expressed in terms of the inner product of the as-
sociated vectors. A semidefinite program is then obtained by using this vector labeling for
phrasing the problem under investigation in an algebraic way and formulating an appropriate
relaxation to it.

One of the most important applications of this technique is the concept of vector coloring
introduced by Karger, Motwani, and Sudan [37] which was already mentioned in Section 3.1.
We will sketch their ideas in further detail shortly since they play a key role in approximative
graph coloring. Before turning to vector coloring though, we will illustrate the semidefinite
programming approach to combinatorial optimization on a simpler and by now classical exam-
ple, the MAXCUT problem. We then explain how to generalize the obtained approximative
solution for this problem to an approximation algorithm for MAX-k-CUT. The methods in-
volved in this process and some consequences will be used later as part of the coloring algorithm
presented in the main part of this text.

4.2 Maximum Cuts

One problem originating from graph theory that has been extensively studied in combinatorial
optimization is the problem of finding an edge cut of maximum cardinality in a graph.

As noted earlier, this problem is NP-hard, which justifies the search for approximative so-
lutions. Indeed, MAXCUT can be approximated with approximation ratio 0.5 by a simple
greedy algorithm, as was first observed by Sahni and Gonzales [58].

A number of minor improvements over their result were suggested over the years but a
real breakthrough could not be obtained before 1995 when Goemans and Williamson [27]
showed how to use semidefinite programming for constructing an algorithm that approximates
MAXCUT within 0.87856.

The importance of this result becomes evident when compared to a corresponding non-approx-
imability bound: The results of H̊astadt [31] and Trevisan, Sorkin, Sudan, and Williamson
[63] show that no polynomial time algorithm can approximate MAXCUT with a ratio greater
than 16/17 ≈ 0.94118 unless P = NP.

Because of its importance to the developments in the field of semidefinite programming we
will now have a closer look at the approach of Goemans and Williamson. Several concepts
reused in the following for different optimization problems will be introduced along the way.

As suggested by the remarks on vector labelings, we start by constructing an algebraic version
of MAXCUT. The basic idea is to use vectors x ∈ {−1, 1}n for representing cuts in a graph
G = ([n], E): we set xv = 1 for vertices v in one of the partitions of the cut and −1 for
vertices in the other one. The problem of finding a maximum cut then becomes the following
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maximization problem:

max
x∈{−1,1}n




∑

vw∈E(G)

1 − xvxw

2



 . (4.1)

The objective function of this problem can be reformulated by using the adjacency matrix
A = (avw) and the according Laplace matrix L = (lvw) of G:

∑

vw∈E(G)

1 − xvxw

2
=

1

4

∑

v,w

avw(1 − xvxw) =
1

4
xTLx =

1

4

〈
L
∣
∣x · xT

〉
.

With this we can now naturally relax the maximization problem to a semidefinite program:

max
1

4
〈L |X〉

s.t. diag(X) = 1

X � 0.

In the following we will refer to this semidefinite program as SDP.

Goemans and Williamson [27] showed how to interpret the feasible set of SDP geometrically
by rephrasing it in vector notation. For this, they use the fact that each feasible matrix X is
semidefinite and may therefore be factorized into X = YTY for a Y ∈ Sn. If we denote the
vectors formed by the columns of Y by yv we obtain the following equivalent version of SDP:

max
∑

v,w

1

4
lvwyT

v yw

s.t. yT
v yv = 1 ∀v ∈ V

yv ∈ R
n ∀v ∈ V.

Here, the first set of constraints arises from the constraint diag(X) = 1 in the original for-
mulation. If each vector yv is associated with vertex v of G then we can directly interpret
SDP as a relaxed version of (4.1): The vectors yv are relaxations of the xv ∈ {−1, 1} to the
n-dimensional unit sphere and the products xvxw ∈ {−1, 1} are relaxed to yT

v yv ∈ [−1, 1].

The intuitive interpretation of a solution to this semidefinite program is as follows: If the angle
between two vectors of the solution is large then the corresponding vertices should be assigned
to different partitions of the cut. Note, however, that conflicts may arise in this process. In
order to deal with the resulting complications Goemans and Williamson proposed the use of
rounding techniques. To this end they chose a random hyperplane in R

n. The two resulting
halfspaces then determine the two partitions of the cut.

4.3 Maximum k-Cuts

Since MAX-k-CUT is a generalization of MAXCUT it is natural to ask whether the approach
of Goemans and Williamson to the later problem can be generalized to arbitrary k. And in
fact, a corresponding semidefinite programming approximation could be obtained by Frieze
and Jerrum [25].

For the MAX-k-CUT problem partitionings of V (G) into k sets are considered. Therefore, the
algebraic formulation (4.1) of MAXCUT has to be extended in such a way that variables taking
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one of k different values instead of just two can be handled. One approach to this problem is to
use k unit vectors in R

k−1 pointing as “far apart” as possible, i.e., all enclosing the same angle.
As can easily be verified, the solution to this is a system of vectors with the pairwise scalar
product −1/(k− 1) (see e.g., [33]). This corresponds to an enclosed angle of arccos(−1/k − 1)
radians, and so geometrically these vectors form an equilateral (k − 1)-dimensional simplex.

Now, let {s1, . . . , sk} be the vectors of the equilateral (k − 1)-dimensional simplex. Then
MAX-k-CUT can be phrased as the following maximization problem:

max
∑

vw∈E(G)

k − 1

k
(1 − 〈xv |xw〉)

s.t. xv ∈ {s1, . . . , sk} ∀v ∈ V.

The semidefinite relaxation resulting from this formulation gives an upper bound on MAX-k-
CUT. We will denote it by SDPk:

max
∑

vw∈E(G)

k − 1

k
(1 − 〈xv |xw〉)

s.t. ‖xv‖ = 1 ∀v ∈ V,

〈xv |xw〉 ≥ − 1

k − 1
∀v,w ∈ V.

In order to construct an approximation algorithm from this SDP, analogous to the MAXCUT
algorithm of Goemans and Williamson, it remains to replace the random hyperplane in the
rounding strategy. For this, Frieze and Jerrum used k random vectors. The partitions of the
k-cut are then formed by assigning each vector of a solution of SDPk to the random vector
with which it has minimal scalar product.

For k = 3, Goemans and Williamson [27] proved that the algorithm resulting from this ap-
proach has an approximation ratio of 0.836008. For comparison, observe that a greedy algo-
rithm achieves a (1 − 1/k)-approximation for MAX-k-CUT. This also resembles the size of a
random k-cut.

4.4 Coloring

As we will see by the end of this section, the MAX-k-CUT semidefinite program defined above
also plays an important role for the k-coloring problem on graphs. But before turning to this
aspect, we will describe an independent semidefinite programming approach to approximative
coloring developed by Karger, Motwani, and Sudan [37].

The vector chromatic number was introduced in Section 3.1. By the definition given there,
determining this parameter for a graph G = ([n], E) corresponds to the following minimization
problem:

min k s.t. 〈xv |xw〉 ≤ − 1

k − 1
∀vw ∈ E, ‖xv‖ = 1 ∀v ∈ [n]. (4.2)

This is the vector formulation of a semidefinite program and a solution can therefore be effi-
ciently calculated. In fact, Karger, Motwani, and Sudan showed that computing this minimum
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C1

C2

C3

120◦

s1

s2

s3

Figure 4.1: An optimal solution for SDP3 on 3-colorable graphs with color classes C1, C2,
C3 using no more than 2 dimensions

is equivalent to solving the matrix optimization problem

min κ

s.t. xvw ≤ κ ∀vw ∈ E,

diag(X) = 1,

X � 0

where k = (κ − 1)/κ and X := (xvw)1≤v,w≤n.

Moreover, if a graph G is k-colorable, then the equilateral k − 1 dimensional simplex encoun-
tered in the last section also provides a feasible solution to (4.2): Map each color class to one
of the k vectors generating the simplex and assign to all vertices the vector corresponding to
their color class. As a consequence, a graph is vector k-colorable if it is k-colorable.

Inspired by this relation, Karger, Motwani, and Sudan iteratively applied the semidefinite
program above to obtain an approximative graph coloring. The main idea is, again, a rounding
technique, namely to represent the k color classes by k random vectors. But contrary to the
approach of Frieze and Jerrum to MAX-k-CUT, vertices v from G are now only mapped
to a color c if the scalar product between the vector assigned to v and the random vector
corresponding to c does not fall below a certain value and if no conflicting color assignments are
produced in this way. The algorithm then proceeds with the graph induced by the remaining
uncolored vertices and uses new colors.

As indicated above, the equilateral k − 1 dimensional simplex does not only give rise to a
feasible solution of (4.2), but also of the MAX-k-CUT relaxation SDPk. Indeed, one way to
realize a feasible solution of SDPk corresponding to a k-cut C1, C2, . . . , Ck of G is to assign
the same vector si to each vertex in Ci in such a way that 〈si |sj〉 = −1/(k − 1) for i 6= j. For
k = 3 this solution is depicted in Figure 4.1.

Observe further that each edge of G contributes some value between 0 and 1 to SDPk. So
SDPk(G1) ≤ SDPk(G2) whenever G1 � G2. Moreover, there is a rather obvious connection
between maximum k-cuts and k-colorings: In the case of a k-colorable graph G a maximum
k-cut simply contains all edges. Then, we know that each edge contributes exactly 1 to the
value of SDPk. In this case, the special feasible solution to SDPk discussed above is optimal.

Conversely, if the optimal solution of SDPk(G) possesses this structure, then it is clearly easy
to read off a proper k-coloring of G from this solution. Unfortunately, the position of the
vectors xv can get “far away” from this ideal picture in general. Next, we will give an example
to illustrate this fact for k = 3.
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u

vw

u′

v′

w′

xu

xv

xw
xu′

xv′

xw′

Figure 4.2: A 3-dimensional optimal solution for SDP3 on a 3-colorable graph

Example:
Figure 4.2 shows a 3-colorable graph G = (V,E) on the 6 vertices u,v,w,u′,v′, and w′ and

an optimal solution X = (xi)i∈V for SDP3(G), that uses 3 dimensions. Since the vertices u,
v, and w form a triangle in G, the vectors corresponding to this triple have to lie on a disc
as indicated by the grey circle through xu, xv, and xw in Figure 4.2. In addition all other
pairs of vectors corresponding to the vertices of an edge of G also enclose an angle of 120◦.
One way to obtain an optimal solution for SDP3 is to set xu′ = xw, xv′ = xu, and xw′ = xv.
However, there are other optimal solutions. In Figure 4.2 we construct one where the 6 vectors
are distributed over the unit sphere in such a way that determining 3 color classes from this
solution by just evaluating pairwise scalar products might produce errors: First, xv, xu, and
xw are fixed. Then xu′ is chosen to be the vector that encloses an angle of 120◦ with xu, but
has maximal difference to xv and xw, i.e., xu′ encloses an angle of arccos(5/8) with each of
them. Now, xv′ is forced to be either identical with xu or it is the vector obtained by reflecting
xu at the plane spanned by xv and xu′ (since v′ also is adjacent to both, v and u′). We choose
the second possibility. Finally, xw′ can be constructed by reflecting xu′ at the plane through
xu, xv, and xw.

It is now easy to verify that X obeys the constraints of SDP3 and is optimal. In short, while
the relative position of the vectors xu, xv, and xw is fixed up to rotation, the edges outside the
triangle formed by the corresponding vertices do not force the remaining vectors to coincide
with these three color class representatives (here, we say that xu, xv, and xw represent the
color classes, since in any valid coloring, u, v, and w will receive pairwise distinct colors). ⋄

In Section 5.3 we show however that with high probability such a scenario does not occur
in the case of random 3-colorable graphs from Gn,p,3. Although for such graphs the vectors
corresponding to vertices of one color class do not necessarily need to be equal, most of them
will be comparably close. As was pointed out by Coja-Oghlan [14] in a different context the
main reason for this behaviour is that Gn,p,3 is likely to have good expansion properties.

This fact will be of particular importance in the initial phase of the algorithm COLORGn,p,3

that is presented in the oncoming main part of this text.



5 An Algorithm for Coloring Gn,p,3 in

Polynomial Expected Time

“I can’t work without a model. I won’t say I

turn my back on nature ruthlessly in order

to turn a study into a picture, arranging

the colors, enlarging and simplifying; but

in the matter of form I am too afraid of

departing from the possible and the true. ”

Vincent Van Gogh

5.1 The Algorithm COLORGn,p,3

In this section we introduce the algorithm COLORGn,p,3 that colors a graph from Gn,p,3 with 3
colors in polynomial expected running time if p := d/n and d is bounded from below by some
large but fixed constant c. More specifically, the algorithm aims at determining the original
partitions C1, C2, and C3 of Gn,p,3, but might occasionally come up with an alternative solution.
As we noted earlier, this algorithm is partly based on methods and ideas developed by Alon
and Kahale [2].

We will start by giving an informal description of the algorithm. An exact formulation is then
presented in the form of pseudo-code (see page 27). In the informal description, we refer to
the lines of this code where appropriate. A detailed discussion is, however, delayed until the
analysis of COLORGn,p,3’s running time complexity.

When we explain the mechanisms of COLORGn,p,3, we will often state that a particular step
results in a (partial) coloring of G with certain properties with sufficiently high probability. By
this, we mean that these probabilities are small enough to allow for the use of exponential time
methods in case the mentioned properties do not hold, while leaving the expected running time
polynomial. Moreover, if a coloring with such properties is obtained on input G, we generally
say that the corresponding step was successful, and otherwise that it failed, or made a mistake.

Roughly speaking, there are two basic principles underlying the mechanisms of COLORGn,p,3.
On the one hand a number of steps (also called the main steps) aim at constructing a valid 3-
coloring of the input graph with sufficiently high probability. However, since we are interested
in returning a valid coloring for each graph, COLORGn,p,3 also has to take care of exceptional
cases; possibly by using computationally expensive methods as a trade off. Accordingly, the
purpose of the remaining operations is to fix the mistakes of the main steps. This constitutes
the second principle, the so-called recovery procedure of COLORGn,p,3.

In order to simplify explanations, the remainder of this section does not provide a line by line
account of the algorithm, but is structured according to the two principles we just described.
We start by commenting on the main steps and will then turn to the recovery procedure.

24
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The initial phase (Steps 1, 5, and 6; see page 27) of COLORGn,p,3 is concerned with finding an
initial coloring Υ0 of the input graph G = (V,E) such that Υ0 fails on at most ǫn vertices of
G. Here, ǫ is a small constant that will be determined in Section 5.7. To obtain Υ0 we apply
the SDP relaxation SDP3 of MAX-3-CUT introduced in Section 4.2 on page 20. To be more
precise, we first determine an optimal solution of this semidefinite program, i.e., an optimal
assignment of vectors from R

n to the vertices of G. As mentioned in Chapter 4 this solution
can efficiently be computed within any numerical precision. This solution then gives rise to the
coloring Υ0 by grouping vertices whose corresponding vectors have small scalar product into
the same color class. This grouping process can be achieved in different ways. In the algorithm
COLORGn,p,3 we use a randomized method, that chooses three vectors x1,x2,x3 uniformly at
random from an optimal solution of SDP3(G). Each vertex v of G is then allocated to the
vector xi having minimal scalar product with the vector corresponding to v. This attempt is
repeated a linear number of times in order to increase the probability of success.

A motivation and the details of this process are given in Section 5.3. There, we will also discuss
alternative solutions to the grouping problem, e.g., a vector rounding technique, and show that
Υ0 successfully colors a large fraction of the vertices with sufficiently high probability.

The next steps of COLORGn,p,3 are used to refine the initial coloring Υ0. We can summarize
this refinement as follows: An iterative recoloring procedure (Step 8) is combined with an
uncoloring procedure (Step 9) in order to obtain a valid partial coloring on all but α0n vertices.
We describe the strategy behind these two steps in the following paragraph. The constant α0

will be specified in Section 5.4. It is much smaller than ǫ and depends on the (constant) lower
bound on d = np.

As explained, Υ0 correctly colors a constant proportion of the vertices w.h.p. In the iterative
recoloring procedure the hope is that this initial coloring can be used to find a valid coloring
of a much larger vertex set by applying the concept of majority vote. In detail, the iterative
recoloring procedure repeats the following step at most a logarithmic number of times: Assign
to each vertex in G the color that is the least favorite among its neighbors. In Section 5.4
we will show that this approach is indeed successful, in the sense that with sufficiently high
probability at most α0n vertices are still colored incorrectly after the execution of this iterative
recoloring procedure. Thus, for the aim formulated above, it remains to detect those vertices
of G that could not be colored correctly up to this point. Here, the uncoloring procedure
comes into play. This phase of COLORGn,p,3 proceeds iteratively as well. In each step, those
vertices of G get uncolored for which the coloring behaves “locally obscure”: The uncoloring
procedure uncolors all vertices that have less than d/6 neighbors of some color other than their
own. Observe that in a “typical” graph from Gn,p,3 a “typical” vertex and its neighbors will
not have this property if they are colored correctly, since the average degree in Gn,p,3 is 2d/3.

If both the iterative recoloring procedure and the uncoloring procedure were carried out suc-
cessfully, then all vertices that remain colored received the correct color and relatively few
vertices are uncolored. COLORGn,p,3 proceeds with Step 10. Here, an exact coloring method
is used to extend the partial coloring obtained to the whole graph Gn,p,3. In this process the
components induced on the uncolored vertices are treated seperately. On each such component
K, the algorithm tries all possible colorings until it finds one that is compatible to the coloring
of the rest of G. Recall that colorings need not be valid in our terminology and notice that
a coloring of K that is valid for K and compatible with the colored vertices will certainly
be compatible with valid compatible colorings of other components in the uncolored vertices.
In what follows, Step 10 will be referred to as the extension step, its analysis is provided in
Section 5.6.
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As indicated, the steps of the algorithm discussed so far are all we need for 3-coloring Gn,p,3

with high probability (this will be formally proven in Sections 5.4 to 5.6). If no valid coloring
of G could be obtained via the semidefinite program and by the recoloring, the uncoloring, and
the extension step, we need to find ways of fixing the insufficiencies of these steps (as noted we
call them the main steps of COLORGn,p,3). In our algorithm, this problem is handled by the
the recovery procedure, i.e., the loops in Steps 2 to 7. The concept is as follows. Assume that,
for an input graph G, the main steps of COLORGn,p,3 fail on vertex set Y . Then an easy way
of “repairing” the coloring obtained is to exhaustively test all valid colorings of Y . Of course,
we neither know this set Y nor its size |Y |. To deal with these two problems, COLORGn,p,3

proceeds rather naively by trying all possible subsets Y of V with |Y | = y. Here, we start
with y = 0 and then gradually increase the value of y until a valid coloring of G is determined.
This is performed in Steps 2 and 3 of the recovery procedure. In the following we also call
Step 3, where all colorings of all vertex sets of size y are constructed, the brute force coloring

method or repair mechanism for these sets.

For establishing results on likely properties of the outcome of some of the main steps, it will
often be necessary to make certain assumptions about the input to that step, i.e., the outcome
of earlier stages of the algorithm. Therefore, the successes or failures of different steps of
COLORGn,p,3 are dependent on each other and so a mistake made in an earlier step may
influence the outcome of a later step in an unpredictable way. For this reason we do not
attempt to fix the coloring after executing the main steps but we already use the coloring of
Y , produced by the brute force coloring method, while running the main steps. That is why
these steps are nested inside the loops of the recovery procedure.

At times, the recovery procedure must make even more involved interventions into the mech-
anisms of the main steps. This can be observed in the pseudo-code of COLORGn,p,3 in the
form of Algorithm 5.1 given below (notice for example the additional loop in Step 7). Again,
the details of these corrective actions are postponed to the analysis of the algorithm; their
interplay and influence on each other is explained in Section 5.7.

Throughout Algorithm 5.1, exact coloring procedures are used (namely in Steps 3 and 10).
These procedures have exponential running time in the size of their input of course and are
therefore expensive as far as computational complexity is concerned. In order to leave the
expected running time polynomial, this has to be compensated for by using the exact coloring
procedures on rare occasions only. As we will see this is the case for COLORGn,p,3 when the
input graphs are distributed according to Gn,p,3.

Since the size of Y in the recovery procedure (Step 3) is increased until a valid coloring is
obtained, the correctness of Algorithm 5.1 is inherent (ultimately, a proper coloring will be
found in the last iteration, when Y contains all vertices of G) . An analysis of the complexity
of Algorithm 5.1 will be presented in the next few sections. An outline of the different parts of
this analysis was already provided with the discussion above. For convenience we give a brief
overview once more.

We start in Section 5.3 by analyzing the initial coloring Υ0 that is produced by SDP3. Sec-
tion 5.4 then investigates the probability that the recoloring procedure performs well on a
large subgraph of G and Section 5.5 studies possible mistakes of the uncoloring procedure. In
Section 5.6 we will show that Step 10, i.e., the extension step, runs in polynomial expected
time on average (cf. Lemma 5.6.2). Section 5.7 finally combines the different parts of the
analysis and explaines how they lead to an overall running time of the recovery procedure
that is polynomial on average (see Lemma 5.7.1). Some technical preliminaries are provided
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5.1: COLORGn,p,3(G)

Input: a graph Gn,p,3 = G = (V,E)
Output: a valid coloring of Gn,p,3

begin
compute an optimal solution (xv)v∈V (G) to SDP3(G) with sufficient numerical precision;1

for 0 ≤ y ≤ n do2

foreach vertex set Y of size y and each valid 3-coloring ΥY of Y do3

for O(n) times do4

/∗∗ The initial phase ∗∗/
Randomly choose three vectors x1,x2,x3 ∈ {xv | v ∈ V (G)} ;5

Extend ΥY to a coloring Υ0 of G by setting Υ0(v) := i for all v ∈ G− Y where6

i is such that 〈xv |xvi
〉 is maximal ;

for t = log n downto t = 0 do7

/∗∗ The iterative recoloring procedure ∗∗/
for 0 ≤ s < t do8

Construct a coloring Υs+1 of G with Υs+1(v) := ΥY (v) for v ∈ Y and
Υs+1(v) := i for v 6∈ Y where i minimizes |N(v) ∩ Υ−1

s (i)| ;

Set Υ′ := Υt ;
/∗∗ The uncoloring procedure ∗∗/
while ∃v ∈ G − Y with Υ′(v) = i and |{w | w ∈ N(v) ∧ Υ′(w) = j}| < d/69

for some j 6= i do
uncolor v in Υ′ ;

/∗∗ The extension step ∗∗/
if each component of uncolored vertices is of size at most min(y, α0n) then10

Extend the partial coloring Υ′ to a coloring Υ of G by exhaustively
trying each coloring of each component in the set of uncolored vertices ;
if Υ is a valid coloring of G then11

return Υ(G) and stop;

end

in Section 5.2.

Apart from the recovery procedure and the extension step, all other steps of Algorithm 5.1,
i.e., Steps 1, 6, 8, 9, can obviously be executed in polynomial time. Together with the analysis
of the expected running time of the recovery procedure and the extension step (cf. Sections 5.7
and 5.6, respectively) this implies the following theorem.

Theorem 4
Algorithm 5.1 finds a 3-coloring of a graph from Gn,p,3 in polynomial expected running time if
d = pn > c for some sufficiently large constant c.

As mentioned, the details of Algorithm 5.1 that were not explained so far, such as the signifi-
cance of t and the constant α0, will become clear in the subsequent sections. In the following
we usually let y =: αn for simplifying calculations. Here, y is the variable from Step 3 in
Algorithm 5.1 and α might be a function in n.
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5.2 Preliminaries

The analysis presented in the following sections is technical in nature, mainly relying on
methods from probability theory and elementary analysis. As preparation, we will introduce
some basic tools for bounding probabilities and provide a number of simple observations in
this section.

The binary entropy function

The binary entropy function H(x) is defined for x ∈ (0, 1) by the relation

H(x) := −x log x − (1 − x) log(1 − x).

This function is useful for establishing bounds on binomial coefficients as we will see shortly.
But first we explain how to bound H(x) itself. For this, note that −x log x has a unique local
maximum at x = 1/2 and that −(1/4) log(1/4) > −(1 − 1/4) log(1 − 1/4). By symmetry it
follows that

H(x) ≤ −2 · x log x for x ≤ 1

2
. (5.1)

Bounds on binomial coefficients

When estimating the probabilities of events for combinatorial objects one often encounters
binomial coefficients. These coefficients can either be bounded with the help of

(a

b

)b
≤
(

a

b

)

≤
(

e · a

b

)b
(5.2)

or by applying the entropy function defined above
(

n

xn

)

≤ exp(H(x) · n) ≤ exp(−2x log x · n) . (5.3)

Here, we generally assume that xn is integral, although this inequality also remains valid for
a generalized form of binomial coefficients.

In the case that standard probability distributions, such as the binomial distribution, need to
be evaluated, more sophisticated tools are at hand.

Markov and Chernoff bounds

Let X be a non-negative random variable with expectation E[ X ]. Then Markov’s inequality

asserts that the following holds true for all t > 0:

P[ X ≥ t ] ≤ E[ X ]

t
. (5.4)

Upper and lower tails of binomially distributed variables may be estimated with the help of
Chernoff bounds (see e.g., [34], Chapter 2). In our analysis we will use the following example.
For X ∈ Bin(n, p) the expectation E[ X ] is given by λ = np. Now, if t ≥ 0, then

P[ X ≥ E[ X ] + t ] ≤ exp

(

− t2

2(λ + t/3)

)

(5.5)

P[ X ≤ E[ X ] − t ] ≤ exp

(

− t2

2λ

)

. (5.6)
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Multi dimensional normal distributions

As indicated in Chapter 4 randomized rounding is a standard technique in connection with
semidefinite programming. In Section 5.3 we will apply a strategy of this type to the semidef-
inite program used in the algorithm COLORGn,p,3. For preparing the arguments involved in
this rounding process, we need to recall some facts about n-dimensional normal distributions.

We say that a vector r is distributed according to the n-dimensional standard normal distri-

bution if, independently of each other, the components of r are standard normally distributed.
Then, r is also called a random vector.

The main reason for considering n-dimensional normal distributions in connection with n-
dimensional vector spaces is their high spherical symmetry (see, e.g. [24]). This allows for
simple conversions if the problem is restricted to a lower dimensional subspace. One well-
known result along these lines is the fact that random vectors are in a certain sense invariant
under orthogonal transformations.

Theorem 5 (Rényi [56])
The projections of an n-dimensional random vector r onto two lines l1 and l2 are independent
(and normally distributed) iff l1 and l2 are orthogonal.

The following corollary (cf. [37]) will be usefull for rounding the solution of a semidefinite
program via vector projections in section 5.3.

Corollary 5.2.1
Let r ∈ R

n be a random vector and u be an arbitrary unit vector. Then the projection 〈r |u〉
of r along u is distributed according to the standard normal distribution.

Another consequence of Theorem 5 and the spherical symmetry of the n-dimensional normal
distribution is the independence of projections of random vectors onto orthogonal subspaces
of R

n.

Corollary 5.2.2
Let r ∈ R

n be a random vector, R an n′-dimensional subspace of R
n, and R⊥ the orthogonal

complement of R in R
n. Then the projection of r onto R is distributed according to an

n′-dimensional standard normal distribution. Similarly, the projection of r onto R⊥ follows
an n − n′-dimensional standard normal distribution. Moreover, these two distributions are
independent.

In addition, the n-dimensional standard normal distribution naturally gives rise to a uniform
distribution on a sphere centered at the origin. More precisely, for a random vector r the
vector r/ ‖r‖ is distributed uniformly over the unit sphere.

Coloring vertex sets

We denote by 3-COL (n) the time an algorithm needs to find all valid colorings of a graph G
of order n. This task can certainly be performed in 3x steps and so we define

3-COL (x) := 3x.

Note that coloring all subgraphs of G on x vertices in all possible ways then takes time

3-COL (x)

(
n

x

)

.
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Some simple observations

In the observations given below we will refer to a graph G = (V,E) that may be generated
by Gn,p,k as well as by any other random graph model where edges are chosen independently
from each other.

Observation 5.2.3
Let a, b, c ∈ R be non-negative, not necessarily constant, and V1 and V2 be two disjoint subsets
of V such that b ≤ |V2|. Then

P[ ∃A ⊂ V1, B ⊂ V2 : |A| ≥ a ∧ |B| ≤ b ∧ e(A,B) ≥ c · |A| ]
= P[ ∃A ⊂ V1, B ⊂ V2 : |A| = a ∧ |B| = b ∧ e(A,B) ≥ c · |A| ] .

Clearly the first probability exceeds the second one. The other direction holds since the avarage
size of NB+v(v) for vertices v ∈ A is not decreased if a vertex w with |NB+w(w) | smaller than
this average is removed from A. Trivially such a vertex does always exist. (Note that we need
the fact that V1 ∩ V2 = ∅ at this point. )

The next two observations are very elementary but provide useful tools that are applied
throughout the calculations in the following sections. So they are stated here in order to
avoid commenting on these issues much later.

Observation 5.2.4
Let c1, c2, c3 > 0 be constant, c′1 > c1, and d be arbitrary. Then

c1 · dc2 + c3 ≤ c′1 · dc2 (5.7)

as long as d is sufficiently large. Equivalent forms of this statement include c3−c′1·dc2 ≤ −c1·dc2 ,
1/(c′1 · dc2 − c3) ≤ 1/(c1 · dc2) and c4 · exp(−c′1 · dc2) ≤ exp(−c1 · dc2) for c4 ≥ 1.

For satisfying Equation (5.7) it suffices to guarantee that d ≥ (c3/(c′1 − c1))1/c2 . For the other
statements this lower bound on d needs to be adjusted accordingly.

Consistent with the definition of Gn,p,k, the value of pn ≥ c will usually be used for d when
Observation 5.2.4 is applied. Here we always asume that c is chosen suitably large to justify
these applications and we mention this fact only occasionally.

The following observation concerns random graphs in our context, but it could be formulated
in a much more general random setting.

Observation 5.2.5
Let A be a given subset of V and σP (A) be the event that some property P holds for A. Then

P[ σP (A) ] ≤ P[ ∃X ⊂ V : σP (X) ] .

Analogously we could require A and X to be subsets of E.

Of course this statement can be generalized to events involving more than one set.

5.3 Finding an Initial Coloring

In this section we will analyze the first phase of COLORGn,p,3, consisting of Steps 1 and 6 of
Algorithm 5.1. In these steps an initial coloring Υ0(G) is constructed for the input graph G
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by using the SDP relaxation SDP3 of MAX-3-CUT due to Frieze and Jerrum [25] which was
introduced in Section 4.3. We will restate the corresponding semidefinite program here for
convenience:

max
∑

vw∈E(G)

2

3
(1 − 〈xv |xw〉)

s.t. ‖xv‖ = 1 ∀v ∈ V,

〈xv |xw〉 ≥ −1

2
∀v,w ∈ V.

Recall that the maximum runs over all vector assignments (xv)v∈V (G) obeying xv ∈ R
|V | and

that for graphs G1 and G2 with G1 � G2 we have the relation SDP3(G1) ≤ SDP3(G2).

The goal of the following analysis is to estimate the probability that the initial coloring obtained
by COLORGn,p,3 colors at least (1 − ǫ)n vertices of G correctly.

In [15] Coja-Oghlan, Moore, and Sanwalani studied the behaviour of SDP3 on Gn,p. They
obtained the following result, which will be the key ingredient to our analysis of SDP3 on
graphs from Gn,p,3.

Theorem 6 (Coja-Oghlan, Moore & Sanwalani [15])
If p ≥ c/n for sufficiently large c then

SDP3(Gn,p) ≤ 2

3

(
n

2

)

p + O
(√

n3p(1 − p)
)

(5.8)

with probability at least 1 − exp(−3n).

Note that 2
(n
2

)
p/3 is also the size of a random 3-cut in Gn,p. So Theorem 6 estimates the

difference of the sizes of a maximum 3-cut and a random 3-cut in Gn,p.

Let G = (V,E) ∈ Gn,p,3. Then we can construct a random graph G∗ ∈ Gn,p from G by
inserting additional edges with probability p within each color class. The following lemma
investigates the effect of this process on the value of SDP3. Similar techniques were applied
by Coja-Oghlan in [14].

Lemma 5.3.1
Consider a graph G∗ = (V,E∗) from Gn,p with V = [n] and let G = (V,E) � G∗ be the
graph on V having edges E = E∗ ∩ {vw | ⌈3v/n⌉ 6= ⌈3w/n⌉}. Then for some constant c′ not
depending on d

SDP3(G∗) − SDP3(G) ≤ c′n
√

d (5.9)

with probability at least 1 − exp(−5n/2).

Proof:

In order to establish this result we prove that

2

3

(
n

2

)

p − c′

2

√

n3p ≤ SDP3(G) ≤ SDP3(G∗) ≤ 2

3

(
n

2

)

p +
c′

2

√

n3p

holds with the same probability.

In fact, the second inequality holds by construction since G � G∗ and the third inequality
is asserted by Theorem 6 if we choose c′ accordingly. Thus it remains to show the first
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inequality. This is obtained by a straightforward application of the Chernoff bound (5.6) and
the fact that SDP3(G) = |E| as mentioned earlier: The number of edges |E| is a binomially
distributed random variable with expectation 2

(n
2

)
p/3 and thus

P

[
2

3

(
n

2

)

p − c′

2

√

n3p ≤ |E|
]

= P

[

E[ |E| ] − c′

2

√

n3p ≤ |E|
]

= 1 − P

[

|E| < E[ |E| ] − c′

2

√

n3p

]

(5.6)

≥ 1 − exp

(

− c′2n3p

2 · 2
3

(n
2

)
p

)

> 1 − exp

(

−c′2
3

2
n

)

.

This settles the proof since we can certainly choose c′ in such a way that c′ > 2 in Theorem 6.
⊓⊔

Equation (5.9) asserts that the values of SDP3 for G and G∗ are not likely to differ much, if
the additional edges within the color classes Ci of G are chosen at random. It follows that
in an optimal solution to SDP3(G), most of the vectors corresponding to vertices of Ci for a
particular i can not be far apart. This is shown in the next lemma.

If not stated otherwise, we consider SDP3 on input G from now on. Let X = {xv | v ∈ V } ⊂
R
|V | be an optimal solution to SDP3(G). Then we call

Nµ(v) :=
{
v′ ∈ V

∣
∣ 〈xv |xv′〉 > 1 − µ

}
(5.10)

the µ-neighborhood of v.

Lemma 5.3.2
For fixed ǫ with 0 < ǫ < 1/2 there is a constant 0 < µ < 1/2 such that for any µ′ with
µ ≤ µ′ < 1/2 the following holds with probability greater than 1 − exp(−7n/3): For each
i ∈ {1, 2, 3} there is a vertex vi ∈ Ci such that the set Nµ(vi) contains at least (1 − ǫ)n/3
vertices of Ci and the set Nµ′

(vi) contains at most ǫn/3 vertices from other color classes.

Proof:

We first show that the first statement of Lemma 5.3.2 holds with probability at least 1 −
2 exp(−5n/2) for a fixed i. Then, we proceed by proving that for any pair i 6= j and appropriate
choices of vi and µ′ the probability that Nµ′

(vi) contains more than ǫn/6 vertices is at most
exp(−Ω (dn)). Since

3 · 2 · exp

(

−5

2
n

)

+ 6 · exp(−Ω (dn)) < 7 · exp

(

−5

2
n

)

≤ exp

(

−7

3
n

)

(5.11)

for d and n sufficiently large this establishes the lemma (the probabilities are multiplied by
the number of choices for i and j).

For proving the first part of Lemma 5.3.2 let Gµ
i = (Ci, E

µ
i ) be the graph on one color class

Ci of G with edge set Eµ
i := {vw | 〈xv |xw〉 ≤ 1 − µ} (recall that X = {xv | v ∈ V } ⊂ R

|V | is
an optimal solution to SDP3(G)). Now, consider the edges Eµ

i ∩ E∗ that this graph shares
with the random graph G∗ defined above. Since Eµ

i only depends on the optimal solution to
SDP3(G) and edges in E∗ \E do not influence this solution, Eµ

i ∩E∗ spans a random subgraph
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of G∗. Therefore, this edge set contains p |Eµ
i | edges in expectation. Moreover,

P
[

|Eµ
i ∩ E∗| ≤ E[ |Eµ

i ∩ E∗| ] − 3n
√

d
]

= P
[

|Eµ
i ∩ E∗| ≤ p · |Eµ

i | − 3n
√

d
]

≤ exp

(

− 32n2d

2p · |Eµ
i |

)

≤ exp

(

−9n

2

)

≤ exp(−5n/2)

(5.12)

by the Chernoff bound (5.6).

Observe that, X also is a feasible (but not necessarily optimal) solution to SDP3(G∗). Conse-
quently, we can apply Lemma 5.3.1 for concluding that

2

3
µ ·
(

p |Eµ
i | − 3n

√
d
) (5.12)

≤ 2

3
µ · |Eµ

i ∩ E∗| ≤ 2

3

∑

vw∈Eµ
i ∩E∗

(1 − 〈xv |xw〉)

≤ 2

3

∑

vw∈E∗\E
(1 − 〈xv |xw〉)

(5.9)

≤ c′n
√

d

holds with probability at least 1 − exp(−5n/2) − exp(−5n/2) where the second inequality
follows from the definition of Gµ

i . By rearranging terms and dividing by n we arrive at a
conclusion about the average degree |Eµ

i | /n of Gµ
i :

|Eµ
i |

n
≤
(

3c′

2µ
+ 3

)
n√
d

=:
c′′√
d
· n

3
.

This implies that there is some vertex vi in Ci with

c′′√
d
· n

3
≥ degGµ

i
(vi) =

n

3
− |Nµ(vi) ∩ Ci| ,

and thus we establish the first part of Lemma 5.3.2 by choosing µ in such a way that

ǫ ≥ c′′√
d
. (5.13)

It remains to show that at most ǫn/3 vertices of other color classes are contained in Nµ′
(vi)

given that |Nµ(vi) ∩ Ci| ≥ (1 − ǫ)n/3 ≥ n/6. Assume, for contradiction, that for some color
class Cj with i 6= j we have |Nµ(vi) ∩ Cj | ≥ ǫ/2 · n/3. Since each edge vw of G contributes
exactly one to the optimal value of SDP3(G) we know that 〈xv |xw〉 = −1/2 and so xv and
xw enclose an angle of 120◦. Therefore, the set Nµ′

(v) ⊃ Nµ(v) induces an empty graph in G
(because µ ≤ µ′ < 1/2 and arccos(1/2) = 60◦).

Accordingly, we can bound the desired probability by calculating the probability that some
vertex sets Yi ⊂ Ci and Yj ⊂ Cj exist in G with |Yi| ≥ n/6, |Yj| ≥ ǫn/6, and e(Yi, Yj) = 0:

P
[

∃Yi ⊂ Ci, Yj ⊂ Cj : |Yi| ≥
n

6
∧ |Yj| ≥ ǫ

n

6
∧ e(Yi, Yj) = 0

]

≤
(n

3
n
6

)( n
3

ǫn
6

)(

1 − d

n

)ǫ n2

36 (5.3)

≤ exp

((

H

(
1

2

)

+ H
( ǫ

2

)) n

3

)

· exp
(

−d · ǫ n

36

)

= exp(−Ω (dn))

(5.14)
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where the second inequality follows from (1 − d/n)n ≤ exp(−d) for d < n. ⊓⊔

In the following we will call a vertex v ∈ Ci obeying the properties asserted by Lemma 5.3.2
a strong (ǫ, µ, µ′)-representative or briefly strong representative for color class Ci. In the case
µ′ = µ we omit the parameter µ′ and say that v is a weak (ǫ, µ)-representative or just weak

representative. Both, weak and strong representatives are representatives. A set or triple of
representatives for G contains one representative for each color class.

Observe that the choice of µ in Lemma 5.3.2 depends on ǫ. But since we can get the right
hand side of Equation (5.13) arbitrarily small by raising the lower bound c on d accordingly
we can virtually choose any fixed µ between 0 and 0.5 for a given ǫ.

Moreover, let vi and vj be two strong (ǫ, µ, µ′)-representatives for color classes Ci and Cj

respectively with i 6= j. Then, Calculation (5.14) also gives a lower bound on the probability
that there is no edge between Nµ(vi) ∩ Ci and Nµ(vj) ∩ Cj . Adding this probability to the
left hand side of (5.11) implies the following remark that will be useful later.

Remark 5.3.3
With probability at least 1 − exp(7n/3) there is a triple v1, v2, v3 of strong (ǫ, µ, µ′)-represen-
tatives such that e(Nµ(vi),N

µ(vj)) 6= ∅ for all pairs i 6= j.

Lemma 5.3.2 guarantees that, given an optimal solution of SDP3(G), we can construct a rea-
sonably good initial coloring Υ0 via the sets Nµ(vi) by choosing an appropriate representative
vi for each color class Ci and setting Υ0(v) := i for all v ∈ Nµ(vi). Here, ties are broken
arbitrarily and vertices not appearing in any of the sets Nµ(vi) get assigned an arbitrary
color.

The main difficulty with this approach is that we neither know the color classes Ci of G nor
the graph Gµ

i constructed in the proof of Lemma 5.3.2 and so there is no way to determine
appropriate representatives for the color classes of G. The easiest way to deal with this
problem is to simply try all different triples of vertices from G as representatives. This,
however, introduces an extra factor of n3 in the running time.

In order to reduce this factor to a linear one, Algorithm 5.1 proceeds differently. Let v1, v2 and
v3 be strong (ǫ, µ, µ′)-representatives of the color classes C1, C2, and C3, respectively, as con-
structed in the proof of Lemma 5.3.2. We now make use of the following observation which is a
direct consequence of a more general result provided in the next section (cf. Observation 5.3.8).

Observation 5.3.4
If µ′ > 4µ +

√
2µ, then each vertex v ∈ Nµ(vi) is a weak (ǫ, 4µ)-representative of color class

Ci.

By choosing µ′ > 4µ +
√

2µ (and µ sufficiently small such that µ′ < 1/2) we therefore get at
least ǫ · n/3 weak representatives per color class. But then the probability of obtaining a set
of weak representatives for G by picking three vertices r1, r2, r3 from V at random is at least
(1 − 3 · ǫ)/9. Repeating this process raises the probability of success. More specifically, the
probability that in c′n trials none yields a triple of weak (ǫ, 4µ)-representatives is smaller than
(8/9 + ǫ/3)c′n. Here, c′ > 0 is an arbitrary constant. Observe additionally that if r1, r2, r3

indeed form a triple of weak representatives for G, then 〈xv |xri
〉 >

〈
xv

∣
∣xrj

〉
for v ∈ N4µ(vi)

and i 6= j. Therefore, we then get a coloring Υ0 of G that colors at least ǫ · n vertices of G
correctly by assigning each vertex v the color i such that 〈xv |xri

〉 is maximal.
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The strategy just described is applied in Step 4 of Algorithm 5.1. We conclude that also this
randomized approach gives rise to a valid coloring of an (1 − ǫ)-fraction of the graph with
probability at least

1 − exp

(

−7

3
n

)

− (8/9 + ǫ/3)c′n ≥ 1 − 2 exp

(

−7

3
n

)

≥ 1 − 10−n (5.15)

for c′ and n sufficiently large and ǫ small enough, e.g. c′ = 30 and ǫ < 1/10. Here, the
probability is taken with respect to the input graphs Gn,p,k and to the random choices of
representatives.

In the following subsection we will present even a different way of obtaining this initial coloring
by using rounding via vector projections. We investigate this technique since it is standard to
the field of semidefinite programming. As we will show, this method achieves a similar success
probability.

First however, we state this section’s main result which is an immediate corollary of the
foregoing remarks on a randomized selection of the representatives of G in combination with
Equation (5.15) and Lemma 5.3.2. For this pupose, consider the coloring Υ0 constructed in
Step 6 of Algorithm 5.1 and let FSDP be a vertex set of minimal cardinality such that Υ0

colors at most ǫn/3 vertices incorrectly in each set Ci \ FSDP .

Corollary 5.3.5
For all y > 0 the following relation holds true:

P[ |FSDP | ≥ 1 ] ≤ 10−n.

On the rare occasion that FSDP 6= ∅ the recovery procedure of Algorithm 5.1 is responsible for
coloring the vertices in FSDP correctly (cf. Section 5.7). This implies the following statement.

Remark 5.3.6
In the following analysis, we can assume that less than ǫn vertices of G are colored incorrectly
after the initial phase of Algorithm 5.1.

5.3.1 Rounding the SDP Solution

In this section we describe a rounding technique for an optimal solution to the semidefinite
program SDP3(G). This technique then allows for a randomized construction of an initial
coloring that is valid on at least (1− ǫ)n vertices of G. One principle that is common to all the
rounding strategies for semidefinite programs mentioned in the introduction is the usage of
random vectors in order to subdivide the solution space into different regions. This paradigm
will be applied here as well.

The main idea is simple but effective. Let x1, x2, and x3 be the vectors corresponding to
strong representatives of the color classes C1, C2, and C3 respectively, as constructed in the
proof of Lemma 5.3.2. In the rounding process, we will choose three random unit vectors
r1, r2, and r3. With constant probability these vectors will be “close” to x1, x2, and x3

respectively (see Lemma 5.3.11). Here, by “close” we mean that the following process yields a
correct classification for at least (1 − ǫ)n vertices of G: We construct Υ0 by assigning color i
to those n/3 vertices having maximal scalar product to ri (again, ties are broken arbitrarily).
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As desired, it follows that Υ0 fails on at most ǫn vertices with probability 1− 10−n in at least
one trial if this process is repeated a sufficiently big but linear number of times.

The analysis of this rounding method is split into two steps. First, we will study geometric
properties of x1, x2, and x3. This allows us then to compute the probability that the rounding
method is indeed successful.

Geometrical Considerations

As indicated, for arguing how to use the properties of x1, x2, and x3 in the rounding process
we first need to investigate their relative positions in R

n. Here, our goal is to construct a set
of alternative representatives x̂1, x̂2, x̂3 from x1, x2, and x3 that obey a geometrical structure
that is completely symmetric: each pair x̂i, x̂j of these vectors is required to include exactly
an angle of 120◦. Note that this implies that x̂1, x̂2, and x̂3 all lie on one plane [x̂1, x̂2, x̂3].

For obtaining the desired vectors we proceed as follows: Since already x1, x2 and x3 almost
obey this structure, we can choose vectors in the neighborhood of these original representatives
as x̂1, x̂2, and x̂3. It then remains to show that the new vectors actually serve as representatives
for the color classes C1, C2, and C3, in the sense that 〈x̂i |xv〉 is comparably big for most
vertices v in Ci and small for most other vertices.

This will be formulated more accurately in Lemma 5.3.9 below. But before we can state this
lemma we need to complement existing conventions. We extend the definition (5.10) of the
µ-neighborhood Nµ(v) to arbitrary vectors x ∈ R

n in the obvious way

Nµ(x) := {v ∈ V | 〈x |xv〉 > 1 − µ} .

Similarly a vector x is called a strong (ǫ, µ, µ′)-representative of color class Ci if at least
(1 − ǫ)n/3 vertices of Ci are contained in Nµ(x) and at most ǫn/6 vertices of any other color
class are contained in Nµ′

(x). If µ = µ′, then we also say that x is a weak (ǫ, µ)-representative.

The following observation will be useful for determining the difference between a unit vector
x and another unit vector x′ from its µ-neighborhood.

Observation 5.3.7
Let x, x′, x′′, y, and y′ be n-dimensional unit vectors such that x′,x′′ ∈ Nµ1(x) and y′ ∈
Nµ2(y) with 0 < µ1, µ2 < 1. If moreover x′ =: x + xµ1 and y′ =: y + yµ2 , then

1. ‖xµ1‖ ≤ √
2µ1,

2. x′′ ∈ N4µ1(x′), and

3. | 〈x′ |y′〉 − 〈x |y〉 | ≤ √
2µ1 +

√
2µ2 + 2

√
µ1µ2.

Indeed, by evaluating the norm of x′ we find

1 =
∥
∥x′∥∥2

= ‖x + xµ1‖2 = 〈x + xµ1 |x + xµ1〉 = 1 + 〈xµ1 |xµ1〉 + 2 〈x |xµ1〉

and so

〈xµ1 |xµ1〉 = −2 〈x |xµ1〉 = −2
〈
x
∣
∣x′ − x

〉
= −2(

〈
x
∣
∣x′〉− 1) < −2(1 − µ1 − 1) = 2µ1.

Similarly, 〈yµ2 |yµ2〉 < 2µ2. In addition, the angle enclosed by x′ and x′′ is certainly less than
2 · arccos(1 − µ1) since these vectors are both in Nµ1(x). It follows that
〈
x′ ∣∣x′′〉 ≥ cos(2 · arccos(1 − µ1)) = 2 · cos2(arccos(1 − µ1)) − 1 = 1 − 4µ1 + 2µ2

1 ≥ 1 − 4µ1
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implying x′′ ∈ N4µ1(x′). The third relation is a consequence of the Cauchy-Schwarz inequality
which asserts | 〈xµ1 |y〉 | ≤ ‖xµ1‖ · ‖y‖ ≤ √

2µ1, | 〈x |yµ2〉 | ≤ √
2µ2 and

| 〈xµ1 |yµ2〉 | ≤ ‖xµ1‖ · ‖yµ2‖ ≤ 2
√

µ1µ2.

Thus,

∣
∣
〈
x′ ∣∣y′〉− 〈x |y〉

∣
∣ = | 〈x + xµ1 |y + yµ2〉 − 〈x |y〉 |

= | 〈xµ1 |y〉 + 〈x |yµ2〉 + 〈xµ1 |yµ2〉 | ≤
√

2µ1 +
√

2µ2 + 2
√

µ1µ2.

For y′ = y and y 6∈ Nµ′
1(x) for some µ′

1, this asserts

〈
x′ ∣∣y

〉
≤ 〈x |y〉 +

√

2µ1 ≤ 1 − µ′
1 +

√

2µ1

and so x′ 6∈ Nµ′
1−

√
2µ1(x). In conjunction with the second statement of Observation 5.3.7, this

immediately implies the following result.

Observation 5.3.8
Let x be a strong (ǫ, µ, µ′)-representative of G with µ′ > 4µ +

√
2µ. If x̂ ∈ Nµ(x) then x̂ is a

strong (4µ, µ′ −√
2µ, ǫ)-representative of G.

Note that this observation contains Observation 5.3.4 as a special case.

We are now ready to construct the vectors x̂1, x̂2, and x̂3.

Lemma 5.3.9
For µ sufficiently small the constant µ′ can be chosen in such a way that for each triple x1,
x2, and x3 of strong (ǫ, µ, µ′)-representatives there are three vectors x̂1, x̂2, x̂3 ∈ R

n with
‖x̂1‖ = ‖x̂2‖ = ‖x̂3‖ = 1 such that 〈x̂i | x̂j〉 = −1/2 for i 6= j and each x̂i is a weak (ǫ, µ′)-
representative for Ci.

Proof:

By Remark 5.3.3, we can assume that for each pair of indices i 6= j there are vectors xi→j ∈
Nµ(xi) and xj→i ∈ Nµ(xj) such that 〈xi→j |xj→i〉 = −1/2. We will use these vectors for
constructing a triple x̂1, x̂2, x̂3 of representatives pairwise enclosing an angle of 120◦. For
this, choose x̂1 := x1→2, x̂2 := x2→1 and x̂3 := −x̂1 − x̂2. By construction, x̂1, x̂2, x̂3 are
unit vectors and enclose the desired angles. It remains to demonstrate that they are weak
(ǫ, µ′)-representatives for C1, C2, and C3, respectively.

Here, the basic idea is to use the fact that xi and x̂i are “close” to each other for each
i ∈ {1, 2, 3}. While this property is asserted for x̂1 and x̂2 by x̂1 ∈ Nµ(x1) and x̂2 ∈ Nµ(x2)
it is not immediately obvious for x̂3. Below however, we will prove that a similar relation
holds for this vector, namely that x̂3 ∈ N10

√
µ(x3). For establishing the lemma it therefore

suffices to show that for a strong (ǫ, µ, µ′)-representative x and appropriate µ′ each vector
x̂ ∈ N10

√
µ(x) ⊃ Nµ(x) is a weak (ǫ, µ′)-representative.

This is obtained as a direct consequence of Observation 5.3.8. In fact, if µ′ > 10
√

µ then
x certainly is a strong (ǫ, 10

√
µ, µ′)-representative. But then x̂ is a strong (ǫ, 40

√
µ, µ′′)-

representative with

µ′′ := µ′ −
√

20
√

µ
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by Observation 5.3.8. Accordingly, we can assert that x̂ is a weak (ǫ, µ′)-representative by
choosing µ′ := 2 ·

√
20
√

µ, since then

µ′′ = µ′ −
√

20
√

µ =
√

20
√

µ > 40
√

µ

(and µ′ > 10
√

µ) if µ is sufficiently small (i.e., µ < 1/6400).

For completing the proof we need to show that x̂3 ∈ N10
√

µ(x3). For this, observe that
x1→3 ∈ N4µ(x̂1) by Observation 5.3.7 since x̂1,x1→3 ∈ Nµ(x1). Similarly x2→3 ∈ N4µ(x̂2).
In addition, recall that x3→1,x3→2 ∈ Nµ(x3). The third statement of Observation 5.3.7
applied once to x1→3 =: x̂1 + x4µ

3 and x3→1 =: x3 + xµ
3 , and once to x1→2 =: x̂1 + x4µ

2 and
x2→1 =: x2 + xµ

2 then entails

〈x̂3 |x3〉 = −〈x̂1 |x3〉 − 〈x̂2 |x3〉

≥ (
1

2
−
√

2 · 4µ −
√

2 · µ − 2 ·
√

4µ · µ) + (
1

2
−
√

2 · 4µ −
√

2 · µ − 2 ·
√

4µ · µ)

= 1 − 3
√

2µ − 8µ ≥ 1 − 10
√

µ,

since 〈x1→3 |x3→1〉 = 〈x2→3 |x3→2〉 = −1/2. ⊓⊔

By Lemma 5.3.9, we now know that the vectors (xv)v∈V roughly form three well seperated
clusters. The next step is to figure out how these clusters can be located in relatively few
steps. As indicated earlier, our approach here is a randomized one.

Random Representatives

Let x̂1, x̂2, and x̂3 be the weak representatives for C1, C2, and C3 from Lemma 5.3.9. Since we
are only concerned with weak representatives in this section, we replace µ′ by µ for simplifying
the notation. Accordingly, x1, x2, and x3 are weak (ǫ, µ)-representatives.

In the following we consider random vectors r, i.e., vectors where each component is indepen-
dently distributed according to the standard normal distribution with mean 0 and variance 1.
For such a vector, denote by N̂(r) those n/3 vectors of (xv)v∈V with maximal scalar product
to r.

As explained earlier, the strategy now is to choose three random vectors r1, r2, and r3 and
construct the initial coloring Υ0 by assigning color i to each vertex v with xv ∈ N̂(ri). This
motivates the following definition. We say that a random vector r ∈ R

n is a random (ǫ, µ)-
representative for color class C if Nµ(x̂) ∩ {xv | v ∈ V } ⊂ N̂(r) where x̂ is some weak (ǫ, µ)-
representative for C. Note that this implies that a triple of random representatives for G
produces a valid coloring on at least (1 − ǫ)n vertices.

For understanding the intuition behind this approach, consider the idealized situation that
xv = x̂i for each v ∈ Ci. Since the (ǫ, µ)-representatives x̂1, x̂2, and x̂3 are maximally “far
apart” in R

n, a random vector ri would then be a random representative for Ci iff x̂i and
ri enclose an angle of less than 60◦. The probability of this event is exactly 1/3. Therefore,
independently picking three random vectors and repeating this process sufficiently often w.h.p.
would yield a triple of random representatives for G in at least one of these trials. As we will
show only minor changes to this idea are necessary in the case that the vectors xv with v ∈ Ci

do not coincide with x̂i exactly but are in Nµ(x̂i). In Lemma 5.3.11, we will prove that the
probability for a random vector ri to be a random (ǫ, µ)-representative for Ci is greater than
some positive constant as desired.
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120◦

x̂1

x̂2

x̂3

r
‖
1

α

β

γ 1
≤

α
+

β

γ
2 ≥

120 ◦−
α−

β

Figure 5.1: The weak (ǫ, µ) representatives x̂1, x̂2 and x̂3 and a random representative
r1 for C1: For all vertices vi ∈ Ci the angle enclosed by x

‖
vi

and x̂i is at most
α ≤ arccos(1−µ). The event σB forces the angle β enclosed by r1

‖ and x̂1 to
be such that β ≤ arccos(0.9) ≤ 26◦. It follows that γ1 < γ2 for µ sufficiently
small.

Recall that [x̂1, x̂2, x̂3] denotes the plane spanned by the three representatives x̂1, x̂2, and x̂3.
For analyzing the effect of small perturbations on x̂i, it will be useful to decompose the vectors
under investigation into their projection onto this plane and a proportion perpendicular to it.
Thus, for an arbitrary vector y let y‖ be the projection of y onto [x̂1, x̂2, x̂3] and y⊥ := y−y‖

be the projection of y onto the orthogonal complement of [x̂1, x̂2, x̂3]. Moreover, denote by x̂v

the representative of the color class of v and let xv =: x̂v + xµ
v and

V µ := {v | v ∈ Nµ(x̂v)} .

The vector xµ
v is also called the perturbation of vector xv.

We next provide a sufficient condition for a random vector to be a random representative of
G.

Observation 5.3.10
Let Ci ∈ {C1, C2, C3} be a color class of G and x̂i be the corresponding weak (ǫ, µ)-representat-
ive with ǫ < 1/4 and µ sufficiently small. A random vector ri is a random (2ǫ, µ)-representative
for color class Ci if the following three conditions are satisfied:

1. event σA(ri): ‖r‖i ‖ ≥ 1,

2. event σB(ri):

〈

r
‖
i

‖r‖i ‖

∣
∣
∣
∣
x̂i

〉

≥ 0.9,

3. event σC(ri): | 〈r⊥i |xµ
v 〉 | ≥ 0.1 for at most ǫ · n/3 vertices v ∈ V µ.
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For this, denote by V ‖(ri) the set of vertices v with “small” othogonal perturbation along ri,
i.e., | 〈r⊥i |xµ

v 〉 | < 0.1. Event σC then asserts that there are at least (1 − 2ǫ) · n/3 vertices
vi ∈ V ‖(ri) ∩ Nµ(x̂i) with xvi

∈ Ci and at most 2ǫ · n/3 vertices vj ∈ V ‖(ri) ∩ Nµ(x̂i) with

xvj
6∈ Ci. Consequently, it suffices to show that V ‖(ri) ∩ Nµ(x̂i) ⊂ V ‖(ri) ∩ N̂(ri).

Now, let u ∈ V be an arbitrary vertex. Then the projection of ri onto xu is given by

〈ri |xu〉 = 〈ri | x̂u + xµ
u〉 = 〈ri | x̂u〉 + 〈ri |xµ

u〉
= 〈r‖i | x̂u〉 + 〈r⊥i | x̂u〉 + 〈r‖i |xµ

u〉 + 〈r⊥i |xµ
u〉 = 〈r‖i | x̂u〉 + 〈r‖i |xµ

u〉 + 〈r⊥i |xµ
u〉 .

By definition, if u ∈ V ‖(ri) then −0.1 < 〈r⊥i |xµ
u〉 < 0.1. Moreover, the first statement of

Observation 5.3.7 asserts that ‖xµ
u‖ ≤ √

µ. By the Cauchy-Schwarz inequality we conclude

〈r‖i |x
µ
u〉 ≤ ‖r‖i ‖·

√
2µ. It remains to evaluate the term 〈r‖i | x̂u〉 for different vertices u ∈ V ‖(ri).

Let x̂j 6= x̂i be the representative of another color class of G and choose vi ∈ Nµ(x̂i) ∩ V ‖(ri)
and vj ∈ Nµ(x̂i) ∩ V ‖(ri). Event σB implies that 〈r‖i | x̂i〉 ≥ 0.9 · ‖r‖i ‖. Therefore, the angle
enclosed by r

‖
i and x̂i is at most arccos(0.9) < 26◦ and so r

‖
i and x̂i enclose an angle of at least

120◦ − 26◦ > 90◦. It follows that 〈r‖i | x̂j〉 ≤ 0 (see also Figure 5.1).

Accordingly, 〈ri |xvi
〉 ≥ 0.9 · ‖r‖i ‖ − 0.1 −√

2µ · ‖r‖i ‖ and
〈
ri

∣
∣xvj

〉
≤ 0.1 +

√
2µ · ‖r‖i ‖. Thus,

by event σA we have

〈ri |xvi
〉 −

〈
ri

∣
∣xvj

〉
≥ (0.9 − 2

√

2µ) · ‖r‖i ‖ − 0.2 > 0

for µ sufficiently small and so V ‖(ri) ∩ Nµ(x̂i) ⊂ V ‖(ri) ∩ N̂(ri) as desired.

Note that the constants 0.9 and 0.1 in the second and the third statement of Observation 5.3.10
merely ensure that the angle between r

‖
i and x̂i and the perturbations along r⊥i , are not too

big. These constants may therefore be replaced by any other suitable constants.

With the help of Observation 5.3.10, we can now calculate the probability that three random
vectors form a set of random representatives for G.

Lemma 5.3.11
Let r1, r2, r3 be n-dimensional random vectors. Then

P[ r1, r2, and r3 are random (ǫ, µ)-representatives for C1, C2, and C3 respectively ] (5.16)

is greater than some positive constant for sufficiently small µ.

Proof:

Since r1, r2, r3 are independent random vectors, Observation 5.3.10 implies that the probability
we are interested in is at least (P[ σA(r) ∧ σB(r) ∧ σC(r) ])3 where σA, σB, and σC are the
events referred to in Observation 5.3.10 and r ∈ R

n is a random vector.

The event σA is only concerned with the length of r‖ while σB only considers the direction of
this vector and σC only considers the proportion of r perpendicular to r‖. By Corollary 5.2.2
the events σA, σB , and σC are therefore independent. Thus, it suffices to bound the probabil-
ities P[ σA(r) ], P[ σB(r) ], and P[ σC(r) ] from below by some positive constants.

First we investigate σB . Note that since ‖x̂‖ = 1 this condition is equivalent to requiring an
angle of at most arccos(0.9) ≥ 18◦ between x̂ and r‖. This immediatly implies the following
result

P[ σB ] ≥ 0.1.
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For calculating the probability of σA, observe that ‖r‖‖2 is the sum of two squared standard
normal distributions. It follows that ‖r‖‖ is distributed according to the 2-dimensional chi
distribution and so numerical evaluations1 yield

P[ σA ] ≥ 0.393.

The probability of σC finally is estimated by applying a Markov bound. For this, consider
∑

v∈V 〈r |xv〉2. In the following we will show that this quantity usually remains small. It then

follows that for most vertices v the term 〈r⊥ |xv〉2 cannot be large either.

Recall that V µ = {v | v ∈ Nµ(x̂v)}. By the first statement of Observation 5.3.7 we have
〈xµ

v |xµ
v 〉 ≤ 2µ for all vertices v ∈ V µ. Now, assume that 〈r |xµ

v 〉2 ≥ √
µ for more than ǫn

vertices in V µ. Then certainly
∑

v∈V µ 〈r |xµ
v 〉2 ≥ √

µ · ǫ |V µ|. But

∑

v∈V µ

〈r |xµ
v 〉2 =

∑

v∈V µ

‖xµ
v‖2

〈

r

∣
∣
∣
∣

xµ
v

‖xµ
v‖

〉2

≤ 2µ
∑

v∈V µ

〈

r

∣
∣
∣
∣

xµ
v

‖xµ
v‖

〉2

and
∑

v∈V µ 〈 r | xµ
v/ ‖xµ

v‖ 〉2 is distributed according to a |V µ|-dimensional chi-squared dis-
tribution by Lemma 5.2.1. Therefore, E[ 2µ

∑

v∈V µ 〈 r | xµ
v/ ‖xµ

v‖ 〉2 ] = 2µ · |V µ| and so by
Markov’s inequality (5.4) we have

P

[
∑

v∈V µ

〈r |xµ
v 〉2 ≥ √

µ · ǫ |V µ|
]

≤ P

[

2µ
∑

v∈V µ

〈

r

∣
∣
∣
∣

xµ
v

‖xµ
v‖

〉2

≥ √
µ · ǫ |V µ|

]

≤ 2µ · |V µ|√
µ · ǫ |V µ| =

2
√

µ

ǫ
.

Since we can assume ǫ ≥ 10
√

µ it follows that

P[ σC ] > 1 − 0.2.

⊓⊔

Observe that three random vectors r1, r2, r3 are likely to have similar lengths. Therefore the
rule for assigning vertices to color classes with the help of random vectors (cf. page 5.3) could
easily be simplified in the following way: Assign to each vertex v the color i that minimizes
〈xv |ri〉.

5.4 Extending the Initial Coloring to a Large Subgraph H of G

After the initial coloring Υ0(G) is constructed, Step 8 of Algorithm 5.1 aims at improving
this coloring iteratively. In this section we show that this attempt is indeed successful on a
subgraph H of G, in the sense that all vertices of H will be colored correctly after Step 8
of Algorithm 5.1 with high probability. This result will be used later for showing that the
recoloring procedure can afford to color the part of G where this iterative recoloring process
fails by using exact but expensive methods.

The approach outlined above can only be effective, however, if we guarantee additionally that
only a very small number of vertices of G are not contained in H for most instances G.

1Numerical evaluations have been performed using the Mathematica software.
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So, before turning to the performance of the recoloring procedure on H, we will tackle the
problem of determining the expected size of H. First though, we provide explicit rules for the
construction of the subgraph we will be studying.

Definition: Let H be the subgraph of G obtained by the following process:

1. Delete all vertices in H
(+)

:=
{

v ∈ V
∣
∣
∣ v ∈ Ci ∧ ∃j 6= i : degCj

(v) > (1 + δ)d
3

}

2. Delete all vertices in H
(−)

:=
{

v ∈ V
∣
∣
∣ v ∈ Ci ∧ ∃j 6= i : degCj

(v) < (1 − δ)d
3

}

3. Iteratively delete all vertices having more than δd/3 neighbors that were deleted earlier

in Ci for some i, i.e., delete all vertices in
⋃

0<l

H
(l)

, where H
(0)

:= H
(+) ∪ H

(−)
and

H
(l)

:=

{

v ∈ V

∣
∣
∣
∣
∣
∃i : N(v) ∩ Ci ∩

⋃

l′<l

H
(l′)

> δ
d

3

}

for l > 0.

We also denote G − H by H.

In the following, we call steps 1 and 2 of this proecess the initial steps and step 3 the iterative

deletion procedure. For step l of this construction, i.e., the step when H
(l)

is deleted, let

H
it

:=
⋃

0<l′≤l H
(l′)

. In addition, H
it

may also be used without reference to a particular step

l. It then denotes
⋃

0<l′ H
(l′)

.

Observe that H is close to being regular, more precisely

{degH(v) | v ∈ V (H)} ⊂
[

(1 − δ)
2d

3
, (1 + δ)

2d

3

]

.

This implies that subsets of H are likely to have good expansion. In addition, vertices in H
do not have too many neighbors outside of H by construction. These two properties will play
a key role in the proofs presented below.

5.4.1 The Size of H

The choice of the parameter δ in the procedure for constructing H certainly influences the size
of this graph. This parameter needs to be small enough to ensure that the iterative coloring
procedure colors H correctly w.h.p. In Section 5.4.2 we will show that it suffices to choose δ
small but constant for this purpose. This motivates why we assume that δ is constant in this
section.

We now determine the probability that the size of H falls below a certain value. More precisely,
we will not investigate the size of H directly. Instead we turn to the complement H = G−H
and bound its size from above. Here, we are not interested in the absolute value of |H|, but we
want to know which fraction of the whole graph is taken up by H. Therefore, we parametrize
|H| by setting α := |H|/n. The lemma below gives an estimate on the probability that |H|
reaches size αn.
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Lemma 5.4.1
Let 0 < α < 1

2 and 0 < δ < 1
2 be constant in the definition of H. Then

P
[
|H| ≥ αn

]
≤ exp(− (log α + Ω (d)) · αn) + exp(Ω (d · log α · αn)) . (5.17)

Proof:

For estimating this probability we will distinguish two cases. Either the vertices H
(0)

deleted

from H initially already contain the majority of vertices from H, i.e., |H (0)| ≥ αn/2. Or

H
it

grows beyond the size of H
(0)

. For both cases, it is relatively unlikely that the number
of vertices deleted in total exceeds a small constant fraction of |V |. Therefore, we get a low
overall probability for |H| ≥ αn for α not too small, as desired.

Following this strategy, we obtain

P
[
|H| ≥ αn

]
≤ P

[

|H| ≥ αn
∣
∣
∣ |H (0)| ≥ α

2
n
]

· P
[

|H (0)| ≥ α

2
n
]

+ P
[

|H| ≥ αn
∣
∣
∣ |H (0)| <

α

2
n
]

· P
[

|H (0)| <
α

2
n
]

≤ P
[

|H (0)| ≥ α

2
n
]

+ P
[

|H| ≥ αn
∣
∣
∣ |H (0)| <

α

2
n
]

,

and so the lemma stated above follows from

P
[

|H (0)| ≥ α

2
n
]

≤ exp(− (log α + Ω (d)) · αn)

and
P
[

|H it| ≥ α

2
n
∣
∣
∣ |H (0)| <

α

2
n
]

≤ exp(Ω (d · log α · αn)) .

These relations will be established subsequently in Lemma 5.4.3 and Lemma 5.4.4, respectively.
⊓⊔

Before turning to the results the proof of Lemma 5.4.1 is based on, we will take a closer
look at Equation (5.17). Let c(0) be a constant such that the expression log α + Ω (d) in this
equation can be written as log α + c(0)d. As we will see c(0) depends on the constant δ in
the definition of H. If δ is fixed for the construction of H then we will choose c(0) in such
a way that Lemma 5.4.1 remains valid if we reduce δ slightly to δ′. This will be needed in
Section 5.6, where we employ a modification of the construction process for H. The use of δ′

in the definition of c(0) is justified by the fact that we are interested in bounding the size of
H from below in this section. This quantity increases with larger δ and so using δ′ instead of
δ gives a stronger condition for the choice of c(0).

Note further that log α+ c(0)d gets negative for α < 2−c(0)d and consequently the bound (5.17)
on P[ |H (0)| ≥ αn/2 ] gets trivial in this case. As we will see in Section 5.7, however, this
bound is small enough for our purposes if

α > α0 := 2−c(0)d/10,

i.e., the recovery procedure can extend a coloring of H to the whole graph G in polynomial
expected time if H > α0n (cf. Lemma 5.7.4). This motivates why we use the following
assumption on H in subsequent stages of Algorithm 5.1.

Remark 5.4.2
We can assume that H < α0n whenever discussing the actions of Algorithm 5.1 on H in the
following analysis.
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We now return to the investigation of |H| by first considering the size of H
(0)

and then studying
the iterative deletion procedure.

The Number of Vertices Deleted in the Initial Steps

Recall that H
(0)

= H
(+) ∪H

(−)
is formed by those vertices having too many (H

(+)
) or too few

(H
(+)

) neighbors in some color class of G other than their own. For proving the next lemma
we determine the sizes of these two vertex sets separately.

Lemma 5.4.3
For 0 < α < 1/2 and constant 0 < δ < 1/2,

P
[

|H (0)| ≥ α

2
n
]

exp(− (log α + Ω (d)) · αn) .

Proof:

We start by considering the vertices in H
(+)

only and give an estimate on P[ |H (+)| ≥ αn/4 ].

The corresponding probability for H
(−)

will then be deduced from this result by an argument
that uses the symmetry of these two sets with regard to E

[
degCi

(v)
]

= d/3 for vertices v ∈ Cj,
i 6= j.

Idea: We first calculate the probability p that a vertex in Ci has degree greater than (1+δ)d/3

in some partition Cj with i 6= j. Then the probability distribution of H
(+)
i := |H (+) ∩ Ci| is

given by the binomial distribution Bin(p, n/3).

Calculating p: By symmetry we may consider a vertex v ∈ C1 without loss of generality. For
computing the desired probability we make use of E[ degC2

(v) ] = E[ degC3
(v) ] = d/3, the fact

that δ is constant, and the Chernoff bound given in (5.5):

p ≤ P

[

degC2
(v) ≥ (1 + δ)

d

3

]

+ P

[

degC3
(v) ≥ (1 + δ)

d

3

]

(5.5)

≤ 2 exp

(

− δ2d2

6(d + dδ
3 )

)

≤ 2 exp

(

−δ2d

7

)
(5.7)

≤ exp

(

−δ2d

8

)

.

Here, we apply Equation 5.7 from Observation 5.2.4 since we can assume that d = pn is
sufficiently large.

Calculating P[ |H (+)| ≥ αn/4 ]: Without loss of generality, let C1 be the partition that max-

imizes H
(+)
i , i.e., if |H (+)| ≥ αn/4 then |H (+)

1 | ≥ αn/12. Thus

P
[

|H (+)| ≥ α

4
n
]

≤ 3 ·P
[

H
(+)
1 ≥ αn

12

]

≤ 3

( n
3

α
4 · n

3

)

pαn/12
(5.3)

≤ 3 exp
(

−α

2
log

α

4
· n

3

)

· exp

(

−δ2d

8
· αn

12

)

≤ 1

2
exp

((

ln 6 − 1

6
log

α

4
− δ2d

96

)

αn

)

(5.7)

≤ 1

2
exp

(

−
(

log α +
δ2d

97

)

αn

)

=
1

2
exp(− (log α + Ω (d)) αn)

(5.18)

for constant δ and α < 0.5.
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C1 C2H
(k)∩ C1 H

(k)∩ C2

H
(<k)
1 − H

(0)
H

(<k)
2 − H

(0)

H
(0) ∩ C1 H

(0) ∩ C2

Figure 5.2: Vertices in H
(k)

are deleted from H because they have too many neighbors
outside H in Ci for some i.

Since P[ |H (0)| ≥ αn ] ≤ P[ |H (+)| ≥ αn ] + P[ |H (−)| ≥ αn ] it remains to argue that an ana-

logue of (5.18) holds for |H (−)| in order to establish Lemma 5.4.3. For this purpose, notice
that the Chernoff bound (5.5) exceeds the corresponding lower tail bound (5.6). Thus, by the

definition of H
(−)

and H
(+)

, the probability that H
(−)

reaches a certain size can be estimated

using the same methods as above for H
(+)

and so

P
[

|H (−)| ≥ αn
]

≤ 1

2
exp(− (log α + Ω (d)) αn) .

⊓⊔

The Number of Vertices Deleted in the Iterative Deletion Procedure

The iterative deletion procedure removes vertices having too many neighbors in the set of
formerly deleted vertices. The aim of the following calculations is to estimate the probability
that the number of these vertices gets considerably bigger than the set of vertices deleted in
the initial steps.

For this purpose we condition on the event |H (0)| ≤ 3 · |H it|. The constant 3 in this bound
is not required for analyzing the performance of the recovery procedure on H. We introduce
it for obtaining calculations robust enough to allow certain changes to the construction of H.
This will be needed in Section 5.6.

Lemma 5.4.4
Assume that 0 < α < 1/2 and that 0 < δ < 1/2 is constant in the definition of H. Then

P
[

|H it| ≥ α

2
n
∣
∣
∣ |H (0)| ≤ α

2
n
]

≤ P

[

|H it| ≥ α

2
n

∣
∣
∣
∣
|H (0)| ≤ 3α

2
n

]

≤ exp(Ω (d · log α · αn)) .
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Proof:

The first inequality holds since edges are chosen independently in G and by the construction
of H.

For the second inequality, consider the first step in the deletion process, say step k, when more

than αn/2 vertices have been deleted in addition to H
(0)

and denote the vertices deleted prior

to step k by H
(<k)

. Then

H
(<k) ≤ 2αn

since |H (0)| ≤ 3αn/2 by assumption. Observe that each vertex in H
(<k) \ H

(0)
was deleted

because it had more than δd/3 neighbours in H
(<k)

(since H
(<k) \H

(0) ⊂ H
it

). Accordingly

the graph induced on H
(<k)

contains more than δd/3·αn/2 edges. At this point it is important

to notice that H
(<k)

is not a random subset of V , but this sets is selected deterministically.

Therefore, we can not treat the distribution of edges in H
(<k)

as randomly generated. To deal
with this difficulty we use Observation 5.2.5 and bound the desired probability from above
by calculating the probability that there exists any set Y ⊂ V of size at most 2αn in G with
e(Y, Y ) ≥ δd/3 · αn/2.

In the following calculation we show that with high probability a subgraph of this density does
not even exist in Gn,p and therefore the same result follows for Gn,p,3:

P

[

|H it| ≥ α

2
n

∣
∣
∣
∣
|H (0)| ≤ 3α

2
n

]

≤ P

[

∃Y ⊂ V : |Y | ≤ 2αn ∧ e(Y, Y ) ≥ δ
d

3
· α

2
n

]

≤ P

[

∃Y ⊂ V : |Y | = 2αn ∧ e(Y, Y ) ≥ δ
d

3
· α

2
n

]

≤
(

n

2αn

)( (2αn
2

)

δ d
3 · α

2 n

)

pδ d
3
·α
2

n

(5.2)

≤
( e

2α

)2αn
(

3e · 2αn(2αn − 1)

δd · αn

)δ d
3
·α
2

n (d

n

)δ d
3
·α
2

n

≤
(
( e

2α

)12
(

12e · α
δ

)δd
)α

6
n

=

(
( e

2α

)12
(

12e · α
δ

)12(12e · α
δ

)δd−12
)α

6
n

(5.7)
= exp(Ω (d · log α · αn)) .

⊓⊔

With this the proof of Lemma 5.4.1 is complete. We next investigate the effect of COLORGn,p,3

on H.

5.4.2 Coloring H

After assuring that H is a large subgraph of G in most cases, the aim of this section is to
show that this subgraph gets colored correctly with high probability by the iterative recoloring
procedure of Algorithm 5.1. To begin with, recall that in each step this procedure assigns to
each vertex the color that is least favorite among its neighbors.

For the following considerations it is important to notice that the coloring algorithm has
no means of determining the graph H defined by the deletion process in the last section.
Nevertheless, we can use the structural properties of H to show that the algorithm succeeds
on H with high probability. Note that no conclusions are drawn on properties of the coloring
obtained for vertices outside of H by the following analysis. So, being pessimistic, in what
follows we need to assume that all of them are colored incorrectly by the end of the recoloring
procedure.
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Idea: Since H has good expansion properties, it is likely that the number of vertices in H
that are colored incorrectly decreases by more than a factor of 2 in each of the recoloring steps.
If this performance is actually achieved, we call the corresponding step successful, otherwise
we say that it fails. Algorithm 5.1 performs at most log n of these steps. Afterwards, either
the entire graph H is colored correctly or one of the steps failed. As a consequence of the
results derived below, we will show in Section 5.7 that the later appears so seldom that the
brute force techniques provided by the recovery procedure can be used to repair the coloring
of H in this case. More specifically, the idea is that Algorithm 5.1 runs the iterative recoloring
procedure until just before the step, say step t, when it fails for the first time. The information
that all previous steps were successful provides an upper bound y on how many vertices of H
are colored incorrectly at that time. The algorithm then proceeds by exhaustively trying all
colorings on all subsets of G of size y and thus fixes the coloring of H in this way. However, since
Algorithm 5.1 can not discover whether a particular step of the recoloring procedure succeeds
or fails another iteration is necessary at this point. Algorithm 5.1 applies the strategy of
simply trying to repair each of the steps of the recoloring procedure subsequently, starting
with the last one and proceeding until it reaches step t. This explains the innermost loop of
the recovery procedure (Step 7 of Algorithm 5.1). Once the recovery procedure repaired step
t, all vertices of H are colored correctly.

For later reference this is summarized in the following remark.

Remark 5.4.5
After executing the iterative coloring procedure of Algorithm 5.1 and possibly the brute force
coloring method on appropriate vertex sets, the graph H is colored correctly.

Notice that the recovery procedure simultaneously corrects the mistakes of other steps of
the underlying algorithm and so the effects on the recoloring step are not made explicit in
Algorithm 5.1. A more detailed account on the overall picture is given in Section 5.7.

Based on the ideas described above we now calculate the probability that the iterative recol-
oring procedure fails on αn vertices of H.

Lemma 5.4.6
Consider the first step of the recoloring procedure that fails and let FH ⊆ H denote the set of
vertices of H that were colored incorrectly in H before this step. Then

P[ |FH | = αn ] ≤ exp(Ω (d · log α · αn))

for δ sufficiently small but constant in the definition of H.

Proof:

Let F (s) ⊆ H be the set of vertices in H colored incorrectly after step s of the iterative

recoloring procedure and denote by F
(s)
i the vertices of F (s) that belong to Ci.

Now, consider step t of the recoloring procedure and assume that all previous steps were
successful, but step t fails, i.e., F (t−1) = FH and |F (t)| ≥ |F (t−1)|/2. Let i 6= j and v ∈ F (t)

be a vertex in color class Ci that received color j in step t. Observe that, as v remains
colored incorrectly after step t, v can have at most degG(v) /3 neighbors that were colored
j in the previous step. But by construction, H contains only vertices which have at most
(1 + δ)d/3 neighbors in each color class other than their own and so degG(v) ≤ 2 · (1 + δ)d/3
and degCj∩H(v) ≥ (1 − δ)d/3. This implies that v has at most (2 · (1 + δ)d/9) neighbors in
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H

C1

C2
C3

v

F (t−1)

2

F (t−1)

3

Figure 5.3: Vertices v in C1 that received color 2 in step t of the recoloring procedure

need to have many neighbors in a small vertex set F
(t−1)
2 of C2.

Cj ∩ H − F (t−1) and so all other neighbors of v in Cj ∩ H, namely, at least

(1 − δ)
d

3
− 2 · (1 + δ)

d

9
= (1 − 5δ)

d

9

are contained in F (t−1). Figure 5.3 illustrates the different types of neighbors of v in Cj. We
conclude that the graph induced on F (t−1) contains at least (1 − 5δ) d/9 · |F (t)| edges. Using
Observation 5.2.5, we can therefore bound P[ |FH | = αn ] by calculating the probability that
some vertex set Y exists in V with |Y | = αn such that e(Y, Y ) ≥ (1 − 5δ)d/9 · αn/2. Notice
that the estimation of this probability is similar to the one carried out for evaluating the size

of H
it

:

P

[

∃Y ⊂ V : |Y | = αn ∧ e(Y, Y ) ≥ (1 − 5δ)
d

9
· α

2
n

]

≤
(

n

αn

)( (
αn
2

)

(1 − 5δ)d
9 · α

2 n

)

· p(1−5δ)d
9
·α
2

n

(5.2)

≤
( e

α

)αn
(

9e · αn(αn − 1)

(1 − 5δ)d · αn

)(1−5δ)d
9
·α
2

n(d

n

)(1−5δ)d
9
·α
2

n

≤
(
( e

α

)18
(

9e · α
1 − 5δ

)(1−5δ)d
) α

18
n

≤
(
( e

α

)18
(

9e · α
1 − 5δ

)18( 9e · α
1 − 5δ

)(1−5δ)d−18
) α

18
n

(5.7)
= exp(Ω (d · log α · αn)) ,

for δ sufficiently small. As argued above, this implies P[ |FH | = αn ] ≤ exp(Ω (d · log α · αn))
as desired. ⊓⊔

Note that the definition of FH above and Remark 5.3.6 imply an upper bound on the size of
FH .
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Remark 5.4.7
Let FH be the vertex set defined in Lemma 5.4.6. Then |FH | < ǫn.

5.5 Uncoloring the Remaining Incorrectly Colored Vertices

As we saw in the last section, the iterative recoloring procedure refines the initial coloring of G.
At the end of this procedure, COLORGn,p,3 tries to determine those vertices that might still
be colored incorrectly and uncolor them. This task is performed in the uncoloring procedure
(Step 9 of Algorithm 5.1). The uncoloring procedure proceeds by repeatedly uncoloring all
those vertices of G that have less than d/6 neighbors of some color other than their own.

By the definition of H, this procedure does not effect the coloring of H if we assume that H
is colored correctly before this procedure is called as justified by Remark 5.4.5.

Observation 5.5.1
If H is colored correctly before the application of the uncoloring procedure, no vertex of H
gets uncolored by this procedure.

Indeed, since each vertex v in H has at least (1 − δ)d/3 neighbors in Ci ∩ H for each i such
that v 6∈ Ci and all these neighbors are colored with color i, v does not get uncolored as long
as δ < 1/2.

Accordingly, in what follows, we will turn our attention to vertices v 6∈ H.

5.5.1 Uncoloring the Vertices Outside of H

Many vertices outside of H do not share the strong regularity properties of vertices from
H. Some vertices of H might therefore neither be colored correctly by previous steps of
Algorithm 5.1, nor will they get uncolored by the uncoloring procedure. In the following we
show, however, that this is comparably unlikely.

Lemma 5.5.2
Let FΥ ⊂ G − H be the set of vertices that are colored incorrectly and remain colored after
the execution of the uncoloring procedure. Then

P[ |FΥ| = αn ] ≤ exp(Ω (d · log α · αn))

for 0 < α < 1
2 .

Proof:

More generally we will bound the probability that |FΥ| ≥ αn from above.

If a vertex v in Ci is colored incorrectly, say with color j, and remains colored after the
uncoloring procedure, v must have at least d/6 neighbors of color i. Since v is not adjacent
to any vertex in its own color class Ci, all these neighbors are elements of FΥ as well. Hence
it suffices to determine the probability that there is some set Y ⊂ V (G) with |Y | = αn and
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minimum degree at least d/6:

P[ |FΥ| ≥ αn ] ≤ P[ ∃Y ⊂ V (G) : |Y | = αn ∧ mindeg(Y ) ≥ d/6 ]

≤ P

[

∃Y ⊂ V (G) : |Y | = αn ∧ e(Y, Y ) ≥ d

12
αn

]

≤
(

n

αn

)((αn
2

)

d
12αn

)

pd·αn/12
(5.2)

≤
( e

α

)αn
(

6e(αn − 1)

d

)d·αn/12(d

n

)d·αn/12

≤
( e

α
(6eα)d/12

)αn
≤
(

6e2 (6eα)d/12−1
)αn (5.7)

= exp(Ω (d · log α · αn)) .

⊓⊔

5.6 Recoloring the Uncolored Vertices

Knowing that the uncoloring procedure succeeds in uncoloring all vertices of wrong color with
high probability, we are now left with the task of assigning a new color to these uncolored
vertices. In Algorithm 5.1 this is taken care of by the extension step in Step 10. Here, an
exact coloring routine makes sure that the vertices are forced to be colored correctly this
time. In spite of having exponential worst time complexity, this step performs polynomial on
average as we will see in this section. For this purpose, we use techniques developed by Alon
and Kahale in [2], to show that all components induced on the set of uncolored vertices are
rather small. The main goal is to prove the following lemma.

Lemma 5.6.1
For α < α0,

P
[
there is a component of order αn in H

]
≤
(

d

exp(Ω (d))

)αn

.

Recall that α0 = 2−c(0)d/10 for a constant c(0) (see Section 5.4.1, page 43) and notice that it is
sufficient to consider only α smaller than α0 by Remark 5.4.2.

From Lemma 5.6.1 it follows that with high probability a valid coloring of H can indeed be
extended to the whole graph G by Step 10 of Algorithm 5.1 as long as H does not get too
large. This will be proven in the next lemma.

Lemma 5.6.2
The extension step (Step 10) of Algorithm 5.1 has polynomial expected running time.

Proof:

As explained, in Step 10 of Algorithm 5.1 an exact coloring method is used to extend the
partial coloring obtained in earlier steps to the whole graph G. In this process the components
induced on the vertices uncolored by the uncoloring procedure are considered independently.
On each such component the algorithm tries all possible colorings until it finds one that is
compatible to the coloring of the rest of G.

By definition the expected running time of this procedure is determined by the complexity of
the exact coloring method used and the probability that it has to be executed on vertex sets of
a certain size. Trivially there are at most n components in the set of uncolored vertices and so
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it suffices to show that the probability that a component of G−H has αn vertices multiplied
by 3-COL (αn) remains small for all α < α0:

P[ there is a component of order αn in G − H ] · 3-COL (αn)

≤
(

d

exp(Ω (d))

)αn

· 3αn ≤
(

3d

exp(Ω (d))

)αn

= O(1) .

⊓⊔

Some more preparation is needed before we can turn to the proof of Lemma 5.6.1. Let αn be
the size of the largest component induced on the uncolored vertices. Clearly

P[ there is a component of order αn in G − H ] ≤ P[∃ a tree T � G − H of order αn ]

= P[ ∃ a tree T with |T | = αn : E(T ) ⊂ E(G) ∧ T ∩ H = ∅ ] .

(5.19)

Unfortunately the two events occuring on the last line of Equation (5.19) are not independent of
each other since H is not a random subgraph of G. For this reason, we modify the construction
of H depending on the tree T under study, resulting in a new subgraph H ′ of G. For this
subgraph the corresponding events can be seperated, giving an upper bound on the probability
we are interested in.

So, consider a fixed tree T with V (T ) ⊂ V (G) and all edges between different color classes
of G, but not necessarily satisfying E(T ) ⊂ E(G). Denote by T<4 all vertices v of T obeying
degT (v) < 4, set T≥4 := T − T<4, and let H ′ be the graph obtained from G by the following
process:

1. Construct a graph G′ = (V,E′) from G by discarding all edges in E(T ) and then re-
considering their occurence by throwing a new die : E′ = (E \ E(T )) ∪ E′(T ) where
E′(T ) ⊂ E(T ) contains each edge of T with probability p.

2. Delete all vertices in T≥4 from G′.

3. Apply the procedure for constructing H to G′ with δ slightly reduced to δ′ (see page 42).

Again, we refer to Steps 1 and 2 of the construction procedure for H within this process as
the two initial steps. Step 3 of the procedure for H is called the iterative deletion process, and

the corresponding sets are H
(0)′

and H
it′

.

Note that the graph G′ constructed in Step 1 above still is a 3-colorable graph with partitions
C1, C2, and C3 since all edges of T run between different partitions of G by definition. When
refering to the degree of a vertex v ∈ V into one of these partitions Ci in G′ we write degC′

i
(v).

The next lemma shows that this revised construction does indeed lead to independent events.
A similar version first appeared in [2] although the construction for H ′ used here is slightly
changed and so our analysis involves arguments different from those in [2].

Lemma 5.6.3
For any fixed tree T ,

P[ E(T ) ⊂ E(G) ∧ T ∩ H = ∅ ] ≤ P[ E(T ) ⊂ E(G) ] · P
[
T ∩ H ′ = ∅

]
.
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Proof:

By

P
[
E(T ) ⊂ E(G) ∧ T ∩ H ′ = ∅

]
= P[ E(T ) ⊂ E(G) ] ·P

[
T ∩ H ′ = ∅

∣
∣ E(T ) ⊂ E(G)

]

this lemma is a direct consequence of T ∩ H ′ ⊂ T ∩ H since the events T ∩ H ′ = ∅ and
E(T ) ⊂ E(G) are clearly independent due to Step 1 in the construction of H ′. Accordingly, it
remains to show that v 6∈ H ∩T implies v 6∈ H ′ ∩T . We assert this by comparing the different
deletion steps in the construction of H versus H ′.

First, consider vertices v ∈ H
(0)

deleted in one of the first two steps while constructing H
(i.e., vertices v with degCi

(v) ≶ (1 ∓ δ)d/3 for some i). If v 6∈ T then v is clearly deleted
in the initial steps of the construction of H ′. All vertices v ∈ T with v 6∈ T<4 are deleted
from H ′ as well. For v ∈ T<4 finally we have either degC′

i
(v) ≥ (1 + δ)d − 3 ≥ (1 + δ′)d or

degC′
i
(v) ≤ (1 − δ)d + 3 ≤ (1 − δ′)d by the definition of T<4 and so v ∈ H

(0)′
in this case too.

Now, let us turn to vertices v ∈ H
it

. By the preceeding arguments we know that H
(0) ⊂ H

(0)′
.

We proceed by induction on the steps in the recursive deletion process. In each of these steps
in the construction of H, those vertices v are deleted from H that have more than 2δd/3
formerly deleted neighbors. Again, in the case v 6∈ T such a deletion carries over to a deletion

from H ′ since H
(0) ⊂ H

(0)′
and by applying the induction hypothesis. The case v ∈ T≥4 may

be omitted since these vertices were deleted from H ′ already. Thus, it remains to consider
v ∈ T<4 (observe that we can not use the same argument here as in the case v 6∈ T since
the edges on vertices from T are different in H and H ′). By induction hypothesis and the
definition of T<4 we know that v has at least 2δd/3 − 3 ≤ 2δ′d/3 neighbors that were deleted
from H ′ in earlier steps. It follows that v is deleted from H as well.

This concludes the proof of H ′∩T ⊂ H∩T and shows more generally that H ′ ⊂ H. Therefore,
the validity of Lemma 5.6.3 is verified. ⊓⊔

With this we are ready to prove Lemma 5.6.1. There, we are interested in trees T with
|T | = αn. In this case |T<4| ≥ αn/2 because |T<4| ≥ |T | /2 follows from

|T | − 1 = |E(T )| =
1

2




∑

v∈T<4

degT (v) +
∑

v∈T≥4

degT (v)



 ≥ 1

2
· 4 |T≥4| .

The following discussion will partly refer to the analysis provided in Section 5.4. Keep in mind
though that the symbol α is used in a different context there.

Proof of Lemma 5.6.1:

By Equation (5.19) and Lemma 5.6.3, we can rewrite the probability we are interested in as
follows:

P[ ∃T with |T | = αn : E(T ) ⊂ E(G) ∧ T ∩ H = ∅ ] ≤
∑

T

P[ E(T ) ⊂ E(G) ] ·P
[
T ∩ H ′ = ∅

]
.

Since the edges of G (and G′) are chosen independently from each other, the probability that
E(T ) ⊂ E(G) for a fixed tree T is simply pαn. So in the main part of this proof we will
investigate the probability P[ T ∩ H ′ = ∅ ] and show that

P
[
T ∩ H ′ = ∅

]
< exp(−α · Ω (dn)) .



5.6 Recoloring the Uncolored Vertices 53

This suffices for establishing the desired bound: It is well known that the number of labeled
trees on y vertices is yy−2 (see e.g., [52] ) and consequently

∑

T

P[ E(T ) ⊂ E(G) ] · P
[
T ∩ H ′ = ∅

]

≤
(

n

αn

)

(αn)αn−2 · pαn−1 · exp(−α · Ω (dn))

(5.2)

≤
(

e

α
· αn · d

n
· exp(−Ω (d))

)αn

≤
(

d

exp(Ω (d))

)αn

.

Calculating P[ T ∩ H ′ = ∅ ]: H ′ is obviously not a random subgraph of G. However, the
event T ∩H ′ = ∅ does not depend on the structure of H ′, but only on the vertices contained in
this subgraph. Moreover, the construction of H ′ is independent of the labeling of the vertices
involved. Now, consider a fixed graph F . Then, by the foregoing remarks, among all graphs
from Gn,p,3 the event that F is induced on a particular set of vertices and forms the graph
H ′ has the same probability as the event that this happens for any other set of vertices.
Consequently, we get an invariance under permutation of the labeling of G (while leaving the
labeling of T fixed) and so the only information about H ′ that is necessary for determining
the desired probability is its size. For this reason, we will next try to estimate |H ′|. Since
the construction of H ′ resembles that of H apart from minor changes, it will not be difficult
to argue why the calculations concerning the size of H in Section 5.4 can be applied to H ′ as
well. But before providing these arguments, it is a good idea to recall some observations made
when investigating the size of H and use them to develop a reasoning for the strategy we will
follow from here on.

In Section 5.4, the probability that |G − H| exceeds αn was bounded by

exp(− (log α + Ω (d)) · αn) + exp(Ω (d · log α · αn))

(see Lemma 5.4.1). In this connection we also remarked that the given estimation does not
allow for a nontrivial upper bound when α ≪ α0 = 2−c(0)d/10, where c(0) is the constant
defined on page 43. As mentioned, we will show that we can use the same bound for a
corresponding result on |H ′| which will, again, only be useful in the case that |G − H ′| is at
least of size α0n. This gives a motivation for rewriting P[ T ∩ H ′ = ∅ ] by conditioning on the
event |H ′| ≥ (1 − α0) n :

P
[
T ∩ H ′ = ∅

]
= P

[
T ∩ H ′ = ∅

∣
∣
∣
∣H ′∣∣ ≥ (1 − α0) n

]
· P
[ ∣
∣H ′∣∣ ≥ (1 − α0) n

]

+ P
[
T ∩ H ′ = ∅

∣
∣
∣
∣H ′∣∣ < (1 − α0) n

]
·P
[ ∣
∣H ′∣∣ < (1 − α0) n

]

≤ P
[
T ∩ H ′ = ∅

∣
∣
∣
∣H ′∣∣ ≥ (1 − α0) n

]
+ P

[ ∣
∣H ′∣∣ < (1 − α0) n

]
.

(5.20)

Since, as discussed above, P[ T ∩ H ′ ] does only depend on the size of H ′ we can bound the
first term in Equation (5.20) in the following way:

P
[
T ∩ H ′ = ∅|

∣
∣H ′∣∣ ≥ (1 − α0) n

]
≤
(
α0n
|T |
)

( n
|T |
) ≤

(
e · α0n

|T | · |T |
n

)|T |

≤
(

e · 2−
1
10

c(0)·d
)αn

= exp(−α · Ω (dn)) .

For evaluating the second term we return to the discussion on the size of H ′.
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The initial steps in the construction of H and H ′ (i.e., removing vertices of high and low degree
in G and G′, respectively) are identical apart from the value of δ and δ′, respectively. The

computations concerning the size of the set H
(0) ⊂ G − H of initially deleted vertices have

been performed for δ′ in Section 5.4 (see Lemma 5.4.3). Since G and G′ are both graphs from

Gn,p,3, we consequently can adopt the results derived there for concluding that |H (0)′| < α0n/4
holds with probability at least

1 − exp
(

−
(

log
α0

2
+ c(0) · d

)

· α0

2
n
)

= 1 − exp

(

−
(

− 1

10
c(0) · d − 1 + c(0) · d

)

2−
1
10

c(0)·d−1n

)

= 1 − exp

(

− d

2O(d)
Ω (n)

)

.

T≥4 is of order at most αn/2 and therefore this set contains at most α0n/2 vertices. So the

number |H (0)′∪T≥4| of vertices removed from H ′ before the iterative deletion procedure starts
is certainly less than 3α0n/4 with the same probability.

Later, in Lemma 5.4.4 we calculated P
[

|H it| ≥ y
∣
∣
∣ |H (0)| ≤ 3y

]

for the number |H it| of

vertices removed in the iterative deletion procedure. Recall that the corresponding analysis

solely relied on the probability that a set H
it
i→j of vertices deleted in this procedure has got

many neighbors in a set H
it
j of formerly deleted vertices. Here, this probability does not depend

on the structure induced on the set H
it
j . In particular, the structure of the graph deleted

before the iterative deletion procedure takes effect is irrelevant to the results established in
this connection. We therefore conclude in accordance to Lemma 5.4.4 that given

|H (0)′ ∪ T≥4| ≤ 3α0n/4,

the event |H it′| < α0n/4 holds with probability at least

1 − exp(Ω (d · log α0 · α0n))

= 1 − exp
(

Ω
(

d · log 2−c(0)d/10 · 2−c(0)d/10n
))

(5.7)

≥ 1 − exp
(

Ω
(

−d · d · 2−c(0)d/10 · n
))

= 1 − exp

(

− d

2O(d)
Ω (n)

)

.

It follows that

P
[
|H ′| ≥ (1 − α0) n

]
≥ 1 − exp

(

− d

2O(d)
Ω (n)

)

and so, using the bound on P[ T ∩ H ′ = ∅ | |H ′| ≥ (1 − 6 · α0) n ] calculated earlier, we finally
arrive at

P
[
T ∩ H ′ = ∅

]
≤ P

[
T ∩ H ′ = ∅

∣
∣ |H ′| ≥ (1 − 6 · α0) n

]
+ P

[
|H ′| < (1 − 6 · α0) n

]

≤ exp(−α · Ω (dn)) + exp

(

− d

2O(d)
Ω (n)

)
α < α0≤ exp(−α · Ω (dn)) .

⊓⊔
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5.7 The Performance of the Recovery Procedure

As mentioned earlier all main steps of Algorithm 5.1, i.e., the construction of the initial color-
ing, the recoloring procedure, and the uncoloring procedure are executed in polynomial time.
Moreover, Lemma 5.6.1 guarantees that the extension step of COLORGn,p,3 has polynomial
expected running time. It therefore remains to investigate the recovery procedure consisting
of the loops in Steps 2, 3, 4 and 7 of Algorithm 5.1.

The results derived in the last few sections estimate the probabilities that one of the main
steps of Algorithm 5.1 fails on a vertex set Y of size y. As explained in Section 5.1, these vertex
sets are taken care of by the recovery procedure. In this section we study the overall running
time of the recovery procedure by bringing together these previous results. We establish the
following lemma and thus complete the proof of Theorem 4.

Lemma 5.7.1
The recovery procedure (i.e., Steps 2 to 7) of Algorithm 5.1 has polynomial expected running
time.

For motivating the strategy we use, Figure 5.4 provides an overview on the interactions between
the main steps of Algorithm 5.1 and the recovery procedure. In this figure the main steps are
given as nodes. The “+”-signs denote success, the “−”-signs failure of the corresponding steps.
In the later case the action that needs to be performed in order to fix the failure is given in
italic on the edge to the next node. All these actions are implicitly executed by the recovery
procedure of Algorithm 5.1. They are not mentioned separately since the algorithm cannot
compute the various subgraphs of G used in different parts of the analysis.

The notation used in Figure 5.4 is inherited from the preceeding sections. In particular, recall
that H is the maximal subgraph of G with (1 + δ)d/3 ≤ degCi

(v) ≤ (1 − δ)d/3 for all v ∈ Cj,
i 6= j ∈ {1, 2, 3}, and some appropriate δ. FH are those vertices in H which are colored
incorrectly after the recoloring procedure of Algorithm 5.1. FSDP is the set of vertices that
need to be assigned a different color for obtaining a valid coloring on an (1 − ǫ)-fraction of G
after the inital phase. The set of vertices colored incorrectly after the uncoloring procedure
finally is denoted by FΥ and

α0 = 2−c(0)d/10

for some constant c(0) (cf. page 43).

Note that we do not rely on the uncoloring procedure and the extension step if the graph H
gets too small. In this case, it is sufficient to assume that the recovery procedure takes care of
all vertices in H. A justification of this strategy is provided with the following calculations.

Proof of Lemma 5.7.1:

Consider the vertex sets Y from Algorithm 5.1 that are colored correctly in Step 3 of the
recovery procedure and let t(y) be the time the algorithm needs to execute this step in the
case |Y | = y. Further, denote by F the set Y used in the iteration when the algorithm finally
obtains a valid coloring and recall that 3-COL (x) is the time needed to find all colorings for
a graph of order x.
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+

+

+

+

−

−

−

−
SDP3 colors an (1 − ǫ)-fraction of G

color FSDP correctly

|H| ≤ α0n

color H correctly

iterative coloring procedure on H

color FH correctly

uncoloring procedure

color FΥ correctly

extension step

done

done

Figure 5.4: A graph illustrating the calculations implicit to Algorithm 5.1.

The expected running time E[ t ] of the repair mechanism can then be written as

E[ t ] =
∑

y≤n

P[ |F | = y ] · t(y)

=
∑

y≤n

P[ |F | = y ] ·
∑

y′≤y

(
n

y′

)

3-COL
(
y′
)

≤ O(n)
∑

y≤n

P[ |F | = y ] ·
(

n

y

)

3-COL (y) .

(5.21)

We proceed by splitting the summands P[ |F | = y ] ·
(
n
y

)
3-COL (y) into different components

and show that each of them evaluates to a polynomial. To begin with, we bound P[ |F | = y ]
by rewriting F as sum of FSDP , FH , FΥ and possibly H. For this, observe that

F = FSDP ∪ FH ∪ FΥ.

Consistent with the strategy outlined in Figure 5.4, however, the following analysis only applies
this partitioning of F in the case that

∣
∣H
∣
∣ ≤ α0n. If

∣
∣H
∣
∣ ≤ α0n we use

F ⊂ FSDP ∪ FH ∪ H.
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Since all probabilities involved are monotone decreasing, we get

P[ |F | = y ] ≤
∑

y1+y2+y3=y
y3≤α0n

P[ |FSDP | = y1 ∧ |FH | = y2 ∧ |FΥ| = y3 ]

+
∑

y1+y2+y3=y
y3>α0n

P
[
|FSDP | = y1 ∧ |FH | = y2 ∧

∣
∣H
∣
∣ = y3

]
.

One of the vertex sets involved in the conjunctions of this sum certainly contains more than
y/3 vertices and so

P[ |F | = y ] ≤ n3

{

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|FΥ| = y

3

])
if y

3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[ ∣
∣H
∣
∣ = y

3

])
otherwise.

By Remark 5.4.7, the size of FH does not exceed ǫn. Therefore, we can refine this equation in
the following way:

P[ |F | = y ] ≤ n3







max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[
|FΥ| = y

3

])
if y

3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[ ∣
∣H
∣
∣ = y

3

])
if y

3 ≥ ǫn,

max
(
P
[
|FSDP | = y

3

]
,P
[
|FH | = y

3

]
,P
[ ∣
∣H
∣
∣ = y

3

])
otherwise.

(5.22)

Now, let y = αn and recall that

P[ |FH | = αn ] ≤ (cHα)c′
H

d·αn =: fH(α),

P[ |FΥ| = αn ] ≤ (cΥα)c′Υd·αn =: fΥ(α),

and

P
[ ∣
∣H
∣
∣ = αn

]
≤ P

[ ∣
∣H
∣
∣ ≥ αn

]
≤ exp

(
−αn

(
log α + c(0) · d

))

︸ ︷︷ ︸

=:f(0)(α)

+ (citα)c′itd·αn

︸ ︷︷ ︸

=:fit(α)

=: fH(α)

by Lemmas 5.4.6, 5.5.2, and 5.4.1, respectively, for appropriate constants cH , c′H , cΥ, c′Υ, c(0),
cit, and c′it. With this we can rewrite (5.22) as

P[ |F | = y ] ≤ n3







max
(
P
[
|FSDP | = y

3

]
, fH( y

3n), fΥ( y
3n )
)

if y
3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[ ∣
∣H
∣
∣ = y

3

])
if y

3 ≥ ǫn,

max
(
P
[
|FSDP | = y

3

]
, fH( y

3n ), P
[ ∣
∣H
∣
∣ = y

3

])
otherwise.

(5.23)

The reason why we did not bound P
[ ∣
∣H
∣
∣ = y/3

]
by fH will become clear later. We next

exploit the fact that fΥ(α), fH(α), and fit(α) are of similar structure.

Observation 5.7.2
Let cmax := max(cH , cΥ, cit). Then there is some constant c′max such that each of the functions
fΥ(α), fH(α), and fit(α) is less than or equal to

fmax(α) := (cmaxα)c′maxd·αn

in the whole interval 0 < α < 1.
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Indeed, our estimates on the three probabilities in question are all of the form (cα)c′d·αn

where c > 1 and c′ > 0. Note that for comparing two functions of this form, we can omit
the exponent d · αn. So, consider two functions f1(y) := (c1y)c′1 and f2(y) := (c2y)c′2 with
c1, c2 > 1, c′1, c

′
2 > 0, and c1 ≥ c2. Then f1 ≥ f2 for y < 1 provided that c′1 ≤ c′2 and

c1
c′1 ≥ c2

c′2 . These inequalities may be asserted by choosing c′2 := c′1 + ν with ν sufficiently
small since

c
c′1
1 ≥ c

c′1+ν
2 ⇔ ν ≤ c′1

ln c1 − ln c2

ln c2
.

For c1 ≥ c2 this choice is always possible in such a way that ν ≥ 0. If follows that for each
function f ∈ {fΥ, fH , fit}, we can find a constant c′f such that (cmaxα)c′

f
αnd ≥ f(α) for α < 1.

Then, letting c′max be the maximum of these constants cf gives a function fmax with the
required properties.

Accordingly, (5.23) can be bounded by

P[ |F | = y ] ≤ n3







max
(
P
[
|FSDP | = y

3

]
, fmax( y

3n)
)

if y
3 ≤ α0n,

max
(
P
[
|FSDP | = y

3

]
,P
[ ∣
∣H
∣
∣ = y

3

])
if y

3 > ǫn,

max
(
P
[
|FSDP | = y

3

]
, fmax( y

3n), P
[ ∣
∣H
∣
∣ = y

3

])
otherwise.

Returning to the evaluation of P[ |F | = y ] ·
(
n
y

)
3-COL (y) in Equation (5.21), we therefore can

certainly guarantee the required polynomial bound on E[ t ] by asserting the following three
relations

P
[

|FSDP | =
y

3

]

·
(

n

y

)

3-COL (y) = O(1) for all y ≤ n, (5.24a)

P
[ ∣
∣H
∣
∣ =

y

3

]

·
(

n

y

)

3-COL (y) = O(1) for all
y

3
> α0n, (5.24b)

fmax

( y

3n

)

·
(

n

y

)

3-COL (y) = O(1) for all
y

3
< ǫn. (5.24c)

The first of these equations can be derived with the help of Corollary 5.3.5: Let y = αn. Then

P
[

|FSDP | =
y

3

]

·
(

n

y

)

3-COL (y) = P
[

|FSDP | =
αn

3

]

·
(

n

αn

)

3-COL (αn)

(5.2)

≤ 10−n ·
( e

α

)αn
3αn ≤ 10−n · 10n

since (e · 3/α)α < 10 for all 0 < α ≤ 1.

Moreover, (5.24b) and (5.24c) are proven below in Lemma 5.7.4 and Lemma 5.7.3 respectively.
This concludes the proof of Lemma 5.7.1. ⊓⊔

So the remainder of this section is dedicated to establishing the second and the third assertion
of (5.24). We start by showing (5.24c) in Lemma 5.7.3. Here we make use of the terminology
introduced in the proof of Lemma 5.7.1.

Lemma 5.7.3
For α/3 < ǫ,

fmax

(α

3

)

·
(

n

αn

)

3-COL (αn)

tends to a constant as n goes to infinity.
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Proof:

A straight forward calculation shows

fmax

(α

3

)

·
(

n

αn

)

3-COL (αn) ≤ (cmaxα/3)c′maxd·αn/3 ·
(

n

αn

)

· exp(ln 3 · αn)

(5.3)

≤ exp

((

(ln cmax + ln α − ln 3) c′max

d

3
− 2 log α + ln 3

)

αn

)

≤ exp

((

ln cmax · c′max

3
d + ln α

(

c′max

d

3
− 3

))

αn

)

,

which is of order O(1) for

ln α <
ln cmax · c′max

d
3

3 − c′max
d
3

.

By Observation 5.2.4 this is satisfied for

ln α < 2
ln cmax · c′max

d
3

−c′max
d
3

= ln
1

c2
max

since cmax > 1. Thus, Lemma 5.7.3 follows if we choose

ǫ ≤ 1

3c2
max

. (5.25)

⊓⊔

For completing the proof of Lemma 5.7.1 it remains to complement the preceeding result by
an argument for (5.24b). This is provided by the following lemma.

Lemma 5.7.4
For α/3 > α0,

P
[ ∣
∣H
∣
∣ =

α

3
n
]

·
(

n

αn

)

3-COL (αn)

is of order O(1).

Proof:

Set α′ := α/3 and recall that

P
[ ∣
∣H
∣
∣ = α′n

]
≤ f(0)(α

′) + fit(α
′) (5.26)

with f(0)(α
′) = exp

(
−α′n

(
log α′ + c(0) · d

))
and fit(α

′) = (citα
′)c′itd·α′n. Notice that fit(α

′) ≥
1 for α′ ≥ 1/cit ≥ 1/cmax > ǫ and so this bound on P

[ ∣
∣H
∣
∣ = α′n

]
gets trivial for such α′.

Therefore, we proceed by discussing the cases α0 ≤ α′ < ǫ and α′ ≥ ǫ separately. In both cases
we will derive a constant bound on

P
[ ∣
∣H
∣
∣ = α′n

]
·
(

n

αn

)

3-COL (αn) = P
[ ∣
∣H
∣
∣ =

α

3
n
]

·
(

n

αn

)

3-COL (αn) . (5.27)

This establishes the lemma.
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First, assume α′ < ǫ. We evaluate the two terms f(0)(α
′) and fit(α

′) contributing to the bound
in (5.26) independently. By Observation 5.7.2 and Lemma 5.7.3, we know that

fit

(α

3

)

·
(

n

αn

)

3-COL (3αn) = O(1) .

Using (5.3) we obtain a corresponding result for f(0)(α
′):

f(0)

(α

3

)

·
(

n

αn

)

3-COL (αn) ≤ exp
(

−α

3
n
(

log
α

3
+ c(0) · d

))

·
(

n

αn

)

· exp(ln 3 · αn)

(5.3)

≤ exp
(

−α

3
n
(
log α − log 3 + c(0) · d + 3 · 2 log(α) − 3 ln 3

))

(5.7)

≤ exp

(

−α

3
n

(

6 log α +
6

10
c(0) · d

))

.

This term tends to a constant for

− log α <
1

10
c(0) · d,

which holds for α/3 = α′ > α0 since we chose α0 = 2−c(0)d/10 in Section 5.4.1 (see page 43).
This settles the case α0 < α′ < ǫ.

For α′ ≥ ǫ we need to follow a different strategy. By monotonicity we have

P
[ ∣
∣H
∣
∣ = α′n

]
≤ P

[ ∣
∣H
∣
∣ ≥ α′n

]
≤ P

[ ∣
∣H
∣
∣ ≥ α′′n

]

for α′′ ≤ α′. Moreover,

(
n

αn

)

3-COL (αn)
(5.2)

≤
( e

α

)αn
3αn ≤ 10n

since (e · 3/α)α < 10 for all 0 < α ≤ 1. Accordingly, (5.27) can be bounded from above by

P
[ ∣
∣H
∣
∣ ≥ ǫn

]
· 10n ≤ f(0)(ǫ) · 10n + fit(ǫ) · 10n.

For these two summands we can now easily provide constant bounds:

f(0)(ǫ) · 10n = exp(−ǫn (log ǫ + Ω (d))) exp(ln 10 · n) = exp(n(O(1) − Ω (d)))

fit(ǫ) · 10n = (cit · ǫ)c′itd·ǫn exp(ln 10 · n) = exp(n(O(1) − Ω (d))) .

⊓⊔

Observe that the second part of this proof demonstrates in particular that Algorithm 5.1 can
even afford to use the recovery procedure on the whole graph G if

∣
∣H
∣
∣ grows beyond ǫn.
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“I conclude that there are two ways of con-

structing a software design: One way is

to make it so simple that there are obvi-

ously no deficiencies and the other way is

to make it so complicated that there are no

obvious deficiencies. ”

Tony Hoare

We proved that random 3-colorable graphs taken from Gn,p,3 can be 3-colored in polynomial
time on average if p ≥ c/n, where c is some sufficiently large constant. For obtaining this result
we applied techniques from the theory of semidefinite programming developed for problems in
combinatorial optimization. In combination with the methods designed by Alon and Kahale
in [2] for coloring Gn,p,3 with high probability, these techniques led to an algorithm that achieves
the desired running time complexity.

The methods developed here can also be used for obtaining a similar result for Gn,p,k with
values of k other than 3. More precisely, the calculations presented in this thesis carry over to
arbitrary k for pn ≥ ck where ck is a constant depending on k.

One obvious question is whether it is possible to design an algorithm for coloring Gn,p,k in
polynomial expected running time for all values of p. In particular, it is not clear how to
deal with graphs of density pn = c′ for constant c′ ≪ ck. Additionally, one could require the
coloring that is constructed not only to be valid but to be optimal. Asserting this for graphs
G from Gn,p,3 is trivial: If χ(G) < 3 then G is bipartite and can easily be colored optimally.
It is not obvious how optimality can be ensured if k > 3.

While good standard solutions for solving semidefinite programs are available by now, cal-
culating these kind of problems still consumes an undesirable amount of time. This often
makes methods based on SDPs impracticable for graphs on more than 104 vertices. Spectral
properties of graphs can be calculated more easily. It is therefore natural to ask whether the
semidefinite programming techniques used in the algorithm COLORGn,p,3(G) may be replaced
by calculations merely involving the spectrum of G, similar to those suggested by Alon and
Kahale [2].

Since the study of random graphs revealed that these objects obey very special structural
properties, several authors have suggested the usage of semirandom models for inspecting the
behaviour of algorithms in a somewhat more realistic setting. In such models the random
generation of a graph is usually combined with an adversary that is allowed to insert edges in
a restricted manner.

Among such semirandom models, G∗
n,p,k is of particular interest to this work since it is an

extension of the random graph Gn,p,k as suggested by its name. For obtaining a graph from
G∗

n,p,k the edge set of a graph taken from Gn,p,k is complemented by an adversary who may
insert an arbitrary number of valid edges, i.e., edges between different color classes. This
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model was studied in [14] where the following result could be established.

Theorem 7 (Coja-Oghlan [14])
For k = k(n) and p = p(n) with np ≥ cmax

(
k · ln(n), k2

)
where c is a certain constant, G∗

n,p,k

can be k-colored in polynomial time on average.

In the same article, a negative result shows that this is near to best possible. However, the
techniques used for proving this result rely on the fact that the adversary may embed an
arbitrary k-colorable graph into Gn,p,k by adding many new edges. If the adversary, on the
other hand, was only allowed to add a small constant number of new edges to the graph
an algorithm for k-coloring Gn,p,k would certainly carry over to G∗

n,p,k. Therefore, one could
ask how the adversary’s power can be restricted in such a way that the range of p for which
polynomial expected time coloring algorithms exist can be increased.
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[56] A. Rényi. Probability Theory. Elsevier, New York, 1970. 5

[57] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-coloring planar
graphs. In Proceedings of the 28th ACM Symposium on the Theory of Computing, pages
571–575, 1996. 3

[58] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the ACM,
23(3):555–565, 1976. 4.2

[59] E. Shamir and J. H. Spencer. Sharp concentration of the chromatic number on random
graphs Gn,p. Combinatorica, 7(1):121–129, 1987. 3.2

[60] A. Singh and M. Marek-Sadowska. Circuit clustering using graph coloring. In Proceedings

of the 1999 International Symposium on Physical Design, pages 164–169, 1999. 1



68 Bibliography

[61] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, New York, 1998. 1

[62] C. R. Subramanian. Algorithms for coloring random k-colorable graphs. Combinatorics,

Probability and Computing, 9:45–77, 2000. 1, 1, 3.3

[63] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation, and
linear programming. SIAM Journal on Computing, 29:2074–2097, 2000. 4.2

[64] J. S. Turner. Almost all k-colorable graphs are easy to color. Journal of Algorithms,
9:253–261, 1988. 1, 3.2

[65] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer, 1997. 2.4.1,
4

[66] E. W. Weisstein. Chi distribution.
http://mathworld.wolfram.com/ChiDistribution.html.
From MathWorld – A Wolfram Web Resource. 2.2

[67] A. Wigderson. Improving the performance guarantee for approximate graph coloring.
Journal of the ACM, 30(4):729–735, 1983. 3.1

[68] D. C. Wood. A technique for coloring a graph applicable to large scale optimization
problems. Computer Journal, 12:317, 1969. 1

http://mathworld.wolfram.com/ChiDistribution.html

	1 Introduction
	2 Notation and Definitions
	2.1 Graphs
	2.2 Random Graphs
	2.3 Algorithmic Aspects
	2.4 Convex Optimization
	2.4.1 Linear Programming
	2.4.2 Semidefinite Programming


	3 Coloring Graphs
	3.1 Approximating the Chromatic Number
	3.2 Coloring Random Graphs in Polynomial Time
	3.3 Coloring Fast on Average

	4 Semidefinite Programming
	4.1 Semidefinite Programs and Combinatorial Optimization
	4.2 Maximum Cuts
	4.3 Maximum k-Cuts
	4.4 Coloring

	5 An Algorithm for Coloring Gnp3 in Polynomial Expected Time
	5.1 The Algorithm COLORGnp3
	5.2 Preliminaries
	5.3 Finding an Initial Coloring
	5.3.1 Rounding the SDP Solution

	5.4 Extending the Initial Coloring to a Large Subgraph H of G
	5.4.1 The Size of H
	5.4.2 Coloring H

	5.5 Uncoloring the Remaining Incorrectly Colored Vertices
	5.5.1 Uncoloring the Vertices Outside of H

	5.6 Recoloring the Uncolored Vertices
	5.7 The Performance of the Recovery Procedure

	6 Conclusions

