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Bounded Degree Subgraphs of Dense Graphs

Subgraph containment problem

Given a graph H, which conditions on an n-vertex graph G = (V, E)
ensure H C G?

Our aim: every graph G = (V, E) with minimum degree 5(G) >?7?
contains a given graph H.

Classical example:

n = A Ham JCG DIRAC'52

5(G) =

N[

This talk
H is a spanning subgraph of G.
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Bounded Degree Subgraphs of Dense Graphs

From Small Graphs to Spanning Graphs

m A graph H of constant size is forced in G, when

x(H)—2

A= <X(H) =l

+o(1)> n.

x(H)-1

m For spanning H we need at least 6(G) > n, because:

Xx(H)

m Does §(G) > (% +o(1))n imply H C G?
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m5(G) > X(F)jln = L%j disj. copies of F C G
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Alon-Yuster conjecture

m §5(G) >=2n = (Ham)' C G.
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Big Graphs

Does (G (X;H(& -+ ))n imply H C G?
OISV

HAJNAL,SZEMEREDI'69

m5G) > X, o L#;] disj. copies of F C G

KomLOS, SARKOZY, AND SZEMEREDI ‘01

m5(G)>4n = Ham? ; ; ; ; "C G

Pobsa’s conjecture FaN, KIERSTEAD '95

KomLOs, SARKOZY, AND SZEMEREDI’98

m5(G) > ( +v)n = every spanning tree with A(T) < C G.

Iog n
Tree unlversa“ty KomLOs, SARKOZY, AND SZEMEREDI'95
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Bounded Degree Subgraphs of Dense Graphs

Generalizing Conjecture

Forallk, A > 1, and y > 0 exists ng s.t.

5(G) > (52 +v)n

— G contains H.

Counterexample:
H : random bipartite graph on 3 + 3 vertices with A(H) < A,
G : two cliques of size (3 +y) n sharing 2yn vertices.
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Bounded Degree Subgraphs of Dense Graphs

Conjecture of Bollobas and Komlés

Forallk, A > 1,andy > 0 exists np and [3 > 0 s.t.

x(H) =k k—1
0(G) > (.= +vy)n
(H) < (G) > ( K Y)
bw(H) < Bn = G contains H.
Bandwidth:

bw(G) < b if there is a labelling of V(G) by 1,...,n
s.t. for all {i,j} € E(G) we have |i —j| < b.
.“.m........./._.\....... ( X ] 00000 — -

]
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Bounded Degree Subgraphs of Dense Graphs

Conjecture of Bollobas and Komlés

Forallk, A > 1,andy > 0 exists np and [3 > 0 s.t.

x(H) =k k—1
A 8(G) > (= +v)n
bw(H) < Bn — G contains H.

Examples for H:

Hamiltonian cycles (bandwidth 2) v A A s

graphs of constant tree width (bandwidth O(n/log, n))
bounded degree planar graphs (bandwidth O(n/log, n))
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Bounded Degree Subgraphs of Dense Graphs

Conjecture of Bollobas and Komlés

Forallk, A > 1,andy > 0 exists np and [3 > 0 s.t.

x(H) =k
AH) <A
bw(H) < Bn

5(G) > (52 +v)n

— G contains H.

Abbasi '98 annouced 2-chromatic case (see also Hiép Han '06)
additional yn is necessary

Proof uses regularity lemma, blow-up lemma, and affirmative solution

of PGsa’s conjecture AVAVAVAVA
G2 % ‘:,
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Conjecture of Bollobas and Komlés
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Bounded Degree Subgraphs of Dense Graphs

Naive conjecture

m8(G) > (5L +v)n — G contains H

Counterexample:
= H : random bipartite graph on 5 + 5 vertices with A(H) < A.
m G : two cliques of size (3 + ) n sharing 2yn vertices.
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Bounded Degree Subgraphs of Dense Graphs

Increasing the minimum degree

— G contains H

Counterexample:
= H': random bipartite graph on § + 7 vertices with A(H) <

wlp>

n
Z

m Obstacle: G has big subsets A and B with e(A, B) empty.

TU Miinchen
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Quasi-random graphs

Obstacle: G has big subsets A and B with e(A, B) empty.
(n,d,A)-graphs G (i.e. d-regular with A(G) < A) have

d
le(A,B) — E|A||B|\ < AM/JA|B| forallA,B C V(G).

Ford =+yn and A = o(n) every (sufficiently large) (n,d,A)-graph G
contains all H on n vertices with A(H) < A.
Because:
H has an A 4+ 1-colouring with colour classes of equal size. (mmor H.sz)
Every equi-partition of G into A + 1 parts is e-regular.
There is such a partition that is also super-regular.

By bIOW'Up Iemma, G contains H. (KOMLOS, SARKOZY, SZEMEREDI)
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Quasi-random graphs

Obstacle: G has big subsets A and B with e(A, B) empty.
(n,d,A)-graphs G (i.e. d-regular with A(G) < A) have

d
le(A,B) — E|A||B|\ < AM/JA|B| forallA,B C V(G).

Ford =+yn and A = o(n) every (sufficiently large) (n,d,A)-graph G
contains all H on n vertices with A(H) < A.
What about sparser graphs?

IfA(G) =0 (L) (i.e. d > n*5log?/® n) then G has a triangle

nZlogn

factor. KRIVELEVICH, SUDAKOV, SzABO'04
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Concluding remarks

H) =k, A(H) < A, bw(H) < Bn
5(G) > (52 +v)n — G contains H

m Which further restrictions on G allow us to ommit the bandwidth
restriction on H?

= How many copies of H do we get?
(for bipartite H see Person’07)

m What about spanning graphs H of non-constant max. degree?

Ba takashah!
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