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Abstract. The blow-up lemma states that a system of super-regular pairs

contains all bounded degree spanning graphs as subgraphs that embed into a cor-
responding system of complete pairs. This lemma has far-reaching applications

in Extremal Combinatorics.
We prove sparse analogues of the blow-up lemma for subgraphs of random

and of pseudorandom graphs. Our main results are the following three sparse

versions of the blow-up lemma: one for embedding spanning graphs with
maximum degree ∆ in subgraphs of Gn,p with p = C(logn/n)∆; one for

embedding spanning graphs with maximum degree ∆ and degeneracy D in

subgraphs ofGn,p with p = C∆

(
logn/n

)2D+1
; and one for embedding spanning

graphs with maximum degree ∆ in (p, cpmax(4,(3∆+1)/2)n)-bijumbled graphs.

We also consider various applications of these lemmas.
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CHAPTER 1

Introduction, applications, results and proof
overview

1.1. Introduction

Szemerédi’s regularity lemma [67], originally developed for the proof of Sze-
merédi’s celebrated result on arithmetic progressions [66], is one of the most influen-
tial tools in modern Discrete Mathematics. Numerous variants of this lemma, which
is an approximate structure theorem for graphs, have been established for applica-
tions in other areas of Mathematics, such as Additive Number Theory, Information
Theory, and Statistical Mechanics.

Applications of the regularity lemma include a wealth of results in such diverse
areas as Extremal Combinatorics, Ramsey Theory, Property Testing, or Discrete
Geometry. In such applications the regularity lemma is usually complemented by the
counting lemma or the blow-up lemma. The former allows one to deduce estimates on
small substructure counts from the (finitely sized) approximate structure provided by
the regularity lemma. The latter, on the other hand, is powerful for establishing global
structural properties. More precisely, the blow-up lemma, proved by Komlós, Sárközy
and Szemerédi [46], permits the embedding of certain bounded degree spanning
graphs. Alternative proofs can be found in [48, 61, 62]; for a nice introduction to
the blow-up lemma and explanations about how it is used in applications see the
surveys [47, 49].

One limitation of the original regularity lemma is that, because of the error terms,
this lemma is suitable only for dense graphs, that is n-vertex graphs with Ω(n2) edges.
Nonetheless it is desirable to have equally effective tools at hand for sparse graphs.
The most prominent example of why such sparse structures are of importance is
without doubt the famous Green-Tao Theorem [34] on arithmetic progressions in
the primes, which uses an approximate structure theorem for certain sparse subsets
of the integers. Moreover, the modern branch of Extremal Combinatorics concerned
with resilience results (a term coined by Sudakov and Vu [65]), which recently
received much interest, investigates such sparse graphs.

Analogues of the regularity lemma that also work in a sparse setting, that is, for n-
vertex graphs with o(n2) edges, do exist [41, 64]. However, a corresponding counting
lemma simply fails to be true in general (see, e.g., [42]). This impediment can be
overcome by posing additional restrictions on the graphs under consideration. The
existing counterexamples are known not to occur in random or certain pseudorandom
graphs, and it was a major breakthrough when recently counting lemmas could
finally be established in these settings: Counting lemmas for subgraphs of random
graphs were proved in [19, 26, 63], and for subgraphs of pseudorandom graphs
in [25].

What was so far missing in this effort to transfer these tools to the sparse setting
was a sparse version of the blow-up lemma. An important step in this direction
was taken in [44], where an embedding lemma for bounded degree graphs on cn
vertices for some very small constant c in n-vertex subgraphs of random graphs
was established. In [22] it was then shown that methods developed in [13] can be
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1.2. APPLICATIONS 2

used to prove a blow-up type result for embedding almost spanning bipartite graphs.
Moreover, in [18] a sparse embedding lemma for the special case of spanning triangle
factors was proved. Analogues of these partial results for pseudorandom graphs are
not known. But in [56] the importance of a generalisation of the blow-up lemma to
pseudorandom graphs was acknowledged.

In this paper we provide this missing piece and establish several sparse versions
of the blow-up lemma for random and for pseudorandom graphs. We also discuss a
variety of relatively straightforward applications of these lemmas and indicate more
intricate applications, which will appear elsewhere.

Organisation. We first motivate our blow-up lemmas in Section 1.2 by collect-
ing various applications of these lemmas, some of which will be proved in Chapter 6
and some of which will be proved in future papers. In Section 1.3 we then provide
our blow-up lemmas together with the necessary notation. We also state regularity
inheritance lemmas which are necessary in applications. In Section 1.4 we provide
an outline of the proofs of the blow-up lemmas. In Chapters 2–5 we give the proofs
of our blow-up lemmas. We will describe the purposes of these various chapters in
more detail in the proof outline (Section 1.4). We give the proofs of our applications
in Chapter 6, and finish off with some concluding remarks in Chapter 7.

Notational remarks. We will routinely omit floor and ceiling signs when they
do not affect the argument. All logarithms are taken to base 2.

1.2. Applications

In this section we collect a number of applications of our main results, establishing
new structural properties of random and of pseudorandom graphs. We defer proofs
of all these results to Chapter 6. The random graph model we work with in this
paper is the binomial model Gn,p, where each potential edge is included in a graph
with n vertices independently with probability p = p(n). If Gn,p has some property
with probability tending to 1 as n tends to infinity, we say Gn,p has this property
asymptotically almost surely, abbreviated a.a.s.

The study of pseudorandom graphs was initiated by Thomason [68], who asked
for a set of easy deterministic properties enjoyed by Gn,p a.a.s. which by themselves
imply many of the complex structural properties we know to hold for Gn,p. The
pseudorandomness notion we use in our blow-up lemma is closely related to the
notion suggested by Thomason, and is among the most widely used ones by now
(for example, the sparse counting lemma in [25] is developed for this notion as well).
We say a graph Γ is (p, β)-bijumbled if for all subsets X, Y ⊆ V (Γ) we have

|eΓ(X,Y )− p|X||Y || ≤ β
√
|X||Y | , (1)

where eΓ(A,B) is the number of edges in Γ with one endvertex in A and the other
endvertex in B. The random graph Gn,p is with high probability (p, β)-bijumbled
with β = O(

√
pn), which justifies this definition.

Another class of pseudorandom graph we shall refer to in the applications
are (n, d, λ)-graphs. These have been studied extensively and are a special case
of bijumbled graphs. For a graph Γ let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
the adjacency matrix of Γ. We call λ(Γ) := max{|λ2|, |λn|} the second eigenvalue
of Γ. An (n, d, λ)-graph Γ is a d-regular graph on n vertices with λ(Γ) ≤ λ. The
connection between (n, d, λ)-graphs and bijumbled graphs is provided by the well-
known expander mixing lemma (see, e.g., [17]), which states that if Γ is an (n, d, λ)-
graph, then ∣∣eΓ(A,B)− d

n |A||B|
∣∣ ≤ λ(Γ)

√
|A||B|

for all disjoint subsets A,B ⊆ V (Γ). This imples that Γ is
(
d
n , λ(G)

)
-bijumbled.
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1.2.1. Universal graphs. Let H be a set of graphs. We say G is H-universal
if H ⊆ G for each H ∈ H. Two particular classes of interest are H(n,∆), the
n-vertex graphs with maximum degree ∆, and H(n, d,∆), the n-vertex graphs with
maximum degree ∆ and degeneracy d.

It is interesting to ask when random, or quasirandom, graphs are H-universal.
An easy corollary of Lemma 1.21 is that for ∆ ≥ 2, the random graph Gn,p is a.a.s.

H(n,∆)-universal if p ≥ C
(

logn
n

)1/∆
, reproving a result of Dellamonica, Kohayakawa,

Rödl and Ruciński [29] (for ∆ ≥ 3) and Kim and Lee [40] (for ∆ = 2), the proof
being similar to that of Theorem 1.1 below. One would expect that Gn,p is already
H(n, d,∆)-universal for some rather smaller p if d is much less than ∆. For d = 1,
i.e. for bounded degree trees, Montgomery [58] announced that one may take

p = polylogn
n , which is optimal up to log factors. For d ≥ 2, the best previous result,

due to Ferber, Nenadov and Peter [31] is that we can take p = ω
(
∆12n−1/4d log3 n

)
1.

We prove the following strengthening.

Theorem 1.1. For each d ≥ 2, ∆ ∈ N and each γ > 0 there exists C such

that if p ≥ C
(

logn
n

)1/(2d+1)
, the random graph Gn,p is a.a.s. H(n, d,∆)-universal.

Furthermore, if p ≥ C
(

logn
n

)1/(2d)
the random graph G(1+γ)n,p is a.a.s. H(n, d,∆)-

universal.

The almost spanning universality result for G(1+γ)n,p with p ≥ C( logn
n )1/2d

should be compared to the recent result of Conlon, Ferber, Nenadov and Škorić [27],
who showed that the random graph G(1+γ)n,p is H(n,∆)-universal when p =

ω(n−1/(∆−1) log5 n) for ∆ ≥ 3. Our result is better for families H(n, d,∆) with
∆ ≥ 2d+ 1.

It is also interesting to ask how big e(G) must be for an H(n, d,∆)-universal
graph G. Alon and Capalbo showed that the correct answer is Θ

(
n2−2/∆

)
in [12]

for the case d = ∆ (i.e. for the class H(n,∆)), and that if one further insists that

v(G) = n then the correct answer is still O
(
n2−2/∆ log4/∆ n

)
in [11] (where the

extra polylog-factor is believed to be unnecessary). Theorem 1.1 provides sparser
H(n, d,∆)-universal graphs when d ≤ ∆/4.

Finally, we are able to show that sufficiently pseudorandom graphs are H(n,∆)-
universal. This was first suggested by Krivelevich, Sudakov and Szabó [56] who
gave a condition on λ for (n, d, λ)-graphs to contain a triangle factor. In earlier
work [3] we were able to improve on their condition, showing that there is ε > 0 such
that (p, εp5/2n)-bijumbled n-vertex graphs G with minimum degree 1

2pn actually
contain the square of a Hamilton cycle (which implies the theorem of Krivelevich,
Sudakov and Szabó with a better value for λ). For the class H(n,∆), to the best of
our knowledge the only existing universality result is that obtained by applying the
original blow-up lemma of Komlós, Sárközy and Szemerédi [46], which is possible

when β ≤ n−Ω(∆−2). We can at least achieve the correct power of ∆ in the exponent.

Theorem 1.2. For each ∆ ≥ 2 there exists c > 0 such that for any p > 0, if
β ≤ cpmax(4,3∆/2+1/2)n, any n-vertex (p, β)-bijumbled graph G with δ(G) ≥ 1

2pn is
H(n,∆)-universal.

We note that Alon and Bourgain [10] showed that the ‘Cayley sum-graphs’ G of
any multiplicative subgroup U of a finite field Fq, where V (G) = U and uv ∈ E(G)
whenever u+ v ∈ U , is an (|U |, d,√q)-graph. Thus the above theorem shows that
sufficiently large multiplicative subgroups of finite fields contain all ‘bounded-degree’
additive patterns; see [3] or [10] for a more detailed discussion.

1In fact they proved a universality result in terms of a constraint on the ‘maximum average
degree’; in the class of graphs with degeneracy d this quantity is between d and 2d.
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1.2.2. Partition universality. Given a set H of graphs, the graph G is r-
partition universal for H if in any r-colouring of the edge-set E(G) there is a colour
class which is H-universal. Kohayakawa, Rödl, Schacht and Szemerédi [44] showed

that for each r and ∆ there exists C such that if p ≥ C
(

logn
n

)1/∆
then Gn,p is

a.a.s. r-partition universal for H(n,∆). This result is again an easy corollary of
Lemma 1.21, proved along the same lines as the following lower bound for r-partition
universality for H(n, d,∆).

Theorem 1.3. For each r, d,∆ ∈ N there exists C such that if p ≥ C
(

logn
n

)1/(2d)
,

then a.a.s. GCn,p is r-partition universal for H(n, d,∆).

Kohayakawa, Rödl, Schacht and Szemerédi [44] also asked if a sufficiently
pseudorandom graph is r-partition universal for H(n,∆). Using Lemma 1.25 we can
answer this in the affirmative.

Theorem 1.4. For each r,∆ ∈ N there exists c > 0 such that if p > 0 and
G is an (n/c)-vertex graph which is

(
p, cpmax(4,(3∆+1)/2)n

)
-bijumbled, then G is

r-partition universal for H(n,∆).

We note that a corollary to Theorem 1.3 (which also follows from the proof
in [44]) is the following Folkman-type result, where by a Folkman-type we refer to
the existence of certain F -free graphs that are Ramsey.

Corollary 1.5. For each r ∈ N and ∆ ≥ 2, there exists a K2∆-free graph
which is r-partition universal for H(n,∆).

1.2.3. Maker-Breaker games. The Maker-Breaker H-game on Kn with bias
b is the following game. Maker and Breaker take turns to colour the edges of Kn

with respectively red and blue. In each turn, Maker colours one edge, while Breaker
colours b edges (and edges may not be recoloured). Maker’s aim is to create a red
copy of H, while Breaker’s aim is to prevent Maker from creating a red H. This
class of games has been studied extensively; see the book of Beck [20] and a recent
survey of Krivelevich [50]. If Breaker wins the H-game on Kn with bias b, then
obviously Breaker also wins with bias b+ 1; it follows that there is a threshold bias
b for each game which is the smallest b such that Breaker wins the H-game.

If either player, playing a randomised strategy, wins a given game with positive
probability against perfect play from the opponent, then they have a deterministic
winning strategy. Bednarska and  Luczak [21] used this observation to determine
the order of magnitude of the threshold bias for the H-game on Kn for each fixed
graph H, showing that it is Θ(p−1) for the threshold probability p at which Gn,p
contains H ‘robustly’ in the sense that removing any ε(H)pn2 edges fails to destroy
all copies of H. However for H depending on n, much less is known. The critical
bias for the Hamiltonicity game, with H = Cn, was determined only recently by
Krivelevich [52], while for more general bounded degree graphs it was only known
that the critical bias tends to infinity as n tends to infinity2. Using a recent result
of Ferber, Krivelevich and Naves [32], which informally shows that Maker can a.a.s.
make a subgraph of Gn,p with minimum degree very close to pn, we can show that in
fact Maker can win the H(n,∆)-universality game on K(1+δ)n (i.e., Maker’s graph
contains simultaneously each H ∈ H(n,∆)) against a polynomially growing bias,
and that this bias can be increased on the class H(n, d,∆) if d is small enough.
For the subclasses H′(n,∆) and H′(n, d,∆) of triangle-free graphs in H(n,∆) and
H(n, d,∆) respectively, we can even win on Kn.

2The article [16] only explicitly shows that the critical bias is at least two, but Krivelevich [51]
has explained that the techniques there would work for any constant b if n is large enough.
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Theorem 1.6. For each d,∆ ∈ N and δ > 0 there exists c > 0 with the

following properties. If b ≤ c
(

n
logn

)1/∆
then Maker wins the H(n,∆)-universality

game on K(1+δ)n with bias b. Furthermore, with the same bias Maker wins the
H′(n,Delta)-universality game on Kn.

If b ≤ c
(

n
logn

)1/(2d)
then Maker wins the H(n, d,∆)-universality game on

K(1+δ)n with bias b. If we insist on the stronger b ≤ c
(

n
logn

)1/(2d+1)
, then Maker

wins the H′(n, d,∆)-game on Kn.

We note that the proof of Theorem 1.6 uses a randomised strategy for Maker
which succeeds with high probability against any strategy of Breaker, but this
strategy does not seem to be easy to derandomise. It would be interesting to find
explicit deterministic Maker strategies for these games, even for substantially smaller
bias.

In [4] we strengthen the above result, proving the following theorem in which
the ‘triangle-free’ restriction is removed.

Theorem 1.7 (Allen, Böttcher, Kohayakawa, Naves, Person [4]). For each

d,∆ ∈ N and δ > 0 there exists c > 0 with the following properties. If b ≤ c
(

n
logn

)1/∆
then Maker wins the H(n,∆)-universality game on Kn with bias b.

If b ≤ c
(

n
logn

)1/(2d+1)
then Maker wins the H(n, d,∆)-universality game on Kn

with bias b.

1.2.4. Resilience of low-bandwidth graphs. The Bollobás-Komlós conjec-
ture, now the Bandwidth Theorem, proved by Böttcher, Schacht and Taraz [24],
generalises (up to a small error term) several results dealing with spanning graphs
in extremal graph theory. To state it, we need the concept of bandwidth bw(H),
defined as the smallest natural b such that there is a labelling of the vertices of H
by 1,. . . , v(H) such that |i− j| ≤ b whenever ij is an edge in that ordering.

Theorem 1.8 (Bandwidth Theorem [24]). For each γ > 0 and ∆ there exists
β > 0 such that for all sufficiently large n the following holds. If H is any n-
vertex graph with ∆(H) ≤ ∆ and bw(H) ≤ βn, and G is any n-vertex graph with

δ(G) ≥
(χ(H)−1

χ(H) + γ
)
n, then H ⊆ G.

Böttcher, Kohayakawa and Taraz [22] proved a ‘resilience version’ of this theorem
for almost-spanning bipartite graphs H, working in typical random graphs Gn,p with

p ≥ C
(

logn
n

)1/∆
. Huang, Lee and Sudakov [36] proved another resilience version

which allows for non-bipartite H, but only works in random graphs with p constant.
We can prove the following common extension3 of these results.

Theorem 1.9. For each γ > 0 and ∆ there exist β > 0 and C such that if

p ≥ C
(

logn
n

)1/∆
, then a.a.s. Γ = Gn,p has the following property. If H is any

(1 − γ)n-vertex graph with ∆(H) ≤ ∆ and bw(H) ≤ βn, and G is any n-vertex

subgraph of Γ with δ(G) ≥
(χ(H)−1

χ(H) + γ
)
pn, then H ⊆ G.

In [1] the following strengthening of this result will be proved, showing that we
can actually have v(H) = n−Cp−2 if p ≤ 1/ log n, which is optimal, and for some H
even v(H) = n. Furthermore a similar resilience statement for sufficiently bijumbled
graphs, and an improvement when H has small degeneracy, are obtained. It is
significantly harder to obtain these stronger results, and the proof of Theorem 1.9 is
a good illustration of how one can apply our blow-up lemmas to obtain resilience
results, so we give the proof of Theorem 1.9 in Section 6.4.

3Actually Huang, Lee and Sudakov allowed for spanning embeddings of some graphs H, so
that the result here is not quite an extension of their theorem, though the result in [1] is.



1.3. STATEMENTS OF THE RESULTS 6

Theorem 1.10 (Allen, Böttcher, Ehrenmüller and Taraz [1]). For each γ > 0,
∆ ≥ 2, and k ≥ 1, there exist constants β > 0 and C > 0 such that the following holds

a.a.s. for Γ = G(n, p) if p ≥ C
(

logn
n

)1/∆
. Let G be a spanning subgraph of Γ with

δ(G) ≥
(
k−1
k + γ

)
pn, and let H be a k-colourable graph on n vertices with ∆(H) ≤ ∆,

bandwidth at most βn, and such that there are at least C max{p−2, p−1 log n} vertices
in V (H) that are not contained in any triangles of H. Then G contains a copy of
H.

In [1] we also obtain an improvement on this (working for smaller values of
p) for graphs H whose degeneracy is significantly less than their maximum degree,
a version working when Γ is a bijumbled graph rather than a random one, and a
resilience result for F -factors in G(n, p) which allows for much smaller p. All these
results depend upon the blow-up lemmas proved here; we refer the interested reader
to [1] for the precise statements.

1.2.5. Robustness of the Bandwidth Theorem. Robustness is an alterna-
tive measure of ‘how strongly’ an extremal theorem holds, proposed by Krivelevich,
Lee and Sudakov [54]. They showed that if G is a ‘Dirac graph’. i.e., a graph with

δ(G) ≥ 1
2v(G), then there is C such that for p ≥ C logn

n , a.a.s. the graph Gp obtained
by keeping edges of G independently with probability p is Hamiltonian. Here we
show a similar result for the Bandwidth Theorem.

Theorem 1.11. For each γ > 0 and ∆ ≥ 2 there exist β > 0 and C such that

if p ≥ C
(

logn
n

)1/∆
, the following holds. If H is any n-vertex graph with ∆(H) ≤ ∆

and bw(H) ≤ βn, and G is any n-vertex graph with δ(G) ≥
(χ(H)−1

χ(H) + γ
)
n, then

a.a.s. H ⊆ Gp.

We give a fairly detailed sketch proof of this result in Section 6.5. We note that
it also follows from the main result of [6]: in fact, the stronger statement (which
does not follow from our sketch proof) that under the conditions of Theorem 1.11,
Gp is universal for all n-vertex graphs H with ∆(H) ≤ ∆ and bw(H) ≤ βn is a
consequence of the result in [6].

1.3. Statements of the results

The full version of our blow-up lemmas are technically complex and so, in order
to make their statement more compact, we will introduce a number of lengthy
definitions. To provide motivation for these definitions we first state a simplified
version of our blow-up lemma for random graphs, which is useful only in a few
applications.

We will then provide the full version of the blow-up lemma for Gn,p in Sec-
tion 1.3.2, and turn to a blow-up lemma for embedding degenerate graphs into
subgraphs of Gn,p in Section 1.3.3. Finally, in Section 1.3.4 we present the blow-up
lemma for bijumbled graphs.

1.3.1. A simplified version. The dense blow-up lemma is an embedding
lemma for super-regular pairs. Before we can formulate it we need some definitions.
Let G = (V,E) be a graph and A and B be disjoint subsets of V . We also write
V (G) and E(G) for the set of vertices and edges of G, respectively, and v(G) and
e(G) for the sizes of these sets. For a vertex v ∈ V we denote by NG(v;A) the set of
neighbours of v in A, that is, those vertices u ∈ A with vu ∈ E. We write degG(v;A)
for its cardinality |NG(v;U)|. We write eG(A) for the number of edges in G with
both vertices in A and eG(A,B) for the number of edges in G with one vertex in A
and one in B. Given X ⊆ V (G), we write N(X;A) :=

⋃
v∈X NG(v;A) for the joint

neighbourhood in A of the vertices. We let N∗G(X;A) :=
⋂
v∈X NG(v;A) denote
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the common neighbourhood in A of vertices from X, and write degG(X;A) for its
size

∣∣N∗G(X;A)
∣∣. We will often omit the set brackets in N∗G

(
{v1, . . . , v`};A

)
, writing

instead N∗G(v1, . . . , v`;A). If the graph G is clear from the context we sometimes
omit it in the subscripts. Furthermore, if we omit the set A we intend A = V (G).

The density of the pair (A,B) is dG(A,B) = eG(A,B)/(|A||B|). Let ε, d ≥ 0.
The pair (A,B) is called (ε, d)-regular (in G) if we have d(A′, B′) ≥ d − ε for all
A′ ⊆ A with |A′| ≥ ε|A| and B′ ⊆ B with |B′| ≥ ε|B|.

Remark 1.12. Observe that this differs from the usual definition of ε-regularity
in that we only require a lower bound on d(A′, B′). This is sometimes called dense
in the literature, in particular in [44]. Note also that with our definition the density
of an (ε, d)-regular pair (A,B) is only lower-bounded by d− ε. This, though non-
standard, has the advantage (over the usual definition where we would require the
density of (A,B) to be lower-bounded by d) that large subpairs of (ε, d)-regular
pairs are (ε′, d)-regular (rather than (ε′, d− ε′)-regular). We have to use a different
regularity parameter, which is unavoidable, but at least we can stick to d for density
throughout, and we advocate the use of this definition in future.

We shall use (sparse versions of) this regularity concept whenever we work with
random graphs in this paper. But for pseudorandom graphs we unfortunately need
the usual regularity definition with an upper bound on d(A′, B′) as well. Whenever
the distinction between the two different concepts is essential, which is usually not
the case, we will explicitly state which version we are using, calling the former
‘lower-regularity’ and the latter ‘full-regularity’. In most of the paper however, we
will refer to both versions as ‘regularity’. This will help us to unify much of the proofs
of the blow-up lemmas for random graphs and of pseudorandom graphs. Why it is
necessary to use these two different regularity variants is explained in Section 1.3.4.

An (ε, d)-regular pair (A,B) is called (ε, d)-super-regular if for every u ∈ A we
have degG(u;B) ≥ (d− ε)|B| and for every v ∈ B we have degG(v;A) ≥ (d− ε)|A|.
The dense blow-up lemma, first proved by Komlós, Sárközy and Szemerédi [46],
then states the following. Let G be a graph formed from a collection of (ε, d)-super-
regular pairs with density d� ε, and let G∗ be obtained from G by replacing the
super-regular pairs with complete bipartite graphs. If H is a graph with maximum
degree ∆ which embeds into G∗, then H embeds into G.

This notion of regularity is not meaningful for sparse graphs, because the
definition above implies that any pair with o(n2) edges is regular (with d = 0). For
obtaining a meaningful sparse version of regularity and super-regularity we need to
relate the density of a pair to the overall density of the graph under study. This can
be obtained the density in the definitions above with the p-density for a suitable p.

For 0 < p < 1, the p-density of the pair (A,B) is dG,p(A,B) = eG(A,B)/(p|X||Y |).
In other words, we simply scale the usual density by p. Sparse regular pairs are
then defined as follows. The pair (A,B) is (ε, d, p)-regular (in G) if we have
dG,p(A

′, B′) ≥ d− ε for all A′ ⊆ A with |A′| ≥ ε|A| and B′ ⊆ B with |B′| ≥ ε|B|.
Similarly, we define a pair to be a sparse super-regular pair if it is a sparse regular
pair and satisfies a minimum degree condition.

The setting we will work with in this subsection is when the graph G into which
we want to embed is a subgraph of a random graph Γ. As mentioned above, for
pseudorandom graphs we will work with a slightly different notion of regularity (see
Section 1.3.4). The parameter p will usually be (a constant factor away from) the
density of the ambient graph Γ.

Definition 1.13 (Sparse super-regularity). A pair (A,B) in G ⊆ Γ is called
(ε, d, p)-super-regular (in G) if it is (ε, d, p)-regular and for every u ∈ A and v ∈ B
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we have

degG(u;B) > (d− ε) max{p|B|,degΓ(u;B)/2} . (2)

degG(v;A) > (d− ε) max{p|A|,degΓ(v;A)/2} .
We remark that the term (d− ε)p|B| is a natural lower bound in the minimum

degree condition (2) by the following fact, which easily follows from the definition
of regularity (and which we shall use throughout the paper).

Fact 1.14. Let (A,B) be an (ε, d, p)-regular pair. Less than ε|A| vertices of A
have less than (d− ε)p|B| neighbours in B.

Observe though that in (2) we have the additional term (d− ε) degΓ(u;B)/2,
which dominates when u has an exceptionally high Γ-degree into B. The reason
why this is necessary will become clear in a little while after we discuss the need
for regularity inheritance. Note also that it follows from the definition above that
in a super-regular pair (A,B) we have degΓ(u;B) ≥ (d − ε)p|B| for each u ∈ A,
since G ⊆ Γ.

Unfortunately, this straightforward extension of the concept of super-regular
pairs to the sparse setting is not on its own enough for a sparse blow-up lemma.
To see this, suppose A, B and C are equally-sized vertex sets, and each pair is
super-regular. We would like to find that there is a spanning triangle factor, but it
is possible that for some a ∈ A there are no edges between NG(a;B) and NG(a;C).
Similarly, if A, B, C, D form a 4-cycle of super-regular pairs in G, it is nevertheless
possible that for some a ∈ A there is no 4-cycle in G using a and one vertex of each
of the other three sets. These problems do not occur for dense (ε, d)-super-regular
pairs for the following reason. In the first example, since NG(a;B) is of size at least
(d− ε)|B| and similarly for NG(a;C), the so-called slicing lemma guarantees that(
NG(a;B), NG(a;C)

)
is (2ε/d, d)-regular, that is, it inherits regularity from the pair

(B,C) and thus in particular contains edges. A similar argument deals with the
second example. The slicing lemma can be generalised to the sparse setting, and
again easily follows from the definition of regularity.

Lemma 1.15 (Slicing lemma). Let (A,B) be an (ε, d, p)-regular pair and A′ ⊆ A,
B′ ⊆ B be sets of sizes |A′| ≥ α|A|, |B′| ≥ α|B|. Then (A′, B′) is (ε/α, d, p)-regular.

But this unfortunately does not solve the problem indicated above because the
size of NG(a;B) is only lower bounded by (d− ε)p|B|, which can be tiny compared
to B.

To remedy this, in our blow-up lemmas we will explicitly require that the pair(
NΓ(a;B), C

)
, and similarly

(
NΓ(a;B), NΓ(a;C)

)
, ‘inherit’ regularity, that is, they

are themselves regular pairs. Since degG(a;B) is a large fraction of degΓ(a,B) by
super-regularity, the slicing lemma does show that regularity of

(
NG(a;B), C

)
follows

from regularity of
(
NΓ(a;B), C

)
, and similarly for

(
NG(a;B), NG(a;C)

)
. Note that

this is the point where we require the second term in (2).
Requiring this ‘inheritance of regularity’ is reasonable because it is known that in

(ε, d, p)-regular pairs contained in random graphs Γ, for almost all vertices a, the pairs(
NΓ(a;B), C

)
and similarly

(
NΓ(a;B), NΓ(a;C)

)
do inherit sparse regularity in this

way. This phenomenon was studied in [43, 33, 44]. In this paper (see Section 1.3.5),
we prove this statement with tight bounds on what ‘almost all vertices’ means.

Definition 1.16 (Regularity inheritance). Let A, B and C be vertex sets in
G ⊆ Γ, where A and B are disjoint and B and C are disjoint, but we do allow
A = C. We say that (A,B,C) has one-sided (ε, d, p)-inheritance if for each u ∈ A
the pair

(
NΓ(u,B), C

)
is (ε, d, p)-regular.

If in addition A and C are disjoint, then we say that (A,B,C) has two-sided
(ε, d, p)-inheritance if for each u ∈ A the pair

(
NΓ(u,B), NΓ(u,C)

)
is (ε, d, p)-regular.
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In this definition we take neighbourhoods in the ambient graph Γ instead of G
because this turns out to be easier to handle in applications (where we need to take
care of the vertices in regular pairs that do not satisfy these inheritance conditions).

The simplified version of our sparse blow-up lemma in random graphs now states
that if we are given an equitable vertex partition V1 ∪̇ . . . ∪̇Vr of a graph G ⊆ Γ such
that all pairs are super-regular and all triples have one- and two-sided regularity
inheritance, then any r-partite graph H with bounded maximum degree that can
be embedded into the complete r-partite graph with partition classes V1, . . . , Vr can
also be embedded into G. Here, a partition of a set is called equitable if each pair of
partition classes differ in size by at most one.

Lemma 1.17 (Simple blow-up lemma for Gn,p). For all ∆ ≥ 2, r ∈ N and d > 0

there exist ε > 0 and C such that if p ≥ C(log n/n)1/∆, then the random graph
Γ = Gn,p a.a.s. has the following property. Let G ⊆ Γ and H with ∆(H) ≤ ∆
be graphs on n vertices. Suppose that H has an r-colouring with colour classes
X1, . . . , Xr and that V (G) = V1 ∪̇ · · · ∪̇ Vr is an equitable partition with |Vi| ≥ |Xi|
for all i ∈ [r] and such that the following conditions hold.

(i ) (Vi, Vj) is (ε, d, p)-super-regular in G for each i, j ∈ [r] with i 6= j.
(ii ) (Vi, Vj , Vk) has one-sided (ε, d, p)-inheritance for each i, j, k ∈ [r] with i 6= j

and j 6= k.
(iii ) (Vi, Vj , Vk) has two-sided (ε, d, p)-inheritance for each i, j, k ∈ [r] with i 6= j,

j 6= k, and k 6= i.

Then H is a subgraph of G.

Let us briefly comment on the lower bound p ≥ C(log n/n)1/∆ on the probability
for which our result works. We do not believe that this bound is in general best
possible, though for ∆ ∈ {2, 3} it is optimal up to the log-factor. However, it matches
the best known current lower bound [29] for p such that Gn,p is universal for bounded
degree spanning H. This universality result is easily implied by Lemma 1.17 with
G = Γ. The problem of improving on [29] has been prominent in random graph
theory for a few years, and seems to be hard. For a more detailed discussion, see
Section 7.1.1.

The restriction ∆ ≥ 2 is necessary for our proof as written. The statement above
is true for ∆ = 1, when in fact we do not require conditions (ii ) or (iii ), but to see
this it is easiest to verify Hall’s condition in G directly rather than to modify our
proof.

What is the difference between this simplified blow-up lemma and our full-
strength blow-up lemma for random graphs, Lemma 1.21? Firstly, in the latter we
do not require the partition of G to be equitable but allow the partition classes to
differ in size by a constant factor.

Secondly, we do not require all pairs in the partition to be super-regular (or
have regularity inheritance). Instead we will introduce the concept of a ‘reduced
graph’ which encodes where we have super-regular pairs in our partition. In fact
we will even have two reduced graphs R and R′ ⊆ R where the former represents
regular pairs and the latter super-regular pairs, the reason for which will become
clear later.

Thirdly, we do not require two-sided regularity inheritance everywhere in the
partition of G, but only in certain cases where triangles of H need to be embedded.
This is helpful in some applications, for example in Theorem 1.6 we can use the
Ferber-Krivelevich-Naves strategy [32] to win Maker-Breaker games with spanning
bounded degree triangle-free graphs. This strategy does not allow Maker to win
(for example) the spanning triangle factor game, ultimately because of a failure of
two-sided regularity inheritance.
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Fourthly, the ε we can choose for our full-scale blow-up lemma does not depend
on r, but only on the maximum degree of the reduced graph R′. This is a difference
also in the dense setting (that is, when p = 1) to the blow-up lemma of [46]. In
typical applications of the latter it is necessary to apply this blow-up lemma several
times to embed a spanning H since this lemma only applies to small subgraphs of
the reduced graph (because ε depends on r). It is then necessary to use so-called
image restrictions and some manual embedding to connect up the pieces of H, which
technically complicates the proofs. Our blow-up lemma on the other hand avoids
this and is formulated with the intention that in applications it typically only needs
to be applied once, which should make it simpler to use.

Finally, our blow-up lemma permits so-called image restrictions. Roughly speak-
ing, image restriction means specifying, for certain vertices of H, small subsets of G
into which these vertices are to be embedded. As explained in the last paragraph we
believe that in the dense setting one usually does not need these image restrictions
with our blow-up lemma. However in the sparse setting they can be useful, as there
may be a few vertices which do not satisfy the super-regularity or inheritance condi-
tions required by the blow-up lemma in any sparse-regular partition of G. Hence
we need to embed some H-vertices on these vertices ‘by hand’ before applying the
blow-up lemma. These pre-embedded H-vertices then create image restrictions for
their neighbours. Indeed in [1] precisely this approach is used to prove Theorem 1.10.

1.3.2. Random graphs. As explained in the previous subsection one of the
differences of our blow-up lemma to the simplified version stated there is that it uses
reduced graphs to specify where edges can be embedded in the graph G (which is a
subgraph of a random graph Γ). We will now first define this concept and explain
what we require of the graph H that we want to embed to be ‘compatible’ with
such reduced graphs.

The setting in which we work is as follows. Let G and H be two graphs, on
the same number of vertices, given with partitions V = {Vi}i∈[r] and X = {Xi}i∈[r]

of their respective vertex sets. We call the parts Vi of G clusters. We say that V
and X are size-compatible if |Vi| = |Xi| for all i ∈ [r]. Moreover, for κ ≥ 1 we say
that (G,V) is κ-balanced if there exists m ∈ N such that we have m ≤ |Vi| ≤ κm
for all i, j ∈ [r] (and thus for all Xi ∈ X if V and X are size-compatible). Our goal
will be to embed H into G respecting these partitions.

As mentioned before, we will have two reduced graphs R and R′ ⊆ R, where R′

represents super-regular pairs and R regular pairs. More precisely, we require the
following properties of R and R′ and the partitions V and X of G and H.

Definition 1.18 (Reduced graphs and one-sided inheritance). Let R and R′

be graphs on r vertices.

• (H,X ) is an R-partition if each part of X is empty, and whenever there are
edges of H between Xi and Xj , the pair ij is an edge of R,

• (G,V) is an (ε, d, p)-regular R-partition if for each edge ij ∈ R the pair (Vi, Vj)
is (ε, d, p)-regular.

In this case we also say that R is a reduced graph of the partition V.

• (G,V) is (ε, d, p)-super-regular on R′ if for every ij ∈ E(R′) the pair (Vi, Vj) is
(ε, d, p)-super-regular.

Suppose now that (G,V) is an (ε, d, p)-regular R′-partition.

• (G,V) has one-sided inheritance on R′ if (Vi, Vj , Vk) has one-sided (ε, d, p)-
inheritance for every ij, jk ∈ E(R′).
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We occasionally also use these concepts when we only work on an induced subgraph
of G, that is, for a pair (G,V ′) where V ′ is a partition of a subset of the vertices
of G.

As in Lemma 1.17, we do require the case i = k in the definition of one-sided
inheritance.

It remains to describe where in our partitions we require two-sided inheritance.
For this we first need to define so-called ‘buffer sets’ of vertices in H, containing
‘potential buffer vertices’. The purpose of these buffer sets is that a subset of these
vertices, later to be called ‘buffer vertices’, will be embedded last (for more detailed
explanations see Section 1.4). For this to work we require the edges emanating from
these vertices and their neighbours to be assigned to the super-regular pairs given
by R′ (and not to other pairs of R). It is only when a potential buffer vertex is
contained in a triangle that we require two-sided inheritance on R′.

The buffer sets can be chosen by the user of the blow-up lemma. Moreover, we
stress that they do not make our blow-up lemma less powerful in the dense setting
than the blow-up lemma of [46], because the latter requires all edges of H to be
assigned to super-regular pairs.

Definition 1.19 (Buffer sets and two-sided inheritance). Let R′ ⊆ R be graphs
on r vertices, and (H,X ) be an R-partition and (G,V) a size-compatible (ε, d, p)-

regular R-partition. We say the family X̃ = {X̃i}i∈[r] of subsets X̃i ⊆ Xi is an
(α,R′)-buffer for H if

• |X̃i| ≥ α|Xi| for all i ∈ [r] and

• for each i ∈ [r] and each x ∈ X̃i, the first and second neighbourhood of x go
along R′, that is, for each xy, yz ∈ E(H) with y ∈ Xj and z ∈ Xk we have
ij ∈ R′ and jk ∈ R′.

We also call the vertices in X̃ potential buffer vertices. Moreover, (G,V) has two-sided

inheritance on R′ for X̃ if

• (Vi, Vj , Vk) has two-sided (ε, d, p)-inheritance whenever there is a triangle xixjxk
in H with xi ∈ X̃i, xj ∈ Xj , and xk ∈ Xk.

We remark that we shall later also occasionally refer to the set of actual buffer
vertices as buffer, when it is clear from the context which set we mean.

Finally, our blow-up lemma allows image restrictions. These generalise the image
restrictions permitted in the dense blow-up lemma. However, in the sparse setting the
necessary conditions become somewhat more involved. The idea is as follows. Suppose
we wish to embed a graph H∗ into a graph G∗. Unfortunately G∗ does not meet the
conditions of our blow-up lemma, typically because regularity inheritance fails. We
find a subgraph G of G∗ which does meet the conditions of our blow-up lemma, and
‘pre-embed’ some vertices of H∗ onto the vertices V (G∗) \ V (G). This leaves the
induced subgraph H of H∗ to embed into G. The image restrictions then originate
from these pre-embedded vertices: If x ∈ Xi ⊆ V (H) has neighbours {z1, . . . , z`} in
V (H∗) \ V (H) which are pre-embedded to {u1, . . . , u`} = Jx ⊆ V (Γ) \ V (G), then
Jx restricts the embedding of x to Ix = N∗G∗(Jx;Vi). In the following definition we
do not explicitly refer to the graphs H∗ and G∗, but only to abstract restricting
sets Jx, so that we do not need to include the graphs H∗ and G∗ in our blow-up
lemma. For the same reason we take neighbourhoods in Γ instead of G∗ in this
definition. In addition, to simplify notation, we define an image restriction set Ix for
each vertex x of H. For most vertices x, however, this set is the trivial set Ix = Xi

where Xi is the part of X containing x.

Definition 1.20 (Image restrictions). Let R be a graph on r vertices, and
(H,X ) be an R-partition and (G,V) a size-compatible (ε, d, p)-regular R-partition,
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where G ⊆ Γ. Let I = {Ix}x∈V (H) be a collection of subsets of V (G), called image
restrictions, and J = {Jx}x∈V (H) be a collection of subsets of V (Γ) \ V (G), called
restricting vertices. We say that I and J are a (%, ζ,∆,∆J)-restriction pair if the
following properties hold for each i ∈ [r] and x ∈ Xi.

(a ) The set X∗i ⊆ Xi of image restricted vertices in Xi, that is, vertices such that
Ix 6= Vi, has size |X∗i | ≤ %|Xi|.

(b ) If x ∈ X∗i , then Ix ⊆ N∗Γ(Jx;Vi) is of size at least ζ(dp)|Jx||Vi|.
(c ) If x ∈ X∗i , then |Jx|+ degH(x) ≤ ∆ and if x 6∈ X∗i , then Jx = ∅.
(d ) Each Γ-vertex appears in at most ∆J of the sets of J .
(e ) We have

∣∣N∗Γ(Jx;Vi)
∣∣ = (p± εp)|Jx||Vi|.

(f ) If x ∈ X∗i , for each xy ∈ E(H) with y ∈ Xj , the pair
(
N∗Γ(Jx;Vi), N

∗
Γ(Jy;Vj)

)
is (ε, d, p)-regular in G.

This definition does indeed generalise the dense image restrictions of [46],
since (a ) is one of the conditions of [46], while if p = 1 and so Γ is the complete
graph, (b ) reduces to the other condition of [46]. We can set Jx = ∅ for all x, so
that (c )–(e ) become trivial, and (f ) follows since X is an R-partition and V is an
(ε, d, p)-regular R-partition. In the sparse setting the conditions amount to requiring
that pre-embedded vertices creating image restrictions are embedded on ‘typical
vertices’.

We can now formulate our blow-up lemma for random graphs.

Lemma 1.21 (Blow-up lemma for Gn,p). For all ∆ ≥ 2, ∆R′ , ∆J , α, ζ, d > 0,
κ > 1 there exist ε, % > 0 such that for all r1 there is a C such that for

p > C

(
log n

n

)1/∆

the random graph Γ = Gn,p a.a.s. satisfies the following.
Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph

with ∆(R′) ≤ ∆R′ . Let H and G ⊆ Γ be graphs with κ-balanced size-compatible
vertex partitions X = {Xi}i∈[r] and V = {Vi}i∈[r], respectively, which have parts

of size at least m ≥ n/(κr1). Let X̃ = {X̃i}i∈[r] be a family of subsets of V (H),
I = {Ix}x∈V (H) be a family of image restrictions, and J = {Jx}x∈V (H) be a family
of restricting vertices. Suppose that

(BUL 1) ∆(H) ≤ ∆, (H,X ) is an R-partition, and X̃ is an (α,R′)-buffer for H,
(BUL 2) (G,V) is an (ε, d, p)-regular R-partition, which is (ε, d, p)-super-regular

on R′, has one-sided inheritance on R′, and two-sided inheritance on R′

for X̃ ,
(BUL 3) I and J form a (%, ζ,∆,∆J)-restriction pair.

Then there is an embedding ψ : V (H)→ V (G) such that ψ(x) ∈ Ix for each x ∈ H.

1.3.3. Degenerate graphs. We next present a version of our blow-up lemma
for random graphs which allows for smaller edge probabilities in Gn,p if we want
to embed graphs H whose maximum degree is much larger than their degeneracy.
The degeneracy degen(H) of a graph H is the smallest integer ` such that H is
`-degenerate, that is, each induced subgraph of H has minimum degree at most `.
Equivalently, there is an order of V (H) such that each vertex has at most ` neighbours
before that vertex in the order. For example, trees have degeneracy 1 and planar
graphs have degeneracy at most 5. We remark that (a variant of) the degeneracy
determines the exponent in the probability p, but we nevertheless require the
maximum degree of H to be bounded by a constant ∆ in the lemma below. The
constant in the probability p depends on ∆. For this blow-up lemma we use the
same notion of regularity, super-regularity, reduced graphs, inheritance, buffer sets
and image restrictions as for Lemma 1.21.
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Given an order τ on V (H) and a family J of image restricting vertices, we
define

πτ (x) := |Jx|+
∣∣{y ∈ NH(x) : τ(y) < τ(x)}

∣∣ .
In other words, πτ (x) denotes the number of neighbours of x that come before x,
including the restricting vertices Jx.

Quantifying the dependence on τ of the probability we can work with is some-
what complex. Firstly, for a vertex x we distinguish whether it has neighbours y
succeeding x in the order τ , in which case we will need to maintain one-sided inheri-
tance properties when embedding x, or even two such neighbours y and z which
form an edge, in which case we will need to maintain two-sided inheritance, or not.
Secondly, we put stricter requirements on x if it has some potential buffer vertices in
its neighbourhood (since we need to maintain certain properties to embed the buffer
vertices; see (ORD 1) and (ORD 3)). Thirdly, we put even stricter requirements on
vertices x which are image restricted or have preceding neighbours ‘far away’ from x
(see (ORD 2)). Since this is a very restrictive condition however, we allow a very
small set Xe of exceptional vertices which are exempted from this rule.

Definition 1.22 ((D, p,m)-bounded order). Let H be a graph given with buffer

sets X̃ and a restriction pair I = {Ii}i∈[r] and J = {Ji}i∈[r]. Let X̃ =
⋃
X̃ . Let τ

be an ordering of V (H) and Xe ⊆ V (H). Then τ is a (D, p,m)-bounded order for H,

X̃ , I and J with exceptional set Xe if the following conditions are satisfied for each
x ∈ V (H).

(ORD 1) Define

Dx :=


D − 2 if there is yz ∈ E(H) with y, z ∈ NH(x) and τ(y), τ(z) > τ(x)

D − 1 else if there is y ∈ NH(x) with τ(y) > τ(x)

D otherwise .

We have πτ (x) ≤ Dx, and if x ∈ N(X̃) even πτ (x) ≤ Dx − 1. Finally, if

x ∈ X̃ we have deg(x) ≤ D.
(ORD 2) One of the following holds:

• x ∈ Xe,
• πτ (x) ≤ 1

2D,
• x is not image restricted and every neighbour y of x with τ(y) < τ(x)

satisfies τ(x)− τ(y) ≤ pπτ (x)m.

(ORD 3) If x ∈ N(X̃) then all but at most D− 1−maxz 6∈Xe π
τ (z) neighbours y of

x with τ(y) < τ(x) satisfy τ(x)− τ(y) ≤ pDm.

In order to obtain the best possible value of p, our aim is always to find an order
τ which is (D, p,m)-bounded and minimises the value of D. To give some intuition
about what typically is possible, we refer to some of the results of Section 1.2.

We can typically obtain D ≤ 2 degen(H) + 1, taking τ to be a degeneracy order
for H. This gives us πτ (x) ≤ degen(x), so that (ORD 2) and (ORD 3) hold trivially
(the former with room to spare, the latter not). Furthermore, most of (ORD 1) is
trivially satisfied (though one needs to observe that if degen(H) = 1 then H contains

no triangle). The only point which is unclear is the restriction deg(x) ≤ D for x ∈ X̃.
In practice, as seen in Theorems 1.1 and 1.6, in applications one often can obtain
this. The reason is that any graph H contains many vertices of degree at most
2 degen(H), and typically we can find a partition of H in which these vertices are
well-distributed among the parts.

In the event that we do not require a spanning embedding, but can afford to
leave a small fraction of vertices in each part uncovered, we can obtain the slightly
stronger D ≤ 2 degen(H), as in Theorems 1.4 and 1.6. The reason for this is that
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we can ‘pad’ an almost-spanning H by adding isolated vertices to obtain a spanning
H ′ to which we apply Lemma 1.23 (see the proof of Theorem 1.4 for details). We

again use a degeneracy order τ , but this time let X̃ be the isolated vertices.
When we have a degeneracy order τ with the extra (bandwidth-type) property

that all edges go between vertices very close together in the order, we can typically
choose D ≤ degen(H) + 3. The reason is that in this case (ORD 2) and (ORD 3)
are automatically satisfied, and we only need to worry about (ORD 1). Again, we
need to be able to choose potential buffer vertices of degree at most degen(H) + 3,
but in applications this is usually possible. This applies, for example, in the case
that H is an F -factor.

So far we did not mention the set Xe, or image restrictions. In applications
often only very few vertices need to be image restricted, and we can typically put
all of them in Xe. This is, for example, critical to obtaining a resilience result for

bounded-degree trees with p = C
(

logn
n

)1/3
in [1].

In general, the exceptional set Xe gives us the possibility to specify a small set
of vertices in H for which the value of πτ does not have to be bounded by D/2.
This is for example useful when a few vertices have been embedded ‘by hand’ before
the use of the blow-up lemma, creating image restrictions. Since we cannot usually
select these vertices according to the degeneracy order of H, as a consequence a few
image restricted vertices will have more neighbours embedded ‘by hand’ than if H
was embedded in the degeneracy order. These vertices should then be put in Xe.

Moreover, in (ORD 3) for each buffer neighbour x we allow a few (depending
on D and τ) exceptions to the rule that embedded neighbours of x need to be close
to x in the order. This is useful because vertices y of exceptionally high degree often
have to come relatively early in the order to satisfy (ORD 1) and (ORD 2), and
hence cannot necessarily be close to x.

We can now state our blow-up lemma for degenerate graphs. The only difference
to the previous blow-up lemma is that we ask for a (D, p, εn/r1)-bounded order
of H, that we allow only vertices with degree at most D as potential buffer vertices,
and that the exponent in the bound on p is determined by D. We remark that for
some graphs H, for example `-regular graphs, which have degeneracy `, this bound
on p is worse than the bound in Lemma 1.21. However for trees or planar graphs it
is often much better.

Lemma 1.23 (Blow-up lemma for Gn,p to embed degenerate graphs). For all
∆ ≥ 2, ∆R′ , ∆J , D, α, ζ, d > 0, κ > 1 there exist ε, % > 0 such that for all r1 there
is a C such that for

p ≥ C
(

log n

n

)1/D

the random graph Γ = Gn,p a.a.s. satisfies the following.
Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph

with ∆(R′) ≤ ∆R′ . Let H and G ⊆ Γ be graphs with κ-balanced, size-compatible
vertex partitions X = {Xi}i∈[r] and V = {Vi}i∈[r], respectively, which have parts

of size at least m ≥ n/(κr1). Let X̃ = {X̃i}i∈[r] be a family of subsets of V (H),
I = {Ix}x∈V (H) be a family of image restrictions, and J = {Jx}x∈V (H) be a family
of restricting vertices. Let τ be an order of V (H) and Xe ⊆ V (H) be a set of size
|Xe| ≤ εpmaxx∈Xe π

τ (x)n/r1. Suppose that

(DBUL 1) ∆(H) ≤ ∆, (H,X ) is an R-partition, and X̃ is an (α,R′)-buffer for H,
(DBUL 2) (G,V) is an (ε, d, p)-regular R-partition, which is (ε, d, p)-super-regular

on R′, has one-sided inheritance on R′, and two-sided inheritance on R′

for X̃ ,
(DBUL 3) I and J form a (%, ζ,∆,∆J)-restriction pair.
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(DBUL 4) τ is a (D, p, εn/r1)-bounded order for H, X̃ , I, J with exceptional set Xe.

Then there is an embedding ψ : V (H)→ V (G) such that ψ(x) ∈ Ix for each x ∈ H.

Let us briefly indicate how this blow-up lemma performs in practice. As we see
in for example Theorem 1.6, we can use it to obtain spanning embeddings in some

situations with D = 2 degen(H) + 1, thus with p ≥ C
(

logn
n

)1/(2 degen(H)+1)
. In [1]

we obtain the promised version of Theorem 1.10 for degenerate graphs, using the
same value of D. However to obtain this result, we have to pre-embed some vertices
of H, before applying Lemma 1.23, and we thus have to make some alterations to
the degeneracy order to obtain an order τ . The neighbours of the pre-embedded
vertices then threaten to destroy (D, p,m)-boundedness, and it is critical that we
can put them into Xe.

As a second example, if the degeneracy order (or something close to it) on
H happens to have the property that all edges go only a short distance, then
conditions (ORD 3) and (ORD 2) become trivially true, and we can obtain much
stronger results. For example, in [1] we give a resilience result for F -factors in G(n, p)

with p ≥ C
(

logn
n

)1/(degen(F )+3)
, that is, using Lemma 1.23 with D = degen(F ) + 3.

In this application we do not need any exceptions, and can set Xe = ∅.

1.3.4. Bijumbled graphs. Finally, we provide a blow-up lemma for embed-
ding bounded degree graphs into subgraphs of sufficiently bijumbled graphs. As
indicated earlier, in bijumbled graphs we use a stronger notion of regularity, which
in addition to the lower bound also requires an upper bound on the edge density of
subpairs.

Definition 1.24 (Regularity in bijumbled graphs). In bijumbled graphs, we
say that (X,Y ) is (ε, d, p)-regular if there is a d′ ≥ d such that for any X ′ ⊆ X with
|X ′| ≥ ε|X| and Y ′ ⊆ Y with |Y ′| ≥ ε|Y |, we have dp(X

′, Y ′) = d′ ± ε. When we
want to be it clear that we are working with this regularity concept we also call
such a pair (ε, d, p)-fully-regular.

The reason why we use lower-regularity in random graphs is that the regularity
inheritance we use in random graphs (see Section 2.1.3) provides only lower-regular
pairs. On the other hand, we use full-regularity in bijumbled graphs because the
regularity inheritance we prove for bijumbled graphs (again, see Section 2.1.3)
requires fully-regular pairs. Unfortunately, we do not know, in either case, how to
prove a regularity inheritance statement which works with the ‘other’ version of
regularity.

All other parts of our proofs work for both lower-regularity and full-regularity.
Since we would like to use many of these parts for random graphs as well as for
bijumbled graphs, we let regular pairs mean lower-regular pairs whenever we work
in in random graphs, and fully-regular pairs whenever we work in bijumbled graphs.

In particular, super-regularity, reduced graphs, inheritance, buffer sets and image
restrictions for bijumbled graphs are defined exactly as for random graphs, once
the regularity concept there is replaced with the regularity concept defined here.
Our blow-up lemma for bijumbled graphs then has analogous requirements and
conclusions as Lemma 1.21, with the only exception that the image restrictions
allowed here are much weaker: if H has maximum degree ∆ we can only image
restrict about a p∆-fraction of the vertices in any given partition class of H, rather
than a small constant fraction.

Lemma 1.25 (Blow-up Lemma for bijumbled graphs). For all ∆ ≥ 2, ∆R′ , ∆J ,
α, ζ, d > 0, κ > 1 there exist ε, % > 0 such that for all r1 there is a c > 0 such that
if p > 0 and

β ≤ cpmax(4,(3∆+1)/2)n
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any (p, β)-bijumbled graph Γ on n vertices satisfies the following.
Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with

∆(R′) ≤ ∆R′ . Let H and G ⊆ Γ be graphs given with κ-balanced, size-compatible
vertex partitions X = {Xi}i∈[r] and V = {Vi}i∈[r], respectively, which have parts

of size at least m ≥ n/(κr1). Let X̃ = {X̃i}i∈[r] be a family of subsets of V (H),
I = {Ix}x∈V (H) be a family of image restrictions, and J = {Jx}x∈V (H) be a family
of restricting vertices. Suppose that

(JBUL 1) ∆(H) ≤ ∆, (H,X ) is an R-partition, and X̃ is an (α,R′)-buffer for H,
(JBUL 2) (G,V) is an (ε, d, p)-regular R-partition, which is (ε, d, p)-super-regular

on R′, and has one-sided inheritance on R′, and two-sided inheritance
on R′ for X̃ ,

(JBUL 3) I and J form a (%p∆, ζ,∆,∆J)-restriction pair.

Then there is an embedding ψ : V (H)→ V (G) such that ψ(x) ∈ Ix for each x ∈ H.

We remark that we do not believe that the bound on β in this result is even
close to being best possible (this is discussed further in the concluding remarks,
Section 7.1.2). However, this blow-up lemma is the first general embedding result
which allows the embedding of spanning structures in bijumbled graphs (see for
example Theorem 1.2). Previously such embedding results were known only for
some special subgraphs H, such as Hamilton cycles [55], triangle factors [56], or
powers of Hamilton cycles [3]. Moreover, our blow-up lemma allows for resilience
results in pseudorandom graphs. Previously, the only results for large subgraphs
in this direction that we are aware of deal with cycles. Specifically, Sudakov and
Vu [65] found the local resilience of (n, d, λ)-graphs with respect to Hamiltonicity,
Dellamonica, Kohayakawa, Marciniszyn, and Steger [28] found the local resilience of
bijumbled graphs with respect to containing long cycles, and Krivelevich, Lee and
Sudakov [53], with a stronger bijumbledness requirement, found the local resilience
with respect to pancyclicity (containing cycles of all lengths).

1.3.5. Inheritance of regularity. The final results we would like to highlight
are the regularity inheritance lemmas for random graphs we mentioned earlier. These
are necessary not only in many applications of our sparse blow-up lemmas, such
as [1], but are also useful in other random graph contexts, for example in [2, 7]

Both statements rely crucially on the regularity inheritance work of Gerke,
Kohayakawa, Rödl and Steger [33], and also use ideas from [44].

Lemma 1.26 (One-sided lower-regularity inheritance in Gn,p). For each 0 < ε′, d
there are ε0 > 0 and C such that for all 0 < ε < ε0 and 0 < p < 1, a.a.s. Γ = Gn,p
has the following property. Let G ⊆ Γ be a graph and X,Y be disjoint subsets of
V (Γ). If (X,Y ) is (ε, d, p)-lower-regular in G and

|X| ≥ C max
(
p−2, p−1 log n

)
and |Y | ≥ Cp−1 log n ,

then for at most Cp−1 log n vertices z ∈ V (Γ) the pair
(
NΓ(z;X), Y

)
is not (ε′, d, p)-

lower-regular in G.

Lemma 1.27 (Two-sided lower-regularity inheritance in Gn,p). For each 0 < ε′, d
there are ε0 > 0 and C such that for all 0 < ε < ε0 and 0 < p < 1, a.a.s. Γ = Gn,p
has the following property. Let G ⊆ Γ be a graph and X,Y be disjoint subsets of
V (Γ). If (X,Y ) is (ε, d, p)-lower-regular in G and

|X|, |Y | ≥ C max
(
p−2, p−1 log n

)
,

then for at most C max(p−2, p−1 log n) vertices z ∈ V (Γ) the pair
(
NΓ(z;X), NΓ(z;Y )

)
is not (ε′, d, p)-lower-regular in G.
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These two results are quite similar to [44, Proposition 15]. The crucial difference
are the bounds on the sizes of X and Y as well as the bound on the number of
vertices z that do not preserve regularity. We remark that the bounds given in [44,
Proposition 15] are (roughly) equivalent to our bounds when p is as small as possible
in our blow-up lemmas, that is p = Θ

(
(log n/n)1/∆

)
, but for bigger p our results

are stronger.
We would like to stress that these results give sharp bounds, up to the constant

C, on the number of vertices which may fail to inherit lower-regularity. for any p < 1
2 .

We prove both theorems, and that they are sharp, in Section 2.1.3.
It is worth noting that the construction showing that Ω(p−1 log n) vertices may

fail to inherit lower-regularity in both lemmas uses a lower-regular pair (X,Y ) in
which |X| = o(n). It would be particularly interesting to know if there is a version of
Lemma 1.27 in which we insist on |X|, |Y | = Ω(n) but can strengthen the conclusion
by saying that only Cp−2 vertices fail to inherit lower-regularity. If such a statement
is true, we would obtain correspondingly stronger bounds in Theorem 1.10.

Finally, we note that corresponding inheritance lemmas (which take as input
and give as output fully-regular pairs) for bijumbled graphs were first proved by
Conlon, Fox and Zhao [25]. The improved versions of these lemmas which we state
in Section 2.1.3 were proved in [5].

1.4. Proof overview

The following is a high-level overview of the proofs of our blow-up lemmas.
In these proofs we merge ideas that were also used in proofs of dense blow-up
lemmas [23, 46, 61] and of the sparse embedding lemma in [44] with many new
ingredients. Of course there are differences between the proofs of Lemmas 1.21, 1.23,
and 1.25 but at the level of this overview we will avoid mentioning most of them.

In each of our blow-up lemmas we want to embed a graph H, which is given with
a partition X and potential buffer sets X̃ , into a graph G ⊆ Γ with a compatible
super-regular partition V, possibly with some image restrictions, and where Γ is
a sparse random or bijumbled graph. To avoid technical details, we will in this
overview largely ignore the image restrictions; these turn out not to play a large rôle
in the proofs. Our embedding strategy for H is comprised of different randomised
embedding procedures. Before we can apply them though, we need to prepare the
graphs H and G by subpartitioning their partition classes suitably (details of what
we need can be found in Sections 2.3.2 and 2.3.3).

We start by subpartitioning the partition classes of H such that any pair of
vertices in a part of the new partition is at distance at least ten, which is possible
by a trick first used by Alon and Füredi [15], and in a blow-up lemma setting by
Rödl and Ruciński [61], that relies on the Hajnal-Szemerédi Theorem (Theorem 2.3).
Having only distant vertices in a part will provide sufficient independence of these
vertices in our randomised embedding procedures. To get a compatible new partition
of G, we subpartition the clusters of G randomly.

Next, we subpartition each cluster Vi of G randomly into several parts

Vi = V main
i ∪̇ V q

i ∪̇ V
c
i ∪̇ V buf

i .

The first of these sets is large (of size (1 − 3µ)|Vi| for some small µ), while the
remaining three are much smaller (of size µ|Vi|). Because the subpartitionings were
performed randomly, subparts of super-regular pairs (given by R′) maintain super-
regularity. The reason for doing this is that we perform the embedding in stages,
and these stages require separate parts. This idea is also used in [23].

We also partition Xi into a large part Xmain
i (of size at most (1− 4µ)|Xi|) and

a small part Xbuf
i (of size 4µ|Xi|), called the set of buffer vertices. The latter set is
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required to be a subset of the potential buffer vertices X̃i in Xi. We also require
various extra properties of Xbuf

i . In the proof of the random graphs blow-up lemma,
Lemma 1.21, we also include another small subpart Xc

i in this partitioning step.
This is due to the fact that in this proof we have to treat the case that most of the
vertices X̃i are contained in copies of K∆+1 specially (in order to obtain the claimed
bound on the probability p). We need the sets V c

i to embed this small subpart.
At this point H and G are prepared for the embedding. We now describe

our randomised embedding approach. Firstly, we make use of a randomised greedy
algorithm (RGA) to embed Xmain

i into V main
i (see Section 3.2 for the simplest version

used in the proof of Lemma 1.21). An algorithm of this type was also used by Komlós,
Sárközy and Szemerédi [46] to prove the dense blow-up lemma. The RGA embeds
the sets Xmain

i vertex by vertex, in each step avoiding some bad vertices of G and
embedding the current vertex x ∈ Xmain

i into its so-called candidate set. If ψ is the
partial embedding of H into G that we have constructed so far, then the candidate
set C(x) ⊆ Vi is the set of vertices adjacent in G to each ψ(y) such that y is an
embedded neighbour of x in H. However, some of the vertices in C(x) may have
been used as images for other vertices already, so we let A(x) = C(x) \ Im(ψ) be the
available candidate set for x. Obviously, x has to be embedded into A(x) in order to
obtain an embedding.

In order to succeed with this strategy, we have to maintain certain properties
for the partial embedding ψ, which we call good partial embedding properties (see
Section 2.3.5). We remark that the properties of a restriction pair ensure that the
trivial partial embedding, which we have at the beginning when no vertices of H
are embedded yet, is a good partial embedding. This fact means that in the proofs
we usually do not need to distinguish between vertices which are and are not image
restricted (and it also justifies that we ignore image restrictions in this overview).

Among other properties, such as regularity properties, in a good partial em-
bedding we require that for each unembedded x ∈ Xi the set C(x) is large, that
is of size Ω(d`p`|V main

i |) where ` is the number of already embedded neighbours
of y. In order to maintain this property we need to avoid certain bad vertices B(x)
when embedding x. More precisely, when we embed x this leads to a change of
the candidate sets C(y) of unembedded neighbours y of x. The set B(x) contains
the vertices v ∈ Vi that would lead to some C(y) becoming small (or have some
other bad properties that would prevent us from maintaining a good partial em-
bedding; see Section 2.3.7). The RGA then embeds x uniformly at random into
V main
i ∩A(x) \B(x).

That we choose the images randomly helps us in several ways. Most immediately,
we can use it to show that the sets C(y) for unembedded vertices y ∈ Xmain

i ∪Xbuf
i

are ‘uniformly’ distributed over V main
i . In particular, this means that they tend not

to be contained entirely in Im(ψ), which, together with the fact that B(y) is always
small, implies that the set V main

i ∩A(y) \B(y) to which we wish to embed a future
y ∈ Xmain

i is usually not small.
Unfortunately though, the RGA will not succeed in embedding every vertex of

Xmain
i , because occasionally we will come across a vertex x such that V main

i ∩A(x) \
B(x) is small. We put such vertices x in a queue Xq

i ⊆ Xmain
i . The use of such a

queue appears already in [46]. The ‘uniform’ distribution of the sets C(x) allows us
to show that Xq

i remains much smaller than the so far untouched V q
i . We will show

that this allows us to embed Xq
i into V q

i , maintaining a good partial embedding.
We note that in the proof of the random graphs blow-up lemma, Lemma 1.21, we
perform this embedding after we have embedded all other vertices of Xmain

i , using a
matching strategy similar to that of Kohayakawa, Rödl, Schacht and Szemerédi [44].
In the proofs of the other two blow-up lemmas, Lemma 1.23 and 1.25, however,
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we embed the vertices of Xmain
i in the given order, again using a random greedy

strategy. In either case, the underlying idea is to show that the only reason why we
might fail to embed Xq

i into V q
i is that G contains a ‘dense spot’, contradicting the

fact that our random or bijumbled Γ does not contain such dense spots.
At this point, all vertices of Xmain

i are embedded, and it remains to embed the
carefully chosen buffer vertices Xbuf

i . Since any two buffer vertices are at distance at
least 10 in H, in particular all neighbours of buffer vertices have been embedded, so
the candidate set C(x) of a buffer vertex x will not change anymore, and it suffices
to find a system of distinct representatives for the available candidate sets A(x),
which we achieve by verifying Hall’s condition. Thus, for each set Y ⊆ Xbuf

i , we
need to show that the union W of the available candidate sets for y ∈ Y satisfies
|W | ≥ |Y |. We separate three cases: Y is either a small fraction of Xbuf

i , or most
of Xbuf

i , or somewhere intermediate. In the first case we use essentially the same
argument as when embedding the queue vertices. In the last case we show that
the ‘uniform’ distribution of the sets C(x) for x ∈ Xbuf

i implies that W is most of
Vi \ Im(ψ).

To handle the remaining case when Y contains most or all of Xbuf
i , we show

that the RGA gives us an extra property: for every vertex v ∈ Vi there are many
vertices x ∈ Xbuf

i such that v is a candidate for x. This is the point in the proof
where we use the super-regularity and inheritance properties that G satisfies on the
subgraph R′ of R. We also remark that in the case of the random graphs blow-up
lemma, Lemma 1.21, we cannot in general establish this property: When most of
the vertices in X̃i are contained in copies of K∆+1 we obtain the claimed feature
only for most vertices instead of all vertices v ∈ Vi. Hence in this case, to recover
the special property, we perform an additional embedding stage, using the sets Xc

i

and V c
i , to fix these buffer defects (see Section 3.4). This additional embedding stage

also uses the super-regularity and inheritance properties of R′. We do not use these
properties elsewhere in the proof. Finally, using again that Γ and hence G does not
have ‘dense spots’ we can show that the above described extra property implies
|W | ≥ |Y | as desired.

Summarising, our blow-up lemma proofs contain three main embedding pro-
cedures: the random greedy algorithm, the queue embedding, and the embedding
of the buffer vertices. In the proof of Lemma 1.21 we also perform an additional
embedding procedure for fixing buffer defects.

One important difference between the proofs of Lemmas 1.21 and 1.25, and of
Lemma 1.23, is that in the former we choose the order of embedding vertices in the
RGA, whereas in the latter an order is given to us. We change it only by moving
the vertices Xbuf

i to the end of the order.

1.4.1. Organisation of the proofs of the blow-up lemmas. In the follow-
ing Section 2.1 we give a collection of probabilistic and graph-theoretic tools which
we will need in the proofs, and in the applications, of our blow-up lemmas.

In Section 2.2 we formulate a number of deterministic properties which are
enjoyed by random graphs (asymptotically almost surely) and bijumbled graphs for
certain parameter ranges. In the proofs of our blow-up lemmas, we will assume only
these properties of our ambient graph Γ; we will make neither further probabilistic
calculations about the random graph Gn,p nor further use of bijumbledness.

In Section 2.3 we describe the general setup for the proofs of our blow-up
lemmas, including the setup of constants, the preparation of the graphs G and H,
and the definition of candidate sets, good partial embeddings, bad vertices, and
related concepts. Apart from the selection of vertices Xc (which we do in the proof
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of Lemma 1.21, Section 3.1) this section covers the above proof overview up to the
point at which ‘H and G are prepared for the embedding’.

In Section 2.4 we give four lemmas relating to random greedy algorithms. The
first of these generates an order on V (H) which we use for the RGAs in the proofs of
Lemmas 1.21 and 1.25. The next three are statements about the typical behaviour
of a class of RGAs, one of which (Lemma 2.27) we use in the analysis of all three
of our RGAs, and the other two of which we use in the RGAs for Lemmas 1.21
and 1.25.

Chapter 3 constitutes the remainder of the proof of Lemma 1.21. In Section 3.1 we
formulate four lemmas which describe the results of the four embedding procedures
we use in the proof. These are the RGA (Lemma 3.1), the queue embedding
(Lemma 3.2), the fixing of buffer defects (Lemma 3.3) and the buffer embedding
(Lemma 3.4). We prove the last of these (which is short) in Section 3.1 and round
the section off by deducing Lemma 1.21. In Section 3.2 we state exactly the RGA
(Algorithm 1) whose typical output is Lemma 3.1, and analyse it to prove that lemma.
We note that, although we mentioned in the overview above the ‘extra property’ of
the RGA that allows for the buffer embedding when discussing that phase of the
proof, we prove the ‘extra property’ holds in this section, so that everything we need
from the RGA is contained in Lemma 3.1 (and the corresponding point also holds
for our other two RGA lemmas). In Section 3.3 we state our (much simpler) queue
embedding procedure, and show that it suffices for Lemma 3.2. Finally, in Section 3.4
we explain how to deal with buffer defects caused by our inability to handle clique
buffers in the RGA, giving Algorithm 2 whose output yields Lemma 3.3.

Chapter 4 contains the corresponding parts of the proof of Lemma 1.25. We
prove Lemma 1.25 before Lemma 1.23 because we use some ideas from the proof
of the former, in a simpler situation, to prove the latter. In Section 4.1 we state
Lemma 4.1, which describes the typical output of the RGA we use here, and proceed
to deduce Lemma 1.25. Note that we do not have any separate queue embedding
and buffer defect fixing steps in the proof of Lemma 1.25: the former is done by the
RGA, while the latter is unnecessary as this RGA typically does not create buffer
defects. We do need to analyse the buffer embedding, but this is done in the proof
of Lemma 1.25 directly as we will not be able to re-use the argument. In Section 4.2
we state the RGA we use (Algorithm 3) and give the analysis showing its typical
output is as described in Lemma 4.1. Note that although the RGA handles the
embedding of both the queue and non-queue vertices of Xmain, the analyses we need
for the two types of vertex are quite different.

Finally, Chapter 5 completes the proof of Lemma 1.23. In Section 5.1, we state
Lemma 5.1, which again describes the typical output of the RGA we use, and deduce
Lemma 1.23 from it. In this deduction, we can re-use Lemma 3.4 which tells us
that the buffer embedding succeeds. In Section 5.2, we state Algorithm 4, the RGA
algorithm we use, and analyse it to prove Lemma 5.1. This is the most complicated
RGA we use, and its analysis is correspondingly difficult. It embeds each of queue
vertices, non-queue vertices and exceptional vertices (in Xe) of Xmain, and we need
to analyse each separately (though Xe turns out to be very easy). Most of the ideas
used in this part were seen previously in the proof of Lemma 4.1. We also need to
analyse the embedding of neighbours of buffer vertices by the RGA in order to show
that the buffer embedding is possible, and the ideas we use for this were mainly
seen in Lemmas 2.28 and 2.29.



CHAPTER 2

Tools, preparation and setup

2.1. Tools

2.1.1. Probabilistic inequalities. We need the following forms of Chernoff’s
inequality and of the hypergeometric inequality. Recall that ifX is hypergeometrically
distributed with parameters N , n and m, then EX = mn/N .

Theorem 2.1 (Corollary 2.4, Theorems 2.8 and 2.10 from [37]). Let X be a
random variable which is either the sum of a collection of independent Bernoulli
random variables, or is hypergeometrically distributed. Then we have for δ ∈ (0, 3/2)

P
(
X > (1 + δ)EX

)
< e−δ

2EX/3 and P
(
X < (1− δ)EX

)
< e−δ

2EX/3 .

We also have, for any t ≥ 6EX,

P
(
X ≥ EX + t) ≤ e−t .

We will often want to bound above the sum of a sequence of Bernoulli random
variables Y1, . . . , Yn coming from some process which are not independent, but
which have the following sequentially dependent structure. Suppose H0, . . . ,Hn are
increasing ‘histories’ of the process, that is, information on all the random choices
made in the process up to given increasing times in the process. Suppose that for
each 1 ≤ i ≤ n, the value of the random variable Yi is determined by Hi, and that
we have functions pi = pi(Hi−1) such that E[Yi|Hi−1] ≤ pi holds almost surely,
that is, with probability 1. If

∑n
i=1 pi is almost surely bounded above by x, then the

following lemma claims the same upper tail bound on
∑n
i=1 Yi holds as we would get

from Theorem 2.1 if the Yi were independent and the sum of their expectations were
x, and also gives the same lower tail bound as Theorem 2.1 under similar conditions.

It is convenient to phrase this lemma in terms of a sequence of partitions
F0, . . . ,Fn, each refining the previous, of a probability space Ω. For the connection
to processes and histories, observe that any finite stochastic process is associated with
the finite probability space of all possible outcomes, with the probability measure
coming from the process. The possible histories of the process up to any given
time t naturally give a partition of this probability space, and two histories up to
an earlier and later time give two partitions, the first refined by the second. Thus
the following lemma indeed applies to sequentially dependent random variables as
described above.

We note that this lemma could be phrased in terms of a filtration and random
variables measurable with respect to elements of the filtration, which might be more
familiar to readers with a background in probability. That we do not use this notation
here is purely to avoid defining these concepts. Furthermore, we remark that the
lemma is essentially a super/submartingale inequality, proved in the standard way.1

However we did not find this particular inequality in the literature, so give a proof
from first principles here.

Lemma 2.2 (Sequential dependence lemma). Let Ω be a finite probability space,
and F0, . . . ,Fn be partitions of Ω, with Fi−1 refined by Fi for each i ∈ [n]. For each

1We would like to thank Oliver Riordan and Ori Gurel-Gurevich for pointing this out to us.

21



2.1. TOOLS 22

i ∈ [n] let Yi be a Bernoulli random variable on Ω which is constant on each part of
Fi, and let pi be a real-valued random variable on Ω which is constant on each part
of Fi−1. Let x be a real number, δ ∈ (0, 3/2), and X = Y1 + · · ·+ Yn.

(a ) If
∑n
i=1 pi ≤ x holds almost surely, and E[Yi|Fi−1] ≤ pi holds almost surely

for all i ∈ [n], then

P
(
X > (1 + δ)x

)
< e−δ

2x/3 .

(b ) If
∑n
i=1 pi ≥ x holds almost surely, and E[Yi|Fi−1] ≥ pi holds almost surely

for all i ∈ [n], then

P
(
X < (1− δ)x

)
< e−δ

2x/3 .

Proof. We start with (a ). We shall first show by induction on n that if∑n
i=1 pi ≤ x holds almost surely and E[Yi|Fi−1] ≤ pi holds almost surely for all

i ∈ [n], then we have the following bound on the moment generating function of X
for every u ≥ 0:

EeuX = E
n∏
i=1

euYi ≤
(

1− x

n
+
x

n
eu
)n

. (3)

For n = 1 we have P(Y1 = 1|F0) ≤ p1 ≤ x almost surely, hence P(Y1 = 1) ≤ x
almost surely. We conclude that indeed

EeuY1 = 1− P(Y1 = 1) + euP(Y1 = 1) ≤ 1− x+ xeu ,

because 1− t+ teu is non-decreasing in t.
For n ≥ 2, we shall use for each F ∈ F1 with P(F ) > 0, the induction hypothesis

applied to the n−1 random variables p2|F, . . . , pn|F and the n−1 random variables
Y2|F, . . . , Yn|F . This is possible because, since P(F ) > 0, we have

∑n
i=2 pi|F ≤

x− p1|F almost surely and E[Yi|F,Fi−1] ≤ pi|F almost surely for each 2 ≤ i ≤ n.
We conclude by induction that

E
n∏
i=1

euYi =
∑
F∈F1

P(F )euY1|FE
[ n∏
i=2

euYi
∣∣∣F]

≤
∑
F∈F1

P(F )euY1|F
(

1− x− p1|F
n− 1

+
x− p1|F
n− 1

eu
)n−1

.

(4)

Further, because Y1 is constant on each part F of F1 we have for each F0 ∈ F0 that∑
F∈F1,F⊆F0

P(F )euY1|F = P(F0)E[euY1 |F0]

= P(F0)
(
1− P(Y1 = 1|F0) + euP(Y1 = 1|F0)

)
≤ P(F0)(1− p1|F0 + eup1|F0) ,

where the inequality uses that 1 − t + teu is non-decreasing in t. Because p1 is
constant on each part F0 of F0 it thus follows from (4) that

E
n∏
i=1

euYi ≤
∑
F0∈F0

∑
F∈F1,F⊆F0

P(F )euY1|F
(

1− x− p1|F0

n− 1
+
x− p1|F0

n− 1
eu
)n−1

≤
∑
F0∈F0

P(F0)
(
1− p1|F0 + eup1|F0

)(
1− x− p1|F0

n− 1
+
x− p1|F0

n− 1
eu
)n−1

. (5)

Since f(t) = ln(1 − t + teu) is a concave function in t it follows from Jensen’s
inequality that

f(t) + (n− 1)f
( x− t
n− 1

)
≤ n · f

( 1

n

(
t+ (n− 1)

x− t
n− 1

))
= n · f

(x
n

)
,
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for any t ∈ [0, 1]. Substituting this, with t = p1|F0 for each F0 ∈ F0, into (5)
yields (3), as desired.

We are now in a position to apply Bernstein’s method of applying Markov’s
inequality to the moment generating function. Since euz is strictly increasing in z
for each u > 0, we have

P
(
X > (1 + δ)x

)
= P

(
euX > e(1+δ)ux

)
≤
(
EeuX

)
e−(1+δ)ux

(3)

≤
(
1− x

n + x
ne

u
)n
e−(1+δ)ux ,

(6)

if u > 0, where the first inequality is Markov’s inequality. We may assume (1+δ)x < n,
since otherwise P

(
X > (1 + δ)x

)
= 0 and the lemma statement is trivial. Thus we

can choose u such that eu = (1+δ)(n−x)
n−(1+δ)x , plug that into the right hand side of (6)

and obtain

P
(
X > (1 + δ)x

)
≤
(

1 + δx
n−(1+δ)x

)n (
(1+δ)(n−x)
n−(1+δ)x

)−(1+δ)x

=
(

1 + δx
n−(1+δ)x

)n−(1+δ)x
((

1 + δx
n−(1+δ)x

)−1 (
(1+δ)(n−x)
n−(1+δ)x

))−(1+δ)x

≤ eδx(1 + δ)−(1+δ)x ≤ e−δ
2x/3 ,

where the last inequality uses (1 + δ) ln(1 + δ)− δ ≥ δ2/3. This proves (a ).
The proof of (b ) is similar. By the analogous calculation, we have

Eeu(n−X) ≤
(
1− n−x

n + n−x
n eu

)n
,

and again Bernstein’s method, this time choosing eu = n−x+δx
(n−x)(1−δ) , gives the desired

result for δ ∈ (0, 1):

P (X < (1− δ)x) = P (n−X > n− x+ δx) = P
(
eu(n−X) > eu(n−x+δx)

)
≤ E[eu(n−X)]e−u(n−x+δx) ≤

(
1− n−x

n + n−x
n eu

)n
e−u(n−x+δx)

=
(

1 + n−x
n

(
δn

(n−x)(1−δ)

))n (
n−x+δx

(n−x)(1−δ)

)−(n−x+δx)

= (1− δ)−n
(

n−x+δx
(n−x)(1−δ)

)−(n−x+δx)

= (1− δ)−(1−δ)x
(
n−x+δx
n−x

)−(n−x+δx)

≤ (1− δ)−(1−δ)x
(

1 + δx
n−x

)−(n−x)

≤ (1− δ)−(1−δ)x
e−δx ≤ e−δ

2x/3 .

Note that in this case we only need to consider δ ∈ (0, 1) as the probability of X < 0
is zero, so this gives (b ). �

2.1.2. Equitable partitions. The Hajnal-Szemerédi Theorem states that any
graph F has a k-colouring with equitable colour classes for every k ≥ (∆(F ) + 1).

Theorem 2.3 (Hajnal-Szemerédi [35]). Given any graph F and k ≥ ∆(F ) + 1,
there is an equitable partition V (F ) = V1 ∪̇ · · · ∪̇Vk such that each part is independent.

For preparing the graph H for the embedding in the proofs of our blow-up
lemmas, we require an equitable partitioning result similar to the Hajnal-Szemerédi
Theorem (which we shall apply to an auxiliary graph F defined for each part of the
given partition of H). The difference is that we want to specify a subset X of the
vertices of F and obtain an equitable partition of F that also equitably partitions X
(this subset will be the buffer set). Since for us it is not essential to obtain a sharp
bound on the number of parts required, this result is not difficult to deduce from
the Hajnal-Szemerédi Theorem.
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Lemma 2.4. Given any graph F and a subset X of V (F ), there is an equitable
partition V (F ) = V1 ∪̇ . . . ∪̇ V8∆(F ) such that each part is independent and the sets
Vi ∩X form an equitable partition of X.

Proof. We may assume without loss of generality that |X| ≤ v(F )/2, since
otherwise we could replace X with V (F )\X. We now first use the Hajnal-Szemerédi
Theorem to get an equitable partition of F [X] into 8∆(F ) independent parts. We
proceed by adding the remaining vertices of F to these parts, maintaining their
independence, to obtain a partition V1 ∪̇ . . . ∪̇ V8∆(F ) of V (F ). Among all possible
such partitions we choose the one which is as equitable as possible. Observe that in
this process it is always possible to put every vertex into some part: for any vertex,
there are at most ∆(F ) parts to which it cannot be added, so at least 7∆(F ) parts
exist to which it can be added to form an independent set.

We are now done if there exist no pair of parts Vi, Vj whose sizes differ by two
or more. Suppose V1 is the smallest part. Observe that there are at most ∆(F )|V1|
vertices in V (F ) \ X which have a neighbour in V1. Since 8∆(F )|V1| ≤ v(F ) it
follows that there are at least 3

8v(F ) vertices in V (F ) \X which have no neighbour
in V1.

Assume for contradiction that there are parts Vi with |Vi| ≥ |V1|+ 2. Observe
that for each such i every vertex of Vi \X is adjacent to some vertex of V1, or we
would be able to move a vertex from Vi \ X to V1 and obtain a more equitable
partition. Hence the at least 3

8v(F ) vertices in V (F ) \X which have no neighbour
in V1 are all contained in parts of size at most |V1|+ 1 ≤ 2|V1|, and thus lie in at
least 3

2∆(F ) different parts. Now fix a set Vi with |Vi| ≥ |V1|+ 2, and let v be any
vertex of Vi \X (which exists because we started with an equitable partition of X).
Since v has at most ∆(F ) < 3

2∆(F ) neighbours, there is a set Vk which contains no
vertex adjacent to v, and which contains a vertex w, not in X, with no neighbours
in V1. We replace Vi with Vi \ {v}, Vk with Vk ∪ {v} \ {w}, and V1 with V1 ∪ {w}.
The result is a more equitable partition, a contradiction. �

2.1.3. Regularity inheritance. In our blow-up lemmas we require certain
regularity inheritance properties. In this subsection we justify that we can obtain
these in subgraphs of random or bijumbled graphs. More precisely, we provide
inheritance lemmas stating that most vertices in a (sparse) regular partition satisfy
these inheritance properties. This is important for the correctness of our embedding
procedures proving the blow-up lemmas.

Recall that, according to our definition, regularity in random graphs and regu-
larity in bijumbled graphs are different things: lower-regularity in the former and
full-regularity in the later. Recall also that the sole reason for this difference is that
we can only establish regularity inheritance for the respective version, that is, that
the lemmas provided in this subsection require lower-regularity when they concern
random graphs and full-regularity when they concern bijumbled graphs. Accordingly,
in this subsection we shall make the two different regularity concepts explicit and
talk about lower-regularity and full-regularity for clarity.

For subgraphs G of bijumbled graphs Γ we can simply rely on the following
inheritance lemmas from [5]. These lemmas consider three disjoint vertex sets X,Y, Z
such that (X,Y ) forms a fully-regular pair. The first lemma is a one-sided regularity
inheritance statement and states that for most vertices z ∈ Z the pair

(
NΓ(z;X), Y

)
inherits full-regularity.

Lemma 2.5 (One-sided regularity inheritance in bijumbled graphs [5, Lemma 3]).

For each ε′, d > 0 there are ε0, c0 > 0 such that for all 0 < ε ≤ ε0 and 0 < p < 1
the following holds. Let G ⊆ Γ be graphs and X,Y, Z be disjoint subsets of V (Γ). If
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(X,Y ) is (ε, d, p)-fully-regular in G and Γ is(
p, c0p

2(log2
1
p )−1/2

√
max

(
|X||Y |, |X||Z|

))
-bijumbled

then for at most ε′|Z| vertices z of Z the pair
(
NΓ(z;X), Y

)
is not (ε′, d, p)-fully-

regular in G.

The second lemma requires stronger bijumbledness for establishing two-sided
regularity inheritance. It states that for most z ∈ Z the pair

(
NΓ(z;X), NΓ(z;Y )

)
inherits full-regularity.

Lemma 2.6 (Two-sided regularity inheritance in bijumbled graphs [5, Lemma 4]).

For each ε′, d > 0 there are ε0, c0 > 0 such that for all 0 < ε < ε0 and 0 < p < 1
the following holds. Let G ⊆ Γ be graphs and X,Y, Z be disjoint subsets of V (Γ). If
(X,Y ) is (ε, d, p)-fully-regular in G and Γ is(

p, c0p
3
√

max
(
|X||Y |, |X||Z|, |Y ||Z|

))
-bijumbled

then for at most ε′|Z| vertices z of Z the pair
(
NΓ(z;X), NΓ(z;Y )

)
is not (ε′, d, p)-

fully-regular in G.

We note that the regularity inheritance lemmas in random graphs, Lemmas 1.26
and 1.27, stated in Section 1.3.5, are stated in a different form to the ones for
bijumbled graphs above, not requiring any bound on p, but rather having p appear
in the estimates for the sizes of X and Y as well as the number of vertices not
preserving regularity. We state them in this form because this seems most suitable
when we want to use them in applications of our blow-up lemma. For bijumbled
graphs on the other hand we decided not to switch to this form since we would
obtain more complicated conditions in this case (bounding the products of set sizes
such as |X||Y |, instead of the sets themselves).

In the proofs of Lemmas 1.26 and 1.27 we follow the approach of [44], and
rely on the following result of Gerke, Kohayakawa, Rödl and Steger [33] stating
that the vast majority of subpairs (X ′, Y ) of a lower-regular pair (X,Y ) in any
graph inherit lower-regularity. Unfortunately this result becomes false if we replace
lower-regularity by full-regularity, and it is precisely this reason why we need to
work with lower-regularity in random graphs.

Theorem 2.7 (Theorem 3.6 from [33]). For any d, β, ε′ > 0 there exist ε0 > 0
and C such that for any 0 < ε < ε0 and 0 < p < 1, if (X,Y ) is an (ε, d, p)-lower-
regular pair in a graph G, then the number of sets X ′ ⊆ X with |X ′| = w ≥ C/p

such that (X ′, Y ) is an (ε′, d, p)-lower-regular pair in G is at least (1− βw)
(|X|
w

)
.

The following is an analogous statement for subpairs (X ′, Y ′) of (X,Y ) and is
an immediate consequence of Theorem 2.7.

Corollary 2.8 (Corollary 3.8 from [33]). For any d, β, ε′ > 0 there exist
ε0 > 0 and C such that for any 0 < ε < ε0 and 0 < p < 1, if (X,Y ) is an
(ε, d, p)-lower-regular pair in a graph G, then the number of pairs X ′ ⊆ X and
Y ′ ⊆ Y with |X ′| = w1 ≥ C/p and |Y ′| = w2 ≥ C/p such that (X ′, Y ′) is an

(ε′, d, p)-lower-regular pair in G is at least (1− βmin(w1,w2))
(|X|
w1

)(|Y |
w2

)
.

The proof idea for both of our random graphs inheritance lemmas is the following.
First, we will show that if (X,Y ) is a counterexample, that is, a lower-regular pair not
satisfying the conclusion of either lemma, then there is a counterexample (X∗, Y ∗)
with both parts having the minimum sizes allowed and such that the ‘offending’
vertices z are outside X∗ ∪ Y ∗. We will then show that this latter structure is
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unlikely to exist in Gn,p. It may not be obvious what we gain by reducing (X,Y ) to
(X∗, Y ∗); what we gain is that there are not too many edges of Γ between X∗ and
Y ∗, and hence not too many possible lower-regular subgraphs of Γ. This allows us
to take a union bound over all possible choices, which would fail if we attempted it
with the original (X,Y ).

In this proof we shall use the following two lemmas. The first lemma assumes we
are given a regular pair together with a collection of ` subpairs that are substantially
sparser than the regular pair, and asserts that we can scale down the sizes of this
pair and the subpairs.

Lemma 2.9. For each d, ε′, δ > 0 there exist ε0 and C such that for all 0 < ε < ε0

the following holds. Let (X,Y ) be an (ε, d, p)-lower-regular pair in a graph G, and
suppose |X| ≥ m ≥ Cp−1−i for i ∈ {0, 1}. Further, let Xj ⊆ X and Yj ⊆ Y with
j ∈ [`] form ` subpairs of (X,Y ) for some ` ∈ [m], such that |Xj | ≥ δpi|X| and
dp(Xj , Yj) < d− δ.

Then there are X∗ ⊆ X with |X∗| = m and X∗j ⊆ Xj∩X∗ with |X∗j | ≥ δ2pim/6
for each j ∈ [`], such that (X∗, Y ) is (ε′, d, p)-lower-regular in G and dp(X

∗
j , Yj) <

d− δ/2 for each j ∈ [`].

Proof. Given d, ε′ > 0, let ε0 and C ′ be returned by Theorem 2.7 with input
d, 1

2 , ε
′, and let C ≥ C ′ be such that (x2/C) exp(−δ2x/36) < 1

2 for each x ≥ 1.
Given 0 < ε < ε0 and δ > 0, and given an (ε, d, p)-lower-regular pair (X,Y )

with |X| ≥ m ≥ Cp−1−i, let X∗ ⊆ X be chosen uniformly at random from the
m-sized subsets of X. By Theorem 2.7, with probability at least 1

2 , the pair (X∗, Y )
is (ε′, d, p)-lower-regular.

Given any pair (Xj , Yj) with dp(Xj , Yj) < d− δ, there exists a subset X ′′j of Xj

consisting of at least δ|Xj |/3 vertices each of whose degree into Yj is smaller than
(d− δ/2)p|Yj |, as otherwise we would have

e(Xj \X ′′j , Yj) ≥ (1− δ/3)|Xj |(d− δ/2)p|Yj | > (d− δ)p|Xj ||Yj | > e(Xj , Yj),

a contradiction. Let X∗j = X ′′j ∩X∗, then dp(X
∗
j , Yj) < d− δ/2, by definition of X ′′j .

The quantity |X∗j | is hypergeometrically distributed with mean at least δ2pim/3

since |X ′′j | ≥ δ|Xj |/3 and |Xj | ≥ δpi|X| ≥ δpim. By Theorem 2.1, the probability

that |X∗j | < δ2pim/6 is at most exp(−δ2pim/36).

By choice of m, we have (pim)2 ≥ Cp−1pim ≥ Cm, so setting x = pim ≥ 1,
by choice of C we have (x2/C) exp(−δ2x/36) < 1

2 . Thus taking a union bound, we
conclude that with probability at least

1− 1
2 −m exp(−δ2pim/36) > 0

all of the above good events occur, giving the conclusion of the lemma. �

The next easy lemma shows that adding a few vertices to an (ε, d, p)-lower-
regular pair does not destroy regularity. We note that the corresponding result for
an (ε, d, p)-fully-regular pair would require knowing that G does not contain dense
spots.

Lemma 2.10. Let 0 < ε < 1
10 . Let G be a graph and let U ′, V ′ ⊆ V (G) be

disjoint sets such that (U ′, V ′) is (ε, d, p)-lower-regular in G. If U ⊇ U ′ with |U | ≤(
1 + 1

10ε
3
)
|U ′| and V ⊇ V ′ with |V | ≤

(
1 + 1

10ε
3
)
|V ′| are disjoint, then (U, V ) is

(2ε, d, p)-lower-regular in G.
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Proof. Let X and Y be arbitrary subsets of U and V with |X| ≥ 2ε|U |, |Y | ≥
2ε|V |. We need to show that eG(X,Y ) ≥ (d− 2ε)p|X||Y |. Since (U ′, V ′) is (ε, d, p)-
lower-regular in G, and since 2ε− 1

10ε
3 > ε, we have

eG(X ∩ U ′, Y ∩ V ′) ≥ (d− ε)p|X ∩ U ′||Y ∩ V ′|
≥ (d− ε)p

(
|X| − 1

10ε
3|U ′|

)(
|Y | − 1

10ε
3|V ′|

)
≥ (d− ε)(1− 1

10ε
2)2p|X||Y |

≥ (d− 2ε)p|X||Y | ,
as desired. �

We now prove our one-sided regularity inheritance lemma, Lemma 1.26.

Proof of Lemma 1.26. Given 0 < ε′, d we set δ1 = (ε′)2/24, δ2 = δ2
1/24 and

β = 2−108(ε′)−3

. Now Theorem 2.7 with input d, β, δ2 returns constants ε2 and C2.
We now let ε1 and C1 be the output of Lemma 2.9 for input d, ε2 and δ1. We let ε3

and C3 be the output of Lemma 2.9 for input d, ε1 and ε′/2. Finally, we set

C ′ = max(1600, C1, 2C2, C3) , C = 2000(ε′)−3C ′ and ε0 =
1

10
min{ε1, ε2, ε3} .

Suppose that p ≥ Cn−1/2 (since otherwise |X| > n and the claim of the lemma
vacuously holds).

We first show that a.a.s. Γ = Gn,p has the following property:

(?) For any disjointX,Y ⊆ V (Γ) both of size at least 24p−1 log n we have eΓ(X,Y ) =(
1 ± 1

2

)
p|X||Y |, and for any Z ⊆ V (Γ) of size at least 12p−1 log n we have

e(Z) ≤ p|Z|2.

Indeed, using Theorem 2.1 and a union bound over the choices of X and Y , the
failure probability of the first assertion is at most∑

|X|,|Y |≥24p−1 logn

n|X|+|Y | · 2 exp
(
− p|X||Y |

12

)
≤
∑
|X|,|Y |

2 · 22 max(|X|,|Y |) logn exp
(
− 2 max(|X|, |Y |) log n

)
≤2n2

(
22 exp(−2)

)log2 n
,

where the first inequality uses |X|, |Y | ≥ 24p−1 log n and the second max(|X|, |Y |) ≥
log n. Since 22 exp(−2) < 1, this tends to zero as n tends to infinity. Similarly, the
failure probability of the second assertion is at most∑

|Z|≥12p−1 logn

n|Z| · e−p|Z|
2/6 ≤

∑
|Z|

2|Z| logne−2|Z| logn < n · e−p
−1 log2 n ,

which tends to zero as n tends to infinity.
Our proof proceeds by contradiction. The following claim states that, provided (?)

holds, if the conclusion of Lemma 1.26 does not hold for any pair of sets X and Y
and graph G ⊆ Γ, then there exists a minimum-sized bad example. The proof of
Claim 2.11 combines Lemmas 2.9 and 2.10, and we provide its proof immediately
after we derive the conclusion of Lemma 1.26.

Claim 2.11. Suppose that (?) holds. Suppose further that we have G ⊆ Γ
and disjoint X,Y ⊆ V (Γ) such that (X,Y ) is (ε, d, p)-lower-regular in G, with
|X| ≥ C max

(
p−2, p−1 log n

)
and |Y | ≥ Cp−1 log n, and that there is a set Z of

vertices of Γ with |Z| = C ′p−1 log n such that for each z ∈ Z the pair
(
NΓ(z;X), Y

)
is not (ε′, d, p)-lower-regular in G.

Then there are disjoint subsets X∗, Y ∗, Z∗ of subsets of V (G) with |X∗| =
1
2C max

(
p−2, p−1 log n

)
, with |Y ∗| = 1

2Cp
−1 log n, and with |Z∗| = 10−6(ε′)3Cp−1 log n,



2.1. TOOLS 28

such that (X∗, Y ∗) is (ε2, d, p)-lower-regular in G, and for each z ∈ Z∗ we have
degΓ(z;X∗) = (1 ± 1

2 )p|X∗|, but
(
NΓ(z;X∗), Y ∗

)
is not (δ2, d, p)-lower-regular in

G.

We now prove that the structure which Claim 2.11 provides is unlikely to be
in Gn,p. To that end, we first fix arbitrary disjoint sets X∗, Y ∗ and Z∗ of sizes
1
2C max

(
p−2, p−1 log n

)
, 1

2Cp
−1 log n and 10−6(ε′)3 · Cp−1 log n respectively. We

now reveal the edges of Gn,p between X∗ and Y ∗. If there are more than 3
2p|X

∗||Y ∗|
such edges, then (?) does not hold and there is nothing to prove, so we assume
from now on that there are at most 3

2p|X
∗||Y ∗| such edges. We fix an arbitrary

subgraph G∗ of these edges. In the event that G∗ is not (ε2, d, p)-lower-regular, there
is nothing to prove, so we assume from now on that it is (ε2, d, p)-lower-regular.

Next, we reveal the edges of Gn,p from Z∗ to X∗. In the event that for some
z ∈ Z∗ we have

∣∣NΓ(z)∩X∗
∣∣ 6= (1± 1

2 )p|X∗|, the conclusion of Claim 2.11 does not
hold, and there is nothing to prove. We therefore assume that this does not occur.
Thus for each z ∈ Z∗, the set NΓ(z) ∩X∗ is a uniformly random subset of X∗ of
size

∣∣NΓ(z) ∩X∗
∣∣, and the latter random variable is supported on (1± 1

2 )p|X∗|.
By Theorem 2.7, with inputs d, β, 2d2, the probability of choosing a t-element

subset of X∗ uniformly at random and discovering that it does not induce with Y ∗

a (δ2, d, p)-lower-regular subpair of G∗ is at most βt. In particular, the probability
that

(
NΓ(z) ∩X∗, Y ∗

)
is not (δ2, d, p)-lower-regular is at most

3p|X∗|/2∑
t=p|X∗|/2

P
(
|NΓ(z) ∩X∗| = t

)
βt ≤ βp|X

∗|/2 .

Since these events are independent for different z ∈ Z∗, the probability that
(
NΓ(z)∩

X∗, Y ∗
)

is not (δ2, d, p)-lower-regular for all z ∈ Z∗ is at most βp|X
∗||Z∗|/2.

Taking a union bound over the at most n|X
∗|+|Y ∗|+|Z∗| choices of X∗, Y ∗ and

Z∗, and the at most 23p|X∗||Y ∗|/2 choices of G∗, we conclude that with probability
at most

n|X
∗|+|Y ∗|+|Z∗|23p|X∗||Y ∗|/2βp|X

∗||Z∗|/2

≤ 22C|X∗| logn+C2|X∗| lognβ10−7(ε′)3C2|X∗| logn

≤ 23C2|X∗| logn2−10C2|X∗| logn = 2−7C2 max(p−2,p−1 logn) logn

the graph Gn,p satisfies both (?) and the conclusion of Claim 2.11.
Therefore we can bound the probability that the claim of Lemma 1.26 fails by

P[(?) fails in Gn,p] + 2−7C2 max(p−2,p−1 logn) logn = o(1) .

To complete the proof of Lemma 1.26, we now provide the proof of Claim 2.11.

Proof of Claim 2.11. Let X ′ = X \Z and Y ′ = Y \Z. Observe that |Y ′| ≥
(1 − C′

C )|Y | and |X ′| ≥ (1 − C′

C )|X|. Because C > 2C ′ it follows that (X ′, Y ′) is
(2ε, d, p)-lower-regular in G by the slicing lemma, Lemma 1.15. Now the number
of vertices z ∈ Z with |NΓ(z;X ′)| < 1

2p|X
′| is at most 24p−1 log n by property (?).

Also using property (?), the number of edges in Z is at most p|Z|2, and so at most
|Z|/2 vertices have more than 4p|Z| neighbours in Z. Let Z ′ consist of those vertices
of Z with at most 4p|Z| neighbours in Z and at least 1

2p|X
′| neighbours in X ′. Then

we have |Z ′| ≥ 1
2 |Z| −

24
C′ |Z| ≥

1
4 |Z| by choice of C ′.

Now let z be any vertex in Z ′. We would like to apply Lemma 2.10 to argue
that lower-regularity of the pair

(
NΓ(z;X ′), Y ′

)
implies lower regularity of the pair
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NΓ(z;X), Y

)
. For this we first need to check that

|NΓ(z;X \X ′)| ≤ 1

10
(ε′)3|NΓ(z,X ′)| . (7)

Indeed, by definition z has at most 4p|Z| neighbours in Z, so

|NΓ(z;X \X ′)| ≤ 4p|Z| = 4C ′ log n ,

and also by definition z has at least
1
2p|X

′| ≥ 1
4p|X| ≥

1
4C max

(
p−1, log n

)
neighbours in X ′. By choice ofC, (7) follows as required. Similarly, |Y \Y ′| ≤ C′

C |Y | ≤
1
10 (ε′)3|Y ′|. Hence we can apply Lemma 2.10 and conclude that if

(
NΓ(z;X ′), Y ′

)
is

an (1
2ε
′, d, p)-lower-regular pair in G, then

(
NΓ(z;X), Y

)
is (ε′, d, p)-lower-regular in

G. By definition of Z the latter is not the case, so we conclude that for each z ∈ Z ′
the pair

(
NΓ(x;X ′), Y ′

)
is not ( 1

2ε
′, d, p)-lower-regular in G.

Let Z ′′ be a set of ` = 1
8C
′p−1 log n vertices z ∈ Z ′ with |NΓ(z) ∩ X ′| =

(1 ± 1
2 )p|X ′|. It is possible to choose such a set because by (?) all but at most

48p−1 log n of the at least 1
4 |Z| ≥

1
4C
′p−1 log n vertices of Z ′ have this property.

Now for each z ∈ Z ′′, since
(
NΓ(z;X ′), Y ′

)
is not ( 1

2ε
′, d, p)-lower-regular, there

are sets X ′z ⊆ NΓ(z;X ′) and Y ′z ⊆ Y ′ such that dp(X
′
z, Y

′
z ) < d − 1

2ε
′, and with

|Y ′z | ≥ 1
2ε
′|Y ′| and |X ′z| ≥ 1

2ε
′|NΓ(z;X ′)| ≥ 1

4ε
′p|X ′|, where the last inequality uses

the definition of Z ′′.
We now shall apply Lemma 2.9 twice, first to scale down Y ′, and then to scale

down X ′. So first we apply this lemma with input d, ε1, ε′/2 in place of δ, and i = 0,
m = 1

2Cp
−1 log n ≥ C3p

−1 log n, to the pair (Y ′, X ′) and the subpairs (Y ′z , X
′
z).

This is possible because |Y ′| ≥ 1
2 |Y | ≥

1
2Cp

−1 log n = m and |Y ′z | ≥ ε′

2 |Y
′| for each

z ∈ Z ′′, because |Z ′′| = ` ≤ m, and because (Y ′, X ′) is (2ε, d, p)-lower-regular with
2ε ≤ ε3 and we have dp(Y

′
z , X

′
z) < d − 1

2ε
′ for each z ∈ Z ′′. We conclude that

there is a set Y ∗ ⊆ Y ′ of size m, and for each z ∈ Z ′′ a subset Y ∗z of Y ′z ∩ Y ∗ of
size at least (ε′/2)2m/6 = δ1|Y ∗|, such that (Y ∗, X ′) is (ε1, d, p)-lower-regular and
dp(Y

∗
z , X

′
z) < d− ε′/4 < d− δ1 for each z ∈ Z ′′.

In the second application of Lemma 2.9 we use input d, ε2, δ1, and i = 1,
m′ = 1

2C max
(
p−2, p−1 log n

)
≥ C1p

−2 log n and apply this lemma to the pair

(X ′, Y ∗) and the subpairs (X ′z, Y
∗
z ). This is possible because |X ′| ≥ 1

2 |X| ≥
1
2C max

(
p−2, p−1 log n

)
= m′ and |X ′z| ≥ 1

4ε
′p|X ′| ≥ δ1p|X ′| for each z ∈ Z ′′,

because |Z ′′| = ` ≤ m′, and because (X ′, Y ∗) is (ε1, d, p)-lower-regular and we
have dp(X

′
z, Y

∗
z ) < d − δ1 for each z ∈ Z ′′. Thus, we obtain a set X∗ ⊆ X ′ of

size m′, and subsets X∗z of X ′z ∩ X∗ of size at least δ2
1pm

′/6 ≥ δ2p|X ′| for each
z ∈ Z ′′, such that (X∗, Y ∗) is (ε2, d, p)-lower-regular and for each z ∈ Z ′′ we have
dp(X

∗
z , Y

∗
z ) < d− δ1/2 < d− δ2.

Finally, let Z∗ be the set of vertices z in Z ′′ such that |NΓ(z;X∗)| = (1 ±
1
2 )p|X∗|. By (?) we have |Z∗| ≥ |Z ′′| − 48p−1 log n = 1

8C
′p−1 log n− 48p−1 log n ≥

1
16C

′p−1 log n = 1
16 ·

1
2000 (ε′)3Cp−1 log n > 10−5(ε′)3m. This proves the claim, since

dp(X
∗
z , Y

∗
z ) < d−δ1/2 < d−δ2 for each z ∈ Z∗ certifies that the pairs (NΓ(z;X∗), Y ∗)

are not (δ2, d, p)-lower-regular, because X∗z ⊆ X ′z ∩X∗ ⊆ NΓ(z;X ′)∩X∗ and Y ∗z ⊆
Y ′z ∩ Y ∗ ⊆ Y ′ ∩ Y ∗, and because |Y ∗z | ≥ δ1|Y ∗|, and because |NΓ(z;X∗)| ≤ 3

2p|X
∗|

also implies that |X∗z | ≥ δ2
1p|X∗|/6 ≥ δ2|NΓ(z;X∗)|. �

�

The proof of Lemma 1.27 is very similar, so we shall be brief.

Proof of Lemma 1.27 (sketch). We can begin as in the previous proof (in
particular the choice of constants remains the same). We replace Theorem 2.7 with
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Corollary 2.8. We use m = m′ = 1
2C max(p−2, p−1 log n). Note that we require

m ≥ 1
2Cp

−2 since the expected neighbourhood of a vertex of Gn,p in a set of size m
is pm, and this needs to be large enough to apply Corollary 2.8. We require of the
vertices Z ′′ that they have also (1± 1

2 )p|Y ′| neighbours in Y ′ (and hence we now

lose 96p−1 log n vertices). The sets Y ′z now have size at least ε′p|Y ′|/2, and both
applications of Lemma 2.9 are therefore with i = 1. In order to obtain the set Z∗

we remove in addition vertices which do not have (1± 1
2 )p|Y ∗| neighbours in Y ∗.

However since we remove only at most 192p−1 log n vertices, and since C is large,
we still have |Z∗| > m/2.

The previous proof with the changes as above leads us to the following conclusion.
It is enough to show that Γ = Gn,p a.a.s. does not contain a ‘bad object’ consisting
of sets X∗ and Y ∗ each of size m, which form a (ε2, d, p)-lower-regular pair in a
subgraph G of Γ, together with a set Z∗ of 10−6(ε′)3m vertices of Γ such that
|NΓ(z) ∩ X∗|, |NΓ(z) ∩ Y ∗| = (1 ± 1

2 )pm and
(
NΓ(z) ∩ X∗, NΓ(z) ∩ Y ∗

)
is not

(δ2, d, p)-lower-regular for each z ∈ Z∗.
The proof that this ‘bad object’ does not exist in Gn,p is essentially identical.

We use Corollary 2.8 to deduce that conditioning on (?) the probability for (fixed)
X∗, Y ∗, Z∗ and G that the neighbourhood of a given z ∈ Z∗ induces an irregular
pair is still at most βpm/2. The union bound over choices of X∗, Y ∗, Z∗ and G now
yields that the probability of existence of the ‘bad object’ is at most

nm+m+m/223pmm/2β10−6(ε′)3pm2

≤ n5m/22−2pm2

23pm2/22−2pm2

,

and since m ≥ 1
2Cp

−1 log n, this tends to zero as n tends to infinity. �

We conclude this section by sketching constructions which show that Lem-
mas 1.26 and 1.27 are sharp for p < 1

2 .

First, for Lemma 1.26, we fix a set Z of cp−1 log n vertices. It is not hard to
verify that for any δ > 0, provided c > 0 is small enough, on revealing the edges
of Γ = Gn,p we a.a.s. find a set X of n1−δ vertices such that each vertex of Z has
exactly one neighbour in X. We now fix a set Y of 3

4n vertices disjoint from X. It

is easy to check that a.a.s. (X,Y ) is (ε, 1
2 , p)-regular in Γ for any ε > 0. But for any

z ∈ Z and any 0 < ε′ < d ≤ 1
10 , the pair

(
NΓ(z)∩X,Y

)
is not (ε′, d, p)-lower-regular,

because this would require that the one vertex in NΓ(z) ∩X be adjacent to at least
(1 − ε′)|Y | > 11

10pn vertices of Y , whereas a.a.s. the maximum degree of Γ is less

than 11
10pn.

For Lemma 1.27, when p� 1/ log n we perform a similar construction, selecting
two sets X and Y with |X|, |Y | = n1−δ such that each z ∈ Z has one neighbour in
each of X and Y . It is again easy to check that a.a.s. for at least half the vertices
z ∈ Z the pair

(
NΓ(z) ∩X,NΓ(z) ∩ Y

)
has density zero in Γ (that is, the at most

one edge which could be present is not), so in particular is not (ε′, d, p)-lower-regular
for any 0 < ε′ < d.

Finally, for each ε > 0 there exists pε > 0 such that for 0 < p < pε, Huang,
Lee and Sudakov [36, Proposition 6.3] costruct a subgraph G of Γ with minimum
degree (1− ε)pn in which Ω(p−2) vertices are not in triangles. This construction in
particular shows that Ω(p−2) vertices can fail to inherit regularity in Lemma 1.27.

2.2. Deterministic properties of the ambient graph

In this section we introduce the deterministic properties which we require of
our ambient graphs Γ. We then also prove that random and bijumbled graphs have
(a subset of) these properties, in Lemma 2.17 and Lemma 2.18, respectively. These
are exactly the properties which we shall use in our blow-up lemma proofs.
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Our first deterministic property asserts that most vertices of Γ have close to the
expected degree into any given reasonably large subset of vertices. This property
will be used for both random and bijumbled graphs.

Definition 2.12 (Neighbourhood size property NS(ε, T,∆)). Given ε > 0 and
integers T and ∆, we say that the graph Γ has property NS(ε, T,∆) if the following
is true for some p such that Γ has density (1± ε)p. For any set W of size at least
εp∆−1v(Γ)/T 2, there are at most εp∆−1v(Γ)/T 2 vertices v outside W such that
degΓ(v;W ) 6= (1± ε)p|W |.

Our next property concerns one-sided and two-sided regularity inheritance.
Based on the regularity inheritance lemmas established in Section 2.1.3 we shall
also establish this property for random as well as bijumbled graphs. Recall our
convention though, that in random graphs regular pairs are lower-regular pairs and
in bijumbled graphs they are fully-regular pairs.

Definition 2.13 (Regularity inheritance property RI(ε, (εa,b), ε
′, d, T,∆)). Given

0 < ε < ε′ < d and integers T , ∆, we say that Γ has property RI(ε, (εa,b), ε
′, d, T,∆)

if we have εa,b ∈ [ε, ε′] for each 0 ≤ a, b ≤ ∆− 1 such that the following holds for
some p such that Γ has density (1± ε)p.

If 0 ≤ a ≤ ∆− 2 and 0 ≤ b ≤ ∆− 1, if G ⊆ Γ and if X,Y ⊆ V (Γ) are disjoint
sets with

|X| ≥ ε′p∆−2 · v(Γ)

T 2
and |Y | ≥ ε′p∆−1 · v(Γ)

T 2

and if (X,Y ) is (εa,b, d, p)-regular pair in G, then
(
NΓ(v;X), Y

)
is (εa+1,b, d, p)-

regular in G for all but at most εp∆−1v(Γ)/T 2 vertices v ∈ V (Γ) \ (X ∪Y ). Further-
more, if additionally b ≤ ∆− 2 and

|Y | ≥ ε′p∆−2 · v(Γ)

T 2
,

then the pair
(
NΓ(v;X), NΓ(v;Y )

)
is (εa+1,b+1, d, p)-regular in G for all but at most

εp∆−2v(Γ)/T 2 vertices v ∈ V (Γ) \ (X ∪ Y ).

The next property concerns the count of certain stars in Γ, and we shall call it
congestion property (following [44], where a very similar property was used). We
only establish this property for random graphs. For bijumbled graphs it does not
hold (with any reasonable choice of parameters). Given a graph Γ, a set U ⊆ V (Γ)
and a collection F of pairwise disjoint `-sets in V (Γ), we define the congestion graph
CG(Γ, U,F) to be the bipartite graph with vertex sets U and F with uF an edge of
CG(Γ, U,F) if u ∈ U is a common neighbour in Γ of the vertices in F ∈ F .

Definition 2.14 (Congestion property CON(%, T,∆)). Given % > 0 and integers
T and ∆, we say that Γ has property CON(%, T,∆) if the following statement is
true for some p such that Γ has the density (1 ± %)p. For each 1 ≤ ` ≤ ∆, each
U ⊆ V (Γ) and each collection F of pairwise disjoint `-sets in V (Γ) \ U , if we have
|U | ≤ |F| ≤ %v(Γ), then

e
(
CG(Γ, U,F)

)
≤ 7p`|U ||F|+ %p` · v(Γ)

T
|F| .

The congestion condition will help us to verify Hall’s condition (on some linearly
sized set) in order to embed many vertices at a time. However in the proof of our
blow-up lemma for degenerate graphs, Lemma 1.23, we cannot use this strategy.
Instead we will embed the vertices one by one in the given order. For this purpose
we need to have a ‘local’ version of the congestion property, which we will want
to apply to sets U in the common Γ-neighbourhood of already embedded vertices.
We remark that for such small sets U the bound on the number of edgeses in the
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congestion graph given by the congestion property becomes trivial. The following
local congestion property is designed to give a useful bound in this case. Again, we
shall only establish this property for random graphs.

Definition 2.15 (Local congestion property LCON(ε, T,∆)). Given ε > 0
and integers T and ∆, we say that Γ has property LCON(ε, T,∆) if the following
statement is true for some p such that Γ has density (1 ± ε)p. For each i, ` ≥ 1
with i+ ` ≤ ∆, each U ⊆ V (Γ) of size at least εpiv(Γ)/T 2 and each collection F of
pairwise disjoint `-sets in V (Γ) \ U we have

e
(
CG(Γ, U,F)

)
≤ 7p`|U |max

(
ε|U |, |F|

)
.

Since for bijumbled graphs we cannot use the congestion property or local
congestion property we introduce the following final deterministic property which we
shall use there instead. This property is a strengthening of the neighbourhood size
property, which also takes smaller sets W in which we measure neighbourhoods into
consideration, and further requires the number of exceptional vertices outside W
to be smaller. We call it ‘lopsided’ to distinguish it from property NS(ε, T,∆), in
which the maximum number of failing vertices and the minimum size of the set into
which neighbourhoods are taken are the same.

Definition 2.16 (Lopsided neighbourhood size property LNS(ε, T,∆)). Given
ε > 0 and integers T and ∆, we say that Γ has property LNS(ε, T,∆) if the following
is true for some p such that Γ has density (1± ε)p. For each 0 ≤ j ≤ ∆− 1 and any
set W of size at least εp∆+jv(Γ)/T 2, there are at most εp2∆−j−1v(Γ)/T 2 vertices v
outside W such that degΓ(v;W ) 6= (1± ε)p|W |.

2.2.1. Random graphs. In this subsection we will show that Gn,p has the
neighbourhood size property, regularity inheritance property, congestion property
and local congestion property by proving the following lemma

Lemma 2.17 (Deterministic properties of Gn,p). For every ∆ ≥ 2 and d, ε′ > 0
there exist ε > 0 and εa,b > 0 for each 0 ≤ a, b ≤ ∆− 1 such that for every T and

% > 0 there exists C > 0 such that if p ≥ C(log n/n)1/∆ then Gn,p a.a.s. has

(a ) NS(ε, T,∆),
(b ) RI(ε, (εa,b), ε

′, d, T,∆),
(c ) CON(%, T,∆),
(d ) LCON(ε, T,∆).

The proof of part (a ) is standard. Part (b ) follows from the regularity inheritance
lemmas, Lemmas 1.26 and 1.27. The proof of part (c ) follows arguments from [44]
(but is slightly different), and part (d ) is proved similarly. For completeness we give
the details.

Proof of Lemma 2.17. Given ∆ ≥ 1 and d, ε′ > 0, we assume without loss
of generality that (1 − ε′)∆ > 1/2. We choose εa,b for each 0 ≤ a ≤ ∆ − 1 and
0 ≤ b ≤ ∆ − 1 as follows. We set ε∆−1,∆−1 = ε′/2 and we define the other εa,b
inductively. For each a and b, we require that εa,b is smaller than the ε0 returned
by Lemma 1.26 with input εa+1,b/2 and d (provided a < ∆− 1), and that returned
with input εa,b+1/2 and d (provided b < ∆− 1), and anso than the ε0 returned by
Lemma 1.27 with input εa+1,b+1/2 and d (provided a < ∆− 1, b < ∆− 1). Let ε be
the minimum of the εa,b. Note that we then have εa,b = εb,a for each a, b. Given T ,
let C1 be the maximum of all of the constants C returned by the above applications
of Lemmas 1.26 and 1.27. Further, given % set

C =
100T 2C1∆

ε4%
.
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Now let p ≥ C(log n/n)1/∆. Let Γ = Gn,p. By the Chernoff bound in Theorem 2.1,
since p > 1/n, a.a.s. Γ has density

(
1±min(ε, %)

)
p. In the following we condition

on this occurring.

Proof of (a ): Using the Chernoff bound again, if X and Y are any disjoint sets
of size at least 6ε−2p−1 log n, then the probability that e(X,Y ) 6= (1± ε)p|X||Y | is
at most 2 exp(−ε2p|X||Y |/3). It follows that the probability that there exist such
X and Y is at most∑

|X|,|Y |≥6ε−2p−1 logn

n|X|+|Y | · 2 exp
(
− ε2p|X||Y |

3

)
≤
∑
|X|,|Y |

2 · 22 max(|X|,|Y |) logn exp
(
− 2 max(|X|, |Y |) log n

)
≤2n2

(
22 exp(−2)

)log2 n
,

where the first inequality uses min(|X|, |Y |) ≥ 6ε−2p−1 log n. It follows that a.a.s.
any such pair of sets in Γ has density (1± ε)p. We condition on this in the following.

Now suppose that X is any set of size at least εp∆−1n/T 2 in V (Γ), and Y
is the set of vertices outside X with fewer than (1 − ε)p|X| neighbours in X.
Since the density of (X,Y ) is less than (1− ε)p, and since by choice of C we have
εp∆−1n/T 2 > 6ε−2p−1 log n, we conclude that |Y | < 6ε−2p−1 log n < εp∆−1n/(2T 2)
(again by choice of C). The same argument bounds the number of vertices outside
X with more than (1 + ε)p|X| neighbours in X, so Γ has NS(ε, T,∆) as desired.

Proof of (b ): In this proof we shall apply the regularity inheritance lemmas,
Lemmas 1.26 and 1.27, less than 3∆2 times. Hence we can assume that the less than
3∆2 properties asserted to hold a.a.s. for Gn,p by these applications of the lemmas
hold simultaneously a.a.s for Gn,p.

Given 0 ≤ a ≤ ∆ − 2 and 0 ≤ b ≤ ∆ − 1, suppose that (X,Y ) is an
(εa,b, d, p)-lower-regular pair in a subgraph G of Γ with |X| ≥ ε′p∆−2n/T 2 and |Y | ≥
ε′p∆−1n/T 2. Let Z be the set of vertices outside X∪Y such that (NΓ(z)∩X,Y ) is not
(εa+1,b, d, p)-lower-regular in G. By choice of p, we have ε′p∆−2n/T 2 ≥ C1p

−2 log n
and ε′p∆−1n/T 2 ≥ C1p

−1 log n. Therefore we can apply Lemma 1.26 to conclude
that

|Z| ≤ C1p
−1 log n ≤ ε

2T 2Cp
−1 log n < εp∆−1n/T 2 ,

as desired.
Similarly, given 0 ≤ a ≤ ∆ − 2 and 0 ≤ b ≤ ∆ − 2, suppose that (X,Y )

is an (εa,b, d, p)-lower-regular pair in a subgraph G of Γ with |X| ≥ ε′p∆−2n/T 2

and |Y | ≥ ε′p∆−2n/T 2. Let Z be the set of vertices outside X ∪ Y such that
(NΓ(z) ∩X,NΓ(z) ∩ Y ) is not (εa+1,b+1, d, p)-lower-regular in G. By choice of p, we
have ε′p∆−2n/T 2 > C1p

−2 log n. Therefore we can apply Lemma 1.27 to conclude
that

|Z| ≤ C1 max(p−2, p−1 log n) ≤ ε
2T 2C max(p−2, p−1 log n) < εp∆−2n/T 2 ,

again as desired.

Proof of (c ): Given 1 ≤ i ≤ ∆, a set U ⊆ V (Γ), and a family F of pairwise
disjoint `-sets in V (Γ) \ U with |U | ≤ |F| ≤ %|V (Γ)|, the graph CG(Γ, U,F) is a
random bipartite graph with edge probability p` and with parts U and F . So the
expected number of edges of CG(Γ, U,F) is p`|U ||F|. By the Chernoff bound in
Theorem 2.1 the probability that∣∣e(CG(Γ, U,F)

)∣∣ > 7p`|U ||F|+ %p`n|F|/T
is at most

exp
(
− %p`n|F|/T

)
.
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If |F| = m ≤ %n, then since |U | ≤ |F| we have |U | ≤ m. Taking a union bound
over `, over m, over the at most nm+1 choices for U and its size, and over the at
most n∆m choices for F , we see that the probability of failure of CON(%, T,∆) is at
most

∆∑
`=1

%n∑
m=1

nm+1n∆m exp
(
− %p`nm/T

)
≤ ∆

%n∑
m=1

exp
(
2∆m log n− %p∆nm/T

)
≤∆

%n∑
m=1

exp
(
− (∆ + 3)m log n

)
< ∆n exp

(
− (∆ + 2) log n

)
< 1/n ,

where the second inequality uses p∆n ≥ C log n and the choice of C. We conclude
that Gn,p a.a.s. has CON(%, T,∆) as desired.

Proof of (d ): Given integers i, ` ≥ 1 such that i + ` ≤ ∆, a set U ⊆ V (Γ) of
size at least εpin/T 2, and a family of pairwise disjoint `-sets F in V (Γ) \ U , the
graph CG(Γ, U,F) is a random bipartite graph with edge probability p` and parts U
and F . The expected number of edges it contains is therefore p`|U ||F|.

We separate two cases. If |F| ≤ ε|U |, then we have Ee
(
CG(Γ, U,F)

)
≤ εp`|U |2,

so by Theorem 2.1 the probability of e
(
CG(Γ, U,F)

)
≥ 7εp`|U |2 is at most

exp
(
− 6εp`|U |2

)
≤ exp

(
− 6ε2pi+`n|U |/T 2

)
≤ exp(−3∆|U | log n) .

Taking the union bound over the at most ∆2 choices of i and `, at most n2 choices
of |U | and |F| ≤ |U |, the at most n|U | choices of U and the at most n∆|U | choices of
F , we see that the probability that there exists such a choice with e

(
CG(Γ, U,F)

)
≥

7εp`|U |2 is at most

∆2n2n(∆+1)|U | exp(−3∆|U | log n)

which tends to zero as n tends to infinity.
Next we consider the case |F| ≥ ε|U |. Again by Theorem 2.1 the probability of

e
(
CG(Γ, U,F)

)
≥ 7p`|U ||F| is at most

exp
(
− 6p`|U ||F|

)
≤ exp

(
− 6εpi+`n|F|/T 2

)
≤ exp(−3ε−1∆|F| log n) .

Taking the union bound over the at most ∆2 choices of i and `, at most n2 choices of
|U | and |F|, the at most n|F|/ε choices of U and the at most n∆|F| choices of F , we see
that the probability that there exists such a choice with e

(
CG(Γ, U,F)

)
≥ 7p`|U ||F|

is at most

∆2n2n(∆+1/ε)|F| exp(−3ε−1∆|F| log n)

which tends to zero as n tends to infinity. We conclude that Gn,p a.a.s. has
LCON(ε, T,∆) as desired. �

2.2.2. Bijumbled graphs. In this subsection we will verify the neighbourhood
size property, the regularity inheritance property, and the lopsided neighbourhood
size property for bijumbled graphs, as stated in the following lemma.

Lemma 2.18 (Deterministic properties of bijumbled graphs). For each ∆ ∈ N
and d, ε′ > 0 there exist εa,b > 0 for 0 ≤ a, b ≤ ∆ and ε > 0 such that for each
T ∈ N there is c > 0 such that if p > 0 then any (p, β)-bijumbled graph on n vertices
has

(a ) NS(ε, T,∆ + 1) if β ≤ cp∆+1n,
(b ) RI(ε, (εa,b), ε

′, d, T,∆ + 1) if β ≤ cp∆+2n,
(c ) LNS(ε, T,∆) if β ≤ cp(3∆+1)/2n.

Let us briefly justify why we cannot use the congestion property in bijumbled
graphs. Indeed, blowing up a bijumbled graph by a factor ∆—that is, replacing
vertices with independent ∆-sets and edges with complete bipartite graphs—degrades
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the bijumbledness only slightly, but in this blow up the congestion condition fails
badly: If we choose ` = ∆ and as ∆-tuples the blow ups of vertices, then the
congestion property fails by a factor p∆−1.

In the proof of Lemma 2.18, Part (b ) is a consequence of the regularity inheritance
lemmas, Lemmas 2.5 and 2.6. Parts (a ) and (c ) use the following easy consequences
of the definition of bijumbled graphs.

Proposition 2.19. Let Γ be a (p, β)-bijumbled graph on n vertices and W ⊆
V (Γ).

(a ) If ε ≥ 2β 1
n , then e(Γ) = (1± ε)p

(
n
2

)
.

(b ) degΓ(v;W ) 6= (1± ε)p|W | for at most 2β2/(ε2p2|W |) vertices v ∈ V (Γ) \W .

Proof. For any balanced cut U ∪ U ′ = V (Γ) we have

eΓ(U,U ′) = p|U ||U ′| ± β
√
|U ||U ′| =

(
1± 2β

1

n

)
p

(
n

2

)
= (1± ε)p

(
n

2

)
.

Since the density of Γ equals the average density over all balanced cuts of Γ, part (a )
follows.

For (b ) let U be the set of v ∈ V (Γ) \W with degΓ(v;W ) > (1 + ε)p|W |. We
have

(1 + ε)p|U ||W | < e(U,W ) ≤ p|U ||W |+ β
√
|U ||W |

and hence |U | < β2/(ε2p2|W |). Similarly, the number of v ∈ V (Γ) \ W with
degΓ(v;W ) < (1− ε)p|W | is also at most β2/(ε2p2|W |) and (b ) follows. �

We can now prove Lemma 2.18.

Proof of Lemma 2.18. Given ∆ ≥ 2 and d, ε′ > 0, we assume (1−ε′)∆ > 1/2.
We choose εa,b for each 0 ≤ a ≤ ∆ and 0 ≤ b ≤ ∆ as follows. We set ε∆,∆ = ε′/2
and we define the other εa,b inductively. For each a and b, we require that εa,b is
smaller than the ε0 returned by Lemma 2.5 with input εa+1,b/2 and d (provided
a < ∆), and that returned with input εa,b+1/2 and d (provided b < ∆), and the ε0

returned by Lemma 2.6 with input εa+1,b+1/2 and d (provided a < ∆, b < ∆). Let ε
be the minimum of the εa,b. Note that we then have εa,b = εb,a for each a, b. Let c′

be the minimum of all the constants c0 returned by the applications of Lemmas 2.5
and 2.6. Given T , let

c = 1
2ε

2ε′c′T−2 .

Let Γ be a (p, β)-bijumbled graph on n vertices with β ≤ cp∆+1n. By Proposi-
tion 2.19(a ) the graph Γ has density (1± ε)p.

Proof of (a ): Let W ⊆ V (Γ) be a set with |W | ≥ εp∆n/T 2. By Proposi-
tion 2.19(b ) the number of vertices v ∈ V (Γ)\W such that deg(v;W ) 6= (1±ε)p|W |
is at most

2β2

ε2p2 · εp∆nT−2
≤ 2c2T 2p∆n

ε3
≤ εp∆ n

T 2
,

and hence Γ has NS(ε, T,∆ + 1).

Proof of (c ): Assume β ≤ cp(3∆+1)/2n. Let 0 ≤ j ≤ ∆ and W ⊆ V (Γ) be a set
with |W | ≥ εp∆+jn/T 2. By Proposition 2.19(b ) the number of vertices v ∈ V (Γ)\W
such that deg(v;W ) 6= (1± ε)p|W | is at most

2β2

ε2p2 · εp∆+jnT−2
≤ 2c2T 2p2∆−j−1n

ε3
≤ εp2∆−j−1 n

T 2
,

and hence Γ has LNS(ε, T,∆).

Proof of (b ): We shall prove that Γ has RI(ε, (εa,b), ε
′, d, T,∆+1) if β ≤ cp∆+2n

by contradiction. Given 0 ≤ a ≤ ∆− 1 and 0 ≤ b ≤ ∆, suppose that (X,Y ) is an
(εa,b, d, p)-fully-regular pair in G ⊆ Γ with |X| ≥ ε′p∆−1n/T 2 and |Y | ≥ ε′p∆n/T 2.
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Let Z be the set of vertices z ∈ V (Γ) \ (X ∪ Y ) such that (NΓ(z) ∩X,Y ) is not
(εa+1,b, d, p)-fully-regular in G. Assume for contradiction that |Z| ≥ εp∆n/T 2. Then
we have max

(
|X||Y |, |X||Z|

)
≥ εε′p2∆−1n2/T 4. Therefore, by choice of c and since

(log2
1
p )−1 > p, we see that

β ≤ cp∆+2n ≤ c′
√
εε′p∆+2n/T 2 < c′p2(log2

1
p )−1/2

√
max

(
|X||Y |, |X||Z|

)
,

and thus, Γ is bijumbled enough to apply Lemma 2.5, whose statement contradicts
the assumption on Z.

Similarly, given 0 ≤ a, b ≤ ∆ − 1, suppose that (X,Y ) is an (εa,b, d, p)-fully-
regular pair in G ⊆ Γ with |X| ≥ ε′p∆−1n/T 2 and |Y | ≥ ε′p∆−1n/T 2. Let Z be
the set of vertices z ∈ V (Γ) \ (X ∪ Y ) such that (NΓ(z) ∩ X,NΓ(z) ∩ Y ) is not
(εa+1,b+1, d, p)-fully-regular in G. Again, assuming for contradiction that |Z| ≥
εp∆−1n/T 2, we have

max
(
|X||Y |, |Y ||Z|, |X||Z|

)
≥ (ε′)2p2∆−2n2/T 4,

so that by choice of c, we see that

β ≤ cp∆+2n ≤ c′ε′p∆+2n/T 2 < c′p3
√

max
(
|X||Y |, |Y ||Z|, |X||Z|

)
,

hence the conclusion of Lemma 2.6 contradicts the assumption on Z. �

2.3. Preprocessing

This section constitutes the first step towards the proofs of our blow-up lemmas.
More or less, one can think of this section as showing that, for each of our blow-
up lemmas, it suffices to prove a corresponding blow-up lemma in which several
extra conditions are required. This reduction, as mentioned in the proof overview
(Section 1.4) involves refining the partitions XBL of H and VBL of G given by the
user of the blow-up lemma to obtain new partitions X of H and V of G, which in
turn entails replacing the reduced graphs RBL and R′BL with new graphs R and R′,
and altering various constants mentioned in the blow-up lemmas. It is convenient to
keep using the letter choices seen in our blow-up lemmas for these altered partitions,
graphs and constants in the proofs to come, so in this section we use the suffix BL
for objects mentioned in one of our blow-up lemmas which we will alter for the proof,
following the style of the previous sentence.

In addition to formally defining ‘blow-up lemma with several extra conditions’,
which we refer to as the general setup for our proofs, we define the concept of good
partial embedding, which is a central concept of our proofs. We show that obtaining
the general setup implies that the trivial partial embedding (that is, with no vertices
embedded) is a good partial embedding.

This section is structured as follows. In Section 2.3.1 we collect and describe,
mainly as reference for the reader, the various constants that appear in our blow-
up lemma proofs. Sections 2.3.2 and 2.3.3 then list the properties we require of
the refined partitions of H and G, respectively. In Section 2.3.4 we prove that
partitions with these desired properties can be obtained from partitions supplied
to our blow-up lemmas. In Section 2.3.5 we define some further key concepts used
in our embedding procedures, such as candidate sets, available candidate sets and
good partial embeddings. These concepts were mentioned already in the proof
overview. In Section 2.3.6 the general setup that we shall use in our proofs. Finally,
in Section 2.3.7, we define the notion of bad vertices which will, as explained in the
proof overview, be vertices avoided in our embedding process, and prove Lemma 2.25
which states that most vertices in candidate sets are not bad.
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2.3.1. Constants. In the following chapters, sections and lemmas we will use
various constants. These are listed below, with their meaning. Firstly, we have the
following constants which are chosen by the user of our blow-up lemmas.

∆ is the maximum degree of H.

∆J is the maximum number of times a vertex of Γ is a restricting vertex, that is,
appears in a set Jx for x ∈ V (H).

D is a constant governed by the degeneracy of H, which is only used in the
degenerate graphs blow-up lemma.

d is the minimum p-density of regular pairs.

The user of our blow-up lemmas further chooses the constants ∆BL
R′ , α

BL, ζBL, κBL

and rBL
1 (the last after being given εBL and %BL). However our preprocessing in

Lemma 2.22 changes the values of these constants (and the reduced graphs R and
R′), giving the following constants which we use in the rest of the paper.

∆R′ is the maximum degree of the reduced graph R′, which captures super-regular
pairs.

α is the fraction of a part required to be potential buffer vertices.

ζ is the minimum relative size of any image restriction set Ix.

κ is the balancing factor (greater than 1), bounding |Vi|/|Vj | for any pair of
clusters of G (and hence parts of H).

r1 is the upper bound on the number of clusters.

The blow-up lemmas guarantee the existence of the following constants.

εBL is the regularity we require in the regular partition provided by the user of the
blow-up lemma.

%BL is the fraction of vertices in each part of the partition of H supplied by the user
which may be image restricted.

C is large, only appears in the random graphs blow-up lemmas and is the constant
factor in the bound on the probability p.

c is small, only appears in the bijumbled graphs blow-up lemma and is the
constant factor in the bound on the bijumbledness error term β.

Furthermore, the most important additional constants appearing in the proofs of
the blow-up lemmas are the following.

µ is the fraction of each cluster of G contained in each of the “small” sets of the
partition of G, thus |V q

i | = |V c
i | = |V buf

i | = µ|Vi| for each i.

ϑ comes into the maximum fraction %pϑ of each part of H which may be image
restricted. It is equal to either zero (proving Lemmas 1.21 and 1.23) or ∆
(proving Lemma 1.25).

% appears in the maximum fraction %pϑ of each part of H which may be image
restricted. We also use % for a second purpose (which does not conflict with the
first one): it is the fraction of non-image restricted vertices in Xi which may
enter the queue during the RGA without causing the RGA to fail. Hence in
total at most 2%|Xi| vertices of Xi may enter the queue during the RGA.

ε′ is the global worst case regularity appearing in the proof of the blow-up lemmas.
That is, whenever we use the fact that a pair is (·, d, p)-regular in G, it will be
at worst (ε′, d, p)-regular.

εa,b is the worst case regularity in the proofs between underlying restriction sets of
adjacent vertices in H with respectively a and b previously embedded neighbours
(see Section 2.3.5 for definitions of these terms).



2.3. PREPROCESSING 38

ε is the initial regularity after pre-processing, and also controls the deterministic
properties we require of Γ.

In order to make our proofs work it is enough to have constants in the size order

0 < ε� εa,b ≤ ε′ � %� µ� α, ζ, d,∆−1,∆−1
R′ ,∆

−1
J , D−1, κ−1

and 0 < c,C−1 � r−1
1 , ε

where by x� y we mean that there is a non-decreasing function f : (0, 1]→ (0, 1]
such that our proof works if 0 < a ≤ f(b). Observe that the constants on the right
hand sides are (effectively) chosen by the user of the blow-up lemma. We remark
that one can then safely read this paper assuming that, for example, any function
of % appearing in the proofs tending to zero with % is much smaller than any function
of µ appearing in the proofs tending to zero with µ. However, for the convenience
of the reader wishing to verify the proofs, we specify our constants (more or less)
explicitly in each of the following results. We have made no attempt to optimise the
values we give.

2.3.2. The partition of H. In Section 2.3.6 we will refine the partition XBL

of H given as input to one of our blow-up lemmas to obtain a partition X = {Xi}i∈[r]

of V (H) with some additional properties, which we shall need in our proofs. We shall
also refine the given partition of G (see Section 2.3.3 for the properties we require
from this refined partition of G). In this subsection we will define the properties
that we require from the refined partition of H. To put this definition into context
(and provide some explanations on how it fits to the refinement of the partition
of G in the subsequent subsection) we first need some explanations concerning our
strategy in the proofs of the blow-up lemmas.

We shall (in a series of steps, some of which are performed in this preprocessing,
and some of which are performed on later parts of the proof) construct subsets
Xmain
i , Xq

i , Xc
i and Xbuf

i of Xi. We define

Xmain =
⋃
i∈[r]

Xmain
i , Xq =

⋃
i∈[r]

Xq
i , Xc =

⋃
i∈[r]

Xc
i , Xbuf =

⋃
i∈[r]

Xbuf
i .

Here, Xbuf
i ⊆ X̃i contains the buffer vertices, which will be chosen from the set

of potential buffer vertices in this preprocessing step in Section 2.3.6. The set Xc

is only used in the proof of the random graphs blow-up lemma, Lemma 1.21; in
the other proofs we set Xc = ∅. The vertices in Xc shall form the reserved cliques
which we will use to fix so-called buffer defects (see Section 3.1 for more details).
We choose this set of vertices at the beginning of the proof of Lemma 1.21. Once we
chose Xbuf and Xc, we set Xmain

i := Xi \ (Xbuf
i ∪Xc). These sets will have sizes

|Xbuf
i | = 4µ|Xi| and |Xc

i | ≤ µ|Xi| and hence (1− 5µ)|Xi| ≤ |Xmain
i | ≤ (1− 4µ)|Xi|.

The set Xq ⊆ Xmain will form the queue and only gets chosen during the embedding,
in the random greedy algorithm; it will also be of size at most µ|Xi|. We remark
that in the following definition we shall only refer to the sets Xi and Xbuf

i . We only
chose to mention the sets Xq

i and Xc
i here as well because we need them to motivate

the refinement of the partition of G in the next subsection.
The properties that we require of our refined partition and the buffer vertices

are collected in the following definition. We remark that the reduced graphs R
and R′ used for this refined partition are blow-ups of the reduced graphs RBL and
R′BL provided to the respective blow-up lemma. These properties bound the number
of buffer vertices per part, and state that the first and second neighbourhoods of
buffer vertices lie along edges of R′. They also assert that any pair of vertices within
one part Xi, but also any pair of buffer vertices, and any pair consisting of a buffer
vertex and an image restricted vertex, are far apart. Note that this implies that
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H[Xi, Xj ] forms a matching for any pair of parts Xi and Xj , and it also implies
that buffer vertices may not be image restricted. We further require that all vertices
in any one Xbuf

i have the same degree, and distinguish between clique buffers and
non-clique buffers. The latter will be important for the selection of reserved cliques
in the proof of Lemma 1.21 (Section 3.1).

Definition 2.20 (Good H-partition). We say that a partition X = {Xi}i∈[r]

of V (H) is a good H-partition for reduced graphs R′ ⊆ R on vertex sets [r], with

buffer X̃ , buffer vertices Xbuf ⊆
⋃
X̃ and image restricting vertices J = {Jx}x∈V (H),

if X is an R-partition and the following conditions are satisfied for each i, j, k ∈ [r].

(H 1) (H,X ) is an R-partition and X̃ is an (α,R′)-buffer for H.
(H 2) distH(x, y) ≥ 10 and Jx ∩ Jy = ∅ for each x, y ∈ Xi with x 6= y.
(H 3) |Xbuf

i | = 4µ|Xi|, and |{x ∈ Xi : x ∈ N(Xbuf)}| ≤ 4κ∆R′µ|Xi|.
(H 4) distH(x, y) ≥ 5 for each x, y ∈ Xbuf with x 6= y.
(H 5) distH(x, y) ≥ 3 for each x ∈ Xbuf and each image restricted y.
(H 6) All vertices of Xbuf

i have degree b for some 0 ≤ b ≤ ∆. We then call Xbuf
i a

degree-b buffer.
(H 7) Either all or none of the vertices of Xbuf

i are in copies of K∆+1. We then call
Xbuf
i a clique buffer or non-clique buffer, respectively.

(H 8) If Xbuf
i is a clique buffer, then at least 1

2∆+4α|Xi| vertices of X̃i are in copies

of K∆+1 which do not contain either vertices of Xbuf or image restricted
vertices.

Note that in this definition we do need to know about image restricting vertices
(since they play a rôle in (H 2)), which are in Γ, and we do need to know which
vertices of H are image restricted (since they play a rôle in (H 5)), but we do not
need to know anything about G.

2.3.3. The partition of G. We next define the properties we require from
our refined partition of G. Firstly, we shall subdivide each cluster of the partition
VBL of G, which is given as input to one of our blow-up lemmas, into several new
clusters to obtain a new partition V matching the refined partition of H. Further,
as also mentioned in the proof overview, we shall partition each new cluster Vi into
parts V main

i , V q
i , V c

i and V buf
i . Again, we set

V main =
⋃
i∈[r]

V main
i , V q =

⋃
i∈[r]

V q
i , V c =

⋃
i∈[r]

V c
i , V buf =

⋃
i∈[r]

V buf
i .

As previously indicated, each vertex x ∈ V (H) will be embedded into the cluster Vi
such that x ∈ Xi. In the rest of the paper, we often refer to Vi simply by V (x), to
V main
i by V main(x), and so on, to avoid the use of indices whenever these are not

important.
As explained before, most of the vertices from V main will be used to embed most

vertices of Xmain, while some vertices from V q will be used to embed the remainder,
which constitutes the queue Xq. We also have the set V c, the clique reservoir, that
we will use in the proof of the random graphs blow-up lemma to embed some of the
vertices in Xc. Some vertices of each Xc

i may need to be used to fix so-called buffer
defects, and these could be embedded anywhere in Vi. All other vertices of each Xc

i

get embedded to V c
i . Finally, the vertices from V buf together with all remaining

vertices of V main ∪ V q ∪ V c, that is, vertices that were not used when embedding
Xmain ∪Xq ∪Xc, will be used for embedding the buffer vertices Xbuf .

The properties we require of a good G-partition are as follows. It must be
a regular R-partition, and furthermore the one-sided and two-sided inheritance
properties of VBL on R′BL must be transferred to V on R′. The super-regularity
properties of VBL on R′BL must be transferred to give minimum degree conditions for
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each of the parts V main
i , V q

i and V c
i . Finally, we need to create new image restriction

sets I from the supplied IBL which with the (unchanged) J form a restriction pair.

Definition 2.21 (Good G-partition). Given a good H-partition of V (H) for re-

duced graphs R′ ⊆ R on vertex sets [r], with buffer X̃ and buffer vertices Xbuf ⊆
⋃
X̃ ,

with image restrictions I = {Ix}x∈V (H), and restricting vertices J = {Jx}x∈V (H), we

say that a partition V = {Vi}i∈[r] of V (G) with a partition Vi = V main
i ∪̇V q

i ∪̇V c
i ∪̇V buf

i

of each cluster is a good G-partition for R′ ⊆ R, if the following conditions are satis-
fied.

(G 1) For each i we have |V main
i | = (1− 3µ)|Vi| and |V q

i | = |V c
i | = |V buf

i | = µ|Vi|.
(G 2) (G,V) is an (ε, d, p)-regularR-partition, which has one-sided inheritance on R′,

and two-sided inheritance on R′ for X̃ .
(G 3) For each ij ∈ R′ and v ∈ Vi, we have

degG(v;V main
j ) ≥ (1− 3µ)(d− ε) max

(
p|Vj |,degΓ(v;Vj)/2

)
,

degG(v;V q
j ) ≥ µ(d− ε) max

(
p|Vj |,degΓ(v;Vj)/2

)
,

degG(v;V c
j ) ≥ µ(d− ε) max

(
p|Vj |,degΓ(v;Vj)/2

)
.

(G 4) For each x ∈ Xi, we have

|Ix ∩ V main
i | ≥ (1− ε)(1− 3µ)|Ix| ,

|Ix ∩ V q
i | , |Ix ∩ V

c
i | , |Ix ∩ V buf

i | ≥ (1− ε)µ|Ix| ,∣∣N∗(Jx;V main
i )

∣∣ =
(
1± ε

)
(1− 3µ)p|Jx||Vi| , and∣∣N∗(Jx;V q

i )
∣∣ , ∣∣N∗(Jx;V c

i )
∣∣ , ∣∣N∗(Jx;V buf

i )
∣∣ =

(
1± ε

)
µp|Jx||Vi| .

(G 5) I and J form a (%pϑ, ζ,∆,∆J)-restriction pair for the partitions X and V.
(G 6) For each i, the number of image restricted vertices in Xi is at most %pϑ|Xi|.

Note that the sizes of the sets V main
i , V q

i , V c
i , V buf

i are not be the same as
the sizes of the sets Xmain

i , Xq
i , Xc

i and Xbuf
i . For example we will have |Xmain

i | =
(1−4µ)|Xi| < (1−3µ)|Vi| = |V main

i |, and |Xq
i |, |Xc

i | ≤ 2%|Xi|, which is much smaller
than µ|Vi|. Thus, the subsets Xmain

i , Xq
i , Xc

i of Xi will be significantly smaller than
the corresponding set in Vi, while the set Xbuf

i is larger than V buf
i . We also note

that we do require two-sided inheritance for X̃ in (G 2), not just for Xbuf . In the
proof of Lemma 1.21, when dealing with buffer defects, we will make use of this
stronger statement.

2.3.4. Obtaining a good H-partition and a good G-partition. The fol-
lowing lemma proves that we can obtain good partitions of H and G from the
partitions provided to our blow-up lemmas. The proof of this lemma is straight-
forward, though not short since several conditions must be checked. Briefly, the
idea is that we will draw an auxiliary graph Fi on each part XBL

i of XBL with
edges joining pairs of vertices which are at distance less than 10 or share an image
restricting vertex. We will apply Lemma 2.4 to each of these graphs together with
the set X̃i to obtain a partition X and reduced graphs R and R′ satisfying the first
three conditions of a good H-partition, and then construct the sets Xbuf

i greedily
to obtain the remaining properties. We will then randomly refine the partition VBL

to obtain a matching partition V, and further randomly split each part Vi of V
into V main

i , V q
i , V c

i and V buf
i . We will use Theorem 2.1 to obtain concentration for

various set sizes in the randomly chosen parts, which in particular show that with
high probability we obtain the desired good G-partition. We stress that although
p with a lower bound reminiscent of our random graph blow-up lemmas makes an
appearance in the lemma statement, this does not mean we are going to assume
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Γ is a random graph. We will simply need to know that the quantity pbn is large
compared to log n.

Lemma 2.22 (Good partitions lemma). For all positive integers ∆, ∆R′ , ∆J ,
r1, ϑ and b, all κ > 2, all α, ζ, d, ε > 0, and all sufficiently small µ, % > 0, there

exists C such that the following holds whenever p ≥ C
(

logn
n

)1/b
and n > C. Let

δ = 1
8 (∆ + ∆J)−10 and r ≤ r1.
Let RBL be a graph on rBL = δr vertices and let R′BL ⊆ RBL be a spanning

subgraph with ∆(R′BL) ≤ ∆BL
R′ = δ∆R′ . Let H and G ⊆ Γ be graphs with 1

2κ-balanced

size-compatible vertex partitions XBL = {XBL
i }i∈[rBL] and VBL = {V BL

i }i∈[rBL],

respectively, which have parts of size at least 2n/(κδr1). Let X̃BL = {X̃BL
i }i∈[rBL] be

a family of subsets of V (H), IBL = {IBL
x }x∈V (H) be a family of image restrictions,

and J = {Jx}x∈V (H) be a family of restricting vertices. Suppose that

(i ) ∆(H) ≤ ∆, (H,XBL) is an RBL-partition, and X̃BL = {X̃BL
i }i∈[rBL] is a

(2α,R′BL)-buffer for H,
(ii ) (G,VBL) is a

(
1
2δε, d, p

)
-regular RBL-partition, which is

(
1
2δε, d, p

)
-super-

regular on R′BL, has one-sided inheritance on R′, and two-sided inheritance

on R′ for X̃BL,
(iii ) IBL and J form a

(
1
2δ%p

ϑ, 2ζ,∆,∆J

)
-restriction pair , and |Jx| ≤ b for each

x ∈ V (H).

Then there is a graph R on r vertices and a spanning subgraph R′ ⊆ R with ∆(R′) ≤
∆R′ , together with κ-balanced size-compatible partitions X = {Xi}i∈[r] of H and

V = {Vi}i∈[r] of G, which have parts of size at least n/(κr1), a family X̃ = {X̃i}i∈[r]

of potential buffer vertices, a family I = {Ix}x∈V (H) of image restrictions, subsets

Xbuf
i ⊆ X̃i for each i ∈ [r], and a partition Vi = V main

i ∪̇ V q
i ∪̇ V c

i ∪̇ V buf
i for each

i ∈ [r], which give a good H-partition and a corresponding good G-partition.

Proof. Let δ = 1
8 (∆ + ∆J)−10. We set C = 106δ−1µ−1ε−2d−∆ζ−1κr1. We

require

µ <
α

10000κ∆4
R′∆

10(∆ + 2)
and % ≤ µ .

First we refine the vertex partition XBL ofH to obtain properties (H 1) and (H 2).
For each i ∈ [rBL] we define a graph Fi on the vertex set XBL

i by putting an edge
between x and x′ whenever either Jx ∩ Jx′ 6= ∅ or x and x′ are at distance less
than 10 in H. Observe that ∆(Fi) ≤ (∆ + ∆J)10. We now apply Lemma 2.4 to

Fi with the set X̃BL
i . This returns an equitable partition of the vertices XBL

i into

independent sets in Fi which also partitions X̃BL
i equitably. We do this for each

i ∈ [rBL] to obtain a partition X of V (H) into 8(∆ + ∆J )10rBL = δ−1rBL = r parts

and a family X̃ = {X̃i}i∈[r]. We let R be the graph obtained from RBL by replacing

each vertex with an independent set on 8(∆ + ∆J )10 = δ−1 vertices, and each edge
with a complete bipartite graph between the corresponding sets. We obtain R′

similarly from R′BL. Thus (H,X ) is an R-partition, satisfying (H 2) by construction.
Furthermore, we have ∆(R′) = δ−1∆(R′BL) ≤ ∆R′ .

Since each XBL
i with i ∈ [rBL] has size at least 2n/(κδr1) and is equipartitioned

into δ−1 parts, we see that, because n is chosen sufficiently large, we have |Xi| ≥
n/(κr1) for each i ∈ [r]. Given i, j ∈ [r] let i′, j′ ∈ [rBL] be such that Xi ⊆ XBL

i′ and
Xj ⊆ XBL

j′ . Then we have

|Xi| ≤ δ|XBL
i′ |+ 1 ≤ κ

2 δ|X
BL
j′ |+ 1 ≤ κ

2 (|Xj |+ 1) + 1 ≤ κ|Xj |

where the final inequality is since |Xj | ≥ n/(κr1) and n is sufficiently large. Thus X
is κ-balanced.
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Given i ∈ [r] let i′ ∈ [rBL] be such that Xi ⊆ XBL
i′ . Then we have

|X̃i| ≥ δ|X̃BL
i′ | − 1 ≥ 2αδ|XBL

i′ | − 1 ≥ 2α(|Xi| − 1)− 1 ≥ α|Xi|

where again the final inequality is since n is sufficiently large. Thus X̃ forms an
(α,R′)-buffer for H.

Before we verify the remaining good H-partition properties, it is convenient to
check (G 6). By assumption (iii ) of the lemma, at most 1

2δ%p
ϑ|XBL

i′ | vertices of any

given XBL
i′ are image restricted. Thus for any i such that Xi ⊆ XBL

i′ , at most

1
2δ%p

ϑ|XBL
i′ | ≤ 1

2%p
ϑ
(
|Xi|+ 1

)
≤ %pϑ|Xi|

vertices of Xi are image restricted, as required for (G 6).
We proceed with properties (H 3)–(H 8) by choosing buffer vertices Xbuf

i from

the potential buffer vertices X̃i for each i ∈ [r] sequentially. For a given i ∈ [r],
we first decide on the degree of the buffer and whether or not it is a clique buffer.
We split the vertices of X̃i into ∆ + 2 subsets, one for each of the possible degrees
in {0, . . . ,∆− 1}, one for vertices of degree ∆ not in copies of K∆+1, and one for
vertices in copies of K∆+1. We take a largest one Si of these sets, and will choose
Xbuf
i within it. We do this greedily, one vertex at a time, always picking a vertex at

distance at least five from previously chosen buffer vertices, and at distance at least
three from any image restricted vertices. We now justify that it is possible to do
this, that is, that we can pick the desired 4µ|Xi| vertices in Si without running out
of vertices in Si.

Since all neighbours (respectively, second neighbours) in H of vertices in X̃i

are in clusters Vj with ij ∈ R′ (respectively, Vk with ij, jk ∈ R′), by (G 6), verified
above, it follows that the number of image restricted vertices at distance 2 or less
to a vertex of X̃i is at most (∆2

R′ + ∆R′ + 1)%κ|Xi|. Each of these vertices has at

most one neighbour or second neighbour in X̃ ′i, since the distance between any two

vertices of Xi is at least ten. Similarly, if x is in some X̃k and is at distance four or
less from some vertex of X̃i, then the path between x and X̃i follows edges of R′,
and there is only one vertex of X̃i which is at distance four or less from x. Thus the
total number of vertices of X̃i which are at distance four or less from some vertex of
Xbuf is at most

(1 + ∆R′ + ∆2
R′ + ∆3

R′ + ∆4
R′) · 4µκ|Xi| .

Since |Si| ≥ 1
∆+2 |X̃i|, it follows that at each step the number of vertices in Si ⊆ X̃i

we have to choose from is at least

1
∆+2α|Xi| − 3∆2

R′%κ|Xi| − 20∆4
R′µκ|Xi| ,

which is greater than 1
2∆+4α|Xi| by choice of µ and %. Thus we can always choose

the desired vertices of Xbuf
i , giving (H 4)–(H 7). In the event that Xbuf

i is a clique

buffer, we have at the end at least 1
2∆+4α|Xi| vertices of X̃i remaining which are in

copies of K∆+1 (by definition of Si) that do not contain either vertices in Xbuf or
image restricted vertices, giving (H 8).

Finally, neighbours of Xbuf in Xi must be in parts Xj such that ij ∈ R′. Since
any two vertices in Xi are at distance at least ten, each such vertex has at most
one neighbour in Xi and so at most ∆R′4µκ|Xi| vertices of Xi are in N(Xbuf),
completing (H 3). This establishes that we have a good H-partition.

We now construct a corresponding good G-partition. The construction is simple:
for each V BL

i ∈ VBL we choose, uniformly at random, an equitable partition into δ−1

parts, which parts we associate (arbitrarily) to subparts of XBL
i of corresponding

size, obtaining V. Note that this is possible since |Xbli| = |V BL
i |. We then, for each

i ∈ [r], choose uniformly at random a partition of Vi into one set of size (1− 3µ)|Vi|
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and three of size µ|Vi|, which form V main
i , V q

i , V c
i and V buf

i respectively. For each
x ∈ Vi, we let Ix = IBL

x ∩ Vi.
By construction X and V are size-compatible, so what remains is to show that

V is with positive probability a good G-partition. In fact, we will show this holds
asymptotically almost surely. Recall that we have already established (G 6), and by
construction (G 1) holds, so that the remaining conditions are (G 2)–(G 5).

Observe that the sets Vi, V
main
i , V q

i , V c
i and V buf

i are all distributed as the
uniform random set of that size within V BL

i′ , where Vi ⊆ V BL
i′ , though they are of

course not independent. It follows that for any set U ⊆ V BL
i′ , the sizes of each of

the sets Vi ∩ U , V main
i ∩ U , V q

i ∩ U , V c
i ∩ U and V buf

i ∩ U are hypergeometrically
distributed, each with (since n is sufficiently large) expectation at least 1

2µδ|U |. In

particular, if |U | ≥ 103ε−2 log n, then the probability that any given one of these
sizes is not within a

(
1± ε

10

)
-factor of its expectation is by Theorem 2.1 at most

2e−ε
2|U |/300 ≤ n−2 .

We now give various sets U to which we will apply this observation, and verify
that each is sufficiently large. For each ij ∈ R′ and each v ∈ Vj , by construction of
R′ and since (G,VBL) is super-regular on R′BL, we have

degΓ(v;V BL
i′ ) ≥ degG(v;V BL

i′ )

≥ (d− ε) max
{
p|V BL

i′ |, 1
2 degΓ(v;V BL

i′ )
}
≥ 103ε−2 log n ,

where the final inequality holds by choice of p and C. We can thus take U to be
NΓ(v;V BL

i′ ) or NG(v;V BL
i′ ).

For each x ∈ Xi, where Xi ⊆ XBL
i′ , since

(
IBL,J

)
form a

(
1
2δ%, 2ζ,∆,∆J

)
-

restriction pair, we have∣∣N∗Γ(Jx;V BL
i′ )

∣∣ ≥ |IBL
x | ≥ ζ(dp)|Jx||V BL

i | ≥ 103ε−2 log n ,

where the final inequality comes from the assumption |Jx| ≤ b and our choice of p
and C. We can thus also take U to be N∗Γ(Jx;V BL

i′ ) or Ix.
In total, we have at most 5r randomly chosen sets in which we are interested, and

at most 4n choices of U with which we intersect the random sets. Taking the union
bound, we see that a.a.s. each of these intersections has size within a

(
1± ε

10

)
-factor

of its expectation. In particular, there exists a partition V in which each of these
intersections is within a

(
1± ε

10

)
-factor of its expectation. We fix such a partition,

and prove that it is the desired good G-partition.
We begin with (G 2). Suppose ij ∈ R. Then Vi and Vj come from two parts V BL

i′

and V BL
j′ of VBL which form a

(
1
2δε, d, p

)
-regular pair, and we have |Vi| > 1

2δ|V
BL
i′ |

and |Vj | > 1
2δ|V

BL
j′ |. It follows from the definition that (Vi, Vj) is (ε, d, p)-regular, so

(G,V) forms an (ε, d, p)-regular R-partition. Given now ij, jk ∈ R′, with Vj ⊆ V BL
j

and Vk ⊆ V BL
k , and any v ∈ Vi, we have by construction of V that |

∣∣NΓ(v;Vj)
∣∣ ≥

1
2δ
∣∣NΓ(v;Vj′)

∣∣ and that |Vk| ≥ 1
2δ|Vk′ |. Since the pair

(
NΓ(v;Vj′), Vk′

)
is
(

1
2δε, d, p

)
-

regular in G, it follows from the definition that the pair
(
NΓ(v;Vj), Vk

)
is (ε, d, p)-

regular in G, so that we have one-sided inheritance on R′. A similar argument shows
that if also jk ∈ R′ and there is a triangle of H with one vertex in each of X̃i, X − j
and Xk, then also

(
NΓ(v;Vj), NΓ(v;Vk)

)
is (ε, d, p)-regular in G, so that we have

two-sided inheritance on R′ for X̃ .
Both of (G 3) and (G 4) follow directly from the construction of V together

with, respectively, the
(

1
2δε, d, p

)
-super-regularity of (G,VBL) on R′BL and that

(IBL,J ) forms a
(

1
2δ%p

ϑ, 2ζ,∆,∆J

)
-restriction pair. The same holds for everything

except (f ) in the definition of a restriction pair for (G 5), since (G 6) was already
established. Given an image restricted x ∈ Xi ⊆ XBL

i′ and an edge xy ∈ E(H)
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with Y ∈ Xj ⊆ XBL
j′ , the pair

(
N∗Γ(Jx;Vi′), N

∗
Γ(Jy;Vj′)

)
is
(

1
2δε, d, p

)
-regular by

assumption. Since
∣∣N∗Γ(Jx;Vi)

∣∣ ≥ 1
2δ
∣∣N∗Γ(Jx;Vi′)

∣∣, and similarly for y, it follows

from the definition that
(
N∗Γ(Jx;Vi), N

∗
Γ(Jy;Vj)

)
is (ε, d, p)-regular, completing the

verification of (G 5). �

2.3.5. Underlying restrictions, candidates and good partial embed-
dings. Suppose ψ is a partial embedding of H into G—that is, an injective graph
homomorphism with domain Dom(ψ) ⊆ V (H).

We call a vertex x ∈ H embedded if x ∈ Dom(ψ), and otherwise unembedded.
Of course this is with respect to ψ, but this will always be clear from the context
and we will not in future mention it. The set of embedded neighbours of x is

Π(x) :=
{
ψ(y) : xy ∈ E(H), y ∈ Dom(ψ)

}
and we define

π(x) :=
∣∣Π(x)

∣∣ and π∗(x) =
∣∣Π(x)

∣∣+
∣∣Jx∣∣.

Thus, π∗(x) counts the number of already embedded neighbours of x by the partial
embedding ψ, including the ‘neighbours’ from Jx (if any).

Given an unembedded vertex x ∈ Xi, we define the underlying restriction set,
candidate set and available candidate set of x by

U(x) := Vi ∩N∗Γ
(
Π(x) ∪ Jx

)
,

C(x) := Ix ∩N∗G
(
Π(x)

)
, and

A(x) := C(x) \ Im(ψ) , respectively.

See Figure 1 for an example in which x and y are embedded and their common
neighbour z is not.

H

G ⊆ Γ

x

z

y

ψ(x)

ψ(y)

Im(ψ)

U(z)

C(z)

A(z)

Figure 1. Underlying restriction sets, candidate sets, and available
candidate sets. The thick lines are edges of G, and the wavy lines
of Γ.

Recall that G is a subgraph of Γ (being either a random or a bijumbled graph),
which is typically far from being complete. The underlying set signifies thus the
vertices that could in principle be used for embedding (if G = Γ), whereas the
candidate sets denote the vertices that are possible in G, and the available candidate
sets only consider those vertices from the candidate sets which haven’t been previously
taken as images by the vertices embedded earlier (in Im(ψ)). We also refer to vertices
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from C(x) as candidate vertices for x. Further, we define Umain(x) := U(x)∩ V main
i ,

Uq(x) := U(x)∩V q
i , U c(x) := U(x)∩V c

i and Ubuf(x) := U(x)∩V buf
i , and similarly

the respective subsets of the candidate and available candidate sets of x, illustrated
in Figure 2.

V main
V q

V c

V buf
Umain(x)

Uq(x)
U c(x)

Ubuf(x)

Cmain(x) Cq(x) Cc(x) Cbuf(x)

C(x)

U(x)

Figure 2. Partitioning underlying restriction sets and candidate
sets into one big and three small parts

Finally we define the underlying restriction graph between Y ⊆ Xi and Z ⊆ Vi
to be the bipartite graph with parts Y and Z and edges yz whenever z ∈ U(y).
We define similarly the candidate graph between Y ⊆ Xi and Z ⊆ Vi to be the
bipartite graph with parts Y and Z and edges yz whenever z ∈ C(y). If x ∈ V (H)
and v ∈ C(x) we say v is candidate for x.

We call ψ a good partial embedding if the following conditions hold.

(GPE 1) For each x ∈ Dom(ψ) we have ψ(x) ∈ Ix.
(GPE 2) For each unembedded x ∈ Xi we have∣∣U(x)

∣∣ = (p± εp)π
∗(x)
∣∣Vi∣∣ , ∣∣Umain(x)

∣∣ = (1− 3µ)(p± εp)π
∗(x)
∣∣Vi∣∣ , and∣∣Uq(x)

∣∣ , ∣∣U c(x)
∣∣ , ∣∣Ubuf(x)

∣∣ = µ(p± εp)π
∗(x)
∣∣Vi∣∣ .

(GPE 3) For each unembedded x we have∣∣C(x)
∣∣ ≥ (1− ε′)(dp− ε′p)π(x)

∣∣Ix∣∣ ,∣∣Cmain(x)
∣∣ ≥ (1− ε′)(1− 3µ)(dp− ε′p)π(x)

∣∣Ix∣∣ , and∣∣Cq(x)
∣∣ , ∣∣Cc(x)

∣∣ , ∣∣Cbuf(x)
∣∣ ≥ (1− ε′)µ(dp− ε′p)π(x)

∣∣Ix∣∣ .
(GPE 4) For each xy ∈ E(H) with x and y unembedded, the pair

(
U(x), U(y)

)
is

(επ∗(x),π∗(y), d, p)-regular in G.

The intention of this definition is that a good partial embedding is ‘locally’
good—if x is unembedded, then almost all of C(x) consists of vertices v such that if
v is not in Im(ψ), then ψ ∪ {x→ v} is a good partial embedding (This assertion is
proved in Lemma 2.25).

It is important to observe that the trivial partial embedding, in which no vertices
are embedded, is not automatically a good partial embedding: image restricted
vertices might destroy any of (GPE 2)–(GPE 4). However, if we are provided with a
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x

x′

y

y′

z

ψ(x)

ψ(x′)

H

G ⊆ Γ

U(y′)

U(y) U(z)

C(y′)

C(y) C(z)

Figure 3. Good partial embeddings form embeddings when re-
stricted to the mapped vertices x, x′ and guarantee sizes and reg-
ularity for the underlying restriction sets of unmapped vertices
y, y′, z. The thick lines are edges of G, the wavy lines of Γ, and the
hatched areas represent regular pairs in G.

good H-partition and a corresponding good G-partition, then from the definitions
the trivial partial embedding is a good partial embedding.

Finally, in much of the rest of this paper we will want to consider not just one
partial embedding, but a sequence ψ0, . . . of them. We will want to refer to sets
Amain(x), Cmain(x) and so on, and quantities π(x) and so on, with reference to each
of these. We will do this by following the convention that a subscript t attached
to any of these means it is with reference to ψt. Thus we write Amain

t (x) for the
set Amain(x) with respect to ψt, and similarly Cmain

t (x), Πt(x), πt(x), π∗t (x), Ut(x),
Ct(x), At(x) and so on.

2.3.6. The general setup. In this subsection we put forward the following
notion of the General Setup. This notion encapsulates many of the definitions and
constant choices of this whole section, which we will need as assumptions in many
of the lemmas to come, and which we therefore wish to give a convenient name to.

Definition 2.23 (General Setup). When we say that we assume the General
Setup we assert that constant choices satisfying the conditions of Section 2.3.1
have been made, that there exist κ-balanced size-compatible partitions X and V
of V (H) and V (G) respectively whose parts are of size at least n

κr1
, together with

reduced graphs R and R′ with ∆(R′) ≤ ∆R′ , an image restriction pair (I,J ), an

(α,R′)-buffer X̃ , buffer vertices Xbuf , and sets V main, V q, V c and V buf , that the
partition of V (H) is a good H-partition, and that the partition of G is a good
G-partition.

We stress again that these conditions in particular imply directly from the
definitions that the trivial partial embedding is a good partial embedding.
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2.3.7. Bad vertices. As mentioned in the proof overview, we will embed
vertices of H into G one at a time, choosing each vertex in a way that allows for the
future continuation of the embedding. This ‘allowing for future continuation’ comes
in two parts, ‘local’ conditions which broadly say that we embed a vertex of H in
a way which allows for the embedding of other vertices nearby in H, and ‘global’
conditions which say that the embedding of many (distant) vertices of H do not tend
to cause problems for any given vertex. We handle the latter probabilistically, and it
is the main work of this paper. The purpose of this subsection is to define precisely
what we require locally, by specifying which vertices of G are ‘bad’ for x ∈ V (H),
i.e. not suitable for embedding x to, and to show that these are always a small set
of vertices (in comparison to the set C(x)). In fact, the definition of ‘badness’ also
depends on a set Q ⊆ V (H). In the RGA (randomised greedy algorithm, outlined in
the proof overview, Section 1.4), Q will be the current queue, while at other times
Q will be V (H).

Definition 2.24 (Bad vertices with respect to ψ and Q; badness condition).
Let ψ be a good partial embedding and Q ⊆ V (H) be a set of unembedded vertices.
The vertex v is called bad for x with respect to ψ and Q if the extension ψ∪{x→ v}
is not a good partial embedding or there is an unembedded neighbour y of x not in
Q such that

degG
(
v;Amain(y)

)
< (d− ε′)p|Amain(y)| . (8)

When ψ and Q are clear from the context (as they always will be) we let B(x) be
the set of vertices in C(x) which are bad for x with respect to ψ and Q. We will
refer to (8) as the badness condition.

The following lemma provides control over the bad vertices with respect to a
good partial embedding.

Lemma 2.25. We assume the General Setup. Let ψ be a good partial embedding
and let Q ⊆ V (H) be a set of vertices such that for each unembedded x ∈ V (H) \Q
we have

|Amain(x)| ≥ 1
2µ(d− ε′)π

∗(x)pπ
∗(x)|V main(x)| .

Given an unembedded x ∈ V (H), let D be such that the following holds for all
unembedded y, z ∈ V (H).

(i ) D ≥ π∗(x) + 1.
(ii ) If xy ∈ E(H) then D ≥ π∗(y) + 1.

(iii ) If xy, yz ∈ E(H) then D ≥ π∗(y) + 2, π∗(z) + 1.
(iv ) If xy, yz, xz ∈ E(H) then D ≥ π∗(x) + 2, π∗(y) + 2, π∗(z) + 2.

Then the following hold.

(a ) If all neighbours of x are embedded then no vertex in C(x) \ Im(ψ) is bad for
x with respect to ψ and Q.

(b ) Suppose that Γ satisfies NS(ε, r1, D) and RI(ε, (εa,b), ε
′, d, r1, D). Then at most

20∆2ε′pπ
∗(x)|V (x)| vertices of C(x) are bad for x with respect to ψ and Q.

Proof. We require

µ ≤ 1
6 , ε′ ≤ µd∆ζ

1000κ4∆
and ε ≤ dε′

κ
.

For (a ), observe that all the conditions for a vertex v to be in B(x) are trivially
false.

For part (b ), we need to consider all of the possible reasons v could be bad for
x with respect to ψ and Q. It could be that there is some unembedded neighbour
y ∈ V (H) \Q of x such that badness condition (8) holds. The pair

(
U(x), U(y)

)
is
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(ε′, d, p)-regular in G by (GPE 4). By assumption and because (GPE 2) holds for y
with respect to ψ we have

|Amain(y)| ≥ 1

2
µ(d− ε′)π

∗(y)pπ
∗(y)|V main(y)| = 1

2
µ(1− 3µ)(d− ε′)π

∗(y)pπ
∗(y)|V (y)|

≥ 1

2
µ(1− 3µ)(d− ε′)π

∗(y)pπ
∗(y) |U(y)|

(1 + ε)π∗(y)pπ∗(y)
≥ ε′|U(y)| .

So badness condition (8) holds for at most ε′|U(x)| ≤ 2ε′pπ
∗(x)|V (x)| vertices v of

C(x), where we use (GPE 2) and (1− ε)∆ ≤ 2. Since x has at most ∆ unembedded
neighbours, in total there are at most 2∆ε′pπ

∗(x)|V (x)| vertices v of C(x) such that
the badness condition (8) holds for some unembedded neighbour of x.

It could be that ψ ∪ {x → v} is not a good partial embedding. Since v ∈
C(x) ⊆ Ix, (GPE 1) cannot fail. We next consider (GPE 3). Since ψ is a good
partial embedding, (GPE 3) cannot fail for any vertex y which is not a neighbour
of x (because the candidate sets of these vertices do not change). So let y be any
neighbour of x in H. Recall that

(
U(x), U(y)

)
is (ε′, d, p)-regular in G by (GPE 4).

We have

|C(y)|
(GPE 3)

≥ (1− ε′)(dp− ε′p)π(y)|Iy|
(G 5)

≥ (1− ε′)(dp− ε′p)π
∗(y)ζ|V (y)|

(GPE 2)

≥ (1− ε′)(d− ε′)∆(1 + ε′)−∆ζ|U(y)| ≥ ε′|U(y)| .

Since C(x) ⊆ U(x), there are at most ε′|U(x)| ≤ 2ε′pπ
∗(x)|Vi| vertices v ∈ C(x)

such that |C(y) ∩NG(v)| < (d − ε′)p|C(y)|. Since (d − ε′)p|C(y)| ≥ (1 − ε′)(dp −
ε′p)π(y)+1|I(y)|, there are at most 2ε′pπ

∗(x)|V (x)| vertices v ∈ C(x) such that the
first condition in (GPE 3) fails for y with respect to ψ∪{x→ v}. We can analogously
argue for each of the other four conditions. Since x has at most ∆ unembedded
neighbours, we conclude that for all but at most 10∆ε′pπ

∗(x)|Vi| vertices v ∈ C(x)
we have that (GPE 3) is satisfied with respect to ψ ∪ {x→ v}.

Now we turn to (GPE 2). Again, it suffices to consider neighbours y of x.
As (GPE 2) holds with respect to ψ, we see that |U(y)| ≥ (p − εp)π∗(y)|V (y)| ≥
εpD−1n/r1 since |V (y)| ≥ n/(κr1) and by assumption (ii ). It follows that we can
use NS(ε, r1, D) and assumption (i ) to conclude that all but at most εpD−1n/r2

1 ≤
ε′pπ

∗(x)|V (x)| vertices v ∈ C(x) are such that |U(y) ∩ NΓ(v)| = (1 ± ε)p|U(y)| =
(p± εp)π∗(y)+1|V (x)|, again using (GPE 2) for y with respect to ψ. Again, we can
argue analogously for the other four conditions, and so in total for all but at most
5∆ε′pπ

∗(x)|V (x)| vertices v ∈ C(x) we have that (GPE 2) is satisfied with respect
to ψ ∪ {x→ v}.

It remains to consider (GPE 4). Again, we only need to consider edges yz ∈ E(H)
between unembedded vertices such that y ∈ NH(x) or z ∈ NH(x), or both. Consider
first the case that only y ∈ NH(x). The case that only z ∈ NH(x) follows analogously.
Since (GPE 2) is satisfied with respect to ψ we have |U(y)| ≥ (p − εp)π∗(y)|V (y)|
and |U(z)| ≥ (p − εp)π

∗(z)|V (z)|, which together with assumption (iii ) implies
|U(y)| ≥ (p− εp)D−2n/(κr1) ≥ ε′pD−2n/r2

1 and |U(z)| ≥ ε′pD−1n/r2
1. Hence, since

Γ satisfies RI(ε, (εa,b), ε
′, d, r1, D) and the pair

(
U(y), U(z)

)
is (επ∗(y),π∗(z), d, p)-

regular in G because (GPE 4) is satisfied with respect to ψ, we get that there
are at most εpD−1n/r2

1 ≤ ε′pπ
∗(x)|V (x)| vertices v ∈ C(x) such that

(
NΓ(v) ∩

U(y), U(z)
)

is not (επ∗(y)+1,π∗(z), d, p)-regular in G. Analogously, in the second
case that y, z ∈ NH(x) we can use assumption (iv ) to conclude that there are at
most εpD−2n/r2

1 ≤ ε′pπ
∗(x)|Vi| vertices v ∈ C(x) such that

(
NΓ(v) ∩ U(y), NΓ(v) ∩

U(z)
)

is not (επ∗(y)+1,π∗(z)+1, d, p)-regular in G. So, in total there are at most

∆2ε′pπ
∗(x)|V (x)| vertices v ∈ C(x) such that (GPE 4) is not satisfied with respect

to ψ ∪ {x→ v}.
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Summing up, there are at most

2∆ε′pπ
∗(x)|V (x)|+ 10∆ε′pπ

∗(x)|V (x)|+ 5∆ε′pπ
∗(x)|V (x)|+ ∆2ε′pπ

∗(x)|V (x)|

≤ 20∆2ε′pπ
∗(x)|V (x)|

vertices v ∈ C(x) such that v is bad for x with respect to ψ and Q. �

2.4. The behaviour of random greedy algorithms

In this section we give four lemmas which show good properties of the various
random greedy algorithms we use in this paper. Roughly speaking, each of our
RGAs (of which we give three, one for each of Lemmas 1.21, 1.23 and 1.25) has
the property that we embed vertices sequentially, at each time choosing an image
of the next vertex uniformly at random in a not-too-small subset of its candidate
vertices, and this, together with the General Setup, is all we need to know about
our RGAs for the purposes of this section. Nevertheless, the reader who wishes to
see a concrete example of an RGA to which the following lemmas apply should look
at Algorithm 1 (Section 3.2), which is the simplest of our RGAs.

The first lemma constructs the vertex ordering which we shall use in the proofs
of Lemmas 1.21 and 1.25. In Lemma 1.23 the vertex ordering is supplied. The point
of the ordering we use is that we need to analyse the way neighbours of (non-clique)
buffer vertices are embedded during the RGA. Putting them first in the order,
with each neighbourhood coming as an interval in the order, makes this possible.
Even then, for Lemma 1.21 we need to insist that in degree-∆ buffers the final two
neighbours of a buffer vertex are not adjacent, thus their embeddings do not affect
each other much. Ultimately, the fact that we cannot expect these nice conditions
from the order supplied to Lemma 1.23 is the reason why we cannot obtain stronger
bounds on p in that lemma. Note that in the following lemma we do not need
to assume the General Setup, but we nevertheless use names for the parts of H
corresponding to those from the General Setup as we will use the lemma.

Lemma 2.26 (Vertex order for the RGA). Let H be a graph with ∆(H) ≤ ∆ and
V (H) = Xbuf ∪̇Xmain ∪̇Xc such that N(Xbuf) ⊆ Xmain and each pair of vertices
in Xbuf has distance at least ten. Then there exists an ordering τ of Xmain with the
following properties.

(a ) For all x ∈ Xmain \N(Xbuf) and y ∈ N(Xbuf) we have τ(x) > τ(y).
(b ) For all x ∈ Xbuf we can enumerate N(x) as y1, . . . , yb such that τ(yj+1) =

τ(yj) + 1 for all j ∈ [b− 1]. Moreover, if degH(x) = ∆ and x is not in a copy
of K∆+1 then y∆−1y∆ 6∈ E(H).

(c ) The neighbours of non-clique buffer vertices come before the neighbours of the
clique-buffer vertices.

Proof. We separate the vertices in Xbuf into two classes, those not in copies of
K∆+1 and those in copies ofK∆+1. We take any enumerationXbuf = {x1, . . . , x|Xbuf |}
with the vertices not in copies of K∆+1 coming first. We now create the ordering
τ as follows. We start with the empty ordering. For each i in succession such that
xi ∈ Xbuf is not in a copy of K∆+1, we append to τ the vertices NH(xi) in some
order such that if degH(xi) = ∆ then the last two vertices in τ of NH(xi) are not
adjacent. Note that if degH(x) = ∆ then there is a pair of non-adjacent vertices in
NH(xi) because xi is not in a copy of K∆+1. Next, for each i in succession such that
xi ∈ Xbuf is in a copy of K∆+1 we append to τ the vertices NH(xi) in an arbitrary
order. Finally, we append to τ any remaining vertices of Xmain in an arbitrary
order. �
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The next lemma states that provided we embed vertices uniformly at random
into not-too-small sets, the candidate sets of unembedded vertices are likely to be
‘distributed uniformly’. In this lemma, as will be the case for much of the rest of the
paper, we have a sequence ψ0, . . . of good partial embeddings, and we want to talk
about the various sets and quantities defined in Section 2.3.5, such as candidate sets,
with respect to each of these good partial embeddings. As mentioned in Section 2.3.5,
we will follow the convention that (for example) Ct(x) is the candidate set of x with
respect to ψt.

Lemma 2.27 (Uniform distribution of candidate sets). We assume the General
Setup. Suppose that for some T we have a sequence ψ0, ψ1, . . . , ψT of good partial
embeddings, where ψ0 is the trivial partial embedding with empty domain and each ψt
is obtained from ψt−1 by embedding some vertex x in V (H)\Dom(ψt−1) to a uniform

random vertex from a subset of Ct−1(x) of size at least 1
10µζ(dp)π

∗
t−1(x)|V (x)|.

The following holds with probability at least 1− 2−n/(κr1)r1. For every i ∈ [r]
and every set W ⊆ Vi of size at least %|Vi|, the number of vertices x ∈ Xi \X∗i (i.e.
vertices which are not image restricted) such that there exists t = t(x) when x is
unembedded and we have

|Ct(x) ∩W | <
(
dp− ε′p

)π∗t (x)|W | (9)

is at most %|Xi|.

This lemma corresponds to the ‘Main Lemma’ of [46], and its proof is similar in
spirit. The proof of this lemma exploits the fact that when a vertex y is embedded,
condition (9) might become true for at most one vertex from Xi \X∗i (since by (H 2)
the vertices in Xi have distance at least 10). Moreover, by the condition of always
embedding into not too small subsets and by the regularity property (GPE 4), the
vertex y makes an unlucky choice with a very small probability, so that many such
choices are extremely unlikely.

Proof of Lemma 2.27. We require

ε′ < min
(
4−∆d∆%, µζd

∆

20∆ 2−4/%
)

and 2−n/κr1r1 < 1 .

Fix a set W ⊆ Vi of size at least %|Vi|, and a set X ′ ⊆ Xi \X∗i of size %|Xi|. We
aim to show that the probability of the following event is at most 2−4|Xi|. For each
x ∈ X ′ there is a t = t(x) such that x satisfies (9). The desired result then follows
by taking the union bound over all i, subsets W of Vi and X ′ of Xi.

If x is any vertex of X ′, then we have C0(x) = Vi since x is not image restricted,
thus |C0(x) ∩W | = |W | and hence (9) is false for x. If there is a t(x) such that x
satisfies (9), then we can fix t to be the smallest integer such that (9) is true for
t + 1 and x. Since the candidate set of x changes only when a neighbour of x is
embedded, it follows that the vertex y that is embedded to create ψt+1 from ψt is
a neighbour of x in H and thus π∗t+1(x) = π∗t (x) + 1. Moreover, since equation (9)
becomes true for x, the vertex y is embedded to a vertex w such that

degG
(
w;Ct(x) ∩W

)
<
(
(d− ε′)p

)∣∣Ct(x) ∩W
∣∣ , (10)

as otherwise we would still have

|Ct+1(x) ∩W | ≥ ((d− ε′)p
)
|Ct(x) ∩W | ≥ ((d− ε′)p)π

∗
t+1(x)|W | .

Since ψt is a good partial embedding, by (GPE 4) the pair
(
Ut(x), Ut(y)

)
is

an (ε′, d, p)-regular pair in G, and by (GPE 2) we have
∣∣Ut(x)

∣∣ = (p± ε′p)π∗t (x)|Vi|,
and

∣∣Ut(y)
∣∣ = (p ± ε′p)π

∗
t (y)|V (y)|. Since (9) is false for x at time t, we have
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∣∣ ≥ ((d− ε′)p)π∗t (x)|W |, and so∣∣Ct(x) ∩W

∣∣ ≥ (d−ε′1+ε′

)π∗t (x)

%|Ut(x)| ≥ ε′|Ut(x)| ,

by the requirements on the constants at the beginning of the proof. We conclude by
(ε′, d, p)-regularity of

(
Ut(x), Ut(y)

)
that at most ε′

∣∣Ut(y)
∣∣ ≤ 2ε′pπ

∗
t (y)|V (y)| vertices

w of Ut(y) satisfy (10).
Since ψt+1 is created by embedding y uniformly at random into a subset of

Ct(y) ⊆ Ut(y) of size at least 1
10µζ(dp)

π∗t (y)|V (y)|, the probability of embedding y
to a vertex w satisfying (10), conditioning on any history, is at most

2ε′pπ
∗
t (y)|V (y)|

1
10µζ(dp)π

∗
t (y)|V (y)|

≤ 20ε′µ−1ζ−1d−∆ . (11)

Next we argue that the probability that for each x ∈ X ′ there is a first time t = t(x)
such that x satisfies (9) is at most(

20∆ε′µ−1ζ−1d−∆
)%|Xi| ≤ 2−4|Xi| .

Let us denote this event by EX′ . Observe that EX′ is split into ∆|X
′| events (since

∆(H) ≤ ∆) by specifying for each x ∈ X ′ a neighbour yx of x whose embedding
occurs at time t(x). Let (yx)x∈X′ be any such assignment, and EX′,(yx) be the
corresponding event. We aim to bound P(EX′,(yx)).

By (H 2) the vertices of Xi are at distance at least ten in H, so the vertices
(yx)x∈X′ are distinct. The corresponding conditional probabilities thus multiply, and
we have

P(EX′,(yx)) ≤
(
20ε′µ−1ζ−1d−∆

)|X′|
by (11). Applying the union bound over the events EX′,(yx) we conclude

P(EX′) ≤
(
20∆ε′µ−1ζ−1d−∆

)%|Xi| ≤ 2−4|Xi| .

where the final inequality is by choice of ε′.
Taking the union bound over the at most 2|Vi| = 2|Xi| choices of W in Vi and

2|Xi| choices of X ′ in Xi, we see that the probability that, for any fixed i, there exist
subsets W of Vi and X ′ of Xi, of sizes at least %|Vi| and %|Xi| respectively, such that
each vertex x of X ′ satisfies (9) at some time t, is at most 22|Xi|2−4|Xi| = 2−2|Xi|.
Now we have |Xi| ≥ n/(κr1), and n ≥ n0 where n0 is chosen large enough such that
2−n0/(κr1)r1 < 1. Thus taking the union bound over the at most r1 choices of i, we
conclude that the probability that there exists i, and a subset W of Vi such that
there are %|Xi| vertices x of Xi \X∗i each of which satisfies (9) at some time t, is at
most 2−n/(κr1)r1 as desired. �

The next lemma shows that, again provided we embed vertices uniformly into
not-too-small sets, we do not tend to cover vertex neighbourhoods in G dispropor-
tionately fast. Specifically, if ij ∈ E(R′) then, by (G 3), each v ∈ Vi has a large
G-neighbourhood in Vj . At some time T when only a small fraction of each part of
H has been embedded, it is very likely that less than half of this G-neighbourhood is
in the image Im(ψT ) of the current partial embedding. One should think of this as:
early on in the embedding process, the minimum degree conditions (G 3) provided
by super-regularity are preserved.

The idea behind Lemma 2.28 is as follows. As discussed in the proof overview
(Section 1.4), we will need our RGAs to guarantee that each v ∈ Vi is a candidate
for many vertices x ∈ Xbuf

i in order to complete the embedding. This means we
need it to be not too unlikely that NH(x) is embedded to NG(v) for any given
x ∈ Xbuf

i , and as a first step to showing this it is necessary to show that we have not
covered NG(v) with embedded vertices before we get around to embedding NH(x).
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In Lemmas 1.21 and 1.25, we prove this by embedding N(Xbuf) first and applying
Lemma 2.28. In the proof of Lemma 1.25 we set B = ∆ + 1 and will show that this
is enough for Lemma 2.28 to handle all of N(Xbuf). In the proof of Lemma 1.21, by
contrast, we set B = ∆, which turns out to be good enough to handle buffers of
degree up to and including ∆ which are not clique buffers. This is one of the reasons
why we have to handle clique buffers differently.

Lemma 2.28 (Preservation of super-regularity). We assume the General Setup.
Suppose that Γ has NS(ε, r1, B). Suppose that for some T we have ψ0, ψ1, . . . , ψT
a sequence of good partial embeddings, where ψ0 is the trivial partial embedding
with empty domain and each ψt is obtained from ψt−1 by embedding one vertex
xt ∈ V (H) to a uniform random vertex from a subset of Ct−1(xt) of size at least
1
10 (dp)π

∗
t−1(xt)|V (xt)|. Suppose furthermore that for each t the vertex xt has at most

B−2 neighbours in Dom(ψt−1), and that for each i ∈ [r] we have
∣∣Dom(ψT )∩Xi

∣∣ ≤
8µκ∆R′ |Xi|.

Then with probability at least 1− exp(−εpn/r1), for each vertex v ∈ Vi and j
such that ij ∈ E(R′) we have

∣∣NG(v;V main
j ) \ Im(ψT )

∣∣ ≥ 1
2 degG(v;Vj).

The proof of Lemma 2.28 involves estimating the probability of embedding xt to
NG(v), conditioned on ψt−1. We show that either this probability is small, or that a
previously embedded neighbour of xt was embedded ‘badly’, which is guaranteed
to be a low-probability event. In either case, for xt to be embedded to NG(v) an
unlikely event must occur. For NG(v) to be substantially filled up, many of these
events, which are sequentially dependent, have to occur. Lemma 2.2 shows this is
unlikely enough to take a union bound over all choices of v.

Proof. We require

µ < d∆

1320κ∆R′
, ε < µd

10κ and r1n exp(−εpn/r1) < 1 .

Fix ij ∈ E(R′) and a vertex v ∈ Vi. We first estimate the conditional probability
that xt ∈ Xj ∩ Dom(ψT ) is embedded to NG(v) ∩ V main(xt), given the history.
Because xt is embedded uniformly at random to a subset of Ct−1(xt) of size at least
1
10 (dp)π

∗
t−1(xt)|Vj |, this probability is at most∣∣Umain

t−1 (xt) ∩NG(v)
∣∣

1
10 (dp)π

∗
t−1(xt)|Vj |

. (12)

We are therefore interested in estimating the numerator. We separate two cases:
when

∣∣Umain
t−1 (xt) ∩ NG(v)

∣∣ ≤ (p + εp)π
∗
t−1(xt) degG(v;Vj), and otherwise. In the

former case (12) is at most 20d−∆ degG(v;Vj)
|Vj | . By (G 3) we have degG(v;Vj) ≥

(1− 3µ)(d− ε)p|Vj |, so we have

20d−∆ degG(v;Vj)
|Vj | ≥ 10d−∆+1p . (13)

In the latter case, i.e.
∣∣Umain
t−1 (xt) ∩ NG(v)

∣∣ > (p + εp)π
∗
t−1(xt) degG(v;Vj), the

estimate on conditional probability (12) that xt occupies a vertex from NG(v) could
be as great as 1, but we can show that this latter case occurring is an unlikely event.
Specifically, for the latter case to occur there must be a first neighbour yt of xt in
H which is ‘embedded badly’ at time t′ < t, i.e. is such that

∣∣Umain
t′−1 (xt) ∩NG(v)

∣∣ ≤
(p+ εp)π

∗
t′−1

(xt) degG(v;Vj) but (with π∗t′(xt) = π∗t′−1(xt) + 1)

degΓ

(
ψt′(yt);U

main
t′−1 (xt) ∩NG(v)

)
> (p+ εp)π

∗
t′−1

(xt)+1 degG(v;Vj) . (14)

Let W be a superset of Umain
t′−1 (xt) ∩ NG(v) of size (p + εp)π

∗
t′−1

(xt) degG(v;Vj) >

(d− ε)pB−1|Vj |, where the inequality uses the fact that π∗t′−1(xt) ≤ B− 2 and (G 3).

By property NS(ε, r1, B), which Γ satisfies, we see that there are at most εpB−1n/r1
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vertices Z of Γ which have this many neighbours in W and thus satisfy (14). Now
π∗t′−1(y) ≤ B − 2 by the conditions of the lemma. We conclude that the probability
of embedding y to a vertex of Z, conditioning on the history, is at most

εpB−1n/r1
1
10 (dp)B−2|V (y)|

≤ 10εd−∆κp < 10d−∆+1p , (15)

where we use the fact |V (y)| ≥ n/(κr1) and the choice of ε.
We define a sequence of Bernoulli random variables Y1, . . . , YT as follows. Given

the embedding ψt−1, if xt is a neighbour of a vertex in Xj ∩ Dom(ψT ) none of
whose previous neighbours were badly embedded, and xt is badly embedded, we
set Yt = 1. If xt is in Xj , none of its previous neighbours were badly embedded,
and xt is embedded to NG(v;Vj), we set Yt = 1. Otherwise we set Yt = 0. By
assumption, the total number of Yt which are not deterministically zero (that is, are
in Xj ∩Dom(ψT ) or are neighbours of such a vertex) is at most 8µκ∆R′(∆ + 1)|Xi|.
Observe furthermore that for all of the Yt which are not deterministically zero, we
have just shown that, in view of (13) and (15), Yt is one with probability at most

20d−∆ degG(v;V main
j )

|Vj | conditioning on the history up to, but not including, embedding

xt. This history determines Yt−1, so that the Y1, . . . , YT are sequentially dependent.
It follows that we can apply Lemma 2.2, with

x = 8µκ∆R′(∆ + 1)|Xj | · 20d−∆ degG(v;Vj)
|Vj | = 160µκd−∆∆R′(∆ + 1) degG(v;Vj)

and δ = 1, to show that

P
(
Y1 + · · ·+ YT ≥ 2x

)
≤ 2 exp

(
− x

3

)
< exp

(
− 2εpn

r1

)
,

where the final inequality is by choice of ε and since degG(v;Vj) ≥ (1−3µ)(d−ε)p|Vj |
by (G 3). By choice of µ, we conclude that with probability at most exp(−2εpn/r1)
we have Y1 + · · · + YT ≥ 1

4 degG(v;Vj). Now observe that for any vertex to be

embedded to NG(v;V main
j ) one of these variables Y1, . . . , YT must be one, and

since vertices of Xj are at distance at least ten in H (by (H 2)), no Yt can be
responsible for two different vertices of Xj being embedded to NG(v;V main

j ). Thus

Y1 + · · ·+ YT is an upper bound for Im(ψT ) ∩NG(v;V main
j ). Taking a union bound

over the choices of j and of v, and using (G 3), we see that with probability at least
1− r1n exp(−2εpn/r1) > 1− exp(−εpn/r1) the statement of the lemma holds. �

Our final lemma in this section complements the above lemma, showing that
provided v ∈ Vi does not have NG(v) more than half covered by Im(ψ) early in
the embedding, it is reasonably likely that NH(x) is embedded to NG(v) for any
given x ∈ Xbuf

i . As with the previous lemma, it contains a parameter B which
will be either set to ∆ (in the proof of Lemma 1.21) or to ∆ + 1 (in the proof of
Lemma 1.25), and again in the former case the consequence is that we cannot use it
to deal with clique buffers (that is, when NH(x) is a copy of K∆).

Lemma 2.29 (Probable buffer embedding). We assume the General Setup. Sup-
pose that B ∈ {∆,∆+1}. Suppose that Γ has NS(ε, r1, B) and RI(ε, (εa,b), ε

′, d, r1, B).
Given v ∈ Vi and x ∈ Xbuf

i , suppose that ψ0 is a good partial embedding in which no
vertex at distance two or less from x is embedded, and suppose Q0 ⊆ Xmain. Suppose
further that

∣∣NG(v;V main
j ) \ Im(ψ0)

∣∣ ≥ 1
2 degG(v;Vj) for each j such that ij ∈ R′.

Let y1, . . . , yb be the neighbours of x, and suppose that if b = B then yb−1yb is not
an edge of H.

Suppose that ψ1, . . . , ψb are good partial embeddings and Q1, . . . , Qb are subsets
of Xmain. We write At(y) for A(y) with respect to ψt, and so on. We write Bt(y) for
the set of bad vertices for y with respect to Qt. Suppose that ψt is obtained from ψt−1
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by embedding yt uniformly at random into Amain
t−1 (yt) \Bt−1(yt) for each t = 1, . . . , b,

and suppose that for each t = 1, . . . , b we have

Qt = Qt−1∪
{
z ∈ Xmain \Dom(ψt) :

∣∣Amain
t (z)

∣∣ < 1
2µ(d−ε′)π

∗
t (z)pπ

∗
t (z)|V main(z)|

}
.

Then with probability at least
(
d∆p/10

)b
, we have ψb

(
NH(x)

)
⊆ NG(v).

The proof of this lemma is quite long, but much of it is ‘bookkeeping’ in the
style of Lemma 2.25. Briefly, the idea is as follows. In ψ0, no neighbour of any yj
is embedded and hence each yj has candidate set C0(yj) = V (yj). We know that
NG
(
v;V (y1)

)
is not covered by Im(ψ0), so if we choose a uniform random vertex of

A0(y1) the probability of choosing a member of NG(v) is at least dp/4. However,
the random greedy algorithm does not choose a random vertex of A0(y1), but rather
of A0(y1) \B0(y1). Thus we have to show that B0(y1) does not cover too much of
NG(v), which we can do using properties (G 2) and (G 3) of the partition of G, and
NS(ε, r1, B) and RI(ε, (εa,b), ε

′, d, r1, B) which we assume of Γ, in much the same
way as the proof of Lemma 2.25. In addition we have to show that some extra
properties are preserved which allow us to analyse the embedding of y2, . . . , yb, which
we can show is likely in a similar way. We will refer to a good partial embedding
with these extra properties as a buffer partial embedding. We conclude that the
probability of embedding yj to NG(v) and maintaining a buffer partial embedding is
at least d∆p/10, conditioning on the history, for each j. The conditional probabilities
multiply, giving the desired result.

Proof. We require

µ ≤ 1
6 , ε < (ε′)2, ε′ ≤ µd∆ζ

1000κ∆2
and (d− ε′)10∆ > 1

2d
10∆ .

For each 0 ≤ t ≤ b and each yj , we define Âmain
t (yj) := Amain

t (yj) ∩NG(v) and

for any vertex x′ ∈ X we set Ût(x
′) := Ut(x

′) ∩NΓ(v).
Observe that since yt is embedded to a vertex of Ct−1(yt) \Bt−1(yt) for each

t = 1, . . . , b we automatically maintain the property that ψt is a good partial
embedding for each t (see Definition 2.24 of bad vertices). We formulate five additional
conditions on ψt for t = 0, . . . , b which we refer to as a buffer partial embedding,
which allow us to show a lower bound on the desired probability inductively.

(BPE 1) We have ψt(y1), . . . , ψt(yt) in NG(v),

(BPE 2) |Ût(yk)| = (p± ε′p)π∗t (yk) degΓ(v, V (yk)) for k = t+ 1, . . . , b,

(BPE 3) |Âmain
t (yk)| ≥ 1

2 (dp− ε′p)π∗t (yk) degG(v, V (yk)) for k = t+ 1, . . . , b,

(BPE 4) for unembedded yk and y` with yky` ∈ E(H) we have (Ût(yk), Ût(y`)) is
(επ∗t (yk),π∗t (y`), d, p)-regular in G;

(BPE 5) for unembedded yk and z with ykz ∈ E(H) the pair (Ût(yk), Ut(z)) is
(επ∗t (yk),π∗t (z), d, p)-regular in G.

Observe that these conditions are all satisfied for ψ0, i.e. ψ0 is a buffer partial
embedding. Indeed, (BPE 1) is vacuously satisfied. (BPE 2) holds by definition of

Û and since no neighbours of any yk are embedded. (BPE 3) holds by the definition

of Âmain, the assumption on degG
(
v, V (xk) \ Im(ψ0)

)
of the lemma, and since no

neighbours of any yk are embedded. If yk and y` are adjacent in H then xyky` is
a triangle in H with x ∈ Xbuf

i ⊆ X̃i, so by (G 2) we have (BPE 4). Finally, again

since x ∈ Xbuf
i ⊆ X̃i, by (G 2) we have (BPE 5).

For each t = 0, . . . , b− 1 we let Pt be the set of poor vertices u in Âmain
t (yt+1)

such that if ψt(yt+1) = u then ψt is not a buffer partial embedding.
We now show that, for any t = 1, . . . , b, given a buffer partial embedding ψt−1,

the probability that ψt is a buffer partial embedding is at least d∆p/10. This clearly
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yields, by multiplying the conditional probabilities, the lower bound of (d∆p/10)b

claimed in the statement of the lemma. For the analysis it will suffice to show that
only a tiny proportion of vertices from Âmain

t−1 (yt) are in Bt−1(yt) or Pt−1. These
estimates follow along the lines of Lemma 2.25. Properties (BPE 1)–(BPE 5) are
crafted in a way that allows the inductive verification below.

We first give some lower bounds on set sizes. If ψt is a good partial embedding,
then we have for an unembedded vertex z:

|Uq
t (z)| ≥ |Cq

t (z)| ≥ (1− ε′)µ(dp− ε′p)π
∗
t (z)ζ|V (z)| ≥ ε′pπ

∗
t (z)n/r1 (16)

where the second inequality is by (GPE 3) and by (G 5), and the third because
|V (z)| ≥ n/(κr1) and by choice of ε′. The same lower bound also holds forUt(z), Ct(z)
et cetera since these sets are all by (GPE 2) and (GPE 3) at least as large. If in
addition ψt is a buffer partial embedding, then for yk with k > t we have

|Ût(yk)| ≥ |Âmain
t (yk)| ≥ 1

2 (dp− ε′p)π
∗
t (yk) degG

(
v;V (yk)

)
≥ ε′pπ

∗
t (yk)+1n/r1 (17)

where the second inequality is by (BPE 3) and the third is by (G 3) and choice of ε′.
We also have for k > t, using (BPE 2), (BPE 3), (GPE 2), (G 3) and the choice of ε
and ε′ that

|Âmain
t (yk)| ≥ max

(
1
4d

∆p|Ut(yk)| , 1
4d

∆|Ût(yk)|
)
≥ ε′|Ût(yk)| . (18)

Estimating |Âmain
t−1 (yt) ∩Bt−1(yt)|. Suppose ψt−1 is a buffer partial embedding.

In the following we are going to estimate the number of vertices w from Âmain
t−1 (yt)

which turn out to be bad with respect to ψt−1 and Qt−1. For that we will consider
all of the possible reasons.

First assume that there is some unembedded neighbour z ∈ V (H) \Qt−1 of yt
such that the ‘badness condition’

degG
(
w;Amain(z)

)
< (d− ε′)p|Amain(z)| (19)

holds for w and z. The pair
(
Ût−1(yt), Ut−1(z)

)
is
(
επ∗t−1(yt),π∗t−1(z), d, p

)
-regular in

G by (BPE 5). Because z 6∈ Qt−1 we have that

|Amain
t−1 (z)| ≥ 1

2µ(d− ε′)πt−1(z)pπt−1(z)|V main(z)|

≥ 1
2µ(1− 3µ)(d− ε′)πt−1(z)pπt−1(z)|V (z)| ≥ ε′|Ut−1(z)| ,

where the first inequality is by choice of Qt−1 in the statement of the lemma, the
second inequality is by (GPE 2) and the last by choice of ε′. Therefore the badness
condition (19) holds for at most

επ∗t−1(yt),π∗t−1(z)|Ût−1(yt)|
(18)

≤ 4d−∆ε′|Âmain
t−1 (yt)|

vertices w of Âmain
t−1 (yt). Since yt may have at most ∆ unembedded neighbours, in

total there are at most 4∆d−∆ε′|Âmain
t−1 (yt)| vertices w of Âmain

t−1 (yt) such that the
badness condition (19) holds for some unembedded neighbour of yt.

Next we need to estimate the number of vertices w from Âmain
t−1 (yt) such that

ψt−1 ∪ {yt → w} is not a good partial embedding (i.e. doesn’t satisfy proper-

ties (GPE 1)–(GPE 4)). First observe that since w ∈ Âmain
t−1 (yt) ⊆ Ct−1(yt) ⊆ Iyt ,

(GPE 1) cannot fail.
Next we turn to (GPE 2). It is sufficient to consider unembedded neighbours z

of yt, so π∗t−1(z) ≤ ∆− 1. Since ψt−1 is a good partial embedding, by (16) we have

|Ut−1(z)| ≥ ε′p∆−1n/r1. Therefore, by the neighbourhood size property NS(ε, r1, B),

at most εpB−1n/r2
1 vertices from Âmain

t−1 (yt) violate condition (GPE 2) for Ut−1(z).
Further we have π∗t−1(yt) ≤ B − 2 since yt has at most y1, . . . , yB−2 as embedded



2.4. THE BEHAVIOUR OF RANDOM GREEDY ALGORITHMS 56

neighbours (if b = B then by assumption ybyb−1 is not an edge of H), so since
ε < (ε′)2 we have

εpB−1n/r2
1

(17)

≤ ε′|Âmain
t−1 (yt)| .

We can argue analogously for the other four conditions of (GPE 2) obtaining in

total that for all but at most 5∆ε′|Âmain
t−1 (yt)| vertices w from Âmain

t−1 (yt), (GPE 2) is
satisfied with respect to ψt−1 ∪ {yt → w}.

Now we consider (GPE 3). Let z be any unembedded neighbour of yt. Because
z is at distance at most 2 from x ∈ Xbuf , by (H 5) z is not image restricted, so
Iz = V (z). Since (GPE 2) and (GPE 3) hold for ψt−1 we have:

|Ct−1(z)| ≥ (1− ε′)(dp− ε′p)πt−1(z)|V (z)| ≥ ε′|Ut−1(z)|

By (BPE 5), (Ût−1(yt), Ut−1(z)) is (επ∗t−1(yt),π∗t−1(z), d, p)-regular in G. So, there are
at most

επ∗t−1(yt),π∗t−1(z)|Ût−1(yt)|
(18)

≤ 4d−∆ε′|Âmain
t−1 (yt)|

vertices w in Ût−1(yt) such that |Ct−1(z)∩NG(w)| < (d−ε′)p|Ct−1(z)|. Similarly we
argue for each of the other four conditions. Thus, since yt has at most ∆ unembedded
neighbours, in total for all but at most 20∆d−∆ε′|Âmain

t−1 (yt)| vertices w ∈ Âmain
t−1 (yt)

we have that (GPE 3) is satisfied with respect to ψt−1 ∪ {yt → w}.
It remains to consider (GPE 4). Again, we only need to consider edges zz′ ∈ E(H)

between unembedded vertices such that z ∈ NH(yt). Consider first the case that
z′ 6∈ NH(yt). In this case we have π∗(z) ≤ ∆−2, π∗(z′) ≤ ∆−1 and π∗t−1(yt) ≤ ∆−2
(since both x and z are unembedded neighbours of yt). Since Γ satisfies property
RI(ε, (εa,b), ε

′, d, r1, B), using (16) applied to ψt−1 and the fact that by (GPE 4) the
pair

(
Ut−1(z), Ut−1(z′)

)
is (επ∗t−1(z),π∗t−1(z′), d, p)-regular in G, we see that there are

at most

εp∆−1n/r2
1

(17)

≤ ε′|Âmain
t−1 (yt)|

vertices w ∈ Âmain
t−1 (yt) such that the pair

(
NΓ(w) ∩ Ut−1(z), Ut−1(z′)

)
is not

(επ∗t−1(z)+1,π∗t−1(z′), d, p)-regular in G.

In the case that z, z′ ∈ NH(yt) we have π∗t−1(z′) ≤ ∆ − 2. We also have
π∗t−1(yt) ≤ B−3. This requires a little explanation. Observe that yt has unembedded
neighbours z and z′, so π∗t−1(yt) ≤ ∆−2, and ifB = ∆+1 then we are done. IfB = ∆,
then observe that the embedded neighbours of yt are contained in {y1, . . . , yt−1}. It
follows that if t ≤ ∆− 2, we have π∗t−1(yt) ≤ ∆− 3 as desired. If t = ∆, then x, z
and z′ are distinct (since the only unembedded neighbour of x is yt) and we again
have π∗t−1(yt) ≤ ∆− 3. It remains to consider the case t = ∆− 1. Again we are done
if x, z and z′ are distinct. If however (without loss of generality) we have x = z, then
z′ is an unembedded neighbour of x which is not yt; in other words, we have z′ = y∆.
But we assumed that y∆−1y∆ is not an edge of H, contradicting the assumption
ytz
′ ∈ H. We have thus justified π∗t−1(yt) ≤ B − 3, so by RI(ε, (εa,b), ε

′, d, r1, B) we
conclude that there are at most

εpB−2n/r2
1

(17)

≤ ε′|Âmain
t−1 (yt)|

vertices w ∈ Âmain
t−1 (yt) such that

(
NΓ(w) ∩ Ut−1(z), NΓ(w) ∩ Ut−1(z′)

)
is not

(επ∗t−1(z)+1,π∗t−1(z′)+1, d, p)-regular. So, in total there are at most ∆2ε′|Âmain
t−1 (yt)| ver-

tices w ∈ Âmain
t−1 (yt) such that (GPE 4) is not satisfied with respect to ψt−1 ∪ {yt →

w}.
So far we have seen an estimate on |Âmain

t−1 (yt) ∩Bt−1(yt)|: at most

4∆d−∆ε′|Âmain
t−1 (yt)|+ 5∆ε′|Âmain

t−1 (yt)|+ 20∆d−∆ε′|Âmain
t−1 (yt)|+ ∆2ε′|Âmain

t−1 (yt)|

vertices w ∈ Âmain
t−1 (yt) are such that w is bad for yt with respect to ψt−1 and Qt−1.
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Estimating |Pt−1|. Observe that by definition, if ψt−1 is a buffer partial em-

bedding then for each w ∈ Âmain
t−1 (yt) the embedding ψt−1 ∪ {yt → w} has (BPE 1).

For t = b the remaining properties (BPE 2)–(BPE 5) are trivial, so we from now on
assume t ≤ b− 1.

For (BPE 2), let k ∈ {t + 1, . . . , b} be such that ytyk ∈ E(H). Observe that
π∗t−1(yt) ≤ t − 1 ≤ b − 2 ≤ B − 2. Therefore, by NS(ε, r1, B) and (17), for all

but at most εpB−1n/r2
1 ≤ ε′|Âmain

t−1 (yt)| vertices w we have |NΓ(w) ∩ Ût−1(yk)| =

(1± ε′)p|Ût−1(yk)|.
To estimate the number of vertices w that do not preserve (BPE 3), we only

need to consider those yk with k ≥ t + 1 such that ytyk ∈ E(H). We use that(
Ût−1(yt), Ût−1(yk)

)
is (ε′, d, p)-regular inG by (BPE 4). By (18) we have |Âmain

t−1 (yt)| ≥
ε′|Ût−1(yt)|, so there are at most

ε′|Ût−1(yt)|
(18)

≤ 4d−∆ε′|Âmain
t−1 (yt)|

vertices w in Âmain
t−1 (yt) such that degG(w; Âmain

t−1 (yk)) < (d− ε′)p|Âmain
t−1 (yk)|.

Next we consider (BPE 5). Let k ∈ {t + 1, . . . , b}, and z ∈ V (H) be such

that ykz ∈ E(H). By (BPE 5) the pair
(
Ût−1(yk), Ut−1(z)

)
is (επ∗t−1(yk),π∗t−1(z), d, p)-

regular in G. There are three cases to consider: ytyk ∈ E(H), ytz ∈ E(H), and
both.

In the first case (i.e. ytyk ∈ E(H), ytz 6∈ E(H)), we have t < B − 1 because
yB−1yB is not an edge of H, so we conclude π∗t−1(yt), π

∗
t−1(yk) ≤ t− 1 ≤ B− 3, and

π∗t−1(z) ≤ ∆− 1. By (16) and (17) applied to ψt−1, and RI(ε, (εa,b), ε
′, d, r1, B), we

see that for all vertices w of Âmain
t−1 (yt) but at most

εpB−1n/r2
1

(17)

≤ ε′|Âmain
t−1 (yt)| ,

the pair
(
NΓ(w) ∩ Ût−1(yk), Ut−1(z)

)
is (επ∗t−1(yk)+1,π∗t−1(z), d, p)-regular in G.

In the second case (i.e. ytyk 6∈ E(H), ytz ∈ E(H)), we have π∗t−1(yt), π
∗
t−1(yk) ≤

t− 1 ≤ B− 2, and π∗t−1(z) ≤ t− 1 ≤ ∆− 2 and similarly, by RI(ε, (εa,b), ε
′, d, r1, B),

all but at most ε′|Âmain
t−1 (yt)| vertices w of Âmain

t−1 (yt) are such that
(
Ût−1(yk), NΓ(w)∩

Ut−1(z)
)

is (επ∗t−1(yk),π∗t−1(z)+1, d, p)-regular in G.

In the final case (i.e. ytyk ∈ E(H), ytz ∈ E(H)), again we have t < B − 1,
hence π∗t−1(yt), π

∗
t−1(yk) ≤ B − 3, and π∗t−1(z) ≤ ∆− 2, and again all but at most

ε′|Âmain
t−1 (yt)| vertices w of Âmain

t−1 (yt) are such that
(
NΓ(w) ∩ Ût−1(yk), NΓ(w) ∩

Ut−1(z)
)

is (επ∗t−1(yk)+1,π∗t−1(z)+1, d, p)-regular in G.

In total, we see that for all but at most ∆2ε′|Âmain
t−1 (yt)| vertices w of Âmain

t−1 (yt),
the partial embedding ψt−1 ∪ {yt → w} has (BPE 5).

Finally, we handle (BPE 4). Let k, ` ∈ {t + 1, . . . , b} be such that yky` ∈
E(H). We have π∗t−1(yt), π

∗
t−1(yk), π∗t−1(y`) ≤ t− 1 ≤ B − 3. By (BPE 4), the pair

(Ût−1(yk), Ût−1(y`)) is (επ∗t−1(yk),π∗t−1(y`), d, p)-regular in G. Without loss of generality

we may assume ytyk ∈ E(H), and again there are two cases to consider depending
on whether yty` ∈ E(H) or not. As before, using (17), by RI(ε, (εa,b), ε

′, d, r1, B),
at most

εpB−2n/r2
1

(17)

≤ ε′|Âmain
t−1 (yt)|

vertices w ∈ Âmain
t−1 (yt) are such that (NΓ(w) ∩ Ût−1(yk), NΓ(w) ∩ Ût−1(y`)) is not

(επ∗t−1(yk)+1,π∗t−1(y`)+1, d, p)-regular in G. The other case follows similarly, and we

conclude that for all but at most ∆2ε′|Âmain
t−1 (yt)| vertices w of Âmain

t−1 (yt), the partial
embedding ψt−1 ∪ {yt → w} has (BPE 4).
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Summing up, there are at most

4∆d−∆ε′|Âmain
t−1 (yt)|+ 5∆ε′|Âmain

t−1 (yt)|+ 20∆d−∆ε′|Âmain
t−1 (yt)|+ ∆2ε′|Âmain

t−1 (yt)|

+ ∆ε′|Âmain
t−1 (yt)|+ 4∆d−∆ε′|Âmain

t−1 (yt)|+ ∆2ε′|Âmain
t−1 (yt)|+ ∆2ε′|Âmain

t−1 (yt)|

≤ 50∆2d−∆ε′|Âmain
t−1 (yt)|

vertices w ∈ Âmain
t−1 (yt) such that w is bad for yt with respect to ψt−1 and Qt−1 or

w ∈ Pt−1.

Now we can estimate the probability that ψt is a buffer partial embedding,
conditioning on the history and on ψt−1 being a buffer partial embedding. This

event occurs if yt is embedded to a member of Âmain
t−1 (yt) \

(
Bt−1(yt) ∪ Pt−1

)
. The

number of such vertices is at least∣∣Âmain
t−1 (yt)

∣∣−50∆2d−∆ε′|Âmain
t−1 (yt)| ≥ 1

2

∣∣Âmain
t−1 (yt)

∣∣ (17)

≥ 1
4 (dp−ε′p)π

∗
t−1(yt)+1|V (yt)| ,

while yt is embedded into a set of size at most Ut−1(yt), which by (GPE 2) has size

at most (p+ εp)π
∗
t−1(yt)|V (yt)|. We see that the desired conditional probability is at

least
1
4 (dp− ε′p)π

∗
t−1(yt)+1|V (yt)|

(p+ εp)π
∗
t−1(yt)|V (yt)|

≥ d∆p

10
.

The statement of the lemma follows since the conditional probabilities multiply. �



CHAPTER 3

Proof of the blow-up lemma for random graphs

3.1. Main lemmas and the proof of the blow-up lemma

In this section we divide the proof of Lemma 1.21 into four lemmas, which
correspond to our four different embedding stages described in Section 1.4. The first
three of these lemmas will be proved in the subsequent three sections. The proof of
the fourth lemma is short and hence given here. At the end of this section we show
how these four lemmas together with Lemma 2.22 imply Lemma 1.21.

The first of our lemmas encapsulates the outcome after applying the randomised
greedy algorithm (RGA) which tries to embed Xmain into V main. How this RGA
operates is explained in the proof of this lemma in Section 3.2. The lemma claims
the existence of a good partial embedding with certain deterministic properties
which we require and which the RGA with high probability produces.

Lemma 3.1 (RGA lemma). We assume the General Setup. Suppose that Γ has
NS(ε, r1,∆) and RI(ε, (εa,b), ε

′, d, r1,∆). Then there is a good partial embedding
ψRGA with the following properties. For each i, let Xq

i := Xmain
i \ Dom(ψRGA).

Then the following hold for each i. Let b be such that Xbuf
i is a degree-b buffer.

(RGA 1) All neighbours of all buffer vertices are embedded by ψRGA.
(RGA 2) Every vertex in Xi ∩Dom(ψRGA) is embedded to V main

i by ψRGA.
(RGA 3) We have |Xq

i | ≤ 2%|Xi|.
(RGA 4) For every set W ⊆ Vi of size at least %|Vi|, there are at most %|Xi| vertices

in Xbuf
i with fewer than (dp)b|W |/2 candidates in W .

(RGA 5) If Xbuf
i is not a clique buffer, then every vertex in Vi is a candidate for at

least µ
(
d∆p/100

)b|Xi| vertices of Xbuf
i .

Note that we do not have that all vertices in Vi are candidate for many vertices
of Xbuf

i if Xbuf
i is a clique buffer, and actually it may not be true. But it follows

from point (RGA 4) that only at most %|Vi| vertices of Vi can fail to be candidate
for many vertices of Xbuf

i . This is the ‘technical complication’ mentioned in the
proof overview. It is due to this complication that we will need to utilize the sets V c

i

in Section 3.4.
The following lemma, proved in Section 3.3, allows us to embed the queue

vertices into the sets V q
i . Recall that in the proof overview we mentioned that the

proof that we can embed the queue vertices relies on showing that failure to do
so would imply the existence of a ‘dense spot’ in G which cannot even be present
in Γ. The congestion condition CON(%, r1,∆) which we assume of Γ constitutes the
statement that Γ has no ‘dense spot’.

Lemma 3.2 (Queue embedding lemma). We assume the General Setup. Suppose
that Γ has NS(ε, r1,∆), RI(ε, (εa,b), ε

′, d, r1,∆) and CON(%, r1,∆). Let ψ be a good
partial embedding whose image is disjoint from the sets V q

i , and suppose that for
each i we have a set Xq

i ⊆ Xi of size at most 2%|Xi|. Then there is a good partial
embedding ψq extending ψ such that

Dom(ψq) \Dom(ψ) = Xq and Im(ψq) \ Im(ψ) ⊆ V q .

59
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Recall that in the conclusion of Lemma 3.1 we were not able to guarantee
that all vertices of Vi are candidate for many vertices of Xbuf

i in the event that
Xbuf
i is a clique buffer. In order to ‘fix’ this problem, we will, before we begin the

embedding, ‘reserve’ some copies Ki of K∆+1, each of which has a vertex in X̃i. We
put the vertices of all such reserved cliques into the set Xc, which as we mentioned
in Section 2.3.2 is disjoint from Xmain and Xbuf (full details will be given in the
proof of Lemma 1.21 below). After we embed the queue using Lemma 3.2 we may
find that there are still some vertices of Vi which are not in the image of our current
good partial embedding ψ and which are not candidate for many vertices of Xbuf

i .
We embed the cliques Ki, using these vertices and the vertices of the clique reservoir
V c, to yield a good partial embedding ψgood in which only the vertices of Xbuf

remain to be embedded and in which every vertex of Vi which is not in the image of
ψgood is candidate for many vertices of Xbuf

i . The following lemma, which we prove
in Section 3.4, states that, given appropriate sets of reserved cliques, this embedding
is possible. Note that the above sketch is a slight oversimplification: we may actually
need to embed a few vertices of Xbuf

i in this step as well.

Lemma 3.3 (Embedding reserved cliques). We assume the General Setup.
Suppose that Γ has NS(ε, r1,∆), RI(ε, (εa,b), ε

′, d, r1,∆) and CON(%, r1,∆). Let ψ
be a good partial embedding whose image is disjoint from the sets V c

i . Suppose that
for each i, either

(a ) Xbuf
i is a degree-b non-clique buffer with Ki = ∅, and all vertices in Vi are

candidate for at least µ
(
d∆p/100

)b|Xi| vertices in Xbuf
i , or

(b ) Xbuf
i is a clique buffer with |Ki| = 2%|Xi|, and all but at most %|Vi| vertices of

Vi are candidate for at least µ(dp)∆|Xi|/2 vertices in Xbuf
i .

Finally suppose that for each i ∈ [r], where Xbuf
i is a clique buffer, we have a set

Ki of 2%|Xi| reserved cliques K∆+1, and for K ∈ Ki and x, y ∈ K we have x ∈ Xj

and y ∈ Xk where jk ∈ R′. Moreover, let the set Xc
i of vertices x ∈ Xi contained in

some reserved clique from Ki satisfy: |Xc
i | ≤ 2κ(∆R′ + 1)%|Xi|.

Then there is a good partial embedding ψgood extending ψ such that for each i,
where Xbuf

i is a degree-b buffer, the following hold.

(FIN 1) Xc
i ⊆ Dom(ψgood).

(FIN 2) For each x ∈ Xbuf
i \Dom(ψgood) we have |Abuf(x)| ≥ µ(dp)b|Vi|/4.

(FIN 3) Each v ∈ Vi \ Im(ψgood) is candidate for at least µ
(
d∆p/100

)b|Xi| of the

vertices Xbuf
i \Dom(ψgood).

Recall that Abuf(x) = A(x) ∩ V buf(x) = C(x) ∩ V buf(x) \ Im(ψ).
Finally, we give a lemma which we use to show that we can embed the buffer

vertices. This lemma is proved using Hall’s condition, as we outlined in the proof
overview. We will use it again in the proof of Lemma 1.23, which is why we do not
give an explicit constant in (CPM 3).

Lemma 3.4 (Embedding buffer vertices). We assume the General Setup. Suppose
that Γ has CON(%, r1,∆). Suppose that ψ is a good partial embedding, in which all
the vertices N(Xbuf) are embedded, and that for some i we have a subset X ′i of
Xbuf
i , and a subset V ′i of Vi \ Im(ψ) with |X ′i| = |V ′i |. Suppose Xbuf

i is a degree-b
buffer, and for some δ > 0 we have

(CPM 1) for each x ∈ X ′i we have |C(x) ∩ V ′i | ≥ µ(dp)b|Vi|/4,
(CPM 2) for every set W ⊆ V ′i of size at least %|Vi|, there are at most %|Xi| vertices

in X ′i which do not have a candidate in W , and
(CPM 3) each v ∈ V ′i is candidate for at least δpb|Xi| of the vertices X ′i.

Suppose further that % ≤ δµdb

100κ . Then there is a good partial embedding ψ′ extending
ψ such that Dom(ψ′) = Dom(ψ) ∪X ′i and Im(ψ′) = Im(ψ) ∪ V ′i .
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Proof. Let Y ⊆ X ′i be non-empty, and let U be the set of vertices in V ′i which
are candidate for some member of Y . We wish to verify Hall’s condition, i.e. show
that |U | ≥ |Y |. We separate three cases.

First, suppose 0 < |Y | ≤ %|Xi|. If |U | < |Y |, then we can take a subset Y ′ of Y
of size |U |. Since by (CPM 1) each vertex in Y ′ has at least µ(dp)b|Vi|/4 candidates
in V ′i , which must lie in U , the number of edges in the candidate graph between Y ′

and U is at least

1
4µ(dp)b|Vi||Y ′| = 1

8µ(dp)b|Vi||Y ′|+ 1
8µ(dp)b|Vi||Y ′|

>
µdb

8%
pb|Y ′||U |+ µdb

8κr1
pbn|Y ′|

> 7pb|Y ′||U |+ %pbn|Y ′|/r1 ,

where the second line comes from substituting |Vi| = |Xi| > |Y ′|/% = |U |/% and
the fact |Vi| ≥ n/(κr1), respectively, and the third follows from the choice of %.
The candidate graph between Y ′ and U is a subgraph of the underlying restriction
graph between the same sets, i.e. if yu is an edge then u ∈ U(y) (for the definitions
see Section 2.3.5). We set F =

{
ψ
(
NH(y)

)
: y ∈ Y ′

}
and it is clear that the

congestion graph CG(Γ, U,F) is isomorphic to this underlying restriction graph.
Hence e(CG(Γ, U,F)) > 7pb|Y ′||U |+%pbn|Y ′|/r1, in contradiction to CON(%, r1,∆).
We conclude that |U | ≥ |Y | in this case.

Second, if %|Xi| < |Y | ≤ |X ′i| − %|Xi| = |V ′i | − %|Vi| and |U | < |Y |, then
|V ′i \ U | > %|Vi|, so by (CPM 2) there are at most %|Xi| vertices of X ′i which do not
have candidates in V ′i \ U . In particular there is a vertex of Y with candidates in
V ′i \ U , in contradiction to the definition of U . We conclude that |U | ≥ |Y | in this
case as well.

Finally, suppose |Y | > |X ′i| − %|Xi| = |V ′i | − %|Vi|. The vertices V ′i \ U are
candidates only for vertices in X ′i \Y , and each vertex in V ′i \U is a candidate for at
least δpb|Xi| vertices in X ′i \ Y by (CPM 3). If |U | < |Y |, then |V ′i \ U | > |X ′i \ Y |,
and we can take a set W ⊆ V ′i \ U of size |X ′i \ Y |. Now the number of edges in the
candidate graph between W and X ′i \ Y is at least

δpb|Xi||W | > 1
2δp

b
(

1
% |X

′
i \ Y ||W |+ n

κr1
|X ′i \ Y |

)
> 7pb|X ′i \ Y ||W |+ %pbn|X ′i \ Y |/r1

by essentially the same calculation as in the first case, using |Xi| = |Vi| ≥ n/(κr1).
Taking F ′ =

{
ψ
(
NH(x)

)
: x ∈ X ′i \ Y

}
, the number of edges in the corresponding

graph CG(Γ,W,F ′) is also at least this quantity, in contradiction to CON(%, r1,∆).
This completes the verification of Hall’s condition, so there is a partial embedding

ψ′ extending ψ with Dom(ψ′) = Dom(ψ)∪X ′i in which the vertices X ′i are embedded
to V ′i . It is trivially the case, since Xbuf is independent and all the vertices N(Xbuf)
are embedded in ψ, that ψ′ is a good partial embedding. �

We are now ready to prove Lemma 1.21. Briefly, the proof will go as follows.
We will apply Lemma 2.22 to find partitions of G and H, and graphs R and R′,
satisfying the General Setup. We choose, for each i such that Xbuf

i is a clique buffer,

in succession, a set Ki of 2%|Xi| copies of K∆+1 each with a vertex in X̃i, none of
which contain vertices in Xbuf or image restricted vertices and none of which are
in other sets Kj . We let Xc be the set of vertices in cliques Ki for i ∈ [r]. Now we
are in a position to apply in succession Lemmas 3.1, 3.2 and 3.3 to obtain a good
partial embedding ψgood in which the only unembedded vertices are in Xbuf and
which satisfies the conclusions of Lemma 3.3. Since Xbuf is independent in H, we
can embed the remaining vertices of Xbuf

i to Vi for each i without affecting the
properties of any other vertices. We do this using Lemma 3.4.
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Proof of Lemma 1.21. First we choose constants as follows. Given ∆, ∆BL
R′ ,

∆J integers, αBL, ζBL and d > 0, and κBL > 1, we set ϑ = 0, ∆R′ = 8(∆+∆J )10∆BL
R′ ,

α = 1
2α

BL, ζ = 1
2ζ

BL and κ = 2κBL. We now choose µ, % and ε′ > 0 satisfying the
conditions in Lemmas 2.22, 2.25, 3.4, 3.1, 3.2, 3.3, the last three of which are proved
in the following three sections. For convenience we provide here sufficient choices:

µ <
d∆

1320κ∆R′
, and % ≤ µ2d∆2+1

250∆+1κ∆R′
, and ε′ ≤ µζ%d∆

32∆+224/%κ∆2∆R′
.

Now for input ∆, d and ε′, Lemma 2.17 returns constants εa,b and ε > 0.
Here we additionally require that ε < (ε′)2. We let εBL = 1

16 (∆ + ∆J)−10ε and

%BL = 1
16 (∆ + ∆J)−10%.

Now Lemma 1.21 returns εBL and %BL. Given rBL
1 we let r1 = 8(∆ + ∆J )10rBL

1 .
We choose C sufficiently large for Lemma 2.17 with input ∆, d, ε′, r1 and %.

Given p ≥ C
(

logn
n

)1/∆
, Lemma 2.17 states that a.a.s. Γ = Gn,p has properties

NS(ε, r1,∆), RI(ε, (εa,b), ε
′, d, r1,∆) and CON(%, r1,∆) respectively. From now on

we will assume Γ is an n-vertex graph which satisfies these three properties.
Given a graph RBL on rBL ≤ rBL

1 vertices, and a spanning subgraph R′BL with
∆(R′BL) ≤ ∆BL

R′ , and graphs H and G ⊆ Γ with vertex partitions XBL and VBL,
families of image restrictions IBL and of image restricting vertices J , and a family
of potential buffer vertices X̃BL, suppose that the conditions of Lemma 1.21 are
satisfied. Then Lemma 2.22 gives (with bl2.22 = ∆) a graph R on r ≤ r1 vertices, a
spanning subgraph R′ with ∆(R′) ≤ ∆R′ , and κ-balanced size-compatible partitions
X and V of H and G respectively, each part having size at least n/(κr1), together

with a family X̃ of potential buffer vertices and I of image restrictions, subsets Xbuf
i

of X̃i for each i ∈ [r], and partitions Vi = V main
i ∪̇ V q

i ∪̇ V c
i ∪̇ V buf

i for each i ∈ [r]
which satisfy the General Setup.

Now for each i ∈ [r] such that Xbuf
i is a clique buffer, in succession, we do the

following. We choose 2%|Xi| vertices from X̃i which are in copies of K∆+1 that do
not contain image restricted vertices, vertices of Xbuf , or vertices of Xc. We add
these copies of K∆+1 to Ki, and their vertices to Xc. Observe that this is possible

since (H 8) guarantees that each X̃i contains at least 1
2∆+4α|Xi| vertices in copies

of K∆+1 whose vertices are neither image restricted nor in Xbuf . Moreover, by (H 1)
the edges of these cliques lie along R′, so the number of these cliques which are
chosen for some Kj with j < i is at most ∆R′2%κ|Xi| < 1

4∆+8α|Xi| by choice of %.
We obtain the following properties.

(RSC 1) The sets {Ki}i∈[r] are pairwise disjoint, and if Xbuf
i is a clique buffer, then

Ki contains 2%|Xi| cliques, each with one vertex in Xi, otherwise it is
empty.

(RSC 2) For each i ∈ [r], K ∈ Ki and x, y ∈ K we have x ∈ Xj and y ∈ Xk where
jk ∈ R′.

(RSC 3) For each i, the set Xc
i of vertices x ∈ Xi contained in some reserved clique

satisfies: |Xc
i | ≤ 2κ(∆R′ + 1)%|Xi|.

Notice that (RSC 2) holds by (H 1), since the first and second neighbours of vertices

from X̃i go along the edges of R′ by the definition of (α,R′)-buffer.
We let Xmain = V (H) \ (Xbuf ∪Xc). We now begin the embedding of H into G.
By Lemma 3.1, there is a good partial embedding ψRGA with properties (RGA 1)–

(RGA 5) stated in that lemma. Letting Xq = Xmain \Dom(ψRGA), by (RGA 3) we
have |Xq

i | ≤ 2%|Xi| for each i, and by (RGA 2) we see that Im(ψRGA) is disjoint from
each set V q

i , so the conditions of Lemma 3.2 are met. Feeding ψRGA into Lemma 3.2
we obtain a good partial embedding ψq extending ψRGA whose domain is Xmain

and whose image is contained in V main∪V q. By (RGA 1) all neighbours of all buffer
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vertices are in Dom(ψRGA), and therefore the candidate sets of all buffer vertices
are the same with respect to ψRGA and to ψq. In particular ψq satisfies (RGA 4)
and (RGA 5).

We now verify the conditions for Lemma 3.3. Since ψq extends ψRGA and the
vertices Im(ψq) \ Im(ψRGA) are embedded in the sets V q

i it follows by (RGA 2) that
Im(ψq) is disjoint from the sets

⋃
i V

c
i and

⋃
i V

buf
i . By (RGA 5), if Xbuf

i is not
a clique buffer then all vertices in Vi are candidate for at least µ(d∆p/100)b|Xi|
vertices in Xbuf

i and Ki is empty by (RSC 1).
If on the other hand Xbuf

i is a clique buffer, then |Ki| = 2%|Xi|. Now let W be
the set of vertices in Vi which are candidates for fewer than µ(dp)∆|Xi|/2 vertices
of Xbuf

i . We will show that |W | < %|Vi|. If |W | ≥ %|Vi|, then by (RGA 4) there are
at most %|Xi| vertices in Xbuf

i with fewer than (dp)∆|W |/2 candidates in W . It
follows that the average over v ∈W of the number of vertices of Xbuf

i for which v is
a candidate, is at least

1

|W |
(
|Xbuf

i | − %|Xi|
) (dp)∆|W |

2
>

1

2
µ(dp)∆|Xi|,

where we used the facts |Xbuf
i | = 4µ|Xi| and % < µ in the inequality. Since at least

one v ∈W attains at least the average, we have a contradiction to the definition of
W .

The conditions of Lemma 3.3 are thus satisfied, and by applying it we obtain a
good partial embedding ψgood. Since ψgood extends ψq and all sets Xc

i are contained
in Dom(ψgood) by (FIN 1), we conclude that the only vertices remaining unembedded
are in Xbuf .

Finally, for i ∈ [r], let X ′i = Xbuf
i \Dom(ψgood) and let Xbuf

i be a degree-b buffer
for some b. Let V ′i = Vi\Im(ψgood). Because |Xi| = |Vi| we have |X ′i| = |V ′i |. Because
ψgood satisfies (FIN 2), we have (CPM 1). Because ψgood satisfies (RGA 4), in par-
ticular we have (CPM 2). Finally, because ψgood satisfies (FIN 3) we have (CPM 3)
with δ = µ(d∆/100)b. Thus by Lemma 3.4 there is an embedding ψ′ extending ψgood

which embeds X ′i to V ′i . Repeating this for each i ∈ [r], which we may do since Xbuf

is an independent set in H, we obtain the desired embedding of H into G. �

3.2. The random greedy algorithm

In this section we describe the random greedy algorithm (RGA) and prove that
it produces a partial embedding which satisfies the assertions of the RGA lemma,
Lemma 3.1, with high probability. This is Algorithm 1 below. It embeds vertices x
of H sequentially, following an order τ given by Lemma 2.26. In doing so, it builds
up a sequence ψ0, . . . of good partial embeddings, and a queue of vertices which it
will not embed; we let Qt be the queue at time t (i.e. corresponding to ψt). Recall
that (as mentioned in Section 2.3.5) by Amain

t (x) we mean the set Amain(x) with
reference to the partial embedding ψt. We let Bt(x) denote the set of bad vertices
(Section 2.3.7) with respect to ψt and Qt. As mentioned in the proof overview
(Section 1.4), to create ψt+1 from ψt we embed some vertex x uniformly at random
into the set Amain

t (x) \Bt(x), the set of available candidate vertices in Xmain minus
the bad vertices; and we add y to the queue if the set Amain

t (y) \Bt(y) gets small.
Note that exactly t vertices are embedded in ψt, though these vertices are

not necessarily the first t vertices of τ : vertices in Qt are skipped. The queue
set QtRGAend

at the time tRGAend when the RGA terminates will then form the
queue Xq mentioned in Lemma 3.1.

3.2.1. Proof of the RGA lemma. The proof that Algorithm 1 a.a.s. pro-
duces a good partial embedding with the properties required in Lemma 3.1 is now
quite straightforward: most of the work is to check that the conditions of the various
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Algorithm 1: Random greedy algorithm

Input :G ⊆ Γ and H with partitions satisfying the General Setup; an
ordering τ on Xmain

t := 0 ;

ψ0 := ∅ ;

Q0 := {x ∈ V (H) : |Ix| < 1
2µ(d− ε)|Jx|p|Jx||V main(x)|} ;

repeat
let x ∈ Xmain \ (Dom(ψt) ∪Qt) be the next vertex in the order τ ;

choose v ∈ Amain
t (x) \Bt(x) uniformly at random ;

ψt+1 := ψt ∪ {x→ v} ;

Qt+1 := Qt ;

forall the y ∈ Xmain \Dom(ψt+1) do

if (
∣∣Amain

t+1 (y)
∣∣ < 1

2µ(d− ε′)π
∗
t+1(y)pπ

∗
t+1(y)|V main(y)|) then

Qt+1 := Qt+1 ∪ {y} ;

end

end

t := t+ 1 ;

until Dom(ψt) ∪Qt = Xmain;
tRGAend := t

lemmas in Section 2.4 are met. The critical point is to show that certain invariants
(see Claim 3.5 below) are maintained.

Proof of Lemma 3.1. We require

% < µ ≤ 1

100κ∆R′
, ε′ ≤ µζd∆%2−4/%

1000κ∆24∆∆R′
, ε ≤ ε′

κd

and

p ≥ 10r1ε
−1
(

logn
n

)1/∆
, n > κr2

1 .

First, we apply Lemma 2.26 to obtain an ordering τ of the vertices of H with
the stated properties (a )–(c ).

Given this ordering τ we run the random greedy algorithm, Algorithm 1, and
in the following we show that a.a.s. it produces a good partial embedding ψRGA =
ψtRGAend

satisfying properties (RGA 1)–(RGA 5) of Lemma 3.1.
We first show that some invariants are maintained (deterministically) throughout

the algorithm. Recall that π∗t (x) := πt(x) + |Jx|, where πt(x) denotes the number of
the embedded neighbours of x at time t. We could obtain a stronger statement here
than (INV 3) below, but we will not need it, so we give this statement in order to
be able to re-use the same invariants in the proofs of the other two blow-up lemmas.

Claim 3.5. The following hold at each time t in the running of Algorithm 1.

(INV 1) ψt is a good partial embedding.
(INV 2) For each x ∈ Xmain \Dom(ψt), either x ∈ Qt or we have

|Amain
t (x)| ≥ 1

2µ(d− ε′)π
∗
t (x)pπ

∗
t (x)|V main(x)| .

(INV 3) When we embed x to create ψt+1, we do so uniformly at random into a set
of size at least 1

10µζ(dp)π
∗
t (x)|V (x)|.

Proof. The invariant (INV 1) is maintained by definition of At(x) and Bt(x).
Observe that immediately before reaching the Repeat line, the queue is updated
by adding precisely any vertices which would fail (INV 2), so that this invariant
too holds by definition. Finally, by choice of ε′ and by (INV 2), if the vertex x is
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embedded to create ψt+1, then we have |Amain
t (x)| ≥ 1

4µ(dp)π
∗
t (x)|V (x)|. Now, if

all neighbours of x are embedded under ψt then by (a ) we have (INV 3), while
otherwise we apply Lemma 2.25(b ) with D = ∆, for which the required assumptions
on Γ hold, to bound |Bt(x)|. By choice of ε′ we conclude that (INV 3) holds. �

We now begin to verify the properties of Lemma 3.1 are met. Property (RGA 2),
stating that all vertices in Xi ∩Dom(ψRGA) are embedded to V main

i , holds by the
definition of the algorithm.

Claim 3.6. Property (RGA 1) holds. Moreover, let x be a buffer vertex and y
its neighbour whose embedding creates ψt+1, then∣∣Amain

t (y)
∣∣ ≥ 2

3 (dp− ε′p)π
∗
t |V (y)| . (20)

Proof. We require µ ≤ 1/(100κ∆R′). To show property (RGA 1), i.e., that all
neighbours of buffer vertices are in Dom(ψRGA), it is sufficient to prove that none
of the neighbours of buffer vertices are in QtRGAend

. However, this is clear. Indeed,
suppose that y1, . . . , yb with b ≤ ∆ are the neighbours of a buffer vertex x appearing
in this order in τ . Suppose the embedding of y1 creates ψt1+1. By (H 4), buffer
vertices are at distance at least five in H, hence, the neighbours of the vertices have
distance at least three, and by (H 5) they are not image restricted. Therefore, at
time t1 the available candidate set of each yj is Amain

t1 (yj) = V main(yj) \ Im(ψt1).

The size of Amain
t1 (yj) is by (H 3), (G 1) and choice of µ at least

|V main(yj)| − 4κ∆R′µ|V (yj)| = (1− 3µ− 4κ∆R′µ)|V (yj)| ≥ 2
3 |V (yj)| .

It follows that yj is not added to Qt for any t ≤ t1. Now the vertices y1, . . . , yb are
embedded consecutively, and since they are neighbours of x, by (H 2), into distinct
clusters of G. By Definition 2.24 (of bad vertices with respect to ψ and Q), for each
time t′ with t1 ≤ t′ ≤ t, where yj is embedded to create ψt+1, we have

|Amain
t′ (yj)| ≥ 2

3 (dp− ε′p)π
∗
t′ (yj)|V (yj)| ,

which gives (20) and that yj never enters Qt, as desired. �

Observe that because Algorithm 1 preserves (INV 3), the conditions of Lemma 2.27
are met. Thus with probability at least 1 − 2−n/(κr1), the following event El2.27

holds. For every i ∈ [r] and W ⊆ Vi with |W | ≥ %|Vi|, the number of vertices
x ∈ Xi \ X∗i such that for some time t (at which x is unembedded) we have∣∣Ct(x) ∩W

∣∣ < (dp− ε′p)π∗t (x)|W | is at most %|Xi|.
Suppose that El2.27 holds. Then properties (RGA 3) and (RGA 4) hold. To see

that (RGA 3) holds, set W := V main
i \ Im(ψtRGAend

). By (H 3) and (G 1), we have
|Xmain

i | ≤ (1−4µ)|Xi| and |V main
i | = (1−3µ)|Vi|. We conclude |W | ≥ µ|Vi|. Suppose

that x ∈ QtRGAend
. Then there is a first time t at which x ∈ Qt. Since we have

Amain
t (x) ⊇ Ct(x) ∩W , by the construction of Qt in Algorithm 1, we have

|Ct(x) ∩W | < 1
2µ(d− ε′)π

∗
t (x)pπ

∗
t (x)|V main(x)| <

(
(d− ε′)p

)π∗t (x)|W |
so that x satisfies condition (9) of Lemma 2.27. Since |W | > %|Vi|, and because El2.27

holds, the number of x ∈ Xmain
i ∩QtRGAend

which are in Xi \X∗i is at most %|Xi|.
By (G 6), we have |X∗i | ≤ %|Xi|, so |Xmain

i ∩QtRGAend
| ≤ %|Xi|+ |X∗i | ≤ 2%|Xi|. By

definition of Algorithm 1, the vertices Xmain
i ∩QtRGAend

are precisely the vertices of
Xmain
i not in Dom(ψtRGAend

), giving (RGA 3) as desired.
Property (RGA 4) follows from El2.27 by observing that Xbuf

i ⊆ Xi and that

when Xbuf
i is a degree-b buffer we have (dp − ε′p)π

∗
tRGAend

(x) ≥ (dp)b/2 by choice
of ε′.

To complete the proof of Lemma 3.1 we now verify that a.a.s. after Algorithm 1
finishes, the property (RGA 5) is satisfied. By (a ) and (c ) of Lemma 2.26, the set
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of vertices in N(Xbuf) which are not neighbours of clique buffer vertices is an initial
segment of T vertices of τ . We first show that Lemma 2.28 applies to the sequence of
good partial embeddings produced by Algorithm 1 on this initial segment. Observe
that by Claim 3.6, all vertices in this initial segment satisfy (20) and none enters
the queue. By (20), Lemma 2.25, and the choice of ε′, each such y, embedded to
create ψt+1, is embedded into a subset of Ct(y) of size at least

2
3 (dp− ε′p)π

∗
t |V (y)| − 20∆2ε′pπ

∗
t (y)|V (y)| > 1

10 (dp)π
∗
t (y)|V (y)| .

Furthermore, for each such y we have π∗t (y) ≤ ∆− 2 by Lemma 2.26(b ). Finally,
by (H 3) we have

∣∣Dom(ψT ) ∩Xi

∣∣ ≤ 4µκ∆R′ |Xi| for each i ∈ [r]. This justifies that
we can apply Lemma 2.28 with B = ∆, and the result is that with probability at
least 1− exp(−εpn/r1), the following event El2.28 holds. For each v ∈ Vi and j such
that ij ∈ E(R′), we have

∣∣NG(v;V main
j ) \ Im(ψT )

∣∣ ≥ 1
2 degG(v;Vj).

We assume from now on that Xbuf
i is a non-clique degree-b buffer, and we fix a

vertex v ∈ Vi. We would like to estimate the probability that (RGA 5) fails for v.
To that end, first fix x ∈ Xbuf

i , and let y1, . . . , yb be an enumeration of NH(x)
in the order τ . We now justify that if El2.28 holds, then we are in a position to apply
Lemma 2.29 with B = ∆. Recall that no vertices of N(Xbuf) enter the queue, by
Claim 3.6, so that ψτ(y1) is the good partial embedding created by the embedding

of y1 (and so on). By (H 4), and since Dom(ψτ(y1)−1) ⊆ N(Xbuf), no vertices at
distance two or less from x in H are embedded in ψτ(y1)−1. Note that Lemma 2.26(b )
states that if b = ∆ then yb−1yb is not an edge of H.

Algorithm 1 creates the sequence ψτ(y1)−1, . . . , ψτ(yb) of good partial embed-
dings, and the sequence of queue sets Qτ(y1)−1, . . . , Qτ(yb), according to the require-
ments of Lemma 2.29. Thus, by Lemma 2.29, the probability that NH(x) is embed-
ded to NG(v), conditioning on ψτ(y1)−1 and that

∣∣NG(v;V main
j ) \ Im(ψτ(y1)−1)

∣∣ ≥
1
2 degG(v;Vj) for each j such that ij ∈ R′, is at least (d∆p/10)b.

Let x1, . . . , xm be an enumeration of Xbuf
i according to the order on N(Xbuf)

given by τ . Let Y1, . . . , Ym be Bernoulli random variables with Yj = 1 if either
NH(xj) is embedded by ψtRGAend

to NG(v) or we witness a failure of El2.28 before the
first neighbour of xj is embedded. Then we have just shown that Yj has probability
at least (d∆p/10)b of being one, conditioned on the history up to, but not including,
the embedding of the first vertex of NH(xj). This history determines Yj−1, so we
can apply Lemma 2.2, with x = 4µ|Xi|(d∆p/10)b and δ = 1

2 , to conclude that Y1 +

· · ·+ Ym ≥ 2µ|Xi|(d∆p/10)b with probability at least 1− exp(−µ|Xi|(d∆p/10)b/3).
Taking the union bound over all v ∈ V (G) we see that with probability at least
1 − n exp(−εp∆n/r1) > 1 − 1/n (where the inequality is by choice of p and since
b ≤ ∆), either we witness a failure of El2.28, or (RGA 5) holds.

Putting together the three probability bounds, we conclude that a.a.s. the events
El2.27, El2.28 and (RGA 5) all hold, proving Lemma 3.1. �

3.3. Queue embedding

In this section we prove Lemma 3.2. The idea is as follows. For each i ∈ [r] in
succession, we embed Xq

i into V q
i , maintaining a good partial embedding. The way

we do this is as follows. We need to embed each x ∈ Xq
i into Cq(x)\B(x), where B(x)

is the set of bad vertices for x with respect to the current good partial embedding and
Q = V (H). (This choice of Q is made only so that we are able to apply Lemma 2.25
without having to verify the at this time pointless badness condition (8).) We
therefore try to find a system of distinct representatives vx ∈ Cq(x) \B(x) for each
x ∈ Xq

i , which we do by verifying Hall’s condition. In turn, we verify Hall’s condition
by showing that its failure implies the existence of a ‘dense spot’ in G, which is
too dense for Γ, specifically, which would violate property CON(%, r1,∆) which Γ
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satisfies. At this point the reader should be concerned that embedding x′ ∈ Xq
i to

vx′ could change B(x)—but observe that since x and x′ are at distance at least ten
in H by (H 2), this does not occur.

Proof of Lemma 3.2. We require

µ ≤ 1

6
, % ≤ µζd∆

200κ∆
, ε′ ≤ µζd∆

1000κ4∆∆2
and ε ≤ ε′

κd
.

Let ψ0 be a good partial embedding whose image is disjoint from V q, and suppose
that for each i ∈ [r] the set Xq

i has size at most 2%|Xi|. We now define a sequence

of good partial embeddings ψ1, . . . , ψr with Dom(ψt) = Dom(ψ0) ∪
⋃t
j=1X

q
j and

ψt(x) ∈ V q
j for each x ∈ Xq

j and 1 ≤ j ≤ t. We let Ct(x) be the candidate set of x

with respect to ψt, and so on, and let Bt(x) be the set of bad vertices for x with
respect to ψt and Q = V (H).

Suppose that for some 1 ≤ t ≤ r we have constructed ψt−1 as above. We let
(vx)x∈Xq

t
be a system of distinct representatives for the sets

(
Cq
t−1(x)\Bt−1(x)

)
x∈Xq

t
,

and we set ψt = ψt−1 ∪ {x → vx : x ∈ Xq
t }. We need to prove that this system of

distinct representatives exists, and that the resulting ψt is a good partial embedding.
To see that the system of distinct representatives exists, we verify Hall’s condition.

Let X ⊆ Xq
i be non-empty, and let U =

⋃
x∈X C

q
t−1(x) \ Bt−1(x). Then we need

to show |U | ≥ |X|. Assume for a contradiction that |U | < |X| holds. By averaging,
there is b ∈ {0, . . . ,∆} such that we find a subset Xb of (not necessarily all)
vertices x in X with π∗t−1(x) = b of size exactly 1

∆+1 |U |. Now each x ∈ Xb has

Cq
t−1(x) ≥ (1 − ε′)µ(dp − ε′p)b−|Jx||Ix| by (GPE 3), and |Ix| ≥ ζ(dp − ε′p)|Jx||Vi|

by (G 5). We conclude, by Lemma 2.25, that∣∣Ct−1(x) \Bt−1(x)
∣∣ ≥ 1

2µζ(dp)b|Vi| − 20∆2ε′pb|Vi| ≥ 1
4µζ(dp)b|Vi|

by choice of ε′. In particular, we see that for each x ∈ Xb we have
∣∣Ut−1(x) ∩ U

∣∣ ≥
1
4µζ(dp)b|Vi|. We therefore have∑

x∈Xb

∣∣Ut−1(x) ∩ U
∣∣ ≥ |Xb| · 1

4µζ(dp)b|Vi| .

Since we would like to resort to the congestion property CON(%, r1,∆) we eventually
need to pass to a subset U ′ of U of size |Xb|. Picking uniformly at random a subset

U ′ of U of size |Xb| = |U |
∆+1 , we have

EU ′
∑
x∈Xb

∣∣Ut−1(x) ∩ U ′
∣∣ ≥ |Xb|

∆+1 ·
1
4µζ(dp)b|V (x)| ,

and so in particular there is a subset U ′ of U of size |Xb| such that∑
x∈Xb

∣∣Ut−1(x) ∩ U ′
∣∣ ≥ |Xb|

∆+1 ·
1
4µζ(dp)b|Vt| .

We now apply CON(%, r1,∆) with F =
{
ψt−1

(
Πt−1(x)∪ Jx

)
: x ∈ Xb

}
and the

set U ′. Note that |U ′| = |F| ≤ 2%|Xi|/(∆ + 1) ≤ %|V (Γ)|, so that we can do this.
We conclude that

e
(
CG(Γ, U ′,F)

)
≤ 7pb|U ′||F|+ %pbn|F|/r1 .

But the edges of this congestion graph are precisely the pairs xu such that x ∈ Xb

and u ∈ Ut−1(x) ∩ U ′, so we have

1
4(∆+1)µζ(dp)b|Xb||Vt| ≤ 14%pb|Xb||Vt|+ %κpb|Xb||Vt| ,

where we use |Xb| = |U ′| ≤ 2%|Vt| and |Vt| ≤ n/(κr1). This is a contradiction by
choice of %. We conclude that the desired system of distinct representatives exists.
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Now we show that ψt is a good partial embedding. Since the vx are distinct,
ψt is injective. Since Cq

t−1(x) ⊆ Ix for each x, we have (GPE 1) for each x ∈ Xq
i .

If (GPE 3) or (GPE 2) were to fail for some y, then y ∈ NH(x) for some x ∈ Xq
i .

Since by (H 2), vertices of Xq
i are at distance at least 10 in H, this x is unique. But

by definition of Bt−1(x) the vertex vx is not bad for x with respect to ψt−1, i.e. this
case does not occur. Finally, if (GPE 4) fails for some yz ∈ E(H), then again at
least one of y and z (possibly both) is a neighbour of some x ∈ Xq

i . Again by (H 2)
this x is unique, and again by definition of Bt−1(x), vx is not bad for x with respect
to ψt−1, so this case too does not occur. Thus ψt is a good partial embedding as
desired.

By induction on t, the final ψq := ψr is a good partial embedding satisfying the
conclusion of Lemma 3.2. �

3.4. Fixing buffer defects

To prove Lemma 3.3 we need to describe how we embed the reserved cliques.
The basic idea is as follows: if Xbuf

i is a clique buffer, and a vertex v of Vi is a
candidate for too few vertices in Xbuf

i and not in the image of ψ (we call such a
vertex ‘poor’), then we will embed a clique Ki using v and some further vertices
of V c. The only difficulty is that some of these ‘poor’ vertices v may lie in V buf

i ,
and we risk destroying the hard-earned property that every vertex Xbuf

i has many
candidates. In order to deal with this, we will need to embed some vertices Xbuf

i as
well—at which point further vertices of Vi may become ‘poor’ and require embedding,
and so on.

Before we prove Lemma 3.3 we state two auxiliary lemmas. The first justifies
that this ‘and so on’ terminates without eating up too many vertices, i.e. that we
can find for each i small subsets Pi of Vi and Di of Xbuf

i such that every vertex
x ∈ Xbuf

i \Di has many candidates in V buf
i \ Pi, and every vertex of Vi \ Pi is a

candidate for many vertices of Xbuf
i \Di.

Lemma 3.7. We assume the General Setup. Suppose that % < µd∆/(250κ)
and that Γ has CON(%, r1,∆). Suppose ψ is a good partial embedding, and Xbuf

i

is a clique buffer. Suppose furthermore that all but at most %|Vi| vertices of Vi are
candidates for at least µ(dp)∆|Xi|/2 vertices of Xbuf

i . Then there are subsets Pi of
Vi and Di of Xbuf

i with the following properties.

(IB 1) We have |Pi| < 2%|Vi| and |Di| < 2%|Xi|.
(IB 2) Each vertex of Xbuf

i \Di has at least µ(dp)∆|Vi|/4 candidates in V buf
i \ Pi.

(IB 3) Each vertex of Vi\Pi is a candidate for at least µ(dp/100)∆|Xi| of the vertices
Xbuf
i \Di.

(IB 4) Each vertex in Di has at least µ(dp)∆|Vi|/4 candidates in Pi ∩ V buf
i .

The conclusion (IB 4) will be used to show that we can embed Di into Pi∩V buf
i .

Proof of Lemma 3.7. We start with Di = ∅ and Pi being the set of ver-
tices which fail (IB 3). We sequentially add vertices to Di and Pi which fail (IB 2)
and (IB 3) respectively (note that the property of failing either condition is mono-
tone), until either there are no failing vertices to add to either set or one of the
two sets reaches 2%|Vi| vertices (or more). Observe that any vertex x of Di has
by (GPE 3) at least (1− ε′)µ(d− ε′)∆p∆|Vi| candidates in V buf

i . Since x must have
violated (IB 2) at some point, by choice of ε′ it therefore has at least µ(dp)∆|Vi|/4
candidates in Pi ∩ V buf

i , establishing (IB 4).
In the process of building Di and Pi we call a vertex v ∈ Vi \ Pi poor if v is a

candidate for less than µ(dp/100)∆|Xi| vertices of Xbuf
i \Di. If Pi reaches 2%|Vi|

vertices first, let P be a subset of Pi and D a superset of Di each of size exactly 2%|Vi|.
Since at most %|Vi| vertices in Vi are poor with respect to Xbuf

i , at least %|Vi| of the
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vertices in P were added to Pi because they became poor: i.e. they are candidate
for at least µ(dp)∆|Xi|/2 vertices of Xbuf

i , but for less than µ(dp/100)∆|Xi| of the
vertices Xbuf

i \Di. It follows that each is candidate for at least µ(dp)∆|Xi|/4 vertices
of Di, and so there are at least %|Vi|µ(dp)∆|Xi|/4 edges in the candidate graph
between P and D. Now

1
4%µ(dp)∆|Xi||Vi| = 1

8%µ(dp)∆|Xi||Vi|+ 1
8%µ(dp)∆|Xi||Vi|

>
µd∆

32%
p∆|P ||D|+ µd∆

8κr1
p∆n|D|

> 7p∆|P ||D|+ %p∆n|D|/r1 ,

where the first inequality comes from the sizes of P and D, and the second from
the choice of % sufficiently small. The last line is in contradiction to the congestion
condition CON(%, r1,∆), since the candidate graph between P and D is a subgraph
of CG(Γ, P,FD) with FD := {ψ(NH(x)) : x ∈ D}.

If Di reaches 2%|Vi| vertices first, we define similarly P a superset of Pi and
D a subset of Di each of size 2%|Vi|. Each vertex of D has at least µ(dp)∆|Vi|/4
candidates in P by (IB 4), and thus the candidate graph between P and D has at
least 2%|Xi|µ(dp)∆|Vi|/4 edges, which is larger than the previous case and so also
gives a contradiction to CON(%, r1,∆). This establishes (IB 1).

We conclude that the process terminates for lack of failing vertices, i.e. with
the desired sets. �

The second lemma simply gives a condition on a vertex v ∈ Vi under which we
can find a clique K∆+1 containing v in G whose remaining vertices lie in V c \ Im(ψ).

Lemma 3.8. We assume the General Setup. Suppose that ε < ε′ < (d/32)∆µ/(2κ∆2),
and that Γ has NS(ε, r1,∆), RI(ε, (εa,b), ε

′, d, r1,∆) and CON(%, r1,∆). Let i, j1, . . . , j∆
form a copy of K∆+1 in R′ and v be a vertex of Vi. Suppose that ψ is any good
partial embedding in which v is unembedded, and such that v has at least

µd
8 max

(
p|Vjk |,degΓ(v;Vjk)

)
(21)

neighbours in V c
jk
\ Im(ψ) in G for each 1 ≤ k ≤ ∆. Suppose that there is a copy of

K∆+1 in H using a vertex of X̃i and a vertex of each of Xj1 , . . . , Xj∆ . Then there
are vertices vk ∈ V c

jk
\ Im(ψ) for 1 ≤ k ≤ ∆, such that v, v1, . . . , v∆ form a copy of

K∆+1 in G.

Proof. We choose the vertices v1, . . . , v∆ in succession. When we choose vs, if
s < ∆ we require that for each s+ 1 ≤ k ≤ ∆ we have

|N∗Γ(v, v1, . . . , vs) ∩ Vjk | = (p± εp)s degΓ(v;Vjk) and (22)

|N∗G(v, v1, . . . , vs) ∩
(
V c
jk
\ Im(ψ)

)
| ≥

(
dp
4

)s µd
8 max

(
p|Vjk |,degΓ(v;Vjk)

)
. (23)

If s < ∆− 1 we further require that for each s+ 1 ≤ k < k′ ≤ ∆ the pair(
N∗Γ(v, v1, . . . , vs) ∩ Vjk , N∗Γ(v, v1, . . . , vs) ∩ Vjk′

)
(24)

is (εs,s, d, p)-regular.
Note that these conditions are satisfied, with s = 0, before we have chosen

any vertices. The first is a tautology, the second is the assumption on v in the
lemma statement, and the third is a statement that Vi has two-sided inheritance
with respect to Vjk and Vjk′ , which holds since we assumed there is a triangle of X

using one vertex of each of X̃i, Xjk and jk′ and by (H 1) and (G 2).
Suppose we have chosen vertices v1,. . . , vs−1 so far and that we have s ≤ ∆− 1.

Because Γ has NS(ε, r1,∆), at step s the number of vertices w failing the first
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condition, i.e. condition (22) with vs = w, is at most

∆εp∆−1|V (Γ)|/r2
1 <

(
dp
4

)s−1 µd
32 max

(
p|Vjk |,degΓ(v;Vjk)

)
.

By (εs−1,s−1, d, p)-regularity of the pair(
N∗Γ(v, v1, . . . , vs−1) ∩ Vjk , N∗Γ(v, v1, . . . , vs−1) ∩ Vjk′

)
,

and using an upper bound (22) on N∗Γ(v, v1, . . . , vs−1) ∩ Vjk , at most

∆ε′(p+ εp)s−1 degΓ(v;Vjk) <
(
dp
4

)s−1 µd
32 max

(
p|Vjk |,degΓ(v;Vjk)

)
vertices w ∈ V c

js
\ Im(ψ) fail the second condition (condition (23) with vs = w).

Finally, if s ≤ ∆− 2 and since Γ has RI(ε, (εa,b), ε
′, d, r1,∆), at most

∆2εp∆−2|V (Γ)|/r2
1 <

(
dp
4

)s−1 µd
32 max

(
p|Vjk |,degΓ(v;Vjk)

)
vertices fail the third condition, condition (24). Thus there are at least(

dp
4

)s−1 µd
32 max

(
p|Vjk |,degΓ(v;Vjk)

)
> 0

vertices which satisfy all three conditions, and we can choose vs for each 1 ≤ s ≤ ∆
as desired.

Furthermore observe that for s = ∆ it suffices to choose an arbitrary vertex
from N∗G(v, v1, . . . , v∆−1) ∩

(
V c
j∆
\ Im(ψ)

)
. The lemma follows. �

We can now prove Lemma 3.3. We construct the desired embedding in two
steps. First, we embed each Di into Pi ∩ V buf

i , which we can do by verifying Hall’s
condition using (IB 4) and the congestion condition CON(%, r1,∆). We then have
to cover the remaining poor vertices using reserved cliques, and embed any left-over
reserved cliques at the end of this process. We do this by sequentially by applying
Lemma 3.8 to find a destination for a reserved clique, in the first case letting v be
the next poor vertex and in the second case choosing v to be some vertex of V c.
Note that in this step, we need to maintain the degree condition (21) of Lemma 3.8.
We have this condition initially by (G 3), and we will see that to maintain it, it
suffices to choose at each step a ‘most dangerous’ vertex v, that is, one minimising
the parameter mindeg we define in the proof.

Proof of Lemma 3.3. We assume that Γ has NS(ε, r1,∆), RI(ε, (εa,b), ε
′, d, r1,∆)

and CON(%, r1,∆). We further assume

% < min
( µd∆

250κ
,

µd

64κ(∆R′ + 1)

)
and ε < ε′ <

d∆

32∆κ∆∆R′
.

For each i such that Xbuf
i is a clique buffer, we let Pi and Di be as given by

Lemma 3.7 (the assumptions on constants above imply the requirements of that
lemma and of Lemma 3.8). If Xbuf

i is not a clique buffer, then we let Pi = Di = ∅.
Now for each i in succession, we find a matching in the candidate graph between

Di and Pi ∩ V buf
i . To do this we simply verify Hall’s condition, using the congestion

condition and (IB 4). Specifically, suppose we have a non-empty W ⊆ Di, and
Z ⊆ Pi is the set of vertices in Pi which are candidate for some w ∈ W . We need
to verify that |W | ≤ |Z|. If this were false, then we could let Z ′ be a superset of Z
of size |W |, and the number of edges in the candidate graph between W and Z ′ is
by (IB 4) at least µ(dp)∆|Vi||W |/4. Notice that |Di|, |Pi| < 2%|Vi| by (IB 1). Now
we have

1
4µ(dp)∆|Vi||W | = 1

8µ(dp)∆|Vi||W |+ 1
8µ(dp)∆|Vi||W |

>
µd∆

16%
p∆|Z ′||W |+ µd∆

8κr1
p∆n|W |

> 7p∆|Z ′||W |+ %p∆n|W |/r1 ,
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which is in contradiction to CON(%, r1,∆), applied with Z ′ and the family F =
{ψ(NH(w)) : w ∈ W} to the congestion graph CG(Γ, Z ′,F). We conclude that
Hall’s condition holds and hence the desired matching exists. We let ψ′ be the
embedding obtained by embedding each vertex of Di to its matching partner in
Pi ∩ V buf

i . Observe that ψ′ is a good partial embedding since all neighbours of the
buffer vertices are already embedded under ψ, and thus (GPE 1)–(GPE 4) trivially
hold for ψ′.

Finally, we provide an algorithm below to embed the cliques Ki for each i ∈ [r1].
Given a vertex v ∈ Vi and a partial embedding ψ we define the parameter

mindegψ(v) := min
j:ij∈R′

degG
(
v;V c

j \ Im(ψ)
)

max
(
p|Vj |,degΓ(v;Vj)

) ,
which we will use in the algorithm below, Algorithm 2. Observe that we have initially
mindegψ(v) ≥ µ(d− ε)/2 for all v ∈ Vi with degR′(i) > 0, which follows from (G 3).

Algorithm 2: Removing poor vertices

t := 0;

ψ0 := ψ′;

while
⋃
i P
′
i \ Im(ψt) 6= ∅ do

choose v ∈
⋃
i P
′
i \ Im(ψt) minimising mindegψt(v) ;

set i such that v ∈ Vi ;

choose an unembedded clique KH in Ki ;
choose a clique KG containing v and one vertex from each V c

j \ Im(ψt)

such that Xj intersects KH and j 6= i;

set ψt+1 := ψt ∪ {KH → KG};
t := t+ 1;

end

while
⋃
iKi 6= ∅ do

choose an unembedded clique KH in
⋃
iKi ;

set i such that KH ∈ Ki ;

choose v ∈
⋃
i V

c
i \ Im(ψt) minimising mindegψt(v) ;

choose a clique KG containing v and one vertex from each V c
j \ Im(ψt)

such that Xj intersects KH and j 6= i;

set ψt+1 := ψt ∪ {KH → KG};
t := t+ 1;

end

return ψgood := ψt ;

We claim that the algorithm runs correctly and the finally returned ψgood is
the desired good partial embedding. It remains to justify this claim.

Roughly speaking each of the vertices from Pi can serve us as an image for each
of the 2%|Xi| cliques from Ki to embed the corresponding vertex into (although
some vertices of Pi may be used as ‘intermediate’ ones). This is done during the first
while-loop and the notion of mindegψ(v) is responsible for successful completion.
Note that |Pi| < 2%|Vi| holds by (IB 1) and |Ki| = 2%|Xi|, so if the algorithm doesn’t
fail then all the vertices from

⋃
i Pi will be embedded. In the second while-loop we

have to take care of the remaining unembedded cliques in
⋃
iKi. Moreover, since

the algorithm embedded only onto vertices
⋃
Pi ∪V c

i , the desired properties (FIN 2)
and (FIN 3) are now guaranteed by (IB 2) and (IB 3).
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Therefore, it remains then only to show that there is no failure while choosing a
clique KG in some iteration. By Lemma 3.8, this is guaranteed if we can show that
at each time t the vertex v ∈ Vi chosen has at least

µd
8 max

(
p|Vj |,degΓ(v;Vj)

)
neighbours in each set V c

j \ Im(ψt) ∪ P ′j such that ij ∈ R′.
By the assumption of the lemma, for each i, the set Xc

i of vertices x ∈ Xi

contained in some reserved clique from
⋃
j Kj satisfies |Xc

i | ≤ 2κ(∆R′ + 1)%|Xi|. It

follows that for any t we have |Im(ψt) ∩ V c
j | ≤ 2κ(∆R′ + 1)%|Xj |. Now we make the

following observation, which will be crucial in the final argument. Suppose U is a
subset of some V c

j of size at most 2κ(∆R′ + 1)%|Xj |, then the number of vertices in Γ

which have more than 4κ(∆R′+1)%p|Xj | neighbours in U is at most εp∆−1|V (Γ)|/r2
1.

This is a direct consequence of the neighbourhood size property NS(ε, r1,∆) of Γ
and it can be applied to sets U = Im(ψt) ∩ V c

j .
Each vertex v of Vi has at least

µ(d− ε) max
(
p|Vj |,degΓ(v;Vj)/2

)
> µd

4 max
(
p|Vj |,degΓ(v;Vj)

)
neighbours in V c

j by (G 3). Since 4κ(∆R′ + 1)%p|Xj | < µdp|Vj |/16, it follows that

for any t there are at most ∆R′εp
∆−1|V (Γ)|/r2

1 vertices in Vi with fewer than
3µd
16 max

(
p|Vj |,degΓ(v;Vj)

)
neighbours in any set V c

j \ Im(ψt) such that ij ∈ R′, i.e.
with mindegψt(v) < 3µd/16. In what comes we derive a contradiction to this.

At each time, at most one vertex is embedded in any given V c
j . So if there is a

time t at which a vertex v ∈ Vi is chosen with fewer than
µd
8 max

(
p|Vj |,degΓ(v;Vj)

)
neighbours in some set V c

j \ Im(ψt) such that ij ∈ R′, then at each of the preceding
µdp|Vj |/16 times t′, v had mindegψt′ (v) < 3µd/16. Hence each of the at least

µdpn/(16κr1) vertices v′ chosen at these times has

mindegψt(v
′) ≤ mindegψt′ (v

′) < 3µd/16 .

Since there are at most r1 clusters Vi in G, and since µdpn
16κr1

> r1∆R′εp
∆−1|V (Γ)|/r2

1,

this gives more vertices with mindegψt(v
′) < 3µd/16 than exist in G ⊆ Γ, which

contradiction completes the proof. �



CHAPTER 4

Proof of the blow-up lemma for bijumbled graphs

4.1. The RGA lemma and the proof of the blow-up lemma

In this section we prove Lemma 1.25, conditional on the random greedy lemma
(Lemma 4.1) which we prove in Section 4.2.

The proof is quite similar to that of Lemma 1.21, and indeed we make use
of the same General Setup. The difference is that we can no longer use property
CON(%, r1,∆) as a bijumbled graph Γ need not satisfy it (see the discussion in
Section 2.2). Instead, we ‘replace’ it with the lopsided neighbourhood size property
LNS(ε, r1,∆).

In the next section we will use a somewhat different random greedy strategy
than Algorithm 1 to prove the following lemma. However, we will re-use the auxiliary
lemmas proved in Section 2.4 in its proof.

Lemma 4.1. We assume the General Setup. Suppose further that Γ has properties
NS(ε, r1,∆ + 1), RI(ε, (εa,b), ε

′, d, r1,∆ + 1) and LNS(ε, r1,∆), and that at most
%p∆|Xi| vertices in each Xi are image restricted. Then there is a good partial
embedding ψRGA such that the following hold for each i. Let b be such that Xbuf

i is
a degree-b buffer.

(PRGA 1) Every vertex in Xmain is embedded to V main∪V q by ψRGA, and no vertex
in Xbuf is embedded.

(PRGA 2) Every vertex in Vi is a candidate for at least µ(d∆p/100)b|Xi| vertices
of Xbuf

i .
(PRGA 3) For every set W ⊆ Vi of size at least %|Vi|, there are at most %|Xi| vertices

in Xbuf
i with fewer than 1

2 (dp)b|W | candidates in W .

(PRGA 4) For all x ∈ Xbuf
i we have∑

y∈Xbuf
i :
∣∣Ubuf (y)∩Cbuf (x)

∣∣>(p+εp)b|Cbuf (x)|

∣∣Ubuf(y) ∩ Cbuf(x)
∣∣∣∣Cbuf(y)

∣∣ ≤ |C
buf(x)|
20

.

(PRGA 5) For each i, for all but at most ε′p∆|Vi| vertices v ∈ Vi, there are at most
ε′p∆|Vi| vertices v′ ∈ Vi such that∣∣{x ∈ Xbuf

i : v, v′ ∈ C(x)}
∣∣ > 24µ∆2

(
20µ−1ζ−1d−∆

)b
p2b|Xi| .

Comparing this lemma to Lemma 3.1 (RGA lemma), one notices that we demand
more of the NS and RI pseudorandomness properties. The reason for doing this is
that we can then make use of Lemmas 2.28 and 2.29 for all buffer vertices, whether
or not they are in copies of K∆+1, and thus there is no exception for clique buffers
in (PRGA 2). Recall that Lemma 2.28 asserts that while embedding a small initial
segment (in particular the neighbours of the buffer vertices), the neighbourhoods
of other vertices are reduced by at most a factor of 1/2 in size, while Lemma 2.29
gives a lower bound on the (conditional) probability of the event that a given vertex
from G can be used as an image of a particular buffer vertex. This simplifies our
proof substantially—we no longer need to fix buffer defects—and in this case has

73
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very little effect on the bijumbledness we ultimately require of Γ (it only affects the
result in the case ∆ = 2).

Property (PRGA 3) corresponds to (RGA 4). We also see that we ask for an
additional pseudorandomness property LNS(ε, r1,∆), which we require in order to
embed all vertices (the algorithm does generate a queue, but it also embeds it) and
also in order to obtain (PRGA 4) and (PRGA 5), which then form the ‘no dense
spots’ property we require in order to complete the embedding, which rôle was played
in the proof of Lemma 1.21 by the CON property. Somewhat informally, (PRGA 4)
asserts that typically candidate sets intersect as if they are random sets, while
property (PRGA 5) states the same about intersections of the neighbourhoods of
vertices from V (G) in the candidate graph.

4.1.1. Outline of the proof of Lemma 1.25. The proof of Lemma 1.25 now
looks quite similar to the proof of Lemma 1.21. Again, we use Lemma 2.22 to obtain
the General Setup. However this time we do not choose any reserved cliques, whether
or not we have buffer vertices in cliques. We note that although we could state a
version of Lemma 4.1 which asked only for NS(ε, r1,∆) and RI(ε, (εa,b), ε

′, d, r1,∆)
rather than with ∆ + 1, and which made exceptions for clique buffers, this would
not improve our eventual bijumbledness requirement on Γ, except for ∆ = 2, since
for ∆ ≥ 3 the requirement is determined by LNS(ε, r1,∆). We apply Lemma 4.1
to obtain a good partial embedding whose domain is Xmain with the additional
properties stated there. We then have only to embed Xbuf . Again, we do this one
part at a time, by verifying Hall’s condition, and again we separate the verification
into small, large and medium-sized subsets of Xbuf

i . Again, the ‘medium-sized’ case
is dealt with quickly using (PRGA 3).

However now we approach the ‘small’ and large cases differently, since we no
longer have access to the CON property. In the ‘small’ case (Claim 4.2), our approach
is the following. Given X ⊆ Xbuf

i , we try to construct an embedding of X into V buf
i

such that each x is embedded into C(x). Although this embedding is not part of the
embedding we will finally give, its existence verifies Hall’s condition for X. The way
we will construct the embedding is simply to embed X vertex by vertex, at each
step choosing for x uniformly at random a so far unused vertex of Cbuf(x). Since
ψRGA has (GPE 3) we know Cbuf(x) is always reasonably large, and we will show
that with high probability it is never more than half covered. Let us briefly explain
how this works. We assume that no candidate sets are more than half covered before
reaching x. When we embedded some vertex y, the probability of embedding it to
C(x) was at most ∣∣Ubuf(y) ∩ Cbuf(x)

∣∣
1
2 |Cbuf(y)|

since (by assumption) we embed y into a set of size at least 1
2 |C

buf(y)|, of which

certainly at most
∣∣Ubuf(y) ∩ Cbuf(x)

∣∣ are in Cbuf(x). But (PRGA 4) gives us an

upper bound for the sum of these probabilities over all y ∈ Xbuf
i such that the

probability is ‘large’, and it is easy to account for the y ∈ Xbuf
i such that the

probability is not large. We can thus apply Lemma 2.2 to conclude that it is unlikely
that Cbuf(x) was more than half covered, and by the union bound over all x ∈ Xbuf

i

we conclude that with high probability we never fail.
For the ‘large’ case, Claim 4.3, we use a similar argument, but using (PRGA 2)

and (PRGA 5) instead of (GPE 3) and (PRGA 4).

4.1.2. Proof of Lemma 1.25. Now we give the full details outlined above.

Proof of Lemma 1.25. First we choose constants as follows. Given ∆, ∆BL
R′ ,

∆J integers, αBL, ζBL and d > 0, and κBL > 1, we set ϑ = ∆, ∆R′ = 8(∆+∆J )10∆BL
R′ ,
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α = 1
2α

BL, ζ = 1
2ζ

BL and κ = 2κBL. We now choose

µ =
αd∆

20000κ∆4
R′∆

10(∆ + 2)
, % = µ2ζ2

2000∆2

(
µζd4∆+2

106∆

)∆
,

and ε′ = µζd∆2
%

1003∆∆3κ4∆ 2−4/% .

Now for input ∆, d and ε′, Lemma 2.18 returns constants εa,b and εl2.18 > 0. We set

ε = min
( 210∆d(ε′)2

κ∆R′
, εl2.18

)
.

We let εBL = 1
16 (∆ + ∆J)−10ε and %BL = 1

16 (∆ + ∆J)−10%.

Now Lemma 1.25 returns εBL and %BL. Given rBL
1 we let r1 = 8(∆ + ∆J )10rBL

1 .
We choose c sufficiently small for Lemma 2.18 with input ∆, d, ε′ and T = r1.

We require

p ≥ 106(∆+∆J )10κr1
µζ%d∆ε−2

(
logn
n

)1/(2∆)
,

where the condition on the constant in front of
(

logn
n

)1/(2∆)
-term comes from

Lemma 2.22, while the term
(

logn
n

)1/(2∆)
is required for Lemma 4.1. We remark

however that this lower bound is not a restriction since a somewhat stronger lower
bound on p of the form Ω(n1/2(t−1)) for any (p, cptn)-bijumbled graph follows by
considering the inequality (1) which defines bijumbledness for, say, sets X = {v}
and Y = V (Γ) \ ({v} ∪NΓ(v)).

Let Γ be an n-vertex, (p, cpmax(4,3∆/2+1/2)n)-bijumbled graph. Then Lemma 2.18
states that Γ has properties NS(ε, r1,∆+1), RI(ε, (εa,b), ε

′, d, r1,∆+1) and LNS(ε, r1,∆)
respectively. From now on we will simply assume Γ is an n-vertex graph which
satisfies these three properties.

Given a graph RBL on rBL ≤ rBL
1 vertices, a spanning subgraph R′BL with

∆(R′BL) ≤ ∆BL
R′ , and graphs H and G ⊆ Γ with vertex partitions XBL and VBL, a

family of potential buffer vertices X̃BL, and a (%BLp∆, ζBL,∆,∆J)-restriction pair
IBL, J , suppose that the conditions of Lemma 1.25 are satisfied. Then Lemma 2.22
(with bl2.22 = ∆) gives a graph R on r ≤ r1 vertices, a spanning subgraph R′ with
∆(R′) ≤ ∆R′ , and κ-balanced size-compatible partitions X and V of H and G

respectively, each part having size at least n/(κr1), together with a family X̃ of

potential buffer vertices and I of image restrictions, subsets Xbuf
i of X̃i for each

i ∈ [r], and partitions Vi = V main
i ∪̇ V q

i ∪̇ V c
i ∪̇ V buf

i for each i ∈ [r] which satisfy the
General Setup.

We let Xmain = V (H) \Xbuf . We now begin the embedding of H into G. By
Lemma 4.1, there is a good partial embedding ψRGA of Xmain into V main ∪ V q with
properties (PRGA 1)–(PRGA 5) stated in that lemma.

Our aim now is to complete the embedding of H into G by finding for each i a
matching in the available candidate graph between V ′i := Vi \ Im(ψRGA) and Xbuf

i .
Let us assume that Xbuf

i is a degree-b buffer. To show there is a matching, we will
verify Hall’s condition, so let Y be a non-empty subset of Xbuf

i . Let U be the set of
vertices in V ′i which are candidate for at least one vertex of Y , then our aim is to
show |U | ≥ |Y |. We split this into three cases, the harder two of which are done in
the following claims.

Claim 4.2. If 0 < |Y | ≤ %|Xi|, then we have |U | ≥ |Y |.
Proof. By (H 5) no y ∈ Y is image restricted, so because ψRGA is a good

partial embedding, by (GPE 3) for each y ∈ Y we have

|Cbuf(y)| ≥ (1− ε′)µ(d− ε′)bpb|Vi| ≥ 1
2µ(dp)b|Vi| ,

where the second inequality is by choice of ε′. Let y1, . . . , y|Y | be an enumeration of

Y . Now for each j = 1, . . . , |Y | we choose vj uniformly at random from Cbuf(yj) \
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{v1, . . . , vj−1} if this is possible; if not, we say vj does not exist. Our aim is to show
that this does not occur, in other words that we obtain |Y | distinct vertices of |U |,
verifying the claim.

Let H0 be the empty history, and for each 1 ≤ j ≤ |Y |, let Hj be the history
of this process up to and including the choice of vj . We claim that a.a.s.∣∣Cbuf(yj) \ {v1, . . . , vj−1}

∣∣ ≥ 1
2

∣∣Cbuf(yj)
∣∣ (25)

holds for each j. For a given j we define random variables Z
(j)
` , ` ∈ [j−1], as follows.

We set Z
(j)
` = 1 if v` ∈ Cbuf(yj) and |Cbuf(y`) \ {v1, . . . , v`−1}| ≥ 1

2 |C
buf(y`)| hold,

and Z
(j)
` = 0 otherwise. For any history H`−1 of this process we can bound the

conditional expectation of Z
(j)
` by

E(Z
(j)
` |H`−1) = P(Z

(j)
` = 1|H`−1)

≤
∣∣Cbuf(y`) ∩ Cbuf(yj) \ {v1, . . . , v`}

∣∣∣∣Cbuf(y`) \ {v1, . . . , v`−1}
∣∣ ≤

∣∣Ubuf(y`) ∩ Cbuf(yj)
∣∣

1
2

∣∣Cbuf(y`)
∣∣ . (26)

Observe that
∑j−1
`=1 Z

(j)
` is exactly the number of those vertices vk among v1,

. . . , v`−1 which lie in Cbuf(yj) and were chosen from a set of size at least 1
2 |C

buf(yk)|.
To obtain an upper bound on the expectation of

∑j−1
`=1 Z

(j)
` , we sum up (26) for all

` ∈ [j − 1]. We split this sum according to whether
∣∣Ubuf(y`) ∩ Cbuf(yj)

∣∣ ≤ (p +

εp)b|Cbuf(yj)| or not. In the former case, each summand is by (GPE 2) and (GPE 3)
at most

2(p+ εp)bµ(p+ εp)b|Vi|
(1− ε′)µ(dp− ε′p)b|Vi|

≤ 4d−∆pb ,

where the inequality is by choice of ε and ε′, while (PRGA 4) bounds the sum over
the remaining terms. We get

j−1∑
`=1

E
[
Z

(j)
`

∣∣H`−1

]
≤

j−1∑
`=1

∣∣Ubuf(y`) ∩ Cbuf(yj)
∣∣

1
2

∣∣Cbuf(y`)
∣∣

≤ 4(j − 1)d−∆pb +
|Cbuf(yj)|

10
≤ |C

buf(yj)|
5

where the last inequality uses j ≤ |Y | ≤ %|Xi|, (GPE 3) and the choice of % and
ε. Using Lemma 2.2 with δ = 1, we conclude that the probability of the event∑j−1
`=1 Z

(j)
` > 2

5 |C
buf(yj)| is at most e−|C

buf (yj)|/15 ≤ e−µdbpb|Vi|/30.

Observe that the event
∑j−1
`=1 Z

(j)
` > 2

5 |C
buf(yj)| contains the event that (25)

fails at j, given that it did not fail for smaller j. Thus, taking a union bound over
the |Y | ≤ n values of j, we see that the probability that (25) fails at any stage is at
most

n · e−µd
bpb|Vi|/30 ,

which is smaller than one for all sufficiently large n by choice of p.
We conclude that there is a positive probability of choosing |Y | distinct vertices

in U , so |U | ≥ |Y | as desired. �

We stress that although the proof of Claim 4.2 constructs an embedding, this
embedding is not part of the final embedding of H into G, and exists only to verify
the claim. The same goes for the following claim.

Claim 4.3. If |Y | > |Xbuf
i | − %|Xi|, then |U | ≥ |Y |.

Proof. As in the proof of Lemma 1.21, the vertices V ′i \U are candidates only
for vertices of Xbuf

i \ Y , and since |V ′i | = |Xbuf
i |, what we need to show is that

|V ′i \ U | ≤ |Xbuf
i \ Y |.
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Let v ∈ V ′i be a vertex and let C(v) denote those vertices x from Xbuf
i for

which v is a candidate, i.e. C(v) denotes the neighbours of v in the candidate graph
between V ′i \ U and Xbuf

i \ Y . By (PRGA 2), for each vertex v of V ′i \ U we have
|C(v)| ≥ µ(d∆p/100)b|Xi|. By (PRGA 5), for all but at most ε′p∆|Vi| vertices v of
V ′i \ U , we have∣∣∣{v′ ∈ Vi : ∣∣{x ∈ Xbuf

i : v, v′ ∈ C(x)}
∣∣ > 24µ∆2

(
20

µζd∆

)b
p2b|Xi|

}∣∣∣ ≤ ε′p∆|Vi| . (27)

We choose an ordering v1, . . . , v|V ′i \U | of V ′i \U which puts the vertices v failing (27)

first. We choose, for each j = 1, . . . , |V ′i \ U |, a vertex xj uniformly at random from
the vertices of Xbuf

i \ {x1, . . . , xj−1} for which vj is a candidate if this is possible;
if not, we say xj does not exist. As in the previous claim, our aim is to show that
a.a.s. this does not occur.

Let H0 be the empty history, and for each 1 ≤ j ≤ |V ′i \U |, let Hj be the history
of this process up to and including choosing xj . We claim that, with positive probabil-
ity, at each step i we choose from a set of size at least 1

2 |C(vi)| ≥ 1
2µ(d∆p/100)b|Xi|.

We introduce random variables Z
(j)
i for j ∈ [|V ′i \ U |] and ` ∈ [j − 1] as follows.

We set Z
(j)
` = 1 if x` ∈ C(vj) and |C(v`) \ {x1, . . . , x`−1}| ≥ 1

2 |C(v`)| hold, and we

set Z
(j)
` = 0 otherwise. Observe that

∑j−1
`=1 Z

(j)
` is exactly the number of vertices xk

among x1, . . . , x`−1 which lie in C(vj) and which were chosen from a set of size at
least 1

2 |C(vk)|. Thus, it suffices to show that with positive probability, for every j
we have

j−1∑
`=1

Z
(j)
` < 1

2µ(d∆p/100)b|Xi| . (28)

If vj is a vertex failing (27), then j ≤ ε′p∆|Vi| < 1
4µ(d∆p/100)b|Xi|, where the

second inequality is by choice of ε′. Thus, even if all vertices x1, . . . , xj−1 happen to
be candidates for vj , we still have (28). Next we assume that vj satisfies (27). For
each of the at most ε′p∆|Xi| vertices v` such that∣∣{x ∈ Xbuf

i : vj , v` ∈ C(x)}
∣∣ > 24µ∆2

(
20µ−1ζ−1d−∆

)b
p2b|Xi| ,

the conditional expectation E(Z̃
(j)
` |H`−1) can be bounded from above by 1, while

for the remaining vertices, it is at most∣∣{x ∈ Xbuf
i : vj , v` ∈ C(x)}

∣∣
1
2 |C(v`)|

≤
24µ∆2

(
20µ−1ζ−1d−∆

)b
p2b|Xi|

1
2µ(d∆p/100)b|Xi|

≤ 48∆2
(

2000
µζd2∆

)∆
pb .

This yields

j−1∑
`=1

E
[
Z̃

(j)
`

∣∣H ′
`−1

]
≤ ε′p∆|Xi|+ |V ′i \ U | · 48∆2

(
2000
µζd2∆

)∆
pb ≤ 1

4µ(d∆p/100)b|Xi| ,

where the last inequality is because |V ′i \ U | ≤ %|Xi| and by choice of % and ε′. As

before, we apply Lemma 2.2 for each j ∈ [|V ′i \ U |] with δ = 1 and (Z̃(j))`∈[j−1].

We thus may bound the probability that vj is candidate for more than 1
2 |C(vi)| ≥

1
2µ(d∆p/100)b|Xi| of the vertices x1, . . . , xj−1 by at most e−µ(d∆p/100)b|Xi|/12. Taking
a union bound over the at most %|Xi| choices of j we see that with probability

1− %|Xi| · e−µ(d∆p/100)b|Xi|/12 > 0 (where the inequality is by choice of p), at each
step we choose from a set of size at least 1

2µ(d∆p/100)b|Xi| as claimed. In particular,

we succeed in choosing |V ′i \ U | distinct vertices of Xbuf
i \ Y , so as desired we have

|U | ≥ |Y |. �

The final case is to show that %|Xi| < |Y | ≤ |Xbuf
i | − %|Xi| = |V ′i | − %|Vi| and

|U | < |Y | is a contradiction. In this case, we have |V ′i \ U | > %|Vi|. By (PRGA 3)
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there are at most %|Xi| vertices of Xbuf
i with fewer than 1

2 (dp)b|V ′i \ U | candidates
in V ′i \ U , so in particular there is a vertex of Y with candidates in V ′i \ U , in
contradiction to the definition of U .

This completes the verification of Hall’s condition, so we can extend ψRGA to
an embedding ψ of H into G as desired, completing the proof of Lemma 1.25. �

4.2. Proof of the bijumbled graphs RGA lemma

The proof of Lemma 4.1 is very similar to the proof of Lemma 3.1 (RGA
lemma), and indeed we can reuse the auxiliary lemmas of Section 2.4. We again
use a random greedy algorithm which we show produces the desired embedding
with high probability. The difference from Algorithm 1 is that when at time t
we reach a vertex x in the order τ (given again by Lemma 2.26) which is in the
queue Qt, we do not skip it, but instead we embed it into V q. Thus, we will always
have t = τ(x)− 1. The embedding will be done uniformly at random into the set
Aq
t (x) \Bt(x). We remind, that Bt(x) is the set of bad vertices with respect to ψt

and Qt, that is, the vertices v such that the extension ψt ∪ {x→ v} is not a good
partial embedding or there is an unembedded neighbour y of x not in Qt such that
degG

(
v;Amain

t (y)
)
< (d− ε′)p|Amain

t (y)| holds (see Definition 2.24).
The embedding algorithm we use is the following Algorithm 3 below. Observe

Algorithm 3: Another random greedy algorithm

Input :G ⊆ Γ and H with partitions satisfying the General Setup; an
ordering τ on Xmain

t := 0 ;

ψ0 := ∅ ;

Q0 := {x ∈ V (H) : |Ix| < 1
2µ(d− ε)|Jx|p|Jx||V main(x)|} ;

repeat
let x ∈ Xmain \Dom(ψt) be the next vertex in the order τ ;

if x ∈ Qt and |Aq
t (x) \Bt(x)| < 1

10µζ(dp)π
∗
t (x)|V (x)| then

halt with failure ;

end

choose v uniformly at random in

{
Amain
t (x) \Bt(x) if x 6∈ Qt

Aq
t (x) \Bt(x) if x ∈ Qt

;

ψt+1 := ψt ∪ {x→ v} ;

Qt+1 := Qt ;

forall the y ∈ Xmain \Dom(ψt+1) do

if (
∣∣Amain

t+1 (y)
∣∣ < 1

2µ(d− ε′)π
∗
t+1(y)pπ

∗
t+1(y)|V main(y)|) then

Qt+1 := Qt+1 ∪ {y} ;

end

end

t := t+ 1;

until Dom(ψt) = Xmain;

tRGAend := t;

that there is an important difference from Algorithm 1. Algorithm 3 can fail, and we
will have to prove that with high probability it does not. This means proving that sets
Aq
t (x) do not get small, or equivalently that sets Cq

t (x) are never substantially covered
by Im(ψt). However there is also an important similarity: provided the algorithm
has not yet halted with failure, it maintains the same invariants as Algorithm 1 (see
Claim 4.4).
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Observe that (in contrast to Algorithm 1) if Algorithm 3 has not yet failed
at time t, then all of the first t vertices in the order τ have been embedded. Thus
π∗τ(x)−1(x) is always equal to πτ (x), where

πτ (x) :=
∣∣{y ∈ NH(x) : τ(y) < τ(x)}

∣∣+ |Jx| .

Much of the work of proving Lemma 4.1 is contained in the auxiliary lemmas in
Section 2.4 which we use again here. What remains is to justify that Algorithm 3 with
high probability does not halt with failure and does give a good partial embedding
with properties (PRGA 4) and (PRGA 5).

Proof of Lemma 4.1. We require

µ ≤ d∆

1320κ∆R′
, % ≤ µ2ζ2d2∆

2000 ,

ε′ ≤ µζd∆%
1000κ∆2∆R′4

∆ 2−4/% , ε ≤ min
(
(ε′)2, 2−∆ε′, %µζd

∆

20κ∆ , ε′

κ∆R′

)
,

p ≥ 1000∆4κr2
1

µζ%d∆ε

(
logn
n

)1/(2∆)
and 2−εpn/(κr1)r1n < 1 .

Recall that we assumed that Γ possesses properties NS(ε, r1,∆+1), RI(ε, (εa,b), ε
′, d, r1,∆+

1) and LNS(ε, r1,∆).
Let τ be an order on V (H) given by Lemma 2.26. We run Algorithm 3.

Claim 4.4. The following hold at each time t in the running of Algorithm 3.

(INV 1) ψt is a good partial embedding,
(INV 2) Either |Amain

t (x)| ≥ 1
2µ(d− ε′)π∗t (x)pπ

∗
t (x)|V main(x)| or x ∈ Qt.

(INV 3) When we embed x to create ψt+1, we do so uniformly at random into a set
of size at least 1

10µζ(dp)π
∗
t (x)|V (x)|.

Proof. Algorithm 3 maintains (INV 1) and (INV 2) by definition. Since 1
2µ(d−

ε′)bpb − 20∆2ε′pb > 1
10µζd

bpb by choice of ε′ for each 0 ≤ b ≤ ∆, by Lemma 2.25 it
also maintains (INV 3). �

As in the proof of Lemma 3.1, the conditions for Lemma 2.27 are met, so we
conclude that with probability at least 1−2−n/(κr1), at each time t when Algorithm 3
is running and for each i ∈ [r] we have |Qt ∩Xi| ≤ %|Xi| + |X∗i | ≤ 2%|Xi|, where
the final inequality is by (G 6). In order to show that Algorithm 3 runs successfully,
we need to show that the ‘halt with failure’ line is a.a.s. never reached, i.e. that if

x ∈ Qτ(x)−1 then
∣∣Aq

τ(x)−1(x) \Bτ(x)−1(x)| is at least 1
10µζ(dp)

π∗τ(x)−1(x)|Vi|. Since

we know by Lemma 2.25 that Bτ(x)−1(x) is small and by (GPE 3) that Cq
τ(x)−1(x)

is large, what we want is to show that Im(ψt−1) covers only a small fraction of
Cq
τ(x)−1(x).

Observe that we embed the vertices Qt ∩Xi into V q
i in a random procedure

which is very similar to the embedding strategy we used in the proof of Claim 4.2
(verification of Hall’s condition for small sets of buffer vertices). However here a
complication is that we do not know ‘in advance’ what Cq

τ(x)−1(x) will be when

embedding earlier vertices to V q
i . But we do know that it will be contained in

the Γ-neighbourhood in Vi of some collection of πτ (x) ≤ ∆ vertices, and that it
will be large. Thus, it suffices to prove the following. For each i, each 1 ≤ ` ≤ ∆
and v1, . . . , v` such that N∗Γ(v1, . . . , v`;Vi) is large, Im(ψt) never covers much of
N∗Γ(v1, . . . , v`;Vi). We can prove this statement by using the same analysis as in
the proof of Lemma 1.21, given a ‘sum condition’ similar to (PRGA 4). Thus our
next task is to show such a statement is likely to hold. We will also show that if
Algorithm 3 does not halt with failure then it is likely to have (PRGA 4), since the
arguments are similar.
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Claim 4.5. Suppose that for each i ∈ [r] and each time t we have |Qt ∩Xi| ≤
2%|Xi|. Then a.a.s. the following statements hold.

For any t, any 1 ≤ ` ≤ ∆, any i ∈ [r] and any vertices v1, . . . , v` such that

degΓ(v1, . . . , v`;Vi) ≥ ε′p`|Vi|

we have∑
y∈Xmain

i ∩Qt :
τ(y)≤t,Jy=∅

∣∣Uτ(y)−1(y) ∩N∗Γ(v1, . . . , v`;Vi)
∣∣∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣ ≤ µζd∆ degΓ(v1, . . . , v`;Vi)

20
. (29)

For any 1 ≤ ` ≤ ∆, any i ∈ [r] and any vertices v1, . . . , v` such that

degG(v1, . . . , v`;V
buf
i ) ≥ (dp− ε′p)`|V buf

i | ,

we define X ′i to be the set{
y ∈ Xbuf

i :
∣∣Ubuf
t (y)∩N∗G(v1, . . . , v`;V

buf
i )

∣∣ > (p+ εp)π
∗
t (y) degG(v1, . . . , v`;V

buf
i )

}
and we have∑

y∈X′i

∣∣Ubuf
t (y) ∩N∗G(v1, . . . , v`;V

buf
i )

∣∣∣∣Cbuf
t (y)

∣∣ ≤ degG(v1, . . . , v`;V
buf
i )

20
. (30)

The idea of the proof of (29) is as follows. The denominators on the left hand side
of (29) are by (INV 3) never much smaller than they ‘should’ be, so the main task is
to show that the numerators do not tend to be too large. To show this, we consider
the evolution of Ut(y) ∩ N∗Γ(v1, . . . , v`;Vi) for some fixed y as t increases. Since
Jy = ∅, at first this set has the size we expect, namely it is all of N∗Γ(v1, . . . , v`;Vi).
Each time a neighbour of y is embedded, we expect that the set size shrinks by a
factor roughly p. If this is the case for each neighbour, the size at t = τ(y)− 1 is
roughly a pπ

τ (y)-factor times its original size, which turns out to be a good enough
bound for (29). If not, there is some first time when we embed a neighbour of y, say
the sth neighbour, ‘badly’, that is, the set size does not shrink by a factor roughly p.
We say we fail at step s. At worst, it could be that the set size does not thereafter
change, so that it stays roughly a ps−1-factor times its original size. In this case
we ‘lose’ a pπ

τ (y)−s+1 factor. But the LNS property tells us that the probability
of failing at step s is less than pπ

τ (y)−s+1. Heuristically, this gets us back the lost
factor; to make it rigorous, we apply Lemma 2.2.

Proof. We require

% ≤ µ2ζ2d2∆

2000
, ε ≤ min

(
2−∆ε′,

%µζd∆

20κ∆

)
and p ≥ 20∆4κr2

1

%

(
logn
n

)1/∆
.

We start with (29). Given 1 ≤ ` ≤ ∆, let v1, . . . , v` be vertices of Γ such that
the set U := N∗Γ(v1, . . . , v`;Vi) has size at least ε′p`|Vi|. By (INV 3) we have the
lower bound ∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣ ≥ 1

10µζ(dp)π
τ (y)|Vi|

for the denominator in each summand of (29), and the difficulty is to upper bound
the numerator. Consider the running of Algorithm 3. At any time t ≤ τ(y)− 1, the
set Uq

t (y) ∩ U is the Γ-neighbourhood in U of the π∗t (y) embedded vertices from
NH(y), and in a truly random set we would thus ‘expect’ to find that

|Ut(y) ∩ U | ≤ (p+ εp)π
∗
t (y)|U | . (31)

If this inequality remains true up to t = τ(y)− 1, then since |Jy| = 0 by assumption,
we have π∗τ(y)−1(y) = πτ (y), and (31) gives an upper bound good enough for the
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summand

∣∣Uτ(y)−1(y)∩N∗Γ(v1,...,v`;Vi)
∣∣∣∣Aq

τ(y)−1
(y)\Bτ(y)−1(y)

∣∣ . However it is likely that some vertices will not

satisfy (31), and we have to estimate their contribution to (29).
We say that a vertex y ∈ Xmain

i fails at step s if the vertex z is the sth vertex
of NH(y) in τ and y satisfies (31) for each t ≤ τ(z) − 1 but fails (31) at t = τ(z).
Observe that each vertex y in the sum (29) satisfies (31) before any neighbour of y
is embedded because Jy = ∅. Thus, if y does not fail at any step s with 1 ≤ s ≤ ∆
then it satisfies (31) at time t = τ(y)− 1, but if for some 1 ≤ s ≤ ∆ it fails at step
s, then |Uτ(y)−1(y) ∩ U | ≤ (p+ εp)s−1|U |.

Suppose now that y fails at step s. Then the reason is that the vertex z, which is
the sth neighbour of y in τ , is embedded to a vertex of Γ with ‘too many’ neighbours
in Uτ(z)−1(y) ∩ U . Let W be a superset of Uτ(z)−1(y) ∩ U of size (p + εp)s−1|U |.
By choice of ε we have |W | ≥ εp`+s−1|Vi|. Because y fails at step s we see that
z is embedded to a vertex v of Γ with degΓ(v;W ) > (p + εp)s|U | = (p + εp)|W |.
By LNS(ε, r1,∆) we know that the number of such vertices v in Γ is at most
εp2∆−s|V (Γ)|/r2

1 (since ` ≤ ∆). Therefore, by (INV 3), the probability of embedding
z (which has at least one unembedded neighbour and hence at most ∆−1 embedded
neighbours) to such a vertex v, conditioning on the history up to but not including
embedding z, is at most

εp2∆−s|V (Γ)|/r2
1

µζ(dp)∆−1|Vi|/10
≤ %

2∆
p∆−s+1 ≤ %

2∆
pπ

τ (y)−s+1 ,

where the first inequality is by choice of ε and the second since πτ (y) ≤ ∆.
We can restate this as: the probability that y fails at step s = πτ (y) − j + 1,

conditioning on the history up to but not including the embedding of the vertex
at step s, is at most %

2∆p
j for each 1 ≤ j ≤ πτ (y). It follows that the expected

number of vertices y ∈ Xmain
i which fail at step πτ (y)− j + 1 is at most %

2∆p
j |Xi|,

and by Lemma 2.2, applied with δ = 1, the probability that more than %
∆p

j |Xi|
vertices y ∈ Xmain

i fail at step πτ (y) − j + 1 is at most exp
(
− %

6∆p
j |Xi|

)
. The

probability that, for each 1 ≤ j ≤ ∆, at most %
∆p

j |Xi| vertices y of Xmain
i fail at

step πτ (y)− j + 1 is thus at least

1−∆ exp
(
− %

6∆p
∆|Xi|

)
. (32)

Suppose this good event occurs, i.e. for each j, at most %
∆p

j |Xi| vertices y ∈
Xmain
i fail at step s = πτ (y)− j + 1. Since a vertex y failing at step j satisfies

|Uτ(y)−1(y) ∩ U | ≤ (p+ εp)π
τ (y)−j |U |

we have

∑
y∈Xmain

i :

|Uτ(y)−1(y)∩U |>(p+εp)π
τ (y)|U |

∣∣Uτ(y)−1(y) ∩ U
∣∣∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣

≤
∑

y∈Xmain
i :

y fails at step s=πτ (y)−j+1

(p+ εp)π
τ (y)−j |U |

1
10µζ(dp)πτ (y)|Vi|

≤
∆∑
j=1

(p+ εp)π
τ (y)−j |U | · %∆p

j |Xi|
1
10µζ(dp)πτ (y)|Vi|

≤ 20%|U |
µζd∆

≤ µζd∆|U |
40

, (33)
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where the last two inequalities are by choice of ε and % respectively. On the other
hand, because |Xmain

i ∩Qt| ≤ 2%|Xi|, we have∑
y∈Xmain

i ∩Qt:
|Uτ(y)−1(y)∩U |≤(p+εp)π

τ (y)|U |

∣∣Uτ(y)−1(y) ∩ U
∣∣∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣ ≤

∑
y∈Xmain

i ∩Qt

(p+ εp)π
τ (y)|U |

1
10µζ(dp)πτ (y)|Vi|

≤ (1 + ε)∆|U | · 2%|Xi|
1
10µζd

∆|Vi|

≤ 40%|U |
µζd∆

≤ µζd∆|U |
40

,

and putting these together we conclude (29).
It remains to bound the probability that for some vertices v1, . . . , v` with

degΓ(v1, . . . , v`;Vi) ≥ ε′p`|Vi| the inequality (29) is violated, in other words that
the good event mentioned above fails. There are r ≤ r1 choices of i, and at most
n+ n2 + · · ·+ n∆ ≤ ∆n∆ choices of v1, . . . , v`, so by the union bound and (32) the
probability of such a bad event occuring is at most

r1∆n∆ · 2∆ exp
(
− %

6∆κr1
p∆n

)
which tends to zero as n tends to infinity by choice of p.

We now come to (30). This inequality looks very much like (33) above, and its
proof is almost identical to the proof of (33). The differences are that we consider
G-neighbourhoods in V buf

i not Γ-neighbourhoods in Vi and that we have a lower
bound on Cbuf

t (x) from (GPE 3) rather than on |Aq
t (x) \Bt(x)| from (INV 3). Since

this lower bound is larger, the same constant choices work. We omit the details. �

We note that it is this claim which is most responsible for our eventual bijum-
bledness requirement on Γ. Although the proof may seem quite wasteful—we assume
that if one neighbour is embedded badly then potentially all future neighbours can
be embedded badly without any further penalty, which seems unreasonable—we
were not able to make it work with any weaker condition than LNS(ε, r1,∆) for
general graphs H. Our analysis is in some sense tight for vertices y which fail at
step πτ (y), when the final neighbour z of y coming before y in τ is embedded. What
still seems unreasonable is that all the vertices in Γ which have exceptionally high
degree to Uτ(z)−1(y) ∩ U turn out to be in Aτ(z)−1(z), which is the worst case we
are effectively using in our proof. We expect that a more careful analysis, possibly
involving some modification to Algorithm 3, would allow one to improve on this and
thus improve on the bijumbledness requirement of Lemma 1.25.

We can now use Lemma 2.2 to complete the proof that the sets Cq
t (x) do not

get covered by Im(ψt), much as in Claim 4.2 (verification of Hall’s condition for
small sets of buffer vertices).

Claim 4.6. A.a.s. for each x ∈ Xmain, at each time t ≤ τ(x)− 1 and before the
termination of Algorithm 3, we have

∣∣Cq
t (x) ∩ Im(ψt)

∣∣ < 1
2

∣∣Cq
t (x)

∣∣.
Proof. We require

ε ≤ ε′ ≤ 2−2∆, % ≤ µζd∆

30 and p ≥ 1000r1
µζd∆

(
logn
n

)1/∆
.

Suppose that the conclusions of Claim 4.5 hold (in particular (29) holds). Given
i ∈ [r] and x ∈ Xmain

i , if t ≤ τ(x)−1 and Algorithm 3 has not terminated before time

t, then by (GPE 3) and (G 5) we have
∣∣Cq
t (x)

∣∣ ≥ (1− ε′)µζ(dp− ε′p)π
∗
t (x)|Vi|. Since

Cq
t (x) ⊆ Ut(x) = N∗Γ(v1, . . . , v`;Vi) for some vertices v1, . . . , v` with ` = π∗t (x) ≤ ∆,
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we conclude by (29) that∑
y∈Xmain

i ∩Qt : τ(y)≤t
Jy=∅

∣∣Uq
τ(y)−1(y) ∩ Cq

t (x)
∣∣∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣ ≤ µζd∆

∣∣Ut(x)
∣∣

20
.

Observe that the summand in the above inequality is an upper bound for the
probability that y is embedded to Cq

t (x) for y ∈ Qt, conditioning on the history up
to but not including the embedding of y. Since the probability that y is embedded to
Cq
t (x) is zero if y is not in Qt, we are in a position to apply Lemma 2.2. This lemma,

with δ = 1, tells us that the probability that more than 1
10µζd

∆
∣∣Ut(x)

∣∣ vertices y

of Xmain
i with Jy = ∅ are embedded to Cq

t (x) is at most exp
(
− 1

60µζd
∆|Ut(x)|

)
. If

this ‘bad’ event does not occur, then by (GPE 2), (GPE 3) and (G 5), and because
the number of vertices in Xmain

i with Jy 6= ∅ is by (G 6) at most %p∆|Xi|, we have
the desired statement:∣∣Cq

t (x) ∩ Im(ψt)
∣∣ < 1

10µζd
∆
∣∣Ut(x)

∣∣+ %p∆|Xi| ≤ 1
2 (1− ε′)µζ(dp− ε′p)π

∗
t (x)|Vi|.

The probability that the conclusions of Claim 4.5 fail to hold, or that any of
the above ‘bad’ events occur, is at most o(1) + r1n

2 · exp
(
− 1

60r1
µζd∆(p− ε′p)∆n

)
,

which tends to zero as n tends to infinity by choice of p, completing the proof. �

If the conclusions of Lemma 2.27, Claim 4.5 and Claim 4.6 hold (which we think
of as being good events), then by (GPE 3) and Lemma 2.25 we have∣∣Aq

τ(x)−1(x) \Bτ(x)−1(x)
∣∣ ≥ 1

2µζ(dp− ε′p)π
τ (x)|Vi| − 20∆2ε′pπ

τ (x)|Vi|

and the right hand side is by choice of ε′ at least 1
10µζ(dp)π

τ (x)|Vi|. In other words,
the ‘halt with failure’ line of Algorithm 3 is never reached. Since each of the three
good events a.a.s. occurs, the algorithm a.a.s. completes successfully. Now (PRGA 1)
is guaranteed by successful completion of Algorithm 3, and (PRGA 3) is as (RGA 4)
in the proof of Lemma 3.1 implied by the good event of Lemma 2.27, while (PRGA 4)
is given by the good event of Claim 4.5, specifically taking (30) with t = tRGAend

and vertices ψt
(
NH(x)

)
for each x ∈ Xbuf

i .
Next we establish that (PRGA 2) a.a.s. holds. We apply Lemma 2.28 with

B = ∆ + 1 and T = τ(z) where z is the last vertex in N(Xbuf). Since N(Xbuf)
forms the initial segment of τ by Lemma 2.26(a ), we see that all vertices y embedded
up to time T have πτ (y) ≤ ∆− 1 ≤ B − 2, and by identical logic as in Claim 3.6
none of these vertices enter the queue. Therefore, by (GPE 3), Lemma 2.25 and
choice of ε′, each y from N(Xbuf) is embedded uniformly at random to a set of size
at least 1

10 (dp)π
τ (y)|V (y)|. Finally, by (H 3) we have |N(Xbuf) ∩Xi| ≤ 4κ∆R′µ|Xi|

for each i ∈ [r]. This justifies that the conditions of Lemma 2.28 are met, so we
conclude that a.a.s. the following event El2.28 occurs. For each v ∈ Vi and j such
that ij ∈ E(R′) we have

∣∣NG(v;V main
j ) \ Im(ψT )

∣∣ ≥ 1
2 degG(v;V main

j ).
We are now in a position to apply Lemma 2.29, again with B = ∆ + 1. Observe

that this time, if El2.28 occurs, it applies to any x ∈ Xbuf
i and v ∈ Vi, whether

or not x is in a clique buffer. The deduction that a.a.s. the embedding ψtRGAend

has (PRGA 2) follows exactly as in the proof of Lemma 3.1 (RGA lemma), and we
do not repeat it.

It remains to establish (PRGA 5). For this we require the following claim, which
shows that if vertices v and v′ are common candidates for too many x ∈ Xbuf

i

for (PRGA 5), then the reason is that they have an exceptionally large common
Γ-neighbourhood in some cluster.

Claim 4.7. Asymptotically almost surely at the termination of Algorithm 3 the
following holds. For each i and pair of vertices v, v′ ∈ Vi such that degΓ(v, v′;Vj) ≤
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(p+ εp)2|Vj | whenever ij ∈ R′, if b is such that Xbuf
i is a degree-b buffer, we have∣∣{x ∈ Xbuf

i : v, v′ ∈ C(x)}
∣∣ ≤ 24µ∆2

(
20µ−1ζ−1d−∆

)b
p2b|Xi| . (34)

To prove this we show that for each x ∈ Xbuf
i , however previous vertices are

embedded, it is not too likely that NH(x) is embedded to N∗Γ(v, v′), and apply
Lemma 2.2 and the union bound to deduce (34) for all i, v, and v′. In turn, to prove
the desired upper bound on the probability of embedding NH(x) to N∗Γ(v, v′), we
analyse the embedding of the vertices NH(x) = {y1, . . . , yb} one by one. We would
expect that in each case roughly a p2-fraction of U(yi) is contained in N∗Γ(v, v′), and
if this is the case at each step we obtain the desired upper bound. If not, the reason
is that a previously embedded vertex—which must be one of the yj since we have
not yet embedded any other neighbouring vertices—was ‘badly embedded’. Using
the LNS property, we show this is an unlikely event and again obtain the desired
upper bound. In fact, this is a slight oversimplification: we have to separate the
cases that exactly one vertex is embedded badly (which implies we still have only at
worst a probability p of embedding future vertices of NH(x) to N∗Γ(v, v′)) or that
more than one vertex is embedded badly, in which case we might have probability 1
of embedding future vertices of NH(x) to N∗Γ(v, v′), but this is counterbalanced by
the unlikelihood of embedding two vertices badly.

Proof. We require

ε ≤ min
(
2−∆, µζd

∆

10∆κ

)
and p ≥ 20µ−1κr1

(
logn
n

)1/(2∆)
.

Let v, v′ ∈ Vi be such that degΓ(v, v′;Vj) ≤ (p+εp)2|Vj | for each j such that ij ∈ R′.
Suppose that Xbuf

i is a degree-b buffer and b ∈ [∆].
Since any two vertices of Xbuf

i are at distance at least ten in H by (H 2), it
is enough to show for any one vertex x ∈ Xbuf

i , by considering the embedding
of NH(x), that the probability of v, v′ ∈ C(x), conditioning on the history up to

but not including the embedding of NH(x), is at most 3∆2
(
20µ−1ζ−1d−∆

)b
p2b. If

we show this, then, since the vertices of NH(x) are embedded consecutively, by
Lemma 2.2, applied with δ = 1 and using |Xbuf

i | = 4µ|Xi|, we see that (34) holds

with probability at least 1 − exp
(
− 4µ∆2

(
20µ−1ζ−1d−∆

)b
p2b|Xi|

)
, and taking a

union bound over the at most n2 choices of v, v′ we conclude that by choice of p the
conclusion of the claim a.a.s. holds as desired.

We now show that the probability of v, v′ ∈ C(x) is at most 3∆2
(
20µ−1ζ−1d−∆

)b
p2b

conditioning on any ψT where T = τ(x) − |NH(x)| − 1 is the time immediately
before the first vertex of NH(x) is embedded. Observe that v, v′ ∈ C(x) can occur
only if NH(x) is embedded into N∗Γ(v, v′). If y ∈ NH(x) ∩Xj , then the probability
that y is embedded into N∗Γ(v, v′) is, using (INV 3), at most∣∣Uτ(y)−1(y) ∩N∗Γ(v, v′)

∣∣
1
10µζ(dp)πτ (y)|Vj |

.

Thus, we would like to show that the numerator is at most (p+ εp)2+πτ (y)|V (y)| for
all y ∈ NH(x), since by multiplying conditional probabilities 10µ−1ζ−1(p+ εp)2 we
would obtain the desired upper bound. Of course, this does not always happen, since
it may be the case that a neighbour z of y in H with τ(z) < τ(y) was embedded
‘badly’, that is, to a vertex with more than

(p+ εp)
∣∣Uτ(z)−1(y) ∩N∗Γ(v, v′)

∣∣ (35)

neighbours in Uτ(z)−1(y)∩N∗Γ(v, v′). Because τ satisfies Lemma 2.26(a ), any such z

is in N(Xbuf). Since x is at distance at most 2 from z in H, and at distance at least
5 from any other vertex of Xbuf by (H 4), we see that z ∈ NH(x). Thus, if exactly
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s many neighbours z of y with τ(z) < τ(y) are embedded badly then we see that
with (35) the following inequality∣∣Uτ(y)−1(y)∩N∗Γ(v, v′)

∣∣ ≤ (p+εp)π
τ (y)−s|N∗Γ(v, v′)| ≤ (p+εp)π

τ (y)+2−s|V (y)| (36)

holds. We separate in what follows three cases.
First, no vertices in NH(x) are embedded badly. Then the probability that all

b vertices in NH(x) are embedded into N∗Γ(v, v′), conditioning on ψT , is at most(
20µ−1ζ−1d−∆p2

)b
by choice of ε.

Second, exactly one vertex in NH(x) is embedded badly. We let the vertices of
NH(x) be y1, . . . , yb in order of τ . Let us suppose that y` is the vertex embedded
badly. Then the probability that the first `− 1 vertices of NH(x) are embedded into

N∗Γ(v, v′), conditioning on ψT , is at most
(
20µ−1ζ−1d−∆p2

)`−1
by choice of ε (since

these are not badly embedded and conditional probabilities multiply).
We now estimate the probability of y` being embedded badly, conditioning on

ψT and on the embeddings of the previous `− 1 vertices not being bad. Observe
that, since there has been no previous bad embedding, we have for each `′ > `∣∣Uτ(y`)−1(y`′) ∩N∗Γ(v, v′)

∣∣ ≤ (p+ εp)πτ(y`)−1(y`′ )+2|V (y`′)| ,
and since πτ(y`)−1(y`′) ≤ ` − 1 ≤ ∆ − 2, the right hand side is, by choice of ε,

at least εp∆n/r1. By LNS(ε, r1,∆) the number of vertices in Γ with more than

(p + εp)πτ(y`)−1(y`′ )+3|V (y`′)| neighbours into Uτ(y`)−1(y`′) ∩ N∗Γ(v, v′) is at most

εp2∆−1n/r1. Since πτ (y`) ≤ `− 1, by (INV 3) the probability that y` is embedded
to such a bad vertex is at most

∆εp2∆−1n/r1

µζ(dp)`−1|V (y`)|/10
≤ p2∆−`

where the inequality is by choice of ε.
Finally, the probability that the last b− ` vertices are embedded into N∗Γ(v, v′),

conditioning on the previous embeddings, is at most
(
20µ−1ζ−1d−∆p

)b−`
by choice

of ε. Indeed, for each vertex `′ > ` we have by (36) that∣∣Uτ(y`′ )−1(y`′) ∩N∗Γ(v, v′)
∣∣ ≤ (p+ εp)π

τ (y`′ )+1|V (y`′)|
since we condition on exactly one neighbour of y`′ being embedded badly. This gives
the conditional probability at most 20µ−1ζ−1d−∆p. The conditional probabilities
multiply, and taking the union bound over the choices of `, we see that the proba-
bility of this case occurring and all vertices of NH(x) being embedded to N∗Γ(v, v′),
conditioning on ψT , is at most

∆ ·
(
20µ−1ζ−1d−∆p2

)`−1 · p2∆−` ·
(
20µ−1ζ−1d−∆p

)b−` ≤
∆
(
20µ−1ζ−1d−∆

)b−1
p2∆+b−2 ≤ ∆2

(
20µ−1ζ−1d−∆

)b
p2b,

where the last inequality follows since ∆ ≥ 2 and b ≤ ∆.
In the third case, at least two vertices in NH(x) are embedded badly. Suppose

that the first two badly embedded vertices are the jth and kth vertices. Then the
same logic as above, in particular the inequality (36), tells us that the probability
that this case occurs and all vertices of NH(x) are embedded to N∗Γ(v, v′) is at most

∆2 ·
(
20µ−1ζ−1d−∆p2

)j−1 · p2∆−j ·
(
20µ−1ζ−1d−∆p

)k−j−1 · p2∆−k ≤

∆2
(
20µ−1ζ−1d−∆

)b−2
p4∆−3.

Putting these three cases together, and using the fact that 4∆− 3 ≥ 2b since
∆ ≥ 2 and b ≤ ∆, we conclude that the probability that v, v′ ∈ C(x) is at most

3∆2
(
20µ−1ζ−1d−∆

)b
p2b as desired. �
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Suppose now that the good event of Claim 4.7 holds. For each i ∈ [r], there
may be ‘exceptional’ vertices v ∈ Vi which have more than (p+ εp)|Vj | neighbours
in Vj for some j such that ij ∈ R′, but by NS(ε, r1,∆ + 1) there are at most
∆R′εp

∆n/r1 ≤ ε′p∆|Vi| such vertices. If v is not exceptional—that is, it has at most
(p+ε)|Vj | neighbours in each Vj with ij ∈ R′—then again there may be ‘exceptional’
vertices v′ ∈ Vi such that v′ has more than (p+ εp)2|Vj | common neighbours with
v in Vj for some j such that ij ∈ R′, but again by NS(ε, r1,∆ + 1) there are at
most ∆R′εp

∆n/r1 ≤ ε′p∆|Vi| such. Because the good event of Claim 4.7 holds, for
non-exceptional pairs of vertices v, v′ we have the bound given in (PRGA 5). Because
the good event of Claim 4.7 holds a.a.s., property (PRGA 5) is a.a.s. obtained. This
completes the proof of Lemma 4.1. �



CHAPTER 5

Improved bounds for degenerate graphs

5.1. The RGA lemma and the proof of the blow-up lemma

In this section we prove Lemma 1.23. We have already seen most of the ideas
in the proofs of Lemmas 1.21 and 1.25. We use the same General Setup, and we
continue to obtain it using Lemma 2.22. However, rather than defining an order τ
putting the buffer vertices Xbuf at the end and their neighbours at the front, as we
did in the proofs of Lemmas 3.1 and 4.1, we are supplied with an order τ which
we will modify only in that we move Xbuf to the end of the order. In particular,
the neighbours of buffer vertices need not appear early in τ . The reason for this
is that moving vertices in the order could result in substantially increasing πτ (x)
for some vertices x. It is easy to check that moving Xbuf to the end of the order
only increases πτ (x) for x ∈ Xbuf , thus preserves conditions (ORD 1)–(ORD 3) for
non-buffer vertices.

We will use a modification of Algorithm 3 to perform this embedding. The
modification consists of handling the exceptional vertices Xe differently, which
allows us to deal with a few vertices x with πτ (x) significantly larger than normal;
such vertices appear in applications. We can show that this algorithm succeeds
in embedding all the vertices of Xmain, in the order τ , and that it returns a good
partial embedding with the properties detailed in the lemma below with positive
probability. Since we will have Xmain = V (H) \Xbuf , we can complete the proof
using Lemma 3.4 to embed the buffer vertices in much the same way as in the proof
of Lemma 1.21.

Note that property LCON which appears in the following lemma plays the same
rôle as LNS in the proof of Lemma 4.1. It is easier to work with, and allows for
linearly many image restrictions (but it is not in general true in bijumbled graphs).

Lemma 5.1. We assume the General Setup. Suppose that an (exceptional)
set Xe with |Xe| ≤ 1

2εp
maxx∈Xe π

τ (x)n/r1 is given. Suppose that D ≥ 1, and τ is

a
(
D, p, 1

2εn/r1

)
-bounded order for H, X̃ , I and J with this exceptional set Xe.

Suppose furthermore that the vertices Xbuf form the final segment of τ . Suppose that
Γ has properties NS(ε, r1, D), RI(ε, (εa,b), ε

′, d, r1, D) and LCON(ε, r1, D). Then
there is a good partial embedding ψRGA of H into G with the following properties
for each i ∈ [r]. Let b be such that Xbuf

i is a degree-b buffer.

(DRGA1 ) Every vertex in Xmain
i is embedded to V main

i ∪V q
i ∪V c

i by ψRGA, and no
vertex in Xbuf

i is embedded.
(DRGA2 ) For every set W ⊆ Vi of size at least %|Vi|, there are at most %|Xi| vertices

in Xbuf
i with fewer than (dp)b|W |/2 candidates in W .

(DRGA3 ) Every vertex in Vi is a candidate for at least

4−10∆3

2−1000D2µ−1ζ−1d−Dd2D2

∆−3µpb|Xi|

vertices of Xbuf
i .

87
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We will prove this lemma in Section 5.2. Assuming Lemma 5.1, we are in a
position to prove Lemma 1.23. This amounts to a verification that the conditions of
Lemma 1.23 suffice to apply Lemmas 2.17, 2.22, 3.4 and 5.1.

Proof of Lemma 1.23. First we choose constants as follows. Given ∆, ∆BL
R′ ,

∆J and D integers, αBL, ζBL and d > 0, and κBL > 1, we set ϑ = 0, ∆R′ =
8(∆ + ∆J)10∆BL

R′ , α = 1
2α

BL, ζ = 1
2ζ

BL and κ = 2κBL. We now choose

µ = α
20000κ∆4

R′∆
10(∆+2)

, % = µ2ζ2d3D2

10000κ(∆+1)4−2000∆3µ−1ζ−1d−D

and ε′ = µζd∆+1

1000∆4κ4∆ 2−280(D+1)µ−1ζ−1d−D .

Now for input D and d, ε′, Lemma 2.17 returns constants (εa,b) and εl(b ) > 0.
We set

ε = min
(
εl(b ),

dε′

κ

)
.

We let εBL = 1
16 (∆ + ∆J)−10ε and %BL = 1

16 (∆ + ∆J)−10%. Now Lemma 1.23

returns εBL and %BL. Given rBL
1 we let r1 = 8(∆+∆J )10rBL

1 . We choose C sufficiently
large for Lemma 2.17 with input D, d, ε′, r1 and %, and such that

C ≥ 108·410∆3
(∆+∆J )4κr2

1

ε2µζd∆+1 2280(D+1)µ−1ζ−1d−D .

Given p ≥ C
(

logn
n

)1/D
, Lemma 2.17 (items (a ), (b ), (c ) and (d )) states that

a.a.s. Γ = Gn,p has properties NS
(
ε, r1, D

)
, RI

(
ε, (εa,b), ε

′, d, r1, D
)
, CON(%, r1, D)

and LCON
(
ε, r1, D

)
respectively. From now on we will assume Γ is an n-vertex

graph which satisfies these four properties.
Given a graph RBL on rBL ≤ rBL

1 vertices, and a spanning subgraph R′BL with
∆(R′BL) ≤ ∆BL

R′ , and graphs H and G ⊆ Γ with vertex partitions XBL and VBL,
families of image restrictions IBL and of image restricting vertices J , a family of
potential buffer vertices X̃BL, and an exceptional set Xe, suppose that the conditions
of Lemma 1.23 are satisfied. Then Lemma 2.22 gives a graph R on r ≤ r1 vertices, a
spanning subgraph R′ with ∆(R′) ≤ ∆R′ , and κ-balanced size-compatible partitions
X and V of H and G respectively, each part having size at least n/(κr1), together

with a family X̃ of potential buffer vertices and I of image restrictions, subsets Xbuf
i

of X̃i for each i ∈ [r], and partitions Vi = V main
i ∪̇ V q

i ∪̇ V c
i ∪̇ V buf

i for each i ∈ [r]
which satisfy the General Setup.

We now modify the provided order τBL on V (H) by moving the set Xbuf to
the end of the order, obtaining a new order τ . Since εBLn/rBL

1 = 1
2εn/r1, the

order τ , which is (D, p, εBLn/rBL
1 )-bounded for H, X̃BL, IBL and J with the ex-

ceptional set Xe of size at most εBLpmaxx∈Xe π
τ (x)n/rBL

1 = 1
2εp

maxx∈Xe π
τ (x)n/r1, is

also
(
D, p, 1

2εn/r1

)
-bounded for H, X̃ , I and J .

We let Xmain = V (H) \Xbuf . We now begin the embedding of H into G. By
Lemma 5.1, there is a good partial embedding ψRGA with the properties stated
in that lemma. By (GPE 3), condition (CPM 1) of Lemma 3.4 is satisfied, while
condition (CPM 2) holds by (DRGA2 ) and (CPM 3) follows from (DRGA3 ) with

δ = 4−10∆3

2−1000D2µ−1ζ−1d−Dd2D2

∆−3µ .

Therefore, we can find an embedding ψ′ extending ψRGA which embeds Xbuf
i to

Vi \ Im(ψRGA). Repeating this for each i ∈ [r], which we may do since Xbuf is an
independent set in H, we obtain the desired embedding of H into G. �
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5.2. Proof of the degenerate graph RGA lemma

We prove Lemma 5.1 by analysing Algorithm 4 below. The analysis is quite
similar to what we saw before in the proofs of Lemmas 3.1 and 4.1 (indeed, the
main difference is that we are more careful to bound powers of p using D rather
than just ∆), so we will be brief and highlight the differences. The only difference
between Algorithm 3 and Algorithm 4 is that vertices of Xe are embedded into V c

rather than V main or V q.

Algorithm 4: Random greedy algorithm for degenerate graphs

Input :G ⊆ Γ and H with partitions satisfying the General Setup; an
ordering τ on Xmain

t := 0 ;

ψ0 := ∅ ;

Q0 := {x ∈ V (H) : |Ix| < 1
2µ(d− ε)|Jx|p|Jx||V main(x)|} ;

repeat
let x ∈ Xmain \Dom(ψt) be the next vertex in the order τ ;

if x ∈ Qt \Xe and |Aq
t (x) \Bt(x)| < 1

10µζ(dp)π
∗
t (x)|V (x)| then

halt with failure ;

end

if x ∈ Qt ∩Xe and |Ac
t(x) \Bt(x)| < 1

10µζ(dp)π
∗
t (x)|V (x)| then

halt with failure ;

end

choose v uniformly at random in


Amain
t (x) \Bt(x) if x 6∈ (Qt ∪Xe)

Aq
t (x) \Bt(x) if x ∈ Qt \Xe

Ac
t(x) \Bt(x) if x ∈ Xe

;

ψt+1 := ψt ∪ {x→ v} ;

Qt+1 := Qt ;

forall the y ∈ Xmain \Dom(ψt+1) do

if (
∣∣Amain

t+1 (y)
∣∣ < 1

2µ(d− ε′)π
∗
t+1(y)pπ

∗
t+1(y)|V main(y)|) then

Qt+1 := Qt+1 ∪ {y} ;

end

end

t := t+ 1;

until Dom(ψt) = Xmain;

tRGAend := t;

We will see that (ORD 1) (see Definition 1.22 of (D, p,m)-bounded order) is
precisely what we need to make Lemma 2.25 work with properties NS(ε, r1, D) and
RI(ε, (εa,b), ε

′, d, r1, D), so allowing us to prove that Bt(x) is always much smaller
than At(x). As in the proof of Lemma 4.1, our first task is to show that the algorithm
a.a.s. completes successfully. Again by Lemma 2.27 we can show that the queue
remains small. We can also show, using (ORD 2), that all vertices x ∈ Xi \Xe which
enter the queue have πτ (x) ≤ D/2. We embed the vertices of Xe ∩Xi which enter
the queue greedily into V c

i , and there are so few such vertices that this is guaranteed
to succeed. Property LCON(ε, r1, D) turns out to be what we need to verify that
the queue embedding of the remaining vertices a.a.s. is successful, using the same
strategy as in the proof of Lemma 4.1.
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At this stage we have (DRGA1 ) simply because the algorithm completes,
while (DRGA2 ) follows from Lemma 2.27. It remains to prove (DRGA3 ), which
is where we need to use (ORD 3). Here we deviate from the strategy we saw
previously. We can no longer assume that neighbours of buffer vertices appear early
in τ , and thus we have to prove that for any v ∈ V (G), even towards the end of
the embedding, it is still reasonably likely that neighbours of buffer vertices are
embedded to NG(v). We will see (Claim 5.6 below) that properties NS(ε, r1, D),
RI(ε, (εa,b), ε

′, d, r1, D) and LCON(ε, r1, D) allow us to show that a.a.s. given any
` ≤ D−maxx∈Xmain\Xe π

τ (x) vertices v1, . . . , v` ofG such thatN∗G(v1, . . . , v`;V
main
i )

is not small, the set N∗G(v1, . . . , v`;V
main
i ) is never completely filled by Im(ψt). The

idea of the proof remains similar to that of Lemma 2.28. We show, as there, that
when the first small fraction of the vertices in the order τ are embedded, only at
most half of N∗G(v1, . . . , v`;V

main
i ) is covered. But then we repeat this, showing that

the next small fraction of τ covers only at most half of what remains, and so on,
so that when all vertices are embedded what remains is an exponentially small,
but bounded away from zero, fraction of the original N∗G(v1, . . . , v`;V

main
i ). Once

we have shown this, completing the proof that NH(x) is not too unlikely to be
embedded to NG(v) for any x ∈ Xbuf and v ∈ V (x) can be done along similar lines
to the proof of Lemma 2.29.

Proof of Lemma 5.1. We require

µ ≤ 1
8 , % ≤

µ2ζ2d2D

10000(∆ + 1)
, ε′ ≤ µζd∆+1

1000∆2κ4∆
2−280(D+1)µ−1ζ−1d−D , ε ≤ dε′

κ

and p ≥ 10000·410∆3
∆3κr2

1

εµζd∆+1 2280(D+1)µ−1ζ−1d−D
(

logn
n

)1/D
.

We run Algorithm 4, using the order τ supplied to Lemma 5.1. We claim that
we can apply Lemma 2.25 to bound Bτ(x)−1(x). To see this, we consider three cases.

If x has no neighbours after τ(x) in τ , then Lemma 2.25 states that Bτ(x)−1(x) =
∅ without requiring any property of Γ.

If x has a neighbour y with τ(x) < τ(y), then (ORD 1) states that πτ (x) ≤ D−1,
so in particular π∗τ(x)−1(x) ≤ D − 1, satisfying (i ). Furthermore, (ORD 1) states

that πτ (y) ≤ D, so π∗τ(x)−1(y) ≤ D − 1 since x is not embedded, satisfying (ii ).

Now suppose that xy, yz ∈ E(H) for some unembedded y and z. There are two
cases to consider. First, if τ(y) < τ(z) then (ORD 1) states that πτ (y) ≤ D − 1
and πτ (z) ≤ D. Since x and y are unembedded at time τ(x)− 1, we thus have
π∗τ(x)−1(y) ≤ D − 2 and π∗τ(x)−1(z) ≤ D − 1, as required by (iii ). Second, if τ(y) >

τ(z), then π∗τ(x)−1(z) ≤ πτ (z) ≤ D − 1 by (ORD 1), while since πτ (y) ≤ D and

both the vertices x and z are unembedded, we have π∗τ(x)−1(y) ≤ D − 2, again as

required by (iii ).
Lastly, if there are unembedded vertices y and z such that xy, yz, xz are all

edges of H, then we claim π∗τ(x)−1(x), π∗τ(x)−1(y), π∗τ(x)−1(z) ≤ D − 2. To see this,

suppose τ(y) < τ(z). By (ORD 1) we have πτ (x) ≤ D − 2, πτ (y) ≤ D − 1 and
πτ (z) ≤ D. Since x and y are unembedded, we have π∗τ(x)−1(y) ≤ D−1−1 = D−2,

and π∗τ(x)−1(z) ≤ D − 2. Thus condition (iv ) is satisfied.

We conclude that
∣∣Bτ(x)−1(x)

∣∣ ≤ 20∆2ε′pπ
τ (x)|V (x)| for each x ∈ Xmain.

As before, the first task is to show that certain invariants are maintained. These
are identical to the invariants seen in the previous two RGA lemmas, but are repeated
here for the reader’s convenience.

Claim 5.2. The following hold at each time t in the running of Algorithm 4.

(INV 1) ψt is a good partial embedding,
(INV 2) Either |Amain

t (x)| ≥ 1
2µ(d− ε′)π∗t (x)pπ

∗
t (x)|V main(x)| or x ∈ Qt.
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(INV 3) When we embed x to create ψt+1, we do so uniformly at random into a set
of size at least 1

10µζ(dp)π
∗
t (x)|V (x)|.

Proof. Algorithm 4 maintains (INV 1) and (INV 2) by definition. Since 1
2µ(d−

ε′)π
τ (x)pπ

τ (x)− 20∆2ε′pπ
τ (x) > 1

10µζd
πτ (x)pπ

τ (x) by choice of ε′ for each x ∈ Xmain,
by Lemma 2.25 it also maintains (INV 3). �

As in the previous proofs, the conditions of Lemma 2.27 are met, so we conclude
that with probability at least 1 − 2−n/(κr1), for each i ∈ [r] and time t when
Algorithm 4 is running, we have

∣∣Qt ∩Xi

∣∣ < %|Xi|+ |X∗i | ≤ 2%|Xi| by (G 6).
We now want to show that Algorithm 4 a.a.s. does not halt with failure. Since

we know that
∣∣Bτ(x)−1(x)

∣∣ < 20∆2ε′pπ
τ (x)|V (x)|, by (GPE 3) and (G 5) it is enough

to show that a.a.s. we have∣∣Aq
τ(x)−1(x)

∣∣ ≥ 1
2

∣∣Cq
τ(x)−1(x)

∣∣ for x ∈ Xmain ∩Qτ(x)−1 \Xe , and∣∣Ac
τ(x)−1(x)

∣∣ ≥ 1
2

∣∣Cc
τ(x)−1(x)

∣∣ for x ∈ Xmain ∩Qτ(x)−1 ∩Xe .

The latter of these is easy, since we embed only vertices of Xe into V c, and
|Xe| ≤ 1

2εp
maxx∈Xe π

τ (x)n/r1, which by (GPE 3) and choice of ε is smaller than
1
2

∣∣Cc
τ(x)−1(x)

∣∣. We now establish the former inequality.

First, we show that we need only concern ourselves with x such that πτ (x) ≤ D/2.

Claim 5.3. For each x ∈ Xmain \Xe, if πτ (x) > D/2 then there is no time t
such that x ∈ Qt.

Proof. We require ε′ ≤ 1
4d
Dµ and ε ≤ κ−1ε′.

Suppose πτ (x) > D/2 and x 6∈ Xe. Let i be such that x ∈ Xi. By (ORD 2), x
is not image restricted, and all πτ (x) neighbours of x which precede x in τ occur
in the 1

2εp
πτ (x)n/r1 ≤ ε′pπ

τ (x)|Xi| places of τ before x. Because x is not image

restricted, at time t ≤ τ(x) − ε′pπτ (x)|Xi| we have Cmain
t (x) = V main

i , and hence
Amain
t (x) = V main

i \ Im(ψt). Because |Xmain
i | = |V main

i | − µ|Vi|, it follows that
|Amain
t (x)| ≥ µ|Vi|, and in particular x does not enter Qt at time t.

Now suppose t = τ(x)− ε′pπτ (x)|Xi|+ s for some 0 ≤ s ≤ ε′pπτ (x)|Xi| − 1. We
claim that

|Amain
t (x)| ≥ (dp− ε′p)π

∗
t (x)µ|Vi| − s .

Indeed, for s = 0 we have π∗t (x) = 0 and the statement |Amain
t (x) ≥ µ|Vi| was

established above. Now suppose the statement holds for some s ≥ 0. At time
t = τ(x) − ε′pπτ (x)|Xi| + s we embed a vertex y to obtain ψt+1. If y is neither a
neighbour of x nor in Xi, then Amain

t (x) = Amain
t+1 (x) and the statement holds for

s+ 1. If y is a neighbour of x, then we embed y to a vertex of At(y) \Bt(y), and
in particular to a vertex v such that degG

(
v;Amain

t (x)
)
≥ (d− ε′)p|Amain

t (x)|. We
conclude that

|Amain
t+1 (x)| ≥ (d− ε′)p

(
(dp− ε′p)π

∗
t (x)µ|Vi| − s

)
> (dp− ε′p)π

∗
t+1(x)µ|Vi| − s− 1 .

as desired. Finally, if y ∈ Xi then we have Amain
t+1 (x) = Amain

t (x) \ {y}, and again

|Amain
t+1 (x)| ≥ (dp− ε′p)π

∗
t+1(x)µ|Vi| − s− 1 .

Thus for each τ(x)− ε′pπτ (x)|Xi| ≤ t ≤ τ(x)− 1 we have

|Amain
t (x)| ≥ (dp− ε′p)π

∗
t (x)µ|Vi| − ε′pπ

τ (x)|Xi| ≥ 1
2 (dp− ε′p)π

∗
t (x)µ|Vi| ,

where the final inequality is by choice of ε′. It follows that x does not satisfy the
condition to enter Qt. Since we embed x at time τ(x) − 1, we conclude that as
desired there is no time t such that x ∈ Qt. �
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As in the proof of Lemma 4.1 the next step is to establish a ‘sum condition’.
In fact, we establish almost the same inequality as (29) in Claim 4.5 (the right
hand side is identical, while the left hand side sum runs over all vertices outside Xe,
including those y with Jy 6= ∅), though we use a different analysis to do so.

Claim 5.4. Suppose that Γ has LCON(ε, r1, D). Then the following statement
holds.

For any t, any 1 ≤ ` ≤ D/2, any i ∈ [r] and any vertices v1, . . . , v` such that

degΓ(v1, . . . , v`;Vi) ≥ ε′p`|Vi|

we have∑
y∈Xmain

i ∩Qt\Xe :
τ(y)≤t

∣∣Uτ(y)−1(y) ∩N∗Γ(v1, . . . , v`;Vi)
∣∣∣∣Aq

τ(y)−1(y) \Bτ(y)−1(y)
∣∣ ≤ µζd∆ degΓ(v1, . . . , v`;Vi)

20
. (37)

The proof of this amounts to checking that the images under our embedding of
the NH(y) for y ∈ Xmain

i ∩Qt \Xe form a family of sets to which we can apply the
LCON property. This property gives us the desired inequality.

Proof. We require % ≤ µ2ζ2dD+∆

10000(∆+1) , ε′ ≤ µζ(d/4)D and ε ≤ ε′

κ . Since the left

hand side of (37) is increasing in t, we may assume t is the time at which Algorithm 4
ends.

Given 1 ≤ ` ≤ D/2 and i ∈ [r], let v1, . . . , v` be vertices such that U :=
N∗Γ(v1, . . . , v`;Vi) has size at least ε′p`|Vi|. By choice of ε and ε′, we have |U | ≥
εp`n/r1. It follows that we can apply LCON(ε, r1, D) to bound the number of edges
in CG(Γ, U,F) for any 1 ≤ j ≤ D/2 and family F of pairwise disjoint j-sets in
V (Γ) \ U . We set

Fj :=
{

Πτ(x)−1(x) ∪ Jx : x ∈ Xmain
i ∩Qt \Xe, πτ (x) = j, τ(x) ≤ t

}
.

Observe that Fj is indeed a family of j-sets by definition of πτ (x), that these j-sets
are pairwise disjoint because no vertex of H has more than one neighbour in Xi

by (H 2), and element F of Fj intersects U ⊆ Vi because these sets F are images
under ψ of neighbours of vertices in Xi. Because ε|U |, |Xmain

i ∩ Qt| ≤ 2%|Xi|, by
choice of ε and by LCON(ε, r1, D) we have

e
(
CG(Γ, U,Fj)

)
≤ 7pj |U |(2%|Xi|) = 14%pj |U ||Xi| .

By definition of Ut(x) (see Section 2.3.5) we have the following equality

e
(
CG(Γ, U,Fj)

)
=

∑
x∈Xmain

i ∩Qt\Xe:πτ (x)=j,τ(x)≤t

|Uτ(x)−1(x) ∩ U |

and hence ∑
x∈Xmain

i ∩Qt\Xe:πτ (x)=j,τ(x)≤t

|Uτ(x)−1(x) ∩ U | ≤ 14%pj |U ||Xi|

for each 1 ≤ j ≤ D/2. Observe that the j = 0 case of the same inequality is trivially
true (indeed with 14 replaced by 2, though we will not use this): each vertex of
Xmain
i ∩Qt contributes at most |U | to the sum. Now by (INV 3) we have∣∣Aq

τ(x)(x) \Bτ(x)(x)
∣∣ ≥ 1

10µζ(dp)π
τ (x)|Vi|
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for each x ∈ Xmain
i ∩Qt with τ(x) ≤ t. Finally, since any vertex x in Xmain

i ∩Qt
satisfies πτ (x) ≤ D/2 by Claim 5.3, we conclude that∑

x∈Xmain
i ∩Qt\Xe:
τ(x)≤t

|Uq
τ(x)(x) ∩ U |

|Aq
τ(x)(x) \Bτ(x)(x)

∣∣ ≤ D/2∑
j=0

∑
x∈Xmain

i ∩Qt\Xe:
πτ (x)=j,τ(x)≤t

14%pj |U ||Xi|
1
10µζ(dp)πτ (x)|Vi|

≤ 14(1 +D/2)%|U ||Xi|
1
10µζd

D/2|Vi|
≤ µζd∆

20 |U |,

where the final inequality is by choice of %, as desired. �

Now we have

Claim 5.5. A.a.s. for each x ∈ Xmain \Xe, at each time t ≤ τ(x)−1 and before
the termination of Algorithm 4, we have

∣∣Cq
t (x) ∩ Im(ψt)

∣∣ < 1
2

∣∣Cq
t (x)

∣∣.
Proof. The proof of Claim 4.6, if we replace Xmain with Xmain \ Xe, and

replace (29) with (37), without handling image restricted vertices specially (since
condition (37) deals with them), gives this claim verbatim. �

As in the proof of Lemma 4.1, the conclusion of Claim 5.5 holds a.a.s., which
implies that Algorithm 4 completes successfully. Again, the successful running
implies (DRGA1 ), and the good event of Lemma 2.27 holding implies (DRGA2 ).

We would like to emphasise at this point that we have established all the
desired conclusions of Lemma 5.1 except (DRGA3 ), and we have so far not used
condition (ORD 3), and not used the second part of (ORD 1) (which states πτ (x) ≤
Dx − 1 for x ∈ N(X̃) ). It follows that one can establish a version of Lemma 5.1
omitting (DRGA3 ) given an order τ which need only satisfy the first part of (ORD 1)
(which states πτ (x) ≤ Dx for all x ∈ V (H) ) and (ORD 2). We will return to this
point in Section 7.1.3.

We now turn to proving (DRGA3 ). First, we show that G-common neighbour-
hoods of at most D − maxx∈Xmain\Xe π

τ (x) vertices which are large do not get
completely filled at any time in the running of Algorithm 4. Note that the strange-
looking number of vertices whose G-neighbourhoods we control comes from (ORD 3).
When we use this condition, we will want to control a G-common neighbourhood
of a vertex v ∈ Vi (which we eventually want to show is likely to be candidate for
many vertices of Xbuf) together with the embedded images of some neighbours of a
vertex x ∈ N(Xbuf). What this condition says is that we have the desired control
for all the neighbours of x which are embedded before τ(x) − 1

2εp
Dn/r1; we will

see that neighbours embedded after this time can be dealt with easily. This lemma
replaces Lemma 2.28 which we used in the proofs of the previous two RGA lemmas.

Claim 5.6. Suppose that Γ has LCON(ε, r1, D). Then a.a.s. the following
holds at each time t. Given any i ∈ [r], any 1 ≤ ` ≤ D − maxx∈Xmain\Xe π

τ (x),

and any vertices v1, . . . , v` of G, the following hold. If degG(v1, . . . , v`;V
main
i ) ≥

(dp/2)`|V main
i |, then∣∣N∗G(v1, . . . , v`;V

main
i )\Im(ψt)

∣∣ ≥ (1−4µ)2−280(D+1)µ−1ζ−1d−D degG(v1, . . . , v`;V
main
i ) .

(38)
If degG(v1, . . . , v`;V

q
i ) ≥ (dp/2)`|V q

i |, then∣∣N∗G(v1, . . . , v`;V
q
i ) \ Im(ψt)

∣∣ ≥ 1
2 degG(v1, . . . , v`;V

q
i ) . (39)

The proof of (38), as discussed at the beginning of this section, roughly amounts
to repeating the argument of Lemma 2.28 several times. We show that, for some
small constant η, each successive interval consisting of an η-fraction of the vertices
Xmain
i is likely to cover less than half of whatever of N∗G(v1, . . . , V`;V

main
i ) was
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uncovered before embedding that interval. The argument for each given interval is
morally similar to that seen in Lemma 2.28, though here we take a short-cut by
using property LCON rather than NS, which simplifies the calculations.

Proof. Let h = maxx∈Xmain\Xe π
τ (x). We require

µ ≤ 1
8 , % ≤ µ2ζdD

1000(D + 1)
,

ε < 1
22−280(D+1)µ−1ζ−1d−D

(
d
2

)D+1
and p ≥ 1000∆2

εµζdD

(
logn
n

)1/D
.

We first prove inequality (38). Set η = µζdD

280(D+1) . Given i ∈ [r] and 1 ≤ ` ≤ D − h,

suppose that v1, . . . , v` ∈ V (Γ) are such that N∗G(v1, . . . , v`;V
main
i ) ≥ (dp/2)`|V main

i |.
We split the vertices of Xmain

i \Xe into intervals Int1, . . . , Int1/η of equal size, with

the first being the first η|Xmain
i \Xe| vertices in the order τ , and so on.

We now aim to show that for any fixed set U ⊆ Vi of size at least εp`|Vi| and
any 1 ≤ j ≤ 1/η, conditioning on the embedding up to the last vertex of Intj−1,
with high probability at most 1

2 |U | vertices of Intj are embedded to U . To that end,
for each x ∈ Intj let Hx,j denote the history up to but not including the embedding
of x. By definition of h, all vertices x ∈ Intj have πτ (x) ≤ h, so we split the vertices
x of Intj up into h+ 1 classes according to πτ (x). We apply LCON(ε, r1, D) with
the set U and the family Fs of s-sets given by the embedded images of NH(x) for
x ∈ Intj with πτ (x) = s. Since ε|U |, |Fs| ≤ η|Xmain

i |, we obtain the inequality∑
x∈Intj :πτ (x)=s

∣∣Uτ(x)−1(x) ∩ U
∣∣ ≤ 7ps|U |η|Xmain

i | .

Now each x ∈ Intj with πτ (x) = s is by (INV 3) embedded uniformly at random
into a set of size at least 1

10µζ(dp)s|Vi|. We thus have∑
x∈Intj

P
(
x is embedded to U

∣∣Hx,j

)
≤ (h+ 1)

70η|U |
µζdh

≤ (D + 1)
70η|U |
µζdD

and by Lemma 2.2 with δ = 1 we see that the probability that more than

140(D + 1)ηµ−1ζ−1d−D|U | ≤ 1
2 |U |

of the vertices in Intj are embedded to U is at most

exp
(
−(D + 1) 70η|U |

3µζdD

)
≤ n−D−1 ,

where the inequality is because |U | ≥ εpD−h|Vi| and by choice of p. This is what we
wanted to show about U , and we will now proceed to use it for various choices of U .

Let U0 = N∗G(v1, . . . , v`;V
main
i ), and Uj = Uj−1 \ ψtj+1

(Intj) for each j ≥ 1. In

the event that |Uj | ≥ 1
2 |Uj−1| for each j, we have

|Uj | ≥ 2−1/η(d/2)`p`|V main
i | ≥ εp`|Vi|

for each j, where the final inequality is by choice of ε. In other words, each Uj−1 is
large enough for the above probabilistic calculation to be valid, so taking a union
bound over the 1/η choices of j, we see that with probability at least 1− η−1n−D−1

we have∣∣N∗G(v1, . . . , v`;V
main
i ) \ Im(ψtj )

∣∣ ≥ (1− 4µ)21−j degG(v1, . . . , v`;V
main
i )

for each 1 ≤ j ≤ 1/η + 1. Taking a union bound over the at most r1 choices of
i ∈ [r] and n+ n2 + · · ·+ nD choices of v1, . . . , v` we see that the desired event of
the lemma holds with probability at least 1− r1Dη

−1n−1, which tends to one as n
tends to infinity.
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The proof of (39) is simpler. Observe that |Xq
i | ≤ 2%|Xi| < η|Xmain

i |, and
degG(v1, . . . , v`;V

q
i ) ≥ (dp/2)`|V q

i | ≥ εp`|Vi| so that the analysis above, with only
one ‘interval’ Xq

i \Xe, gives the desired result. �

Finally, we are in a position to prove (DRGA3 ), which we do in the following
claim. The proof is quite similar to that of Lemma 2.29, which amounts to show
that any vertex v ∈ Vi is likely to be a candidate vertex for ‘reasonably’ many of the
buffer vertices Xbuf

i . More precisely, our strategy is to fix a vertex v ∈ Vi and show
that the inequality (40) below, which encapsulates these reasonable bounds, holds
with sufficiently high probability to apply the union bound over all v ∈ V (G). To do
this, we introduce the concept of an (x→ v)-buffer partial embedding for x ∈ Xbuf

i .
As in the proof of Lemma 2.29, this is a good partial embedding which has a few
extra properties that let us show that it is not too unlikely that NH(x) is embedded
to NG(v). As there, the proof that it is not too unlikely that at each step Algorithm 4
maintains an (x→ v)-buffer partial embedding is mainly ‘bookkeeping’ and long
but not very hard. However, there is an important difference. It is no longer useful
to simply multiply the conditional probabilities of maintaining an (x→ v)-buffer
partial embedding in order to estimate the conditional probability that NH(x) is
embedded to NG(v). This is because the vertices NH(x) are no longer embedded
as a segment of τ , so that Lemma 2.2 is not applicable directly to these products
of conditional probabilities. Nevertheless we show below that we can still apply
Lemma 2.2, several times and with some extra care, to obtain the desired bounds.

Claim 5.7. The following holds a.a.s. for each i ∈ [r]. Let b be such that Xbuf
i

is a degree-b buffer. Then for each v ∈ Vi we have∣∣{x ∈ Xbuf
i : v ∈ CtRGAend

(x)}
∣∣ ≥ 4−10∆3

2−1000D2µ−1ζ−1d−Dd2D2

∆−3µpb|Xi| .
(40)

Proof. We require

µ ≤ 1
8 , ε′ < µζd∆

1000∆2κ4∆ · 2−280(D+1)µ−1ζ−1d−D , ε ≤ ε′ ,

and p > 10000 · 410∆3

∆3κr1µ
−1d−∆−1 · 2280(D+1)µ−1ζ−1d−D

(
logn
n

)1/D
.

Let β = (1− 4µ)2−280(D+1)µ−1ζ−1d−D . It is convenient to consider only vertices
of Xbuf

i which are far from Xe; since Xe is very small, doing so does not exclude
many vertices of Xbuf

i .
Given x ∈ Xbuf

i which is at distance greater than three from any vertex of Xe,
and v ∈ Vi, we say that a good partial embedding ψ is an (x → v)-buffer partial
embedding if the following hold.

(BPE1 ) For each y ∈ Dom(ψ) ∩NH(x) we have ψ(y) ∈ NG(v).
(BPE2 ) For each unembedded y ∈ NH(x) we have

U(y) ∩NΓ(v) = (p± ε′p)π
∗(y) degΓ

(
v;V (y)

)
,

Umain(y) ∩NΓ(v) = (p± ε′p)π
∗(y) degΓ

(
v;V main(y)

)
and

Uq(y) ∩NΓ(v) = (p± ε′p)π
∗(y) degΓ

(
v;V q(y)

)
(BPE3 ) For each unembedded y ∈ NH(x) we have

Cq(y) ∩NG(v) ≥ (dp− ε′p)π
∗(y) degG

(
v;V q(y)

)
and

Cmain(y) ∩NG(v) ≥ (dp− ε′p)π
∗(y) degG

(
v;V main(y)

)
(BPE4 ) For each unembedded y, z ∈ NH(x) with yz ∈ E(H), the pair

(
U(y) ∩

NΓ(v), U(z) ∩NΓ(v)
)

is (επ∗(y),π∗(z), d, p)-regular in G.
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(BPE5 ) For each unembedded y ∈ NH(x) and z ∈ NH(y), the pair
(
U(y) ∩

NΓ(v), U(z)
)

is (επ∗(y),π∗(z), d, p)-regular in G.

Much as in the proof of Lemma 2.29, the empty partial embedding ψ0 is
an (x → v)-buffer partial embedding. Indeed, (BPE1 )–(BPE3 ) are trivially true
since by (H 5) neighbours of buffer vertices are not image restricted. For (BPE4 )
and (BPE5 ), since buffer vertices are by (H 5) at distance at least three from image
restricted vertices the sets U(y) and U(z) are equal to V (y) and V (z) respectively,

and the required regularity is thus given by (G 2), since Xbuf
i ⊆ X̃i.

Given an (x→ v)-buffer partial embedding ψ and an unembedded vertex y, we
let P (y) be the set of poor vertices for y, namely those vertices u ∈ C(y) such that
either ψ ∪ {y → u} is not an (x→ v)-buffer partial embedding, or such that there
is an unembedded z ∈ NH(y) ∩NH(x) such that either of the following conditions
hold:

degG
(
u;Amain(z) ∩NG(v)

)
≤(d− ε′)p

∣∣Amain(z) ∩NG(v)
∣∣ or

degG
(
u;Aq(z) ∩NG(v)

)
≤(d− ε′)p

∣∣Aq(z) ∩NG(v)
∣∣ . (41)

Observe that if y is at distance four or greater from x in H, then P (y) is always
empty. This has two important consequences. First, we are about to talk about the
probability of no vertices being embedded to poor vertices: this is really a condition
on at most 3∆3 vertex embeddings. Second, it means that if x, x′ ∈ Xbuf

i , by (H 2)
the distance between x and x′ is at least ten, so that any given vertex embedding
affects at most one of whether we have an (x→ v)-buffer partial embedding or an
(x′ → v)-buffer partial embedding.

Before we try to estimate the probability of maintaining an (x → v)-buffer
partial embedding, we strengthen the conclusion of Claim 5.6 to cover the ‘last few
vertices’ before embedding y ∈ NH(x).

Fact 5.8. For a given x ∈ Xbuf
i at distance greater than three from Xe and a

fixed v ∈ V (x), provided that up to time t no vertex has been embedded to a poor
vertex (with respect to an (x → v)-buffer partial embedding), for each y ∈ NH(x)
with τ(y) > t, the following a.a.s. hold.∣∣Amain

t (y) ∩NG(v)
∣∣ ≥ β

2 (dp/2)π
∗
t (y) degG

(
v;V main(y)

)
and∣∣Aq

t (y) ∩NG(v)
∣∣ ≥ 1

4 (dp/2)π
∗
t (y) degG

(
v;V q(y)

)
.

(42)

We will see that Claim 5.6, together with (ORD 3), show that this fact holds
provided t ≤ τ(y)− 1

2εp
Dn/r1. The number of vertices embedded in the remaining

1
2εp

Dn/r1 is too small to significantly fill up either of these sets, so we need only show
that embedding neighbours of y does not adversely affect (42). This is guaranteed
by condition (41) in the definition of poor vertices.

Proof. Let h = maxz∈Xmain\Xe π
τ (z). Since Xbuf

i ⊆ X̃ and y ∈ NH(x) we infer

by (ORD 3) that all but at most s neighbours z of y satisfy τ(y)−τ(z) ≤ pD · 12εn/r1

for some s ≤ D− 1− h (recall that τ is a (D, p, 1
2εn/r1)-bounded order). Therefore,

if t ≤ τ(y) − 1
2εp

Dn/r1 then π∗t (y) ≤ s ≤ D − 1 − h, so that Π∗t (y) ∪ {v} is
by (BPE3 ), (G 3) and (G 1) a set of s + 1 ≤ D − h vertices in G with at least
(dp/2)s+1|V q(y)| common neighbours in V q(y) and at least (dp/2)s+1|V main(y)|
common neighbours in V main(y).

Therefore, by Claim 5.6, we have∣∣Amain
t (y) ∩NG(v)

∣∣ ≥ β(dp/2)π
∗
t (y) degG

(
v;V main(y)

)
and∣∣Aq

t (y) ∩NG(v)
∣∣ ≥ 1

2 (dp/2)π
∗
t (y) degG

(
v;V q(y)

)
,
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which gives (42) for this range of t. Now suppose that

t = τ(y)− εpD · 1
2n/r1 + `

for some 0 ≤ ` < 1
2εp

Dn/r1. We claim that∣∣Amain
t (y) ∩NG(v)

∣∣ ≥ β(dp/2)π
∗
t (y) degG

(
v;V main(y)

)
− ` and∣∣Aq

t (y) ∩NG(v)
∣∣ ≥ 1

2 (dp/2)π
∗
t (y) degG

(
v;V q(y)

)
− ` .

(43)

Indeed, we have just established that (43) holds for ` = 0. Given ` ≥ 1, suppose
that (43) holds for ` − 1, and consider the vertex z embedded at time τ(z) =
τ(y)− εpD · 1

2n/r1 + `.
If z is not a neighbour of y, then its embedding decreases either of the sets on

the left hand side of (43) by at most one, so the inequality continues to hold. If z is
a neighbour of y, then by (41) in the definition of P (z) we have∣∣Aq

τ(z)(y) ∩NG(v)
∣∣ ≥ (d− ε′)p

∣∣Aq
τ(z)−1(y) ∩NG(v)

∣∣
≥ 1

2 (dp/2)π
∗
τ(z)(y) degG

(
v;V q(y)

)
− (d− ε′)p`

where the second inequality is by choice of ε′ and (43). A similar inequality holds
for
∣∣Amain

τ(z) (y) ∩NG(v)
∣∣. Thus again (43) continues to hold. We conclude that (43)

holds for all 0 ≤ ` < 1
2εp

Dn/r1.

Now since x ∈ Xbuf , we have τ(x) > τ(y), so that by (ORD 1) we have π∗t (y) ≤
πτ (y) ≤ D− 1. By (G 3) and choice of ε, we conclude that (42) holds for all t < τ(y)
as desired. �

We now continue with the proof of Claim 5.7 by estimating the probability of
not choosing a poor vertex at a given step in Algorithm 4.

Fact 5.9. Suppose that ψ is a good partial embedding generated together with
a queue set Q by Algorithm 4 which is also an (x → v)-buffer partial embedding,
where x is at distance greater than three from any vertex of Xe, and (42) holds
for ψ and all unembedded y. Given an unembedded y, suppose that u is a vertex
chosen uniformly at random in Amain(y) \B(y) (if y 6∈ Q∪Xe), in Aq(y) \B(y) (if
y ∈ Q \Xe) or in Ac(y) \B(y) (if y ∈ Xe). Then the following hold.

• If distH(x, y) > 3 then P
(
u 6∈ P (y)

)
= 1,

• If distH(x, y) ∈ {2, 3} then P
(
u 6∈ P (y)

)
≥ 1

2 , and

• If distH(x, y) = 1 then P
(
u 6∈ P (y)

)
≥ βdD−14−Dp.

The proof of this fact is quite similar to the analysis in Lemma 2.29. Note that
the use we make of ψ and Q being generated by Algorithm 4 is that the invariants
of Claim 5.2 hold; we do not in the following proof perform any analysis of the
probabilistic process generating ψ and Q.

Proof. If distH(x, y) > 3 then P (y) = ∅ and the claim is trivial.
By (INV 3) we embed y uniformly at random into a set of size at least 1

10µζ(dp)π
τ (y)|V (y)|.

Thus in order to show the second item we simply need to establish that P (y) ∪
B(y) is small compared to this set; this can be established using NS(ε, r1, D),
RI(ε, (εa,b), ε

′, d, r1, D) and the buffer and good partial embedding properties, as
in the proof of Lemma 2.29. Note that to do this we need to use the fact, given
by (ORD 1), that πτ (z) ≤ Dz − 1 for each z ∈ N(X̃), in other words that πτ (z) ≤
D − 2 for all z ∈ NH(x) and πτ (z) ≤ D − 3 if there is a triangle zww′ in H
with τ(w), τ(w′) > τ(z). Note further that in order to establish that few vertices
fail (41), we need to know that Amain(z) ∩NG(v) and Aq(z) ∩NG(v) are not small
in comparison to U(z) ∩NΓ(v). This follows from (42) since z ∈ NH(x).



5.2. PROOF OF THE DEGENERATE GRAPH RGA LEMMA 98

Finally, we embed y uniformly at random into a subset of U(y), which by (GPE 2)
has size at most 2pπ

τ (y)|V (y)|. If xy ∈ H, we need to show that it is not too unlikely
that y is embedded to NG(v). By (42), (G 3) and choice of β, we see that∣∣Amain(y) ∩NG(v)

∣∣, ∣∣Aq(y) ∩NG(v)
∣∣ ≥ β

4 (dp/2)π
τ (y)|V (y)| .

It is thus enough to show that at most half of these vertices are in P (y) ∪ B(y),
which again we can do using NS(ε, r1, D), RI(ε, (εa,b), ε

′, d, r1, D) and the buffer
and good partial embedding properties, as in the proof of Lemma 2.29. Again, we
use the fact πτ (z) ≤ Dz − 1 for z ∈ NH(x) in this verification. �

We now continue with the proof of Claim 5.7. We fix i and v ∈ Vi. We have
established that for any given vertex x of Xbuf

i far from Xe, the probability that
NH(x) is embedded to NG(v) is not too small. Furthermore, this probability is more
or less given by the embeddings of vertices at distance at most three from x: and
distinct vertices of Xbuf

i are at distance at least ten by (H 2), so that no vertex is
within distance three of two distinct x, x′ ∈ Xbuf

i . It should not be surprising that
this is enough to show that indeed with very high probability a reasonable fraction
of the x ∈ Xbuf

i have NH(x) embedded to NG(v): this is what we ultimately want.
However, because the sets NH(x) interleave each other in the order τ , we cannot
simply apply Lemma 2.2. We now embark on taking the ‘extra care’ mentioned
before the Claim to complete the proof.

For each x ∈ Xbuf
i , let Mx be the set of vertices of H at distance one, two or

three from x. We say x survives at step j if after the embedding of the jth vertex of
Mx in the order τ , we still have an (x→ v)-buffer partial embedding. We will use
Lemma 2.2 to show that a reasonable fraction of x ∈ Xbuf

i survive at step 1. We
would like then to use Lemma 2.2 again to show that (because a reasonable fraction
of vertices survive at step 1) a reasonable fraction of vertices survive at step 2, and
so on.

In order to carry this out, it is convenient not in fact to look at all x ∈ Xbuf
i ,

but only at a subset Y in which the probability of surviving at each step j (as given
by Claim 5.9) does not depend on the particular vertex in Y but only on j. We now
construct such a set Y . For any x ∈ Xbuf

i at distance greater than three from Xe,
there are at most ∆3 + ∆2 + ∆ < 3∆3 vertices of H at distance at most 3 from x
in H. We can therefore associate to each x ∈ Xbuf

i at distance greater than three
from Xe a 0–1 vector of length at most 3∆3, taking the value 0 at place j if the jth
vertex y of Mx (in the order τ) is not a neighbour of x, and 1 if y is a neighbour of

x. There are at most 3∆323∆3

choices for this vector; we fix a most common choice
c = (ci) of length |c|, and let Y be the subset of vertices of Xbuf

i at distance at least
three from Xe associated to this most common choice. By construction, by (H 3),
by choice of ε and since |Xe| ≤ 1

2εp
Dn/r1 and |Xi| ≥ n/κr1, we have

|Y | ≥ 1
6∆−32−3∆3

|Xbuf
i | . (44)

For each x ∈ Y and 1 ≤ j ≤ |c|, let Hx,j be the history of Algorithm 4 up to
the point immediately before embedding the jth vertex of Mx. For each x ∈ Y , we
create a collection of Bernoulli random variables Ax,1 for x ∈ Y , which are set equal
to one if either x survives at step 1 or (42) has failed before embedding the first
element of Mx, and zero otherwise. These random variables have a natural order
given by the order τ on the first elements (in τ) of the Mx for x ∈ Y , and they are
in this order sequentially dependent. We define

s1 =

{
1
2βd

D+14−Dp|Y | if c1 = 1
1
4 |Y | if c1 = 0

.
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Now for each Ax,1, either Fact 5.9 gives us a lower bound on E[Ax,1|Hx,1], or (42)
has failed before we embed the first vertex of Mx, in which case E[Ax,1|Hx,1] = 1.
We conclude, by definition of s1, that∑

x∈Y
E[Ax,1|Hx,1] ≥ 2s1 .

Thus we can use Lemma 2.2, with δ = 1/4, to show that with very high probability
we have

∑
x∈Y Ax,1 ≥ s1 + 1 (We will fill in the missing quantitative details later).

We denote this good event by A1. Observe that if (42) does not fail for any y or t
(which is a.a.s. the case) then A1 holding says that at least s1 + 1 vertices survive
at step 1.

There remains a small technical difficulty in continuing the programme outlined
above. We would like to count vertices surviving at step 2, and use Lemma 2.2 and
a lower bound on the sum of conditional expectations given by the product of s1

and the probability bound from Fact 5.9 to show that the result is likely to be large.
But it is possible that less than s1 vertices survive at step 1, so that this bound on
the sum of conditional expectations does not hold almost surely (it only holds with
very high probability).

To get around this problem, we use the following trick. We say x is dangerous
at step 1 if the following holds. Immediately after embedding the first vertex of Mx

in Algorithm 4, the number of vertices x′ in Y such that Ax,1 is certainly equal to
one (i.e. such that the first vertex of Mx′ was embedded to a vertex which is neither
poor nor bad, so x′ survives at step 1), plus the number of vertices x′ in Y such that
the first vertex of Mx′ has not yet been embedded, is at most s1. In other words,
we say x is dangerous at step 1 if after embedding the first vertex of Mx we already
know that A1 does not occur.

We now define Bernoulli random variables Ax,2 for x ∈ Y , set equal to one if
either x survives at step 2, or x is dangerous at step 1, or (42) has failed for some
y prior to embedding the second vertex of Mx, and zero otherwise. The point of
this definition is that it gives us an a priori lower bound on the sum of conditional
expectations of the Ax,2, as we require to apply Lemma 2.2, but nevertheless with
very high probability the sum of the Ax,2 does simply count the number of vertices
in Y which survive at step 2, because with very high probability (42) does not fail
and A1 does occur, so no vertex is dangerous at step 1. Again, this collection of
random variables has a natural order given by the order τ on the second vertices of
the Mx, and again in this order the random variables are sequentially dependent.
Note that (as required for this last to be true) we do know whether x is dangerous
at step 1 before we embed the second vertex of Mx. This justifies that we can apply
Lemma 2.2 to estimate the sum of the Ax,2.

We now complete this programme. We need to give integers sj for 2 ≤ j ≤ |c|,
which are our desired lower bounds on the number of vertices in Y surviving at step
j, to define the events Aj and the concept of dangerous at step j for j ≥ 2, and
define the random variables Ax,j for 3 ≤ j ≤ |c|. We also need to say explicitly what
‘very high probability’ is in our applications of Lemma 2.2.

For each 2 ≤ j ≤ |c|, we set

sj =

{
1
2βd

D+14−Dpsj−1 if cj = 1
1
4sj−1 if cj = 0

.

We let the event
∑
x∈Y Ax,j ≥ sj + 1 be Aj . We say x ∈ Y is dangerous at step j

if immediately after embedding the jth vertex of Mx, the number of x′ ∈ Y such
that Ax′,j is certainly equal to one, plus the number of x′ ∈ Y such that the jth
vertex of Mx′ has not yet been embedded, is at most sj . Again, this means that
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after embedding the jth vertex of Mx, we already know Aj does not occur. Finally,
for each j ≥ 3 we define the Bernoulli random variables Ax,j for x ∈ Y , set equal to
one if x survives at step j, or is dangerous at step j − 1, or (42) has failed before
embedding the jth vertex of Mx, and zero otherwise.

Before we continue, we observe that

s1 ≥ s2 ≥ · · · ≥ s|c| ≥
(

1
4

)∆2+∆3(
1
2βd

D+14−Dp
)b|Y | (45)

where b is the degree of the buffer Xbuf
i , i.e. degH(x) = b for each x ∈ Xbuf

i ; this
number exists by (H 6). The reason is simply that there are at most ∆2 +∆3 vertices
of H at distance two or three in H from any given x ∈ Y , and b neighbours of x.
In particular, by choice of p, by our lower bound on |Y | and since n is sufficiently
large, we have 3sj/2 > sj + 1 for each 1 ≤ j ≤ |c|.

We now show that with very high probability Aj occurs for each 1 ≤ j ≤ |c|.
Recall that by Fact 5.9, we have the lower bound

∑
x∈Y E[Ax,1|Hx,1] ≥ 2s1. By

Lemma 2.2 with δ = 1/4, and the observation 3s1/2 > s1 + 1, the probability that
A1 fails is thus at most e−s1/24.

Now for j ≥ 2, for each x ∈ Y , either x survived at step j − 1 and (42) has
not failed before embedding the jth vertex of Mx, in which case the expectation
of Ax,j conditioned on Hx,j is at least the quantity given in Fact 5.9, or x was
dangerous at step j − 1 or (42) failed before embedding the jth vertex of Mx, in
which case we have E[Ax,h|Hx,j ] = 1, or none of these occur, in which case we have
E[Ax,h|Hx,j ] ≥ 0. Furthermore, by definition of the Ax,j we know (a priori, before
beginning the embedding) that one of the first three cases occurs for at least sj−1

of the vertices Y , so that we have
∑
x∈Y E[Ax,j |Hx,j ] ≥ 2sj by definition of sj .

Applying Lemma 2.2, with δ = 1/4, and since 3sj/2 > sj + 1, we conclude that the

probability that Aj fails is at most e−sj/24.
By definition, if (42) never fails and each event A1, . . . ,A|c| occurs, then no

vertex is dangerous at any step. Thus the number of vertices of Y surviving at step
|c| is at least s|c|. By definition, if x survives at step |c| then NH(x) is embedded to
NG(v), so that v is a candidate for x. Since s|c| is by (45), (44) and (H 3) at least(

1
4

)∆2+∆3(
1
2βd

D+14−Dp
)b · 1

6∆−32−3∆3

· 4µ|Xi|
we conclude that (40) holds for v, as desired. The probability that any given one
of the events A1, . . . ,A|c| fails is at most e−s|c|/24 < n−D−1 by (45), (44), (H 3),
since |Xi| ≥ n/κr1 and by choice of p. Taking the union bound over the at most
3∆3 events Aj , and the at most n choices of v, and since a.a.s. (42) never fails by
Fact 5.8, we conclude that a.a.s. (40) holds for all v ∈ Vi for each i ∈ [r], completing
the proof of Claim 5.7. �

The good event of Claim 5.7 holding gives (DRGA3 ). Since a.a.s. the good
events of each of the above claims and lemmas hold, this completes the proof of
Lemma 5.1. �



CHAPTER 6

Proofs of applications

In this chapter we prove the various theorems listed in Section 1.2. Where a
stronger result is proved elsewhere, we only sketch the proofs.

6.1. Universal graphs

We begin by showing that Gn,p is universal for spanning bounded-degree graphs

with degeneracy d when p ≥ C
(

logn
n

)1/(2d+1)
.

Proof of Theorem 1.1. Observe that any d-degenerate n-vertex graph has
at most dn edges and so contains at least n

2d+1 vertices of degree at most 2d. We

will apply Lemma 1.23 with input ∆, with ∆R′ = 8∆, D = 2d+ 1, α = γ
10d , ζ = 1,

density 1
2 , and κ = 2. Lemma 1.23 returns ε > 0, and for input r1 = 8∆ also C.

Choose ε∗ � ε and suppose C is also large enough for Lemma 2.17(a ) with input

ε∗, 8∆ and 2. Let p ≥ C
(

logn
n

)1/(2d+1)
. Fix an equipartition V1, . . . , V8∆ of [n]. Now

Gn,p a.a.s. satisfies the good event of Lemma 1.23. By Lemma 2.17(a ) it a.a.s. has
property NS(ε∗, 8∆, D). Finally, using Theorem 2.1 and the union bound it is easy to
check that a.a.s. for each i and v ∈ Vi, the vertex v has (1± ε)p|Vj | neighbours in Vj
for each j 6= i. Fix a graph Γ with each of these properties. Property NS(ε∗, 8∆, D)
implies that any pair of disjoint subsets of V (Γ), each of size at least pn

16∆ , is (ε, 1
2 , p)-

regular, so letting R = R′ = K8∆ we have an (ε, 1
2 , p)-regular R-partition which has

super-regularity and one- and two-sided inheritance on R′.
GivenH on n vertices with degeneracy d and maximum degree ∆, letX1, . . . , X8∆

be an equipartition of V (H) into independent sets, with each Xi containing at least
1

8∆(2d+1) |Xi| vertices of degree at most 2d. This equipartition exists by Lemma 2.4.

We designate the vertices of degree at most 2d as potential buffer vertices. We do
not image restrict any vertices. Then (perhaps after reordering) the Xi form an
R-partition of V (H) which is size-compatible with the Vi. We let τ be a degeneracy
order on V (H). We move all buffer vertices to the end of the ordering τ . Observe
that this slightly changed ordering satisfies conditions (ORD 1)–(ORD 3) and thus is
(D, p, ε∗n/r1)-bounded. Then the conditions of Lemma 1.23 are satisfied, so H ⊆ Γ
as desired.

To obtain the second statement, we work identically except that we add to
each part of V (H) isolated vertices to obtain a size-compatible R-partition, and we
designate these isolated vertices as potential buffer vertices instead of the low-degree
vertices in H. Then Lemma 1.23, applied with D = 2d, p = C( logn

n )1/D and all
other parameters staying as before, gives the desired stronger conclusion. �

It is quite easy to use Lemma 1.25 to show that sufficiently pseudorandom
graphs are universal for bounded-degree graphs.

Sketch proof of Theorem 1.2. Given G, we take a random equipartition
of V (G) into ∆ + 1 clusters V1, . . . , V∆+1. For each v ∈ V (G) and i, the quan-
tity deg(v;Vi) is hypergeometrically distributed with mean at least 1

4p|Vi|, so by
Theorem 2.1 and the union bound we see that with positive probability we have

101
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deg(v;Vi) ≥ 1
8p|Vi| for each v and i. We fix such a partition, and let R = R′ = K∆+1.

Using Theorem 2.3 we can for any n-vertex graph H with ∆(H) ≤ ∆ find a
size-compatible R-partition of V (H), and applying Lemma 1.25 with all vertices
designated as potential buffer vertices, with d = 1

16 and with no vertices image
restricted, we see that H ⊆ G as desired. �

6.2. Partition universality

We now prove that Gn,p is a.a.s. r-partition universal for H(n, d,∆) provided

p ≥ C
(

logn
n

)1/(2d)
, which improves on the result of Kohayakawa, Rödl, Schacht

and Szemerédi [44] for graphs with d ≤ ∆/2. A proof of the result of [44] can be
obtained along very similar lines.

We need two by now classical results of Extremal Combinatorics: Ramsey’s
Theorem and Turán’s Theorem. The Ramsey number rk(Kt) is the smallest integer
n such that no matter how one colors the edges of Kn with k colors, there is a
monochromatic copy of Kt. Ramsey [60] proved these numbers exist, while the
following quantative statement is due to Erdős and Szekeres [30].

Theorem 6.1 (Erdős and Szekeres [30]). For any k and t we have rk(Kt) ≤ kkt.

Turán, generalising a result of Mantel [57], proved the following.

Theorem 6.2 (Turán [69]). For any r ≥ 3 the unique Kr-free graph with most
edges is the complete balanced (r − 1)-partite graph on n vertices.

In our applications we will solely use that an n-vertex Kr-free graph has at

most (r−2)n2

2(r−1) + o(n2) edges.

Finally we state the version of the sparse regularity lemma for many colours
that we are going to apply. We also say that a graph G with density p is (η,D)-
upper-uniform if for all disjoint sets U and W of cardinality at least ηv(G) we have
eG(U,W ) ≤ Dp|U ||W |.

Lemma 6.3 (Sparse regularity lemma, coloured version [41]). For any real
D, ε > 0, integers k and t0, there exist η > 0 and T such that any graph G of edge
density p and on at least t vertices, which is (η,D)-upper-uniform and whose edges
are coloured with k, colours admits a partition of V (G) into V1, . . . , Vt with the
following properties:

(1) t0 ≤ t ≤ T ;
(2)

∣∣|Vi| − |Vj |∣∣ ≤ 1 for all i, j;

(3) all but at most εt2 pairs (Vi, Vj) are (ε, d, p)-regular in each of the k colours for
some possibly different d.

The assumption on (η,D)-upper uniformity is easily seen to be satisfied for any
moderate η and D > 1 by our random graph Gn,p and by the bijumbled graphs that
we will be considering. The partition asserted by Lemma 6.3 is called ε-regular. We
define a coloured multigraph R(δ) on [t] (associating each i ∈ [t] with the class Vi) as
follows. We put an edge ij into E(R) in colour c if the pair (Vi, Vj) is (ε, δ, p)-regular
in colour c in G.

After these preparations we can complete the proof.

Proof of Theorem 1.3. We apply Lemma 1.23 with input ∆, with ∆R′ = 8∆,
D = 2d (except when d = 1 when we set D = 2), α = 1

2 , ζ = 1, density 1
2d , and κ = 1.

Lemma 1.23 returns ε > 0, which we suppose is small enough for the application
of Turán’s Theorem below. We let r1 be large enough for the k-coloured sparse
regularity lemma with input ε and also for the applications of Turán’s and Ramsey’s
Theorem below, and obtain C ≥ r1 from Lemma 1.23. Give p, we generate Γ = GCn,p,
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suppose it satisfies the good event of Lemma 1.23 and take any k-colouring of its
edges. We apply the sparse regularity lemma for coloured graphs to this coloured
graph. We obtain a coloured reduced graph with at most ε-fraction of pairs not
forming edges, in which we find a 4∆+1-vertex clique where all edges are present by
Turán’s Theorem, and in that a monochromatic (∆ + 1)-vertex clique by Ramsey’s
Theorem. Thus we have ∆ + 1 equal-sized clusters V1, . . . , V∆+1, each of size at least
n, such that there is a colour c in which each pair of clusters is (ε, 1

2r , p)-regular. Let
G be the graph of colour c edges, let R = K∆+1 and R′ be the empty graph.

Given H ∈ H(n,∆), by Theorem 2.3 we can find an equipartition of V (H) into
∆ + 1 independent sets. We ‘pad’ each set by adding isolated vertices to obtain a
size-compatible R-partition X1, . . . , X∆+1, and designate the isolated vertices as
potential buffer vertices which come last in the degeneracy order τ of H. Then
the result follows by Lemma 1.23, with τ being a (D, p, εn/r)-bounded order on
V (H). �

Sketch proof of Theorem 1.4. The same approach as for Theorem 1.3
works, replacing Lemma 1.23 with Lemma 1.25. It is easy to check that the upper-
uniformity condition of Lemma 6.3 is satisfied for Γ with the bijumbledness condition
of the theorem. �

Sketch proof of Corollary 1.5. We follow the same approach as in the

proof of Theorem 1.3, with the exceptions that we use p = C
(

logn
n

)1/∆
, that we

use Lemma 1.21 instead of Lemma 1.23, and that after generating Γ = Gn,p which
satisfies the good event of Lemma 1.21, we form G by deleting a minimum number
of edges to remove all copies of K2∆. The expected number of copies of K2∆ in Gn,p

is p(
2∆
2 )n2∆ = o(pn2), so by Markov’s inequality we see that a.a.s. we delete o(pn2)

edges of Γ to form G. This G is the claimed r-partition universal graph for H(n,∆).
The remainder of the proof of Theorem 1.3 proves the partition universality, since the
number of edges deleted is too small to destroy regularity of any pair of clusters. �

6.3. Maker-Breaker games

The proof of Theorem 1.6 uses the result of Ferber, Krivelevich and Naves [32],
which informally says that if p � b−1 is not too small, there is a (randomised)
Maker strategy for the 1 : b game on Kn which gives Maker a subgraph of Gn,p with
minimum degree very close to pn.1 This reduces the proof to showing a (rather far
from optimal in terms of edge deletions) local resilience result for the graph classes
we consider.

Sketch proof of Theorem 1.6. We sketch the proof forH′(n,∆)-universality
first. We take an equipartition of [n] into ∆+1 clusters V1, . . . , V∆+1. We let ε > 0 be
sufficiently small for Lemma 1.21, with no vertices image restricted, and p sufficiently
large and we set ε∗ � ε. Now a.a.s. Maker obtains a subgraph G of Γ = Gn,p with
δ(G) ≥ (1− ε∗)pn by following the strategy of Ferber, Krivelevich and Naves [32]. It
is easy to check, using Chernoff’s inequality, that each vertex has (1±2ε∗)pn/(∆+1)
neighbours in both Γ and G in each set Vi.

Since the total number of edges of Γ which are not in G leaving any vertex is at
most 4ε∗pn, the total number of such edges between any two vertex sets X and Y
is at most 4ε∗pn|X|. An easy application of the Chernoff bound shows that (X,Vi)
is
(
ε∗, 3

4 , p
)
-regular in Γ for each Vi and disjoint vertex set X with |X| ≥ pn/(4∆),

and since ε∗ � ε we conclude that any such (X,Vi) is also
(
ε, 1

2 , p
)
-regular in G.

1Formally, one can state this as: there is a randomised Maker strategy which generates a

graph Γ from the distribution Gn,p, and a spanning subgraph G of edges obtained by Maker, which

a.a.s. has minimum degree (1 − ε)pn.
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Letting R = R′ = K∆+1, we see that G is
(
ε, 1

2 , p
)
-super-regular on R′ and has

one-sided inheritance on R′. Given any graph H ∈ H′(n,∆) we use Theorem 2.3 to
find an equipartition of V (H) into ∆ + 1 independent sets X1, . . . , X∆+1. Then the
conditions of Lemma 1.21 are satisfied, so we have H ⊆ G as desired.

For the almost-spanning H(n,∆)-universality, we repeat the same argument,
replacing [n] with [(1 + δ)n] and ‘padding’ each equipartition class of H with
independent vertices to be size-compatible with V. We take these independent
vertices to be the potential buffer vertices, so that two-sided inheritance is not
needed.

For the degeneracy statements, we replace Lemma 1.21 with Lemma 1.23, taking
respectively D = 2d for the almost-spanning universality and D = 2d+ 1 for the
spanning universality. Again, similar to Theorem 1.3, it is easy to verify that the
degeneracy order of H ∈ H(n, d,∆) is an appropriately ‘bounded’ order in the sense
of Definition 1.22.

In both cases, since we have shown that Maker has a randomised strategy which
wins with positive probability against any strategy of Breaker, it follows that Breaker
does not have a winning strategy. Since finite draw-free games are determined, we
conclude that Maker does have a winning strategy. �

Note that, by an analysis similar to the proof of Theorem 1.3, one can show
that Maker also succeeds with this strategy in making a graph which is r-partition
universal for H(cn,∆) (respectively, for H(cn, d,∆)) for some small c > 0, matching
the density of the best known constructions.

6.4. Resilience of low-bandwidth graphs

For this section we need the minimum degree form of the sparse regularity lemma,
which we quote from [22], the paper in which the bipartite case of Theorem 1.9 is
proved. To state it we need to define two concepts. First, an ε-equipartition of a vertex
set V is a partition V = V0 ∪̇ . . . ∪̇ Vr such that |V0| ≤ ε|V | and |V1| = · · · = |Vr|.
Second, if G is a graph with vertex set V , then the (ε, d, p)-lower-regular reduced
graph of G, with respect to a given ε-equipartition V = V0 ∪̇ . . . ∪̇ Vr, is the graph
on [r] with edges ij corresponding to (ε, d, p)-lower-regular pairs (Vi, Vj) in G.

Lemma 6.4 ([22], Lemma 4.4). For all ϑ ∈ [0, 1], ε > 0 and every integer
r0, there exists r1 ≥ 1 such that for all d ∈ [0, 1] the following holds a.a.s. for
Γ = Gn,p if log4 n/(pn) = o(1). Let G = (V,E) be a spanning subgraph of Γ with
degG(v) ≥ α degΓ(v) for all v ∈ V . Then there is an ε-equipartition of G with
(ε, d, p)-lower-regular reduced graph R of minimum degree δ(R) ≥ (ϑ− d− ε)v(R),
and r0 ≤ v(R) ≤ r1.

Using this, we can sketch the proof of Theorem 1.9. The strategy consists of
modifying the argument in [24], the paper in which the Bandwidth Theorem was
proved. We will not state formally the lemmas from that paper which we require;
the reader not familiar with that argument will wish to read the following sketch in
conjunction with Section 2 of [24], in which the lemmas are formally stated and their
use outlined. The changes to their strategy we make are as follows. Their ‘Lemma
for G’ is replaced with Lemma 6.4 (since we do not need most of the properties of
the ‘Lemma for G’ in this setting), and Theorem 1.8 finds a ‘backbone graph’ in
the resulting (ε, d, p)-reduced graph R. We can use their ‘Lemma for H’ as written,
and in this setting it gives a partition of V (H) which is directly suitable to apply
Lemma 1.21, yielding the desired embedding of H into G.

Proof of Theorem 1.9. Given γ > 0 and ∆, we choose d� γ and r0 � ∆.
We will apply Lemma 1.21 with input ∆, ∆R′ = ∆J = 0, α = γ/2, ζ = 1, d and
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κ = 2. Lemma 1.21 returns %, ε > 0, of which we are only interested in ε. We assume,
without loss of generality, that ε� d. We let r1 be returned by Lemma 6.4 for input
ϑ = max2≤r≤∆+1

(
r−1
r + γ

)
, ε and r0. Finally, we choose β � r−1

1 , and let C be
returned by Lemma 1.21 for input r1.

Now, given p ≥ C
(

logn
n

)1/∆
, we generate Γ = Gn,p, and assume it satisfies the

conditions of Lemmas 1.21 and 6.4 for the parameters given above. Let a graph H on
(1− γ)n vertices with ∆(H) ≤ ∆ and bw(H) ≤ βn be given. Let r = χ(H) ≤ ∆ + 1.
Let a spanning subgraph G of Γ with minimum degree

(
r−1
r + γ

)
pn be given.

We apply Lemma 6.4 to G, obtaining an (ε, d, p)-reduced graph R, with r0 ≤
v(R) ≤ r1, and minimum degree at least

(
r−1
r + γ

2

)
v(R). By Theorem 1.8, we can

find in R a spanning ‘backbone graph’. This consists of a collection of vertex-disjoint
copies of Kr, which come in a linear order, such that between one copy of Kr and
the next there is a copy of Kr,r with a perfect matching removed. This graph
is r-colourable and has maximum degree 3(r − 1) ≤ 3∆ and bandwidth at most
2r ≤ 2∆, so that Theorem 1.8 is indeed applicable provided r0 is sufficiently large
compared to ∆.

It is quite easy to find a homomorphism from H to the backbone graph. We
simply divide V (H) up into intervals in the bandwidth order, and map successive
intervals of V (H) to successive copies of Kr in the backbone graph, choosing vertices
of each copy of Kr according to a fixed r-colouring of H. The rôle of the bandwidth
restriction here is to ensure that edges of H either lie within one interval, or go from
one interval to the next, so that we only need edges in R from one copy of Kr in the
backbone graph to the next in order to obtain a homomorphism. The point of fixing
an r-colouring of H is that the ith vertex in one copy of Kr and that in the next
are not adjacent in the backbone graph (since a perfect matching was removed from
the Kr,r between them) and we need to ensure that no edge of H will be assigned
to have one endpoint in each.

Unfortunately, this is not quite enough: the colour classes of H could be quite
unbalanced, so that the homomorphism we have just described maps many more
vertices of H to some vertices of R than others. In order to repair this, we need
to ‘rebalance’, which requires that each copy of Kr in the backbone graph extends
to a copy of Kr+1 using some other vertex of R (which may be anywhere in the
backbone graph). The ‘Lemma for H’ of [24] now states that given a backbone
graph whose r-cliques extend to copies of Kr+1, and H, there is a homomorphism f
from V (H) to V (R) in which each vertex of R is the image of approximately the
same number of vertices of H. Since ε� γ, since v(H) ≤ (1− γ)n and by choice of
β sufficiently small, the ‘approximately’ in this statement in particular guarantees∣∣f−1(i)

∣∣ ≤ (1− γ
2

)
|Vi| for each i ∈ V (R).

It remains only to verify that the conditions of Lemma 1.21 can be met in order
to find an embedding of H into G. The idea is simple: we ‘pad’ H by adding n−v(H)
isolated vertices, and give a partition X = (Xi)i∈V (R) of V (H) in which Xi consists

of f−1(i) together with isolated vertices such that |Vi| = |Xi|. We designate the

isolated vertices in each Xi as the potential buffer vertices X̃i. It then follows that
the empty graph R′ on V (R) with no edges, together with these potential buffer
vertices, give us a (γ/2, R′)-buffer for H. By construction, the partition X is an
R-partition of H. By definition, V is an (ε, d, p)-regular R-partition of G, and the
super-regularity and inheritance properties required of R′ are satisfied vacuously.
Finally, we do not image restrict any vertices of H, so that the restriction pair
properties are satisfied vacuously. Thus Lemma 1.21 gives us the desired embedding
of H into G. �

We stress that the main difficulty in the proof of Theorem 1.8 is to obtain a
spanning embedding; an almost-spanning embedding is much easier. It is similarly,
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and for similar reasons, much harder to prove Theorem 1.10 than Theorem 1.9. It
is also worth noting that in the proof given in [24], there is a substantial amount
of routine technical work to do in between obtaining size-compatible partitions of
H and G and using the blow-up lemma to get an embedding of H into G, which
is encapsulated in the ‘partial embedding lemma’. This work is necessary because
the blow-up lemma of [46] cannot be applied to the entire reduced graph. Our
Lemma 1.21 can be applied to the entire reduced graph, and thus replaces both the
partial embedding lemma and the blow-up lemma of [46].

6.5. Robustness of the Bandwidth Theorem

As with the proof of Theorem 1.9, the proof of Theorem 1.11 amounts to
modifying the proof of Theorem 1.8. However this time we need to rely on rather
more of the machinery built up in [24]. Again, the reader not familiar with the
argument there will wish to read this sketch in conjunction with Section 2 of [24].

Sketch proof of Theorem 1.11. We choose constants as in [24, ‘Proof of
Theorem 2’], with the exception that we obtain ε′ from Lemma 1.21 and ε from
Theorem 2.7 and Corollary 2.8 for input ε′ rather than from the blow-up lemma
of [46] and the ‘partial embedding lemma’ of [24]. We then follow the proof given
there up to the point at which in [24] the first vertices of H are embedded using the
partial embedding lemma. Let us recap what this amounts to. We are given graphs
G and H satisfying the conditions of Theorem 1.11. We apply the ‘Lemma for G’
of [24], which first returns a partition of V (G) into parts V ′i,j , where 1 ≤ i ≤ k

and 1 ≤ j ≤ χ(H), with the following properties2. First, k ≤ K0 = K0(γ, χ(H))
is bounded in terms of γ and χ(H). Second, the (ε, d, 1)-reduced graph R of this
partition, whose vertex set is [k] × [χ(H)] matching the indices of the partition,

has minimum degree at least
(χ(H)−1

χ(H) + γ
2

)
v(R). Third, R contains a spanning

backbone graph; that is, if |i− i′| ≤ 1 and j 6= j′ then (i, j)(i′, j′) ∈ E(R). Fourth,
the parts V ′i,j and V ′i,j′ differ in size by at most one, and each part has size between

(1− ε)n/kχ(H) and 2n/kχ(H).
Now we apply the ‘Lemma for H’ of [24], with the reduced graph R and the

integer partition of n given by the |V ′i,j |. This gives us a homomorphism f from H
to R, and a set of ‘special vertices’ Z ⊆ V (H), with the following properties, which
depend on a quantity ξ satisfying β � ξ � ε,K−1

0 . First, |Z| ≤ kχ(H)ξn. Second,
for each (i, j) ∈ V (R) we have |f−1(i, j)| = |Vi,j | ± ξn. Third, if uv ∈ H has neither
endpoint in Z, then the first coordinates of f(u) and f(v) are equal, in other words
u and v are mapped to vertices of the same clique in R. We set Xi,j = f−1(i, j) for
each (i, j) ∈ R. By construction, the resulting partition X is an R-partition of H.

Next, we return to the ‘Lemma for G’, which guarantees, given the sizes of
the parts |Xi,j | satisfying the above properties, a partition V of V (G) with parts
Vi,j for (i, j) ∈ V (R) which has the following properties. First, |Vi,j | = |Xi,j | for
each (i, j) ∈ V (R). Second, R is an (ε, d, 1)-reduced graph for G with respect to V.
Third, G is super-regular on the graph R′ whose edges are (i, j)(i, j′) for i ∈ [k] and
1 ≤ j < j′ ≤ χ(H), in other words on the Kχ(H)-factor in the backbone graph.

This is the point at which, in [24], the embedding of H into G begins. It is
worth remarking that, because Lemma 1.21 applies to the entire reduced graph, we
could complete their proof by simply verifying the conditions of Lemma 1.21 for
p = 1 (much as we do below), rather than needing the technical work of the partial
embedding lemma.

2The ‘Lemma for G’ does not explicitly return this partition, but it is convenient for the
explanation to mention its existence; it also does not explicitly give the upper bound on sizes of
the parts, but this follows from the proof.
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Recall that we wish to show that H is a subgraph of Gp, where p ≥ C
(

logn
n

)1/∆
for some suitably large C. Observe that E(Gp) is distributed as E(G)∩E(Gn,p). We
now generate Γ = Gn,p. Asymptotically almost surely, the good event of Lemma 1.21
occurs. We need to verify that H and Gp = G ∩ Γ a.a.s. satisfy the conditions of
Lemma 1.21. We begin with H. Recall that X is an R-partition of H. By choice of ξ,
it is 4-balanced. Also by choice of ξ, less than half of the vertices of any given Xi,j

are at distance two or less from Z. We let X̃i,j be the vertices of Xi,j at distance
three or more from Z. This gives us a

(
1
2 , R

′)-buffer for H.
We now need to show that a.a.s. V is an (ε′, d, p)-regular R-partition of G ∩ Γ,

and that a.a.s. it is (ε′, d, p)-super-regular and has one- and two-sided inheritance on
R′. The first of these is an easy consequence of Theorem 2.1 (Chernoff’s inequality)
and the fact that V is an (ε, d, p)-regular R-partition of G. We can simply take the
union bound over the at most 22n choices of pairs of subsets of V (G) which we need
to have density at least (d− ε′)p. Since G has super-regularity on R′, again using
Theorem 2.1 and taking the union bound over the choices of vertices in V (G) and
V (R′), we see that a.a.s. Γ ∩G has super-regularity on R′. Next we show that a.a.s.
if v ∈ Vi and ij, jk ∈ R′, so

(
NΓ∩G(v;Vj), Vk

)
is (ε′, d, p)-regular in G. Indeed, by

Theorem 2.7, with β = 1
4 , the probability that this fails is at most 2−pn, so that

we can take a union bound over all choices of i, j, k and v ∈ Vi. Similarly, using
Corollary 2.8, if also ik ∈ R′, a.a.s.

(
NΓ∩G(v;Vj), NΓ∩G(v;Vk)

)
is (ε′, d, p)-regular

in G.
We do not image restrict any vertices of H, so the restriction pair condition of

Lemma 1.21 is vacuously satisfied. Thus, applying Lemma 1.21, we see H ⊆ G ∩ Γ
as desired. �



CHAPTER 7

Concluding remarks

7.1. Optimality of our main results

7.1.1. Lemma 1.21. In the case ∆ = 2 and H contains a triangle, our result
is optimal up to the log factor, since it is well known that when p = o(n−1/2) one can
delete all triangles from Gn,p by removing only o(pn2) edges—so any ‘blow-up-type’
statement will be false.

When ∆ = 3, the statement of Lemma 1.21 is optimal up to the log factor. In
the event that H is a spanning K4-factor, for small c > 0 and p = cn−1/3, it is
typically possible to find a subgraph G of G4n,p with the following properties. There
is a partition V (G) = V1 ∪ · · · ∪ V4 with each set of size n. Letting R = R′ = K4,
the partition is an (ε, 1

2 , p)-regular R-partition, which is super-regular, with one-
and two-sided inheritance on R′. However there is a vertex of G which is in no K4,
and thus there is no K4-factor covering G.

To construct G, we let V1, . . . , V4 be an equipartition of [4n], fix a vertex v ∈ V1,
reveal G4n,p, remove all edges within each part, and then remove from NG(v) all
triangles by deleting a minimum number of edges. It is not hard to check using
Theorem 2.1 that a.a.s. before this final step, we have an (ε, 3

4 , p)-regular R-partition
with super-regularity and one- and two-sided inheritance on R′. It is similarly easy
to check that a.a.s. before the final step the degree of each vertex in Vi to any other
Vj is close to pn, and any pair of vertices has about p2n common neighbours in other
parts. Thus the expected number of triangles in NG(v) is p3(pn)3 = c6n, and the
actual number is somewhat concentrated, so that a.a.s. in the final step we delete
at most 2c6n edges. This is far too small to destroy one-sided inheritance, and by
choice of c too small to destroy two-sided inheritance. It remains to show that we
have not removed too many edges from any one vertex. But the expected number of
edges removed from u ∈ NG(v) is at most p(p2n)2 = cp2n; the actual number is by
Theorem 2.1 exponentially concentrated, and hence a.a.s. we remove o(pn) edges
from each u, so do not destroy super-regularity.

Perhaps inserting an extra condition into the statement, such as insisting that all
vertex neighbourhoods contain Ω(p6n3) triangles, would allow one to prove a blow-up
lemma which allows for embedding a K4-factor down to the natural limit p = n−2/5.
However it would not always be possible to obtain such a condition. In [4] it is
shown that Breaker wins the K4-factor game on Kn with a bias 13n1/3 (Lemma 1.21

is used to show that Maker wins when the bias is c
(

n
logn

)1/3
for some small c > 0).

It follows that any ‘extra condition’ is one which Maker cannot guarantee to obtain
with bias 13n1/3.

Finally, for ∆ ≥ 4 one might hope that the statement of our blow-up lemma
remains true down to p = Cn−2/(∆+3), this being the point at which one can
generalise the above construction (and therefore the point at which the statement
provably does not guarantee a K∆+1-factor). Perhaps, optimistically, one might
hope that there are some natural extra conditions which even allow p ≥ Cn−2/(∆+2),
this being the point at which one can remove all copies of K∆+1 by deleting a tiny
fraction of the edges of Gn,p.

108
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However we believe that improving upon our result is likely to be very chal-
lenging. Even in the (much simpler and well-studied) setting of trying to prove
H(n,∆)-universality of Gn,p, there has been no improvement upon what can be
obtained from Lemma 1.21. For almost-spanning universality, Conlon, Ferber, Ne-
nadov and Škorić [27] could improve on Lemma 1.21, showing that the random
graph G(1+γ)n,p is a.a.s. H(n,∆)-universal when p = ω(n−1/(∆−1) log5 n) for ∆ ≥ 3.

But the improvement in the exponent one would desire is of order ∆−1 not ∆−2.

7.1.2. Lemma 1.25. We do not believe the bijumbledness requirement of
Lemma 1.25 is optimal. Most of the proof would work with (p, cp∆+2n)-bijumbledness,
but we were not able to find a way to avoid the LNS property which requires
the stronger condition. Nevertheless we conjecture that (p, cp∆+1n)-bijumbledness
suffices (we expect that the extra factor of p can be gained by using reserved cliques
as in the proof of Lemma 1.21). It is still not clear that this would be optimal.
For ∆ = 2 we need (p, cp2n)-bijumbledness, since Alon [9] constructed a (p, Cp2n)-
bijumbled graph without triangles. It is a believable conjecture (see for example
Conlon, Fox and Zhao [25]) that there are (p, Cp∆n)-bijumbled graphs without
K∆+1 for every ∆, in which case the same requirement would be necessary for a
blow-up lemma. It is possible, however (conjectured in [25], but the contrary is
conjectured by Kohayakawa, Rödl, Schacht and Skokan [45]) that copies of K∆+1

cannot be guaranteed in regular subgraphs of (p, β)-bijumbled graphs at this point,
but instead that β ≤ cp∆+1n is required (it is proved in [25] that at this point one
can guarantee copies of K∆+1).

Note that Lemma 1.25 does not permit linearly many image restrictions. Only
about a p∆-fraction of vertices in each part may be image restricted. In many
applications this is not a problem (see for example [1]), but it could well cause a
problem for some applications. We could modify the proof strategy substantially in
order to have some control over linearly many vertices of each Xi. The modification
we would make is the following. We would permit the user of the blow-up lemma
to specify %|Xi| ‘pre-embedded’ vertices in each part Xi which are to be embedded
first (before even the neighbours of buffer vertices). The user is then permitted
to embed these vertices sequentially, subject to four conditions. First, the result
must be a good partial embedding ψ. Second, each vertex must be embedded to a
uniform random vertex from a set of size at least 1

10µζ(dp)
∆−1n/(κr1). Third, for

each jk ∈ R′ and v ∈ Vj , at most 1
100 degG(v;Vk) neighbours of v in Vk may be in

Im(ψ). Fourth, the total number of vertices in Xi with pre-embedded neighbours is
at most %|Xi|. We would then follow the proof strategy of Lemma 1.25 to embed
the remainder of H into G, treating the neighbours of pre-embedded vertices as
‘image restricted’. Note that this does not automatically resolve the problem with
Claim 4.5, since the partition of V (G) considered at this point is not the same
as the partition the user of the blow-up lemma supplies. But it is easy to modify
Lemma 2.22 to show that all the sets under consideration are with high probability
evenly distributed by the random equipartition, and then the proof of Claim 4.5 does
go through. Checking the full details of this approach, and for that matter using
the resulting blow-up lemma, seems likely to be non-trivial, but it could potentially
allow for stronger theorems.

7.1.3. Lemma 1.23. We made some efforts to prove as flexible a statement
as we could. Observe that even without saying anything about the structure of H
beyond its degeneracy, the result is ‘almost’ as powerful as Lemma 1.21, in that a
d-degenerate n-vertex graph with bounded maximum degree, which we can handle
with p ≈ n−1/(2d+1), can contain almost dn edges, comparable to a 2d-regular graph
for which Lemma 1.21 would require p ≈ n−1/2d.
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In the event that we only need an almost-spanning embedding, we can take
the potential buffer vertices in each part to be isolated, and hence D = 2d. We can
then embed d-degenerate graphs with p ≈ n−1/(2d), matching the performance of
Lemma 1.21. Finally, if H is an F -factor we can take D = d+ 3, in which case the
performance of Lemma 1.23 substantially improves, working with p ≈ n−1/(d+3).

This last case is one in which we can improve Lemma 1.23. Recall from the
proof of Lemma 5.1 that we only require (ORD 3) and the condition πτ (x) ≤ Dx− 1

for x ∈ N(X̃) within (ORD 1) in order to prove (DRGA3 ). When embedding an
F -factor (provided R′ is suitable, for example R′ = K|F |), we do not really need
this last condition, as (DRGA2 ) shows that only a few vertices in each cluster of G
can fail (DRGA3 ), and we can use an argument similar to Lemma 3.3 to deal with
them. This allows us to reduce the required D by one.

In particular, for each s ≤ t one can prove a blow-up lemma which embeds a

Ks,t-factor when p ≥ C
(

logn
n

)1/s
. This is almost optimal, since the 2-density of Ks,t

is st−1
s+t−2 , which approaches s as t becomes large; when p is below n−(s+t−2)/(st−1),

one can delete a very small fraction of the edges of G(n, p) to destroy all copies of
Ks,t.

7.2. Algorithmic embedding

The proofs of our blow-up lemmas give polynomial-time randomised algorithms
which with high probability construct the embeddings we prove exist. It is quite
tedious to check the details, but we provide a sketch for the interested reader of how
one can do this.

The main difficulty concerns the certification of sparse-regular pairs. Alon, Duke,
Lefmann, Rödl and Yuster [8] showed that determining if a given bipartite graph
is ε-fully-regular is co-NP-complete, but that there is a polynomial-time algorithm
which either certifies ε-full-regularity, or returns a witness to the failure of ε′-full-
regularity, for some ε′ which may be much smaller than ε but does not depend
on the number of vertices in the regular pair. For sparse graphs, a corresponding
polynomial-time certification algorithm was given by Alon, Coja-Oghlan, Hàn, Kang,
Rödl and Schacht [14] which either certifies (ε, d, p)-full-regularity or returns a
witness to the failure of (ε′, d, p)-full-regularity.

Unfortunately, we do not know of any such algorithm in the literature for lower-
regular pairs, so we now sketch a certification algorithm for lower-regularity which
works in subgraphs of random graphs. Given as input ε, d, p and a bipartite graph,
which must be ‘bounded’ (see [14]), we apply the algorithmic sparse regularity lemma
of [14] with regularity parameter 1

100ε
3. This returns a partition of each side of the

bipartite graph into approximately equal numbers of parts, which approximately
equipartition each side, even if the bipartite graph itself is very unbalanced (we may
want, for example, to know whether a bipartite graph with parts of size pn and
p2n respectively is lower-regular). We choose 0 < ε′ < 1

100ε
3 lower bounding the

fraction of either side contained in any one part of the partition. Now if any pair of
parts in this partition has density less than (d− ε′)p, it is a witness to a failure of
(ε′, d, p)-lower-regularity. If not, we claim the bipartite graph is (ε, d, p)-lower-regular;
the choice of regularity parameter in the use of sparse regularity ensures that there
are too few irregular pairs to seriously affect densities between large sets. We note
that the requirement of ‘boundedness’ is needed for the algorithmic sparse regularity
lemma, and that this boundedness holds a.a.s. in subgraphs of typical random graphs
(and is implied by the NS property which we require in any case). In contrast to the
certification algorithm for sparse full-regularity, the dependency of ε′ on ε here is
very poor: there is a tower-type relationship, which appears iterated in the constant
dependencies of the algorithmic versions of Lemmas 1.21 and 1.23.
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For either random or bijumbled ambient graphs Γ, given a certification algorithm
and inheritance lemmas, one can prove a variant of the RI property (see Section 2.2) in
which not only do typical vertex neighbourhoods inherit (either version of) regularity,
but they do so certifiably. We follow the proofs more or less as in Section 2.2, except
that at each step, where we need certifiable (ε, d, p)-regularity for some ε, we obtain
ε′ from the certification algorithm and then let ε′′ be returned by our inheritance
lemmas for input ε′. Now a typical vertex neighbourhood is then (ε′, d, p)-regular,
so that the certification algorithm will certify it to be (ε, d, p)-regular as desired.

We now sketch how one can use this to obtain algorithmic versions of our
blow-up lemmas.

It is necessary to check that the algorithm implicit in the preprocessing (Lemma 2.22)
is a randomised polynomial time algorithm. This follows since the Hajnal-Szemerédi
Theorem (Theorem 2.3) has an algorithmic version [39], and since the proof of
Lemma 2.4 can then easily be made constructive. Furthermore, a failure of the ran-
domised partitioning to produce a good G-partition can be detected in polynomial
time.

It is further necessary to check that each of our RGA algorithms (Algorithms 1, 3
and 4) can be carried out in polynomial time. This amounts to checking that the
various sets that appear in these algorithms can be constructed in polynomial time.
For most of these sets, this is obviously possible. However, in order to construct the
bad sets Bt(x) we need the certifiable regularity inheritance discussed above.

In proving Lemma 1.21 we give (implicitly) an algorithm for embedding queue
vertices. Again, to run this algorithm we need to construct the bad sets B(x) and
this requires certifiable regularity inheritance. We also use the fact that the bipartite
matching problem can be solved in polynomial time. We have yet another algorithm
for fixing buffer defects. The proof of Lemma 3.7 constructs the sets Pi and Di of
this algorithm in polynomial time, while the remainder, Algorithm 2, is trivially
polynomial time.

Finally, each of our blow-up lemmas is completed by embedding the buffer
vertices. This amounts to a bipartite matching problem, and can be solved in
polynomial time.

It seems reasonable to believe that it is possible to derandomise our RGA algo-
rithms and preprocessing algorithm, which would yield polynomial time algorithms
for constructing each of the claimed embeddings. Certainly Komlós, Sárközy and
Szemerédi [48] were able to derandomise their original (RGA-based) proof of the
dense blow-up lemma. However we did not attempt to check whether their methods
suffice in our case.

7.3. Directed graphs

Although our blow-up lemmas as written apply to undirected graphs, we can also
apply them to subdigraphs of random directed graphs (or bijumbled directed graphs).
We give for illustration the directed statement corresponding to Lemma 1.21. In

order to state this, we define the undirection of a digraph
−→
G to be the graph G

with uv ∈ E(G) if and only if either −→uv or −→vu is an arc of
−→
G . The terms which we

defined for undirected graphs (such as
−→
R -partition, buffer, and so on) are taken as

applying to the undirections of all digraphs, with the exception that when we talk

about an
−→
R -partition of

−→
G or

−→
H we mean in addition that all arcs of

−→
G or

−→
H go in

the direction specified by the arcs of
−→
R .

Theorem 7.1. For all ∆, ∆R′ , ∆J , α, ζ, d > 0, κ > 1 there exist ε, % > 0 such
that for all r1 there is a C such that for q > C(log n/n)1/∆ the following holds. Let
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p = 2q − q2. The random directed graph
−→
Γ =

−→
Gn,q asymptotically almost surely

satisfies the following.

Let
−→
R be a digraph on r ≤ r1 vertices without cycles of length 2 and let R′

be a subgraph of the undirection of
−→
R with ∆(R′) ≤ ∆R′ . Let

−→
H and

−→
G ⊆

−→
Γ be

digraphs given with κ-balanced, size-compatible vertex partitions X = {Xi}i∈[r] and
V = {Vi}i∈[r] with parts of size at least m ≥ n/(κr1). Let I = {Ix}x∈V (

−→
H)

be a

family of image restrictions, and J = {Jx}x∈V (
−→
H)

be a family of restricting vertices.

Suppose that

(BUL1 ) The undirection of
−→
H has maximum degree at most ∆, (

−→
H,X ) is an

−→
R -

partition, and X̃ = {X̃i}i∈[r] is an (α,R′)-buffer for
−→
H ,

(BUL2 ) (
−→
G,V) is an (ε, d, p)-regular

−→
R -partition, which is (ε, d, p)-super-regular

on R′, has one-sided inheritance on R′, and two-sided inheritance on R′

for X̃ ,
(BUL3 ) I and J form a (%, ζ,∆,∆J)-restriction pair.

Then there is an embedding ψ : V (
−→
H )→ V (

−→
G) such that ψ(x) ∈ Ix for each x ∈

−→
H .

This theorem is a corollary of Lemma 1.21. We simply work with the undirections
of all digraphs, which satisfy the conditions of Lemma 1.21, and observe that an

embedding ψ of the undirection of
−→
H into the undirection of

−→
G such that ψ(x) ∈ Vi

for each x ∈ Xi is by definition of an
−→
R -partition automatically an embedding of−→

H into
−→
G . Observe that we chose p so that the undirection of

−→
Gn,q is Gn,p.

With rather more work, we believe we could allow
−→
R to contain 2-cycles. More

generally, we could allow G to be coloured from a palette of at most κ colours, define
R to be the multicoloured graph (with edges permitted to have several colours)
corresponding to relatively dense sparse-regular pairs in the given colour, and supply
a coloured graph H with a coloured graph homomorphism to R, which we require to
be embedded with edges going to edges of G with the correct colour. We believe that
such coloured versions of all three of our blow-up lemmas can be proved, following the
strategies given in this paper. However to do so requires appropriate modifications
to several definitions and recalculation of various parameters. We see no reason why
this should cause difficulty, but we did not check the details.

7.4. Hypergraphs

It seems likely that the techniques developed in this paper will be very helpful
for proving a blow-up lemma for uniform hypergraphs which works relative to sparse
random or pseudorandom (appropriately defined) hypergraphs. Ideally, one might
hope for a version of the hypergraph blow-up lemma of Keevash [38] which allows
for ‘image restrictions’ of vertex tuples of size up to k − 1 in k-uniform hypergraphs
(as opposed to only of vertices), since this is necessary (even in the dense case) for
some applications.

7.5. Open problems

Beyond the question of improving on our main results, we would like to pose
the following problems.

Problem 7.2. Is it true that for each r,∆ ≥ 2 and n there exists a K∆+2-free
graph G which is r-partition universal for H(n,∆), with v(G) = O(n)?

We have seen that the answer is ‘yes’ if ∆ + 2 is replaced by 2∆ (Corollary 1.5),
and trivially the answer is ‘no’ if ∆ + 2 is replaced by ∆ + 1. Nešetřil and Rödl [59]
proved that the answer is ‘yes’ if the restriction v(G) = O(n) is removed, but the
bound on v(G) coming from their proof is a fast-growing function of n.
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Problem 7.3. For what p isGn,p typicallyH(n,∆)-universal? typicallyH(n, d,∆)-
universal? Does the answer change substantially if Gn,p is replaced with GCn,p for
C large? or for C slightly larger than one?

Problem 7.4. For what β are (p, β)-bijumbled n-vertex graphs G with minimum
degree 1

2pn always H(n,∆)-universal? Does the answer change if we allow G to have
Cn vertices for C large? or for C slightly larger than one?

Problem 7.5. Do there exist graphs G which are r-partition universal for
H(n,∆) with only O(n2−2/∆) edges?

Problem 7.6. For what bias b can Maker win the H(n,∆)-universality game
on Kn? on KCn for C large? for C slightly larger than one?

Although there exist universal graphs with n2−2/∆ edges (Alon and Capalbo [11]),
Maker certainly cannot make them with a bias Ω

(
n2/∆

)
, since Maker requires

b = O
(
n2/(∆+2)

)
in order to make just one copy of K∆+1.
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