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Abstract
Rationality does not require of preferences that they be complete. Nor

therefore that they be transitive: Suzumura consistency suffi ces. This
paper examines the implications of these claims for the theory of rational
choice. I propose a new choice rule - Strong Maximality - and argue that it
better captures rational preference-based choice than other more familiar
rules. Suzumura consistency of preferences is shown to be both necessary
and suffi cient for non-empty strongly maximal choice. Finally conditions
on a choice function are stated that are necessary and suffi cient for it to
be rationalisable in terms of a Suzumura consistent preference relation.

1 Preference and Choice

This note concerns two questions about reason-based choice: What is required
of the agent who makes her choices on the basis of her preferences? What can
be inferred about an agent’s preferences from the choices she makes? On both of
these questions, I have learnt a great deal from Nick Baigent: from his writings,
of course, but even more from discussions with him. If I could achieve even a
small fraction of the clarity that he does when addressing these topics, I would
be very happy indeed.
When thinking about the relation between preference and choice, it is worth

distinguishing between the choices that are permissible given the agent’s prefer-
ences, those that are mandatory and those that she actually makes. Rationality
does not generally require that agents have strict preferences over all alterna-
tives, so it is to be expected that these sets of choices will not coincide. For
instance if she is indifferent between two alternatives or is unable to compare
them it might be permissible for her to choose both of them, not mandatory to
pick either, while in fact choosing only one of them.
There are two implications of this point. Firstly, preference-based explana-

tions and/or rationalisations are necessarily limited in scope. Invoking some-
one’s preferences will suffi ce to explain why some choices were not made (i.e. in

∗I would like to thank the audience of the LSE Choice Group seminar for their usual robust
questioning of a presentation of this paper. I owe special thanks to David Makinson, Wulf
Gaertner, Silvia Milano and two anonymous referees for very helpful written comments on
earlier drafts.
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terms of rational impermissibility) but not typically why some particular choice
was made. To take up the slack, explanations must draw on factors other than
preference: psychological ones such as the framing of the choice problem or the
saliency of particular options, or sociological ones such as the existence of norms
or conventions governing choices of the relevant kind. Some work has been done
on how to rationalise choice when it has more than one determinant (see, for
instance, Baigent [2]), but in general it is an insuffi ciently studied problem.
Secondly, observations of actual choices will only partially constrain prefer-

ence attribution. For instance, that someone chooses a banana when an apple
is available does not allow one to conclude that the choice of an apple was ruled
out by her preferences, only that her preferences ruled the banana in. In this
simple observation lies a serious obstacle to the ambition of Revealed Prefer-
ence theory to give conditions on observed choices suffi cient for the existence
of a preference relation that rationalises them. For the usual practice of infer-
ring the completeness of the agent’s preferences from the fact that she always
makes a choice when required to is clearly illegitimate if more than one choice
is permitted by her preferences.
The upshot is that the usual focus on the case where an agent has complete

preferences is quite unjustified. The aim of this note is therefore to explore the
two opening questions without assuming completeness, building on the work
of Sen [9], Richter [7] and especially the recent work of Bossert and Suzumura
[4][5]. I argue that when incompleteness of preference is reasonable then ratio-
nality does not require full transitivity of preferences. Instead it requires it that
they be Suzumura consistent —roughly that there be no cycles of weak prefer-
ence containing a strong preference. In a similar vein I argue for a choice rule
—Strong Maximality —that is roughly intermediate between optimisation and
maximisation and show that Suzumura consistency of preference is suffi cient to
ensure that this choice rule picks a non-empty set of alternatives from any given
non-empty set of them. Finally, I investigate the rationalisability of choice func-
tions in terms of Suzumura consistent preferences and strong maximal choice.

1.1 Preference

In the usual fashion we introduce a reflexive binary relation � (called the weak
preference relation) on a set of alternatives X, with symmetric part ≈ (indif-
ference) and anti-symmetric part � (strict preference). In contrast to the way
these terms are often used, we do not assume that in general any two alter-
natives are comparable under these preference relations. Instead we define a
comparability relation ./ on alternatives by: α ./ β iff α � β or β � α. When
all alternatives are comparable the preference relation is said to be complete.
(Hence it is incomplete iff there is a pair of alternatives α and β such that
α 6./ β.)

1.1.1 Transitivity

A number of different forms of transitivity-like properties of preference relations
will be of interest. We say that � is:

1. Transitive iff for all α, β, γ ∈ X, α � β and β � γ implies that α � γ (and
intransitive otherwise)
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2. Incompletely transitive iff for all α, β, γ ∈ X, α � β and β � γ implies
that γ 6� α

3. PI-transitive iff for all α, β, γ ∈ X, α � β and β ≈ γ implies that α � γ

4. Quasi-transitive iff � is transitive

Transitivity implies incomplete transitivity, PI-transitivity and quasi-transitivity.
On the other hand, a reflexive relation is transitive if it is either both complete
and incompletely transitive or both PI-transitive and quasi-transitive [8, Theo-
rem I.6]. But in general a relation can be incompletely transitive without be-
ing PI-transitive or quasi-transitive, and vice versa: they constitute alternative
weakenings of transitivity.
The view taken here is that completeness is not a rationality requirement on

preference. This is not in itself very controversial. Much more so is something
that follows rather naturally from this view, namely that transitivity is too
strong a requirement to impose on preferences. The problem is that transitivity
imposes comparability even when it is not appropriate to do so. The following
example serves to illustrate this point.
Suppose that Ann, Bob and Carol have interval scores in Maths and English

as follows:

• (Ann) Maths: 80-90, English: 60-70

• (Bob) Maths: 56-65, English: 66-75

• (Carol) Maths: 75-85, English: 55-65

The teacher decides to rank them in each subject using the heuristic that
two students with overlapping intervals scores in a subject should be regarded
as on a par in that subject, but one is ranked higher than the other if the lower
bound of their interval score is greater than the upper bound of the interval score
of the other. So Ann ranks higher than Bob because she is definitely better at
Maths and not comparably worse at English, Bob and Carol are ranked the same
because each is better at one of the subjects and Ann and Carol are unranked
relative to each other because neither is comparably better than the other in
either subject.
The teacher’s ranking of her students does not satisfy transitivity, but it

is not obvious that her ranking is irrational given her inability to discriminate
between Ann and Carol on the basis of their performances. It is not that the
teacher should not infer that Ann is better than Carol, but rather that she is
not rationally compelled to do so. This suggest that in situations in which a
preference relation is not complete the requirements of rationality (with regard
to preferences between pairs of a triple of alternatives) are more appropriately
expressed by the condition of incomplete transitivity, than by that of full tran-
sitivity.

1.1.2 Consistency

In addition to the basic conditions on preference listed above, which are defined
in terms of pairs or triples of alternatives, we are also interested in a number of
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derived consistency properties of the preference relation that can be defined in
terms of these basic ones.
The weak preference relation � will be said to be:

1. Strongly consistent iff � is transitive

2. Suzumura consistent iff for all α1, α2, ..., αn ∈ X, α1 � α2, α2 � α3, ..., αn−1 �
αn implies that αn 6� α1

3. Weakly consistent iff � is acyclic iff for all α1, α2, ..., αn ∈ X, α1 �
α2, α2 � α3, ..., αn−1 � αn implies that αn 6� α1

These properties are in descending order of strength: strong consistency
implies Suzumura consistency which implies weak consistency. Suzumura con-
sistency strengthens incomplete transitivity, by extending it to arbitrary sets of
alternatives.1 As Bossert and Suzumura [5] point out there are three notable
characteristics of Suzumura consistency. Firstly it rules out cycles with at least
one strict preference and so preferences that satisfy it are not vulnerable to
money pumps. Secondly, Suzumura consistency of a weak preference relation is
necessary and suffi cient for the existence of an complete and transitive extension
of it.2 And thirdly, any preference relation that is both Suzumura consistent
and complete is strongly consistent. So there is good reason to think of Suzu-
mura consistency as being the appropriate consistency condition for incomplete
preferences.

2 Preference-based Choice

Let C be a choice function on ℘(X) − ∅: a mapping from non-empty subsets
A ⊆ X to subsets C(A) ⊆ A. Intuitively C(A) is the set of objects from the set
A that could be chosen: could permissibly be so in normative interpretations,
could factually be so in descriptive ones. If C(A) is always non-empty then
it is said to be decisive. (Decisiveness is often built into the definition of a
choice function, but it will prove more convenient here to make it a separate
assumption.)
We are especially interested in the case when a choice function C can be said

to be based on or determined by a preference relation. A natural condition for
this being the case is that an object is chosen from a set only if no other object
in the set is strictly preferred to it. Formally:

SPBC: (Strict Preference Based Choice)

α � β ⇒ ∀(A : α ∈ A), β /∈ C(A)

SPBC certainly seems necessary for preference-based choice. But is it suf-
ficient? I think not. A further requirement is that two alternatives that are
regarded indifferently should always either both be chosen or both not chosen.
Formally:

1The concept of Suzumura consistency was introduced in Suzumura [11].
2See Suzumura [11] for a proof.
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IBC: (Indifference Based Choice)

α ≈ β ⇒ ∀(A : α, β ∈ A), α ∈ C(A)⇔ β ∈ C(A)

SPBC and IBC are not generally suffi cient to determine choice because they
don’t settle the question of how to handle incomparability. Let us therefore
consider three possible preference-based rules of choice that do fully determine
what may be chosen and consider how they relate to these conditions. To do so
it is useful to consider the transitive closure of ≈ on A ⊆ X, denoted ≈̂A and
defined by, for all α, β, γ ∈ A: (1) α≈̂Aα, and (2) if α≈̂Aβ and γ ≈ β then
α≈̂Aγ. Note that if α≈̂Aβ then there exists a sequence of elements in X, α1,
α2, ..., αn linking α and β in the sense that α ≈ α1, α1 ≈ α2, ..., and αn ≈ β. It
follows that ≈̂A is transitive and symmetric and hence an equivalence relation
on A. We call the set of β ∈ A such that α≈̂Aβ, the indifference class of α in
A.
The three rules of interest are the following:

Optimality: An object is chosen from a set if and only if it is weakly preferred
to all others in the set. Formally, for all A such that α ∈ A:

α ∈ C(A)⇔ ∀(β ∈ A), α � β

Maximality: An object is chosen from a set if and only if no alternative in the
set is strictly preferred to it. Formally, for all A such that α ∈ A:

α ∈ C(A)⇔ ¬∃(β ∈ A : β � α)

Strong Maximality: An object α is chosen from a set A iff there is no alter-
native in A strictly preferred to any alternative in α’s indifference class in
A. Formally, for all A such that α ∈ A:

α ∈ C(A)⇔ ¬∃(β, γ ∈ A : α≈̂Aγ and β � γ)

Of these three rules, Optimality is the one that is most commonly taken
to express rational preference-based choice (see, for instance, Arrow [1] and
Sen [9]). But although Optimality satisfies both SPBC and IBC, it is clearly
too strong a condition on permissible choice. This is because it implies that if
α 6./ β then C({α, β}) = ∅. But even if there are situations in which no choice
is permissible (contrary to the usual assumption of decisiveness), this is not a
consequence of incomparability. If two alternatives are incomparable it should
normally be permissible to choose either of them.
For this reason Maximality is often seen as the more appropriate rule of

rational choice when the possibility of incomparability is not ruled out (see
Sen [10]). But Maximality is also not quite right, as the following schematic
version of our earlier example shows. Suppose that α � β and β ≈ γ but
α 6./ γ. Then it would not be unreasonable for C({α, γ}) = {α, γ} because
the two alternatives are incomparable and C({β, γ}) = {β, γ} because the two
alternatives are equally preferred, but C({α, β, γ}) = {α} because β should not
be chosen when a strictly preferred alternative —α —is available and γ should
not be chosen if β is not, given that γ ≈ β. But these choices are inconsistent
with Maximality which requires that C({α, β, γ}) = {α, γ}.
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The problem with Maximality is that it leads to violations of IBC. Since
Maximality requires that C({α, β, γ}) = {α, γ}, it is not the case that β is cho-
sen whenever γ is, even though β ≈ γ. So just as admitting the possibility of
incompleteness required a shift from Optimality to Maximality, so too recogni-
tion of the rational permissibility of incompletely transitive preferences requires
a shift from Maximality to Strong Maximality.
Let us consider a reformulation of Strong Maximality that will make its

implications clearer. For any A ⊆ X let A = {α,β, ...} be the set of equivalence
classes in A induced by the relation ≈̂A. Define a weak preference relation ≥
on A by ∀α,β ∈ A:

α ≥ β ⇔ ∃(α ∈ A, β ∈ B : α � β)

Then choosing from any A in accordance with Strong Maximality is equivalent
to choosing the ≥-maximal element of the set A of equivalence classes in A
induced by the equivalence relation ≈̂A.
Now it might be objected that adopting Strong Maximality as a principle of

rational choice is tantamount to smuggling transitivity of indifference back in
via the equivalence classes under ≈̂A. But there is another way for formulating
the rule which should serve to alleviate this worry. Let us define a sequence of
choice functions 〈C̄τ�(A)〉∞τ=1 as follows:3

1. C̄0�(A) = {α ∈ A : ∃β ∈ A such that β � α}

2. C̄τ�(A) = {α ∈ A : ∃β ∈ A such that β ≈ α and β ∈ C̄τ−1� (A)}

Then we define the set of impermissible alternatives by:

C̄�(A) =

∞⋃
τ=0

C̄τ�(A)

Intuitively C̄�(A) is the set of alternatives in A that must not be chosen.
Then Strong Maximality is equivalent to the rule of choosing any alternative
that is not impermissible, i.e. to the rule:

Non-Elimination: α ∈ C(A)⇔ α /∈ C̄(A)

To apply this rule it suffi ces that the agent iteratively eliminates alternatives
from her choice set by removing any dominated alternatives; then checking
if any alternatives that are left are indifferent to any eliminated ones and, if
so, removing them as well; then checking if any alternatives that are left are
indifferent to any eliminated ones, and so on.

2.1 Properties of Preference-based Choice

Each of the three choice rules under examination expresses a view on the rela-
tionship between preference and choice. To examine what these are and how
they differ for the three choice rules, let us denote the choice function deter-
mined by the weak preference relation � together with Maximality, Optimality

3 I am grateful to an anonymous referee for suggesting this formulation.

6



Figure 1: Relations Between Choice Rules

or Strong Maximality by CMax
� , COp� and CSM� respectively, where these are

defined as follows. For any A ⊆ X:

COp� (A) = {α ∈ A : ∀β ∈ A,α � β}
CMax
� (A) = {α ∈ A : ∀β ∈ A, β 6� α}
CSM� (A) = {α ∈ A : ∀(γ ∈ A : γ≈̂Aα),¬∃(β ∈ A : β � γ)}

For the rest of this section, I will drop the subscript on the choice function as
the preference relation is fixed throughout the discussion.
The first thing to note is that the set of permissible choices according to CMax

is always at least as large as those determined by COp or CSM . Furthermore when
the preference relation is Suzumura consistent then the set of choices that are
permissible according to Strong Maximality contain those that are permissible
according to Optimality (as well as being contained by those determined by
Maximality). On the other hand when the preference relation is complete COp
coincides with CMax and when it is transitive, CSM coincides with CMax. These
relationships are summarised in Figure 1, where arrows indicate implications
given the indicated conditions, and proven below as Theorem 1.
It is well known that for finite sets of alternatives COp is decisive iff �

is complete and weakly consistent and that CMax is decisive iff � is weakly
consistent. Theorem 2 below establishes a corresponding result for choices that
are strongly maximal, namely that a choice function based on Strong Maximality
is decisive iff the underlying preference relation is Suzumura consistent. The
main significance of this result for our argument is that Suzumura consistency is
thereby shown to be both necessary and suffi cient for decisive, strongly maximal
choice.

Theorem 1 1. COp ⊆ CMax and CSM ⊆ CMax

2. If � is complete then COp = CMax

3. If � is transitive, then CSM = CMax

4. If � is Suzumura consistent, then COp ⊆ CSM .
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5. If � is complete and Suzumura consistent then CSM = COp = CMax

Proof. (1) Suppose α ∈ COp(A). Then ∀β ∈ A, α � β. But then ∀β ∈ A,
β 6� α. So α ∈ CMax(A). Similarly suppose α ∈ CSM (A). Now by the symmetry
of indifference α ≈ α, so it follows that ¬∃β ∈ A such that β � α). So
α ∈ CMax(A).
(2) Suppose that � is complete. Then for any β ∈ A if β 6� α then α � β.

Hence if α ∈ COp(A) then α ∈ CMax(A). So COp = CMax.
(3) Suppose that � is transitive but that there exists α ∈ A such that α ∈

CMax(A) but α /∈ CSM (A). Now if α /∈ CSM (A) then there exists β, γ ∈ A

such that α≈̂Aγ and β � γ. By transitivity, if α≈̂Aγ then α ≈ γ and so by
transitivity again, β � α. But if α ∈ CMax(A) then β 6� α. So β ≈ α and by
transitivity, β ≈ γ. Hence, contrary to assumption, β 6� γ. It follows that if
α ∈ CMax(A) then α ∈ CSM (A) and hence that CSM = CMax.
(4) Suppose that � is Suzumura consistent and that α ∈ COp(A). Then

∀β ∈ A, α � β. Let γ ∈ A be such that α≈̂Aγ. Then there exists a sequence
of elements in A, α1, α2, ..., αn linking γ, α and β in the sense that γ ≈ α1,
α1 ≈ α2, ..., αn ≈ α and α � β. Hence by Suzumura consistency β 6� γ. It
follows that α ∈ CSM (A).

(5) Follows from 2, 3 and 4.

Theorem 2 Suppose that the set of alternatives X is finite. Then:

1. COp is decisive iff � is complete and weakly consistent

2. CMax is decisive iff � is weakly consistent

3. CSM is decisive iff � is Suzumura consistent

Proof. (2) Suppose � is not weakly consistent. Then there exists A =
{α1, α2, ..., αn} ⊆ X, such that α0 � α1, α1 � α2, ..., αn−1 � αn and αn � α0.
But then for n ≥ i ≥ 1, αi /∈ CMax(A) because αi−1 � αi. And α0 /∈ CMax(A)
because αn � α0. So CMax(A) = ∅. Hence CMax is not decisive. For the
converse see Kreps [6].
(1) Suppose � is either not weakly consistent or incomplete. Suppose it is

not weakly consistent. Then since by Theorem 1(1), COp ⊆ CMax it follows
from 2. that COp(A) 6= ∅. Now suppose that � is incomplete. Then there
exists α, β ∈ X such that α 6on β and hence such that COp({α, β}) = ∅. So COp
is not decisive. The converse follows from 2. and Theorem 1 (2).
(3) Suppose that CSM is decisive but that � is not Suzumura consistent, i.e.

for some set A = {α1, α2, ..., αn} it is the case that α1 � α2, α2 � α3, ..., αn−1 �
αn but that αn � α1. We prove by induction on i that it then follows that for
all αi ∈ A, αi 6∈ CSM (A) and hence that CSM (A) = ∅. First Strong Maximality
implies that α1 6∈ CSM (A) because αn � α1. Now assume that for some k > 1,
αk 6∈ CSM (A). Then there exists some αj and αj′ such that αk≈̂Aαj but αj′ �
αj . Now consider αk+1. Either αk � αk+1 in which case it follows by Strong
Maximality that αk+1 6∈ CSM (A). Or αk ≈ αk+1, in which case αk≈̂Aαk+1.
But then αk+1≈̂Aαj and so by Strong Maximality αk+1 6∈ CSM (A). But this
implies that CSM (A) = ∅ in contradiction to the assumption of decisiveness.
So � must be Suzumura consistent.
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For the other direction, suppose that � is Suzumura consistent, but that for
some set A, CSM (A) = ∅. If CSM (A) = ∅ then CMax

≥ (A) = ∅ and so by (2), > is
cyclic i.e. there exist subsets of A such that A1 > A2,A2 > A3...,An−1 > An,
and An > A1. So by definition there exists α1, α′1, α2, ..., α

′
n, αn ∈ A such that

α1≈̂Aα′1, ..., α′n≈̂
Aαn and α′1 � α2, α′2 � α3,..., α′n−1 � αn, but α′n � α1. But

by Suzumura consistency, if α1≈̂Aα′1, α′1 � α2, α2≈̂
Aα′2, α

′
2 � α3,..., α′n−1 � αn

and αn≈̂Aα′n then α′n 6� α1. So CMax
≥ (A) 6= ∅. Hence CSM is decisive.

2.2 Properties of Choice Functions

What features of choice functions are induced by our choice rules? The following
properties —Sen’s alpha, beta and gamma conditions —have figured prominently
in the existing literature. Let α ∈ A and γ ∈ C. Then:

Set Contraction: If α ∈ C(B) and A ⊆ B then α ∈ C(A)

Set Expansion: If α, β ∈ C(B), B ⊆ A and β ∈ C(A), then α ∈ C(A)

Set Union: If α ∈ C(A) and α ∈ C(B), then α ∈ C(A ∪B)

It is well known that Optimality-based choice will satisfy both Set Contrac-
tion and Set Expansion so long as the underlying weak preference relation is
weakly consistent (see Sen [9]). In fact choice based on weakly consistent prefer-
ences will satisfy Set Contraction given any one of the three choice rules under
examination. Set Expansion on the other hand need not be satisfied by maximal
or strongly maximal choice. This is as it should be. Suppose, for example, that
the agent cannot compare α and β, but that no alternative in A is preferred to
either. So both are permissible choices. Now suppose that B = A ∪ {γ} and
that γ � α but γ 6./ β. Then β is a still permissible choice but not α. So Set
Expansion is violated.
More interesting perhaps is that CSM , unlike the other two rules, does not

satisfy Set Union, for Sen ([9]) has shown that satisfaction of this condition
along with Set Contraction is essentially equivalent to the choice function being
binary in composition. Instead it is both necessary and suffi cient that strongly
maximal choices be based on PI-transitive preferences for CSM to satisfy Set
Union.
If CSM does not generally satisfy Set Union, what properties are character-

istic of it? Two weaker principles than Set Union turn out to be significant. The
first is a very weak consequence of Set Union.

Element Union: If ∀α ∈ A, α ∈ C({α, β)}) then for some α∗ ∈ A, α∗ ∈
C(A ∪ {β})

To state the second condition, we need to introduce a choice theoretic ana-
logue of the notion of the indifference class of an alternative α in some set A
- called α’s choice equivalence class. Intuitively the choice equivalence class of
α is the set of elements that are chosen whenever α is, in any set containing
both. To state it formally, we first define a sequence of functions 〈C̃τ (A,α)〉∞τ=1,
induced by a given choice function C, as follows:

1. C̃0(A) = {α}
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2. C̃τ (A) = {β ∈ A : For some γ ∈ C̃τ−1(A,α), β ∈ C(B)⇔ γ ∈ C(B) for all
B ⊆ X such that β, γ ∈ B}

Then we define α’s choice equivalence class in A induced by C, as follows:

C̃(A,α) =

∞⋃
τ=0

C̃τ (A)

Note that if β≈̂Aα then β ∈ C̃SM (A,α). For if β≈̂Aα, then there exists
a sequence of elements in A, α1, α2, ..., αn linking α and β in the sense that
α = α1, α1 ≈ α2, ..., αn−1 ≈ αn, and αn = β. And for all αi in this sequence,
αi ∈ CSM (B) ⇔ αi+1 ∈ CSM (B) for all B ⊆ X such that αi, αi+1 ∈ B. Since
α ∈ C̃SM (A,α), it follows that α2 ∈ C̃SM (A,α) and hence α3 ∈ C̃SM (A,α)
and hence ... β ∈ C̃SM (A,α).
Now we can state the final condition of interest:

Equivalence Class Union If C̃(A ∪ B,α) ⊆ C(A) and C̃(A ∪ B,α) ⊆ C(B),
then C̃(A ∪B,α) ⊆ C(A ∪B)

This condition, like Element Union, is satisfied by choice in accordance with
Strong Maximality.

Theorem 3 1. COp� /CMax/CSM all satisfy Set Contraction

2. COp and CMax satisfy Set Union, but CSM need not.

3. If CSM is decisive then CSM satisfies Set Union iff � is PI-transitive

4. CSM satisfies Element Union and Equivalence Class Union

Proof. (1) Suppose B ⊆ A and α ∈ CSM (A). Then ∀β, γ ∈ A such that α≈̂Aγ,
β 6� γ. Hence ∀β, γ ∈ B such that α≈̂Aγ, β 6� γ. So α ∈ CSM (B). Similarly for
COp and CMax.
(2) Suppose that α ∈ CMax(A) and α ∈ CMax(B). Then ∀β ∈ A, β 6� α and

∀β ∈ B, β 6� α. Hence ∀β ∈ A ∪ B, β 6� α. It follows that α ∈ CMax(A ∪ B).
Similarly for COp. However consider a case in which α 6./ β, α ≈ γ and β � γ.
Then CSM ({α, β}) = {α, β}, CSM ({α, γ}) = {α, γ} but α /∈ CSM ({α, β, γ})
because α≈̂Aγ and β � γ.
(3) Suppose � is PI-transitive, that α ∈ CSM (A) and that α ∈ CSM (B), but

that α /∈ CSM (A∪B). Then there exists β, γ ∈ A∪B such that α≈̂Aγ and β � γ.
But then by repeated applications of PI-transitivity it follows that β � α. Hence
α /∈ CSM (A) or α /∈ CSM (B), depending on whether β ∈ A or β ∈ B. Now
suppose that � is not PI-transitive. Then there exists α, β, γ ∈ X such that
α � β and β ≈ γ but α 6� γ. Then either γ � α, α ≈ γ or α 6./ γ. Suppose γ � α
or α ≈ γ. Then CSM ({α, β, γ}) = ∅, contrary to the assumption that CSM is
decisive. So suppose that α 6./ γ. Then γ ∈ CSM ({α, γ}) and γ ∈ CSM ({β, γ}),
but γ /∈ CSM ({α, β, γ}) because α � β and γ ≈ β. So Set Union is violated.
(4) Suppose that ∀α ∈ A, α ∈ C({α, β)}). Then if CSM (A∪{β}) = {β}, there

must exist some α∗ ∈ A, such that β � α∗ and hence, contrary to supposition,
α∗ /∈ CSM ({α∗, β)}). So Element Union is satisfied. Now suppose that C̃SM (A∪
B,α) ⊆ CSM (A) and C̃SM (A∪B,α) ⊆ CSM (B). Suppose that C̃SM (A∪B,α) 6⊆
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C̃SM (A∪B). Then in particular, α /∈ CSM (A∪B). Then there exists γ, δ ∈ A∪B
such that α≈̂A∪Bγ and β � γ. But if α≈̂A∪Bγ then γ ∈ C̃SM (A ∪ B,α). So
γ ∈ A ∩ B since γ ∈ CSM (A) and γ ∈ CSM (B). But δ ∈ A or δ ∈ B. So γ
/∈ CSM (A) or γ /∈ CSM (B), in contradiction to what we have just established.
It follows that C̃SM (A ∪B,α) ⊆ CSM (A ∪B).

3 Rationalisability

A question that naturally arises is whether, and under what conditions, the
choices that are formally represented by a choice function can be rationalised
or explained in terms of an underlying preference relation that, together with
some choice rule, determines it. To tackle it, let us say that a choice function C
is rationalisable by a consistent weak preference relation � iff C is generated by
� together with a given choice rule R, i.e. iff C = CR� . This definition of ratio-
nalisability contains two unspecified parameters: the type of consistency to be
required of preference and the type of choice rule to be used in the determination
of the choice function. Different kinds of rationalisability will be associated with
different values for these parameters and a particular choice function may be
rationalisable relative to some combination of consistency property and choice
rule but not another. Here we will require that the preference relation be at
least weakly consistent in order to speak of rationalisation, and differentiate
between O-, M- and SM-rationalisations of a choice function in accordance with
the choice rule that determines it.

3.1 Revealed Preference

In the literature on revealed preference the question of rationalisability is typ-
ically approached by defining the weak preference relation �̇C ‘revealed’by a
choice function C in the following way:

Revealed Preference: α�̇Cβ ⇔ ∃A ⊆ X such that α, β ∈ A and α ∈ C(A)

It is then possible to ask what properties of the revealed preference relation
�̇C are implied by various assumed properties of the choice function C. It is well
known for instance that if C satisfies both Set Contraction and Set Expansion
then �̇C so defined is both complete and transitive (see Sen [9, Theorem II]). In
this case, as we learnt from Theorem 1 (5), our three choice rules coincide and so
it is reasonable to speak without further qualification of the revealed preference
relation �̇C as rationalising or explaining the choices represented by C. But
when either transitivity and completeness fails for the choice function then this
neat relationship breaks down. Indeed in the absence of grounds for presuming
completeness, the underlying conception of revealed preference becomes much
less compelling.
The fundamental problem with the usual definition of the revealed preference

relation is that it does not allow for any distinction between an attitude of
indifference between two alternatives and an inability to compare them. Indeed
the effect of Revealed Preference is to collapse the two since it entails that
α≈̇Cβ ⇔ ∃A,B ⊆ X such that α, β ∈ A ∩ B, α ∈ C(A) and β ∈ C(B) and so
ascribes to the agent an attitude of indifference between any two alternatives
that can permissibly be chosen from some set containing both — in particular
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to any alternatives α, β such that C({α, β}) = {α, β}− irrespective of whether
they are comparable or not.
To allow for incomparability we need to build a revealed weak preference

relation up from its component revealed strict preference and indifference rela-
tions. I suggest that the following definitions encode the correct way to do so
from a choice function C.

RSP: α �C β ⇔ ∀(A : α ∈ A), β /∈ C(A)

RI: α ≈C β ⇔ ∀(A : α, β ∈ A), α ∈ C(A)⇔ β ∈ C(A)

RWP: α �C β ⇔ α �C β or α ≈C β

RSP strengthens SPBC into a biconditional that mandates the inference
that one prospect is strictly preferred to another iff the latter is never chosen
when the former is available. Note that RSP implies that β /∈ C({α, β}) if
α �C β. The converse is only true however if C satisfies Set Contraction. Put
more positively, if a choice function satisfies Set Contraction then the revealed
strict preference relation based on it is binary in composition.
RI similarly strengthens IBC into a biconditional, but the inference it man-

dates is more controversial; namely that two alternatives are indifferent iff they
are either both chosen or both not. The intuition underlying RI is that what
distinguishes indifference between two alternatives from their incomparability
is that in the former case (indifference) no third alternative should be strictly
preferred to one, but not the other, of the pair, while in the latter case (incom-
parability) such a third alternative could exist. The problem is that if the set
of alternatives is suffi ciently sparse such a third alternative might not in fact
exist and then RI would mandate an inference of indifference when the case is
actually one of incomparability. On the other hand, when the underlying set of
alternatives contains, for every pair of alternatives α and β, a third alternative
α+, that is comparably better than α, or alternative β− that is comparably
worse than β, then RI will be applicable.
RWP defines �C in terms of the relations of strict preference, �C , and indif-

ference, ≈C , that are revealed by the choice function C in accordance with RSP
and RI. So defined �C is not necessarily complete, since it can be the case that
there are sets A and B such that α, β ∈ A,B but α ∈ C(A) and β ∈ C(B). This
would arise when α and β are incomparable and A and B contain elements that
respectively dominate α and β but not the other. Furthermore, although ≈C
must be symmetric and �C reflexive, in the absence of any further assumptions
about C it is not assured that �C is a weak preference relation, nor that �C and
≈C are its symmetric and anti-symmetric parts. For this we must assume that
C is decisive.

Theorem 4 Suppose that C is decisive and that �C is defined from C in accor-
dance with RSP, RI and RWP. Then �C is a weakly consistent weak preference
relation with symmetric and anti-symmetric parts �C and ≈C.

Proof. RI implies the symmetry of ≈C and, together with RWP, the reflexivity
of �C . Note firstly that it is not possible that both α �C β and that α ≈C β.
For if α �C β, then by RSP β /∈ C({α, β}). So by decisiveness α ∈ C({α, β})
and hence by RI α 6≈C β. Similarly if α ≈C β then by RI and decisiveness
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C({α, β}) = {α, β}. So by RSP, α 6�C β. To establish the anti-symmetry of �C ,
let Γ := {A ⊆ X : α, β ∈ A}. Suppose that α �C β so that by RSP, ∀A ∈ Γ,
β /∈ C(A). Then β /∈ C({α, β)} and hence by decisiveness, α ∈ C({α, β)}. So it is
not the case that ∀A ∈ Γ, α /∈ C(A), i.e. β 6�C α. Finally suppose that, contrary
to hypothesis, �C is not weakly consistent. Then there exists a sequence of
alternatives α1, α2, ..., αn, such that, α1 �C α2, α2 �C α3, ..., αn−1 �C αn and
αn �C α1. Then by RSP, C({α1, α2, ..., αn}) = ∅ contrary to decisiveness. So
�C must be weakly consistent.

3.2 Conditions for Rationalisability

Let us now turn to the question of whether it is possible in general to rationalise
an arbitrary choice function C in terms of the revealed weak preference relation
�C defined by RWP. As is to be expected, without some restrictions on C and/or
the set of alternatives, the answer is negative for each of the three types of
rationalisability under consideration.

1. O-rationalisability : Consider C and set of alternatives {α, β, γ} such that
C({α, β}) = {α, β} but C({α, β, γ}) = {β, γ}. Then by RWP, α 6�C β and
β 6�C α. So COpt�C ({α, β}) = ∅ 6= C({α, β}).

2. M-rationalisability : Consider C and set of alternatives {α, β, γ} such that
C({α, β}) = {α}, C({β, γ}) = {β, γ}, C({α, γ}) = {α, γ} but C({α, β, γ}) =
{α}. Then by RWP, α �C β, β ≈C γ but γ 6./C α. So CMax

�C ({α, β, γ}) =
{α, γ} 6= C({α, β, γ}).

3. SM-rationalisability : Consider C and set of alternatives {α, β, γ} such
that C({α, β}) = {α}, C({β, γ}) = {β}, and C({α, γ}) = {γ}. So by
RWP, α 6./C β, β 6./C γ and γ 6./C α. But then CSM�C ({α, β}) = {α, β} 6=
C({α, β}).

What conditions on C are suffi cient to ensure rationalisability? Our earlier
observation that satisfaction of Set Contraction and Set Expansion is suffi cient
for O-rationalisability extends to both M- and SM-rationalisability: this is a
consequence of Theorem 1 (5). This result is of marginal interest however since
these conditions are very restrictive and indeed suffi ce to ensure the complete-
ness of the revealed preference relation.
It is possible to do better. Blair et al [3] prove that a choice function satisfies

Set Union and Set Contraction iff there exists a weakly consistent preference
weak relation that rationalises it. Since both conditions are also implied by
Maximality, this theorem provides the required characterisation of consistent
maximal choice. Below, in Theorem 5, we establish that the weak preference
relation defined by RWP, RSP and RI is just such a rationalising relation.
Set Contraction and Set Union are in fact also jointly suffi cient for a SM-

rationalisation, but in this case it does not give us the characterisation that
we seek since Set Union is not necessary for preference-based strongly maximal
choice. What is required, it turns out, are the two weaker conditions we intro-
duced: Element Union and Equivalence Class Union. In Theorem 8 below we
show that it is suffi cient that the choice function be decisive and satisfy these
two conditions along with Set Contraction, for it to have a Suzumura consistent
SM-rationalisation. This gives us the characterisation of consistent, strongly
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maximal choice that we want, namely that it is necessary and suffi cient that
a choice function be decisive and satisfy Set Contraction, Element Union and
Equivalence Class Union that it be SM-rationalisable by a Suzumura consistent
weak preference relation. This is proved below as a corollary of Theorem 8.
(In the proofs that follow, we omit the subscripts from the relations from the
induced by the choice function C).

Theorem 5 Suppose that C is a decisive choice function satisfying Set Con-
traction and Set Union. Let � be defined from C by RWP, RSP and RI. Then
� is a weakly consistent weak preference relation that M-rationalises C.

Proof. Suppose that α 6∈ CM� (A). Then by RSP and RI there exists β ∈ A
such that ∀(B : α ∈ B), α 6∈ C(B). So in particular, α 6∈ C(A). Now suppose
that α ∈ CM� (A). Then by RSP there does not exist any β ∈ A such that
∀(B ⊂ X : β ∈ B), α 6∈ C(B). Hence for all βi ∈ A, there exists a set Bi ⊆ X
such that β ∈ Bi and α ∈ C(Bi). But then by Set Union, α ∈ C(∪Bi) = C(A).
The weak consistency of � then follows from Theorem 2 (2).

Lemma 6 Suppose that choice function C and indifference relation ≈ are re-
lated in accordance with RI. Then for all γ ∈ X:

γ≈̂Aα⇔ γ ∈ C̃(A,α)

Proof. Suppose that γ≈̂Aα. Then then there exists a sequence of elements in
A, α1, α2, ..., αn linking α and γ in the sense that α = α1, α1 ≈ α2, ..., and
αn = γ. Hence by RI, for all αi in the sequence, αi ∈ C(B)⇔ αi+1 ∈ C(B) for all
B ⊆ X such that αi, αi+1 ∈ B. Now α ∈ C̃(A,α). And so since α1 ∈ C̃(A,α),
it follows by the definition of C̃ that α2 ∈ C̃(A,α) and hence ... αn ∈ C̃(A,α).
We conclude that γ ∈ C̃(A,α).
We establish the other direction by proving by induction that if γ ∈ C̃τ (A,α)

then γ≈̂Aα for all τ ≥ 0. Suppose that τ = 0. Then γ = α and so it follows
from the symmetry of ≈ that γ≈̂Aα. Next assume true for τ = k, i.e. if γ ∈
C̃k(A,α) then γ≈̂Aα. Now we prove the hypothesis for τ = k+ 1. Suppose that
γ ∈ C̃k+1(A,α). Then there exists β ∈ C̃k(A,α) such that β ∈ C(B)⇔ γ ∈ C(B)
for all B ⊆ X such that β, γ ∈ B. Hence by RI, γ ≈ β. But by assumption
β≈̂Aα. So γ≈̂Aα.

Corollary 7 If γ≈̂Aα then C̃(A, γ) = C̃(A,α)

Theorem 8 Suppose that C is a decisive choice function satisfying Set Con-
traction, Element Union and Equivalence Class Union. Let � be defined from
C by RWP, RSP and RI. Then � is a Suzumura consistent weak preference
relation that SM-rationalises C.

Proof. Suppose that α 6∈ CSM� (A). Then by RSP and RI there exists β, γ ∈ A
such that β � γ and γ≈̂Aα. This implies that there exists α1, α2, ..., αn−1, αn
∈ A such that γ = α1, α1 ≈C α2, ..., αn−1 ≈C αn, and αn = α. Now since
β ∈ A, we know that γ 6∈ C(A). So by RI, α2 6∈ C(A). Hence by RI, α3 6∈ C(A)
.... and hence by RI, α 6∈ C(A).

Now suppose that α ∈ CSM� (A). Let Γ = {γ ∈ A : γ≈̂Aα}. Then ∀γ ∈ Γ,
there exists no δ ∈ A such that β � γ. Hence also for all such γ there exists no
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γ′, δ′ ∈ A such that γ≈̂Aγ′ and δ′ � γ′. So ∀γ ∈ Γ, γ ∈ CSM� (A). Now by RSP,
∀γ ∈ Γ, there does not exist any β ∈ A such that ∀(B ⊆ X : β ∈ B), γ 6∈ C(B).
Hence for all β ∈ A, there exists a set B ⊆ X such that β ∈ B and γ ∈ C(B).
But then by Set Contraction, γ ∈ C({γ, β}). So by Element Union, there exist
γ∗ ∈ Γ such that γ∗ ∈ C(Γ∪{β}). Now by Lemma 6, since ≈ is constructed from
C in accordance with RI, C̃(A, γ∗) = C̃(A,α) = Γ. Hence C̃(A,α) ⊆ C(Γ ∪ {β})
for all β ∈ A. Hence by Equivalence Class Union, C̃(A,α) ⊆ C(A). But then it
follows from the fact that α ∈ C̃(A,α), that α ∈ C(A). So C = CSM� . Finally the
Suzumura consistency of � follows from Theorem 2 (3).

Corollary 9 C is a decisive choice function satisfying Set Contraction, Element
Union and Equivalence Class Union iff there exists a Suzumura consistent weak
preference relation � that SM-rationalises C.

Proof. Follows from Theorem 8 and Theorem 3 (1) and (4).

4 Conclusion

When preferences are incomplete, as they often are, they will not suffi ce to
determine a unique choice from all sets of alternatives. Nonetheless, it is useful
to know what choices an agent’s preferences permit her to make. In this paper
I have proposed a new choice rule — Strong Maximality — and argued that
it better characterises rational preference-based choice than the more familiar
rules of Maximality and Optimality. Only Strong Maximality respects both
the requirement that an alternative never be chosen when something strictly
preferred to it is available (PBC) and the requirement that two alternatives
that are comparably indifferent to one another must either both be chosen or
both not chosen from any set containing both (IBC).
When preferences are transitive, Strong Maximality will yield the same pre-

scriptions as Maximality, when preferences are also complete both will coincide
with the prescriptions of Optimality. But just as recognition of the rational per-
missibility of incompleteness motivates a move from Optimality to Maximality,
so the recognition that transitivity is too strong a requirement motivates a move
from Maximality to Strong Maximality.
Strong Maximality is closely linked to the requirement that preferences be

Suzumura consistent; in particular Suzumura consistency is both necessary and
suffi cient for decisive strongly maximal choice. These two concepts are thus
mutually supportive in the same way as are the concepts of maximal choice and
weak consistency and the concepts of optimal choice and transitivity. And just
as weak consistency is too weak and transitivity too strong, so too is maximal
choice too permissive and optimal choice too demanding. Strong Maximality
and Suzumura consistency are, like small bear’s porridge, just right.
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