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Abstract

The notion of a proposition as a set of possible worlds or states oc-
cupies central stage in probability theory, semantics and epistemology,
where it serves as the fundamental unit both of information and mean-
ing. But this fact should not blind us to the existence of prospects with
a di¤erent structure. In the paper I examine the use of random variables
- in particular, proposition-valued random variables - in these �elds and
argue that we need a general account of rational attitude formation with
respect to them.

1 Introduction

The notion of a proposition as a set of possible worlds or states occupies central
stage in probability theory, semantics, epistemology and decision theory, where
it serves as the fundamental unit both of information and meaning. In its former
role, a proposition represents the way the world is or might be; in its latter role,
as the content of sentences and of agents�attitudes of belief and desire. A single
possible world space thus serves both to model what is the case and how agents
perceive their environment, learn from it and shape it.
But the elegance and simplicity of this model should not blind us to its

limits. There are features of the interaction of agent and world that are better
modelled by postulating the existence of prospects with a structure somewhat
more complicated than a set of possible worlds. The sorts of prospects that I
have in mind include such things as actions, observations, causal devices, states
of knowledge of agents, conditionals and modal prospects. I shall argue that
they are best modelled, not as propositions, but as proposition-valued random
variables.
Proposition-valued random variables are functions mapping possible worlds

to propositions. In simple cases these functions take only a �nite number of
values, in which case they can be conveniently represented by a matrix of the
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following kind: 26664
Events Values
E1 V1
...

...
En Vn

37775
with the second column displaying the propositional values and the �rst the set
of possible worlds (the event propositions) taking those values. Intuitively the
matrix represents a kind of dependency in the world between these two classes
of propositions. The scope for applying the idea is as wide as the possible
interpretations of the notion of dependency (causal, evidential, symbolic, etc.,),
as well as of the objects falling under the two classes.
If such prospects exist then it is natural to ask what attitudes agents should

take to them. What do I learn when I �nd out that such a prospect is the case?
How should I adjust my attitudes to other prospects in the light of this informa-
tion? How probable or desirable should I regard the prospect in question? An
attempt at answering these central questions will be made later in the paper,
but �rst a case must be made for the existence of prospects having the structure
of proposition-valued random variables. This I do in the next section, by look-
ing at some examples of theories in which proposition-valued random variables
are either already in use (possibly implicitly) or could be usefully employed. In
the section that follows, proposition-valued random variables are treated more
formally and the notions of expectation and conditional expectation of a ran-
dom variable introduced. Section 4 addresses the question of the desirability
and probability of proposition-valued random variables, section 5 the question
of how to revise our beliefs in response to learning that the state represented by
a random variable holds.

2 Proposition-valued Random Variables: Some
examples

Savage Acts In Richard Je¤rey�s decision theory [10], acts are modelled as
propositions. But in the older theory of Leonard Savage [18], still the industry-
standard in many disciplines, acts are modelled as functions from states of the
world to consequences. Although Savage sometimes suggests that consequences
are hedonic states of the agent, his theory is quite compatible with a more
naturalist reading of them as states of the world, making their identi�cation
with propositions appropriate. This being so, Savage�s acts can be represented
by random variables taking worlds as arguments and outcome propositions as
values. For example, for Savage, the act of breaking a �nal, sixth egg into a
bowl containing the other �ve, in the course of making an omelette, is a function
that determines the proposition �a six-egg omelette� in all states in which the
sixth egg is good and �eggs wasted�in all states in which it is bad. In matrix
form we have: 24 Events Outcomes

Good egg 6-egg omelette
Bad egg No omelette. Eggs wasted

35
That a Savage act carries information about the world not expressible by

an event proposition is visible in the di¤erences between his theory and the
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more parsimonious one of Richard Je¤rey that works only with attitudes to
propositions; in particular, in the fact that in Savage�s theory agents�preferences
for acts su¢ ce to determine a unique measure of their degrees of belief, while in
Je¤rey�s it does not.1 A more formal demonstration of this fact is given below.

Je¤rey�s observations It is common in statistical theory to represent an ob-
servation or an experiment by a partition of propositions, each element of which
represents both a possible state of the world and a possible item of informa-
tion that the observer will glean. Thus peeking at the colour of the ball in the
urn is represented by a partition - e.g. {red, green, yellow} - of the possible
ball colours. This representation might be thought of as a simpli�cation of the
Savage-style act of observation, which would take the form of a function from
states of the world to propositions expressing what is observed at that world:2664

Events What is observed
Red ball Red
Green ball Green
Yellow ball Yellow

3775
However, as Richard Je¤rey [11] observes, the partition representation is ade-
quate only when observation is both veridical and conclusive; that is, when an
observation maps every world to a proposition containing it. But in cases of
non-veridical or inconclusive observation the full structure of the random vari-
able representation is required. For instance, in cases of colour blindness, the
mapping may be many to one:2664

Events What is observed
Red ball red-green
Green ball red-green
Yellow ball Yellow

3775 or

24 Events What is observed
Red or green ball red-green
Yellow ball Yellow

35
re�ecting the observer�s inability to distinguish red from green.2 In cases where
the observer fails to observe anything (e.g. an infrared light source) the random
variable representing the observation will take no value at all.
Our colour blind individual may make no error in their own terms if the

observation of red-green is reliably correlated with the presence of red and green
balls. But if they always report �red� when making a red-green observation
because of a learnt association between the English word �red�and red-green
experiences, their reports will be defective but not uninformative. For third-
parties, the niceties of the observer�s mental states matter far less than the
mapping from states of the world to (possibly non-veridical) reports on this
state, that their observation induces. So for third parties the observation is

1This is to recklessly simplify a complicated matter, but the point is essentially true
nonetheless.

2 In one of the more common forms of colour-blindness what the person sees is what those
with normal vision would classify as yellowish-green. When we represent the colour-blind
person�s observation as red-green what we mean is that they make an observation which
allows them to place the object in the same category that the normally sighted would place
read and green objects.
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better represented as:2664
Events Reported state
Red ball red
Green ball red
Yellow ball Yellow

3775 or

24 Events Reported state
Red or green ball Red
Yellow ball Yellow

35
a fact that they must take into account where drawing inferences from the
observer�s reports.

Aumann�s partitions/ Modalities In the interactive epistemology of Au-
mann an agent�s state of knowledge is represented not by the set of propositions
that she knows to be true, but by a partition of the set of possible worlds. The
knowledge partition is generated by a function which maps each world ! to a set
of worlds, interpreted as the set of worlds consistent with what the agent knows
at !, satisfying the property that ! 2 f(!) and the property that if ! 2 f(!0)
then f(!) = f(!0). As in the case of observations, with which it bares con-
siderable a¢ nity,3 the partition representation of knowledge is only adequate
when the mechanism producing knowledge is both reliable and complete in the
sense that the agent never acquires false beliefs or fails to develop a belief. Not
all agents are so epistemically well-endowed however. The credulous agent, for
instance, may be represented by the matrix:24 Events Belief

True testimony that X X
False testimony that X X

35
for which the corresponding knowledge matrix will be:24 Events Knowledge

True testimony that x X
False testimony that x ?

35
This matrix cannot be reduced to a knowledge partition for it violates the condi-
tion that ! 2 f(!). But being credulous is not inconsistent with being rational
in the decision-theoretic sense and game theory ought to consider strategic in-
teractions in which credulousness is not ruled out, so that, for instance, lying is
not automatically excluded as a rational strategy.
The formal similarities between the epistemic attitudes such as belief and

knowledge and modalities such as possibility and necessity are well known and
so it is to be expected that the points made here regarding the former will
carry over to the latter. In the treatment of modalities given by Kripke and
others,4 modal statements have truth conditions that depend not only the pos-
sible world in which they are evaluated but also on an �accessibility� relation
between worlds. Letting P (!) denote the set of worlds accessible from world
!, it is straightforward to de�ne the proposition-valued random variable that
corresponds to a particular accessibility relation; it is the mapping from worlds
! to P (!). When the accessibility relation is re�exive, symmetric and transi-
tive it partitions the space of possible worlds and the corresponding matrix is

3 Indeed it is plausible that perceptual knowledge was the case that Aumann had in mind.
4For instance in Kripke [12].
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formally equivalent to that induced by Aumann�s knowledge partitions. As we
shall see later, weaker assumptions about the accessibility relation correspond
to other kinds or proposition-valued random variables.

Conditionals If it is true that there exist prospects that take the form of
proposition-valued random variables then one would expect that ordinary lan-
guage would have the means to refer to them. And it does; namely through
conditional sentences. And many theories of conditionals, either explicitly or
implicitly, depart from the traditional view that the semantic contents of sen-
tences are propositions, to a large extent motivated by dissatisfaction with the
formalisation of ordinary language conditionals as material conditionals.
In general the content of a sentence may be regarded as a function from

worlds to the proposition expressed by the sentence at that world. In the sim-
plest cases, what a sentence asserts does not vary with the world in which it
is asserted and so this function will determine a constant proposition. But in
the case of sentences containing indexicals, for instance, this will not be true
and the proposition expressed by a sentence will depend on the context of its
utterance. Thus the sentence �I am here�will have a matrix of the following
kind: 26664

Utterance context Proposition
Uttered by John in London f! 2 
 : In ! John is in Londong

...
...

Uttered by Luis in Madrid f! 2 
 : In ! Luis is in Madridg

37775
Bradley [5] applies this treatment to indicative conditionals, treating them

as sentences with variable propositional content. The sentence �If A then B,
and if not A then C�, for instance, is treated as expressing the proposition that
B in all worlds in which A is true and the proposition that C in all worlds in
which A is false. It has the following matrix:24Event Proposition

A B
A0 C

35
A rather di¤erent approach is taken by Lewis and Stalnaker in their treat-

ment of counterfactual conditionals. On this view a conditional sentence is
a function from either similarity relations (Lewis [13]) or selection functions
(Stalnaker [16]) to propositions. Intuitively the similarity relations or selection
functions pick out, for each world ! and proposition A, the set of worlds most
similar to ! in which A is true. For instance the conditional sentence �If A then
B�can be represented by the matrix:

If A then B =

26664
selection functions propositions

s1 f! 2 
 : s1(!;A) 2 Bg
...

...
sn f! 2 
 : sn(!;A) 2 Bg

37775
So on their account too, conditionals can be viewed as proposition-valued ran-
dom variables. (Given this is it somewhat surprising that Stalnaker and Lewis
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both still assume that agents� attitudes to conditionals depend only on their
propositional content and not on the full structure of the random variable de-
termining this content - in e¤ect assuming that there is no uncertainty about
the selection function itself.)

3 Proposition-valued Random Variables: More
Formally

Let h
;F ; pi be a probability space with 
 = f!1; !2; :::g a set of possible
worlds, F = }(
) the set of propositions (i.e. sets of worlds), and p a probability
measure on F . A proposition-valued random variable is a function on 
 taking
values in F . If a random variable assumes only a �nite number of values then
it is said to be discrete. If it assumes the same value at every world it is
called constant. Constant random variables can very naturally be identi�ed with
their constant value. Discrete proposition-valued random variables also have a
natural representation (called its Normal Form), namely by a �nite matrix of
the following kind:

f =

264A1 X1
...

...
An Xn

375
where the Xi 2 F are the various values taken by the random variable f and
Ai = f�1(Xi). Note that it follows immediately that the Ai are disjoint and
exhaustive of 
.
The informal discussion in the preceding section suggests a further set of

distinctions. Let us call a proposition-valued random variable:

1. Re�ning i¤ 8! 2 
, f(!) � f�1(f(!))

2. Coarsening i¤ 8! 2 
, f�1(!) � f(!)

3. Partitional i¤ 8! 2 
, f(!) = f�1(!)

Actions and knowledge were modelled by re�ning random variables, for in-
stance, veridical observation and veridical belief by coarsening ones, and non-
veridical observation and belief by random variables that are neither.
If we derive an accessibility relation, A, on worlds from a proposition-valued

random variable, f , by means of the condition that !A!0 , !0 2 f(!) then
these distinctions can be seen to have counterparts in properties of the accessi-
bility relation. In particular whenever f is:

1. Re�ning the accessibility relation will be euclidean and transitive,

2. Coarsening the accessibility relation will be re�exive and symmetric,

3. Partitional the accessibility relation will be an equivalence relation.

The relation between the two suggests that, very informally, coarsening func-
tions may be thought of as expressing possibility and re�ning partitions as ex-
pressing necessity (where these possibilities and necessities may be physical,
epistemic, logical, etc.,).
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3.1 Algebraic Structure

Let � = ff; g; :::g be the set of all (total) proposition-valued random variables
on 
. In particular, corresponding to the supremum 
 and in�mum ? of F , �
contains the functions 1 and 0 de�ned as follows; 8! 2 
 :

1(!) = 


0(!) = ?

For any proposition-valued random variable f , let �(f) be the domain of f and
let [f ] be the set of worlds ! 2 
 such that ! 2 f(!).
We now de�ne a number of function operations on the members of �, that

are the natural counterparts of the Boolean operations on sets. Let A 2 
 and
f; g; h 2 � be such that �(f) = �(g) and �(f) \ �(h) = ?. Then:

1. f:g(!) = f(!) \ g(!)

2. f + g(!) = f(!) [ g(!)

3. �f(!) = 
� f(!)

Here we will consider only total functions on 
 and so no other function
operations will be required.5

Constant Functions Let F� = f �f; �g; :::g � � be the set of constant proposition-
valued random variables. Note that F� is closed under the operations +, : and
�, i.e. if f; g 2 F�, then f + g; f:g;�f 2 F�, and that the constant value
of any random-variable �f 2 F� is just the proposition [ �f ]. The set F� is in
fact essentially a copy of the set F of propositions; more exactly, there is a
one-to-one correspondence between the elements of the Boolean algebra of sets
of worlds hF ;[;\;0 ;
;?i and the structure hF�;+; :;�; 1; 0i. To see this let �
be a mapping from F� to F such that �( �f) = [ �f ] and note that it is structure
preserving since:

�( �f:�g) = [ �f ] \ [�g] = �( �f) \ �(�g)
�( �f + �g) = [ �f ] [ [�g] = �( �f) [ �(�g)
�(� �f) = 
� [ �f ] = �( �f)0

�(1) = 


�(0) = ?

It immediately follows that the structure hF�;+; :;�; 1; 0i is a Boolean algebra
and that h
;F�; P i a probability space with P a probability on F� de�ned by:

P ( �f) = p([ �f ])

5Both Je¤rey [11] and Bradley [5] consider non-Boolean operations that allow functions to
be restricted and extended through concatenation.
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Variable Functions It is obvious that �, like F�, is closed under the opera-
tions +, : and �, i.e. if f; g 2 �, then f + g; f:g;�f 2 �. But does it form a
the basis of a Boolean algebra? In order to answer this question it is useful to
consider a partial order, �, on � de�ned as follows;8f; g 2 � :

f � g , 8! 2 
; f(!) � g(!)

In the case of constant functions this order simply mirrors that between their
constant values i.e. 8 �f; �g 2 F�:

�f � �g , 8! 2 
; [ �f ] � [�g]

Now note that:

1. � is transitive, re�exive and anti-symmetric; hence a partial order on �.

2. f + g and f:g are respectively the supremum and in�mum of ff; gg with
respect to �, so that (�;�) is a lattice.

3. This lattice it is bounded above and below by 1 and 0 respectively.

4. Every element f 2 � contains a unique complement; namely �f .

It follows that the structure h�;+; :;�; 1; 0i is also a Boolean algebra. It
is thus possible to de�ne standard probability and desirability measures on the
space of proposition-valued functions.

3.2 Measures on random variables

Let m be any real-valued function on either 
 or F and let f be a proposition-
valued random-variable. We de�ne a corresponding real-valued random variable
m � f , the composition of m and f , by: 8! 2 
,

(m � f)(!) = m(f(!))

Now relative to the reference probability p on 
, the expectation of m � f ,
E(m � f), is given by:

E(m � f) =
Z
m(f(!)):dp(!)

When f is the discrete random variable with Normal Form:264A1 X1
...

...
An Xn

375
then m � f is represented by the matrix6 :

m � f =

264A1 m(X1)
...

...
An m(Xn)

375
6This may not be in its Normal Form as the function m could assign equal numbers to

distinct values of f .
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and E(m � f) =
P

im(Xi):p(Ai).
Another useful notion is that of the conditional expectation of the random

variable m � f given an event X denoted E(m � f jX). When f is discrete, this
quantity is de�ned as follows:

E(m � f jX) =
X

i
m(Xi):p(AijX):

i.e. it is the expectation of the random-variable m�f relative to the conditional
probability, given X, of the arguments of m � f . This allow us to de�ne a new
real-valued random variable, the conditional expectation of m � f given random
variable g, where g is any random variable. When g is discrete with Normal
Form:

g =

264B1 Y1
...

...
Bm Ym

375
the conditional expectation of m � f given g is represented by:

E(m � f jg) =

264B1 E(m � f jg = Y1)
...

...
Bm E(m � f jg = Ym)

375
This random variable too has an expectation: it is given by:

E(E(m � f jg)) =
X
j

E(m � f jg = Yj):p(Bj)

=
X
j

(
P

im(Xi):p(Aijg = Yj)):p(Bj)

4 Attitudes to Random Variables

If it is the case that a state of a¤airs represented by a random variable is in
existence then it is natural to ask what attitudes agents should take to this fact,
and how they should adjust their attitudes to other prospects in the light of it.
For instance:

1. You learn that an action has been chosen, but not what the outcome of it
is e.g. a friend phones and says that he will be making omelettes and that
you should join him for dinner. Decisions must be made at once (do you
accept the invitation?) and this requires forming attitudes in the light of
the information that the action will be performed.

2. You receive an observation report from a less than totally reliable observer
e.g. someone who has some colour-blindness reports that the lights ahead
are green. What credence should you attach to the lights actually being
green given your knowledge of the mapping between colour states and the
observer�s reports?

3. In situations of strategic interaction, it matters to agents what others
know or believe. Suppose, for instance, that Bob is informed of the belief

9



function of Anne but not what the state of the world is. In this case Bob
does not know for sure what Anne believes, but he should be able to form
some expectation about her state of belief based on his probabilities for
the various possible states of the world upon which her beliefs depend.

4. In a famous example of van Fraassen [9], a �ctional soldier, Judy Benjamin
is parachuted into a territory that it divided into two parts - Red and Blue
territory - each of which is further divided into Headquarters and Second
Company areas. She receives radio message telling her that if she is in Red
territory then she is most likely in Headquarters area. Judy�s problem is:
what should she infer about her location from this message?

If actions, observations, knowledge states and conditionals are not ade-
quately represented by propositions, then we cannot draw on propositional se-
mantics and decision theory in a simple-minded way for answers to these types
of questions. So in this section I will attempt to extend the theory of attitudes
to propositions to the more general case of proposition-valued functions and
then consider the extent to which it solves these problems.

4.1 Desirability

In investigating how desirable an agent should regard the prospect of a proposition-
valued random variable we can draw on well worked out answer provided by de-
cision theory to the question as applied to the particular case of actions. Let u
be a real-valued utility function on worlds and de�ne the (Je¤rey-Bolker) desir-
ability, v, of a proposition X as its conditional expectation of utility relative to
the underlying probability measure p, i.e. v(X) = E(ujX).7 Note that Je¤rey�s
averaging condition follows from this de�nition; namely:

Condition 1 (Averaging) 8X;Y 2 F such that X \ Y = ?:

v(X [ Y ) = v(X):p(XjX [ Y ) + v(Y ):p(Y jX [ Y )

How do we extend desirability to action? The way I propose to do so is to
take the value, V , of an action to be its expected desirability, i.e. the expectation
of the conditional expectation of utility, given the acts. Recall that a Savage-
style act f can be represented by a proposition-valued random variable of the
form:

f =

26664
Events Outcomes
A1 X1
...

...
An Xn

37775
where the Ai are possible states of the world and the Xi the consequences of
performing the action in those states. Now we de�ne the corresponding real-
valued random variable v � f where:

v � f =

264A1 v(X1)
...

...
An v(Xn)

375
7See Bolker [2] and [3] and Je¤rey [10].
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Finally V (f) := E(v � f) where:

E(v � f) =
X
i

v(Xi):p(Ai) = E(ujf) =
X
i

E(ujXi):p(Ai)

The de�ned quantity V (f) is then the proposed measure of the desirability of
the act f . Indeed the conjecture is that the proposal can be generalised to
extended to proposition-valued random variables in general, i.e.:

Proposition 2 The desirability of a proposition-valued random variable f is its
expected desirability. Formally: V (f) := E(v � f)

The most direct support for this claim, as applied to acts, is the fact that it
o¤ers a way of unifying the decision theories of Ramsey, Savage, Je¤rey and oth-
ers. It relation to Je¤rey�s theory is the most direct, for the latter can be viewed
as a restriction of our theory to the special case of constant proposition-valued
random variables. This does however raise a question of central importance
to this paper, namely whether, given some proposition-valued function f 2 �,
there exists a proposition Xf 2 
 such that the desirability of Xf must always
equal that of f , i.e. that v(Xf ) = E(fv). The answer is that we cannot gen-
erally do so: for most proposition-valued random variables, it is not the case
that there exists a proposition whose desirability always equals that of the ran-
dom variable. This fact is proved in the appendix as Theorem 5. The theorem
provides a general argument for the importance of studying proposition-valued
random variables as forms of information and as prospects towards which agents
can take attitudes. In the particular contexts of the study of actions, it also
formally vindicates the claim that the introduction of the view of prospects
taking the form of proposition-valued random variables strictly enriches the
Je¤rey-Bolker framework.
Savage�s theory stands in a slightly more complicated relation to ours. In the

�rst place, while for Savage consequences are not logically constrained by the
states of the world in which they are realised, it is implicit in the account given
here that the values of the actions are a subset of their arguments, i.e. that
actions are re�ning random variables. Consequently ours, unlike Savage�s, gives
a state-dependent version of expected utility theory in which the desirability
of the consequences of the action are conditioned by the states of the world in
which they occur. Secondly, while Savage requires that the prospects that serve
as consequences be maximally speci�c with regard to any features of concern
to the agent, the account here is much more permissive and allows for rather
coarse-grained speci�cation of the consequences. As such they are much more
plausibly the kind of prospects that agents can choose amongst, in full knowledge
of what they are choosing.
So much for acts. The question of remains whether this treatment of the

desirability holds up for interpretations of proposition-valued random variables
other than the decision-theoretic one. It seems to me that it applies unprob-
lematically both to a much wider class of causal devices than just actions and
to the conditional sentences which describe them. Other applications are less
straight-forward. While it is plausible that the desirability of making an ob-
servation or of someone being in a particular belief state is measured by the
expected desirability of the observations they will make in each circumstance or
of the beliefs that they will develop, some care must be taken with the choice
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of random variable to represent the belief state or observation. The desirability
of a belief or an observation depends on the state of the world in which it is
developed or made (normally it being desirable to believe or observe X only if X
is the case). To capture this formally we must work with the desirabilities, not
of the contents of the observations or beliefs, but of the observing or believing
of these contents. For instance, consider the belief matrix for a dogmatic agent:

f =

24Events Belief
X X
X 0 X

35
Its desirability will be the expected desirability of the proposition B(X) that
the agent believes that X i.e. V (f) = V (X\B(X)):p(X)+V (X 0\B(X)):p(X 0)
which will, in normal cases, vary positively with the probability of X. To put
it somewhat di¤erently its desirability is the expected desirability, not of f , but
of the derived proposition-valued random variable f 0 given by:

f 0 =

�
X B(X)
X 0 B(X)

�
where it is implicit that ! 2 f 0(!).
The general point is this: when the desirabilities of the prospects under

consideration depend on the states in which they are realised, this dependence
must be re�ected in the associated proposition-valued random variable in a way
which permits sensible application of Proposition 2.

4.2 Probability

Unlike the case of desirability, we have no default theory of the probability of
proposition-valued random variables to turn to for guidance. There are in fact a
number of di¤erent ways of extending probability measures to random variables,
which may serve di¤erent purposes. We consider two of them here.

Indicator Functions One common way of de�ning the probability of a propo-
sition X is as the expectation of its indicator function, IX , where the latter is
a special type of value function that assigns the value 1 to every world in the
proposition X (i.e. at which X is true) and 0 elsewhere. Intuitively the indi-
cator function for X is the value function associated with the mere fact of X
being true. Such a value function underlies the Dutch Book arguments for the
probability axioms, for instance. Indeed, we can think of IX as being the value
function associated with the act B of betting on the truth of X when the bet
pays out $u�1(1) in case X is true and $u�1(0) otherwise (taking u to be utility
measure on dollar amounts). Given that this act has matrix representation:

B =

�
X $u�1(1)
X 0 $u�1(0)

�
then it follows that IX = u �B.
This way of characterising the probability of events is very naturally ex-

tended to the random variables, by de�ning the indicator function, If , for
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proposition-valued random variable f to be a real-valued random variable from

 to f0; 1g such that:

If (!) =

�
1 if ! 2 f(!)
0 if ! =2 f(!)

�
The probability of f , P (f), may now be identi�ed with the E(If ) i.e. P (f) :=R
If (!)dp(!) = p([f ]). Note that P , so de�ned, is a genuine probability measure

on �. For P (1) = p(
) = 1, P (f) = p([f ]) � 0 and if f:g = 0 then P (f + g) =
p([f + g]) = p([f ]) + p([f ]) = P (f) + P (g):

Probability Functions A second strategy for extending probabilities to proposition-
valued random variables starts with the real-valued random-variable p � f , as-
sociated with f , where:

p � f =

264A1 p(X1)
...

...
An p(Xn)

375
The probability of f is then identi�ed with the expectation of p � f , by de�ning
P (f) := E(p � f). Then in the discrete case then P (f) =

P
i p(Xi):p(Ai).

So de�ned, P (�) is also a genuine probability measure on � since:

1. E(p � f) � 0

2. E(p � 1) = 1

3. E(p � (f + g)) = E(p � f) + E(p � g) if f:g = 0

This is proved in the appendix as Theorem 6.

Discussion The two strategies lead to di¤erent assignments of probabilities
to random variables because E(p � f) and E(If ) are not generally the same
quantity. The quantity E(If ) measures the probability that the world is truly
as f says or that f correctly identi�es the actual world, while E(p � f) gives a
measure of the average probability of f or the probability that f is expected
to have. The former measure is useful for interpretations of random variables
as proposition-like entities (e.g. indexical sentences or indicative conditionals)
and perhaps for other prospects represented by re�ning random variables. For
instance our uncertainty about someone�s knowledge state is plausibly measured
by the probability of the worlds in which what they believe is true at that world.
On the other hand it is has little or no application to prospects not represented
by re�ning random variables. In these cases, average probability may do a
better job: for instance, our uncertainty about whether someone believes truly
is plausibly measured by the expected probability of what he believes, where
the latter depends on the state of the world.
The two strategies are similar in one respect: they both are reductionist

in the sense of associating the probability of a random-variable with that of a
particular proposition or with the average of a set of propositions.8 Arguably
however there is uncertainty associated with f that is not reducible to the
uncertainty of any proposition. We may be sure which event the actual world

8 Indeed if F is atomless it will contain a proposition whose probability is this average
probability.
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belongs to, but not be sure that f correctly describes the dependency between
this event and the proposition it determines. That is, we can be uncertain not
just about which world is actual but also about the relevant dependency between
worlds and propositions: whether for instance an action really determines the
action speci�ed by f or whether a set Xi is really possible/accessible at Ai. If
this is right then the approach taken here to measuring the uncertainty of a
proposition-valued random variable is at best only part of the story.

5 Conditioning on Random Variables

When we learn a random variable, we do not generally learn that any particular
proposition is true. But our expectations regarding what is true will change.
Consider for instance the proposition-valued random variable:�

A X
A0 Y

�
This random variable does not carry the information that X is the case, or that
Y is. Nor does it carry the information that A is true or false. Rather it carries
the information that X is the case if A is and Y is the case if A is not. So
to the extent that we regard A as probable, we should now regard X as being
so, and to the extent that we regard it as not being so, we should regard Y as
being probable rather that X. More precisely, my new probability for X after
learning this random variable should equal my old probability for A and my new
probability for Y should equal my old probability for A0. On the other hand,
learning the random variable gives me no reason to change my probability for
A.
To state this both more formally and more generally, let p be a probability on

}(
) and let f be the discrete proposition-valued random variable represented
by:

f =

264A1 X1
...

...
An Xn

375
In the standard Bayesian theory of probability revision, an agent who learns a
proposition X (and nothing more than this), should adopt as her new probabil-
ities of truth her old conditional probabilities of truth, given X, i.e.,

p�X(�) = p(�jX)
p�X(�) = p(�jX)

This theory is not uncontroversial, but I will not question it here. Instead, I will
propose a de�nition for the conditional probability of a proposition given the
discrete proposition-valued random variable f and then consider whether revis-
ing your beliefs upon learning that f by adopting these conditional probabilities
as your new unconditional ones is the right thing to do.
Recall that the probability of proposition Y was de�ned earlier as the expec-

tation of its indicator function. Its conditional probability givenX may similarly
be associated with the conditional expectation of its indicator function, given
X. For then:

E(IY jX) =
Z
IY (!):dp(!jX) = p(Y jX)
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It follows that the conditional probability of any proposition X given the
discrete proposition-valued random variable f is a random variable IY jf which
assigns to each world ! 2 Ai the conditional expectation of IY given that
f(!) = Xi. By de�nition this expectation is just p(Y jf = Xi), so the random
variable in question has the following matrix:

IY jf =

264A1 p(Y jf = Xi)
...

...
An p(Y f = Xn)

375
Now the natural proposal is that an agent who learns that f is the case should
adopt as her new probability for any proposition Y the expectation of IY jf .
More formally:

Proposition 3 (Updating on Random Variables): If an agent with prior
probabilities p learns that discrete proposition-valued random variable f is the
case, she should adopt p�f (�) as her posterior probabilities, where 8Y 2 
:

p�f (Y ) := E(IY jf) =
Xn

i=1
p(Y jf = Xi):p(Ai)

In many cases of interest to us the expectation of Y given that f(!) = Xi
is just p(YijXi). For instance if f represents an action with consequence Xi
in event Ai (where once again Xi � Ai) then the probability of a prospect,
given that the world is in a state in which the action yields consequence Xi (i.e.
! 2 Ai), is just the conditional probability of the prospect given that Xi. So
too if f represents veridical observation or the content of a conditional sentence.
In these cases, it follows from Proposition 3 that:

p�f (Y ) = E(IY jf) =
Xn

i=1
p(Y jXi):p(Ai) (1)

From which it follows that:

p�f (Ai) =

nX
i=1

p(AijXi):p(Ai) = p(Ai) (2)

p�f (Xi) =

nX
i=1

p(XijXi):p(Ai) = p(Ai) (3)

so that updating one�s probabilities in this way can be seen as a matter of
placing all the probability mass that was on Ai �Xi, onto Ai \Xi, leaving the
total mass on Ai the same as before.
The �rst question that needs to be addressed is whether updating on proposition-

valued random variables in accordance with Proposition [?], or even with equa-
tion 1, can be reduced to classical Bayesian conditioning. The answer is that it
cannot generally be so, a fact established by Theorem 8, which shows that even
the e¤ects of updating in accordance with equation 1 on a very simple random
variable cannot be reduced to classical conditioning on any proposition. This
establishes that the informational content, or more exactly the belief-change
inducing properties, of proposition-valued random variables are not expressible
propositionally.
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Although the proposed rule for updating on proposition-valued is not a form
of classical Bayesian conditioning it is closely related to one of it�s near cousins,
namely Adams conditioning.9 Adams conditioning is a rule for belief revision
that applies in cases when the conditional probabilities, given some condition, of
some set of prospects change without the unconditional probabilities for the con-
ditions themselves changing. The exact relation between Adams conditioning
and the proposal given in Proposition 3 is the following: the result of probabil-
ity revision in accordance with equation 1 is exactly that achieved by Adams
conditioning on the constraint that the posterior conditional probabilities of the
Xi given the Ai should equal one. This is proved in the appendix as Theorem
7.
How does proposition 3 fare as an answer to the problem of how to revise

belief on learning a proposition-valued random variable? The merits of Adams�
conditioning as a rule for revising on conditionals has already received some dis-
cussion in the literature and much of it is relevant here. Douvens and Romeijn
[8], for instance, argue that it provides a solution to the problem Judy Ben-
jamin faces in inferring her location. They and others also identify examples in
which Adams conditioning works less well.10 The main conclusion to be drawn
from this discussion is, in my opinion, that Adams conditioning on a particular
conditional (like classical Bayesian conditioning on a ordinary proposition) is
only the right thing to do if a crucial constraint is met, namely that the condi-
tional (or proposition in the Bayesian case) that serves as the conditioning basis
represents everything that has been learnt by the agent. Sometimes it is hard
to tell whether this is the case, but when it is, then Adams conditioning and
hence proposition 3 give the right revision rule for information in the form of a
proposition-valued random variable.
However instead of recapitulating the discussion surrounding the particu-

lar case of conditionals, I would like to look at the question in the context of
the interpretation of random variables as actions, for it turns out that similar
lessons apply in this case. Suppose that one were told that an action had been
performed, whose description was given by say:24Events Outcomes

Rain Go to the cinema
Sun Go to the beach

35
then it would, I claim, be quite correct to revise one�s beliefs in the manner
required by Proposition 3 i.e. one should come to believe in the prospect of a
trip to the cinema to extent that one believes that it is going to rain, without
revising one�s beliefs in the prospect of rain. But in other cases this doesn�t
seem right. Suppose, for instance, that you know learn that your friend has
taken the car to come and see you, an action that might be represented by:24 Events Outcomes

Heavy tra¢ c Arrives late
Light tra¢ c Arrives on time

35
Then knowing that one�s friend hates to arrive late, one might reasonably infer
that the tra¢ c cannot be too heavy or else he would have chosen to walk in-
stead. Clearly doing so would lead to a violation of Proposition 3. But only on

9Adams conditioning in introduced and discussed in [6].
10See, for instance, Bradley [6] and Bovens [4].
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the assumption that we have correctly represented the information we received
about action. And in this case, it would seem that we have not and that his
action is better represented by:266664

Events Outcomes
Heavy tra¢ c and known to be so Arrives on time
Light tra¢ c and known to be so Arrives on time

Heavy tra¢ c and not known to be so Arrives late
Light tra¢ c and not known to be so Arrives on time

377775
Once his action is represented in this way, revising in accordance with the pro-
posed rule seems correct i.e. I should revise our beliefs about my friend arriving
on time in accordance with my probabilities for the tra¢ c being heavy and him
not knowing that it is, but not revise my probabilities for this latter condition.

6 Concluding Remarks

The main aim of this paper was to motivate the study of proposition-valued
random variables as a general type of prospect with applications to semantics,
epistemology, decision theory and philosophical logic. The argument for their
signi�cance has two planks: �rstly the observation that objects of this kind are
already playing a role (though often only implicitly) in theories in these �elds
and that their use could be productively extended; and secondly the demonstra-
tion(s) that the roles played by these objects is not one that can be assumed by
propositions (this be carried out formally in Theorems 5 and 8).
A second aim was to contribute to such a study by exploring the character-

istics of both proposition-valued random variables and the real-valued random
variables that can be derived from them and to apply the fruits of this study
to various problems concerning the attitudes that rational agents should take
to prospects having the form of a proposition-valued random variable (in some
cases building on theory that already exists). In the interests of showing the
full scope for application, I have necessarily only given the briefest of sketches
of what seem to me to be the most fruitful paths of enquiry. By no stretch
of the imagination would I claim that the beginnings made here settle all the
interesting questions that can be asked about the role these prospects should
play in theoretical and practical enquiry. But I would hope that enough has
been done to motivate the interest in the questions themselves.

7 Appendix: Proofs

Throughout, if X and Y are any two sets, we denote X \ Y by XY .

Lemma 4 Let X;Y; Z 2 F be such that Z 6= ?. Then XZ = Y Z i¤ for all
pairs of probability and desirability functions (p; v) on Fsuch that p(Z) = 1, it
is the case that v(X) = v(Y ).

Proof. Note that if p(Z) = 1, then by the Averaging condition:

v(X) = v(XZ):p(ZjX) + v(X � Z):p(Z 0jX) = v(XZ) (4)

v(Y ) = v(Y Z):p(ZjY ) + v(Y � Z):p(Z 0jY ) = v(Y Z) (5)
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Assume that XZ = Y Z. Then if follows immediately that for all pair of proba-
bility and desirability functions (p; v) on F it is the case that v(XZ) = v(Y Z).
Hence by equations 4 and 5 above, if p(Z) = 1 then v(X) = v(Y ).
Now assume that XZ 6= Y Z. Then there are two cases to consider. (i) If

XZ � Y 6= ?, then there exists a pair of probability and desirability functions
(p�; v�) on Fsuch that p�(Z) = 1, p�(Y 0jXZ) > 0, p�(X 0jY Z) = 0, v�(XY Z) =
0 and v�(XZ � Y ) > 0. But then by equations 4 and 5, v�(X) = v�(XZ) and
v�(Y ) = v�(Y Z). And by Averaging:

v�(XZ) = v�(XY Z):p(Y jXZ) + v�(XZ � Y ):p(Y 0jXZ) > 0
v�(Y Z) = v�(XY Z):p(XjY Z) + v�(Y Z �X):p(X 0jY Z) = 0

Hence v(X) 6= v(Y ).
(ii) If Y Z �X 6= ?, then there exists a pair of probability and desirability

functions (p�; v�) on Fsuch that p�(Z) = 1, p�(X 0jY Z) > 0, p�(Y 0jXZ) = 0,
v�(XY Z) = 0 and v�(Y Z �X) > 0. But then by equations 4 and 5, v�(X) =
v�(XZ) and v�(Y ) = v�(Y Z). And by Averaging:

v�(XZ) = v�(XY Z):p(Y jXZ) + v�(XZ � Y ):p(Y 0jXZ) = 0
v�(Y Z) = v�(XY Z):p(XjY Z) + v�(Y Z �X):p(X 0jY Z) > 0

Hence again v(X) 6= v(Y ).

Theorem 5 Let hF ;�i be a Boolean algebra of sets with Fa set containing
distinct elements A and B such that 
 6= A 6= ?. Then there exists no X 2 F
such that for all pairs, (p; v), of probability and desirability functions on F , it
is the case that v(X) = v(AB):p(A) + v(A0):p(A0).

Proof. Suppose, contrary to hypothesis, that there exists X 2 F such that for
all pairs (p; v) of probability and desirability functions on F , v(X) = v(AB):p(A)+
v(A0):p(A0). Then if p is any probability function on F such that p(A) = 0
and v any desirability function consistent with p, it must be the case that
v(X) = v(A0). Then by Lemma 4, X �A = A0. Similarly if p is any probability
function on F such that p(A) = 1 and v any desirability function consistent
with p, it must be the case that v(X) = v(AB). Then by Lemma 4 XA = AB.
Now if XA = AB and X � A = A0, then X = AB [ A0. But then, for all

pairs (p; v) of probability and desirability functions on 
 :

v(X) = v(AB):p(AjAB [A0) + v(A0):p(A0jAB [A0)
= v(AB):p(A) + v(A0):p(A0)

by assumption. But then for all probabilities p, p(AjAB [ A0) = p(A) and
p(A0jAB [ A0) = p(A0). But consider probability p0, such that p0(AB) = 0 and
p0(A) > 0 (p0 exists since by assumption 
 6= A 6= ?). Then p0(A0jAB [ A0) =
1 6= p(A0):

Theorem 6 E(p � f) is a probability measure on �.

Proof. Since p is a probability measure on F , it follows that 8! 2 
, (p�f)(!) �
0. By de�nition, 8! 2 
, 1(!) = 
. So (p � 1)(!) = 1, 8! 2 
. Hence
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(p � 1)(!) = 1. Finally if f:g = 0, then

E(p � (f + g)) =

Z
(p � (f + g))(!):dp

=

Z
p((f(!) [ g(!)):dp

=

Z
p(f(!)) + p(g(!)):dp

=

Z
p(f(!)):dp+

Z
p(g(!)):dp

= E(p � f) + E(p � g)

Theorem 7 Adams conditioning on a redistribution of probability over the par-
tition fAiXig subject to the constraint that p�(XijAi) = 1, is equivalent to
adopting new probabilities p�f (�) where f is the discrete random variable:264A1 X1

...
...

An Xn

375
Proof. By Theorem 5 of Bradley [6] Adams conditioning on a redistribution of
probability over the partition fAiXig is equivalent to picking a unique proba-
bility p� such that p�(XijAi) = 1, p�(Ai) = p(Ai) and p�(�jAiXi) = p(�jAiXi).
The second condition has already been established for p�f as equation 2 while
the �rst is an immediate consequence of equation 3. Now for all Y 2 
 and
A{̂X{̂ 2 fAiXig

p�f (Y jA{̂X{̂) =
p�f (A{̂X{̂)

p�f (A{̂X{̂)

=

Pn
i=1 p(Y A{̂X{̂jAi \Xi):p(Ai)Pn
i=1 p(A{̂X{̂jAi \Xi):p(Ai)

=
p(Y jA{̂X{̂):p(A{̂)

p(A{̂)

= p(Y jA{̂X{̂)

Theorem 8 Let hF ;�i be a Boolean algebra of sets with Fa set containing
distinct elements A and B such that 
 6= A 6= AB 6= ?. Then there exists no
X 2 F such that for all probability functions p on F , p(�jX) = p(�jAB):p(A) +
p(�jA0):p(A0).

Proof. Suppose, contrary to hypothesis, that there exists X 2 F such that for
all probability functions p on F , p(�jX) = p(�jAB):p(A) + p(�jA0):p(A0). Then
in particular, for all p:

p(XjX) = p(XjAB):p(A) + p(XjA0):p(A0) = 1 (6)

p(A0jX) = p(A0jAB):p(A) + p(A0jA0):p(A0) = p(A0) (7)
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But since p(A) + p(A0) = 1, it follows from (5) that it must be the case that
p(XjAB) = 1 = p(XjA0). But from (6):

p(A0X)

p(X)
= p(A0)

, p(XjA0):p(A0)
p(X)

= p(A0)

, p(XjA0) = p(X)

Hence p(X) = 1. But this can only be the case for all p if X = 
. But this
impossible because, for example, for all p such that p(A�B) > 0:

p(BjAB):p(A) + p(BjA0):p(A0) = p(A) + p(A0B) > p(Bj
) = p(B)
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