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Overview

I Today’s exercise covers fixed effects, Difference-in-Differences
and Propensity Score Matching estimators.

I Three ways to deal with non-experimental situations (i.e.
situations where we do not have a randomly assigned
comparison group to which we can compare the outcome of
the treatment group).



Overview

I Widely used benchmark: the NSW data.
I Was a randomized experiment in the 70’s (even though those

were quite rare at the time).
I Provided work experience to recipients with weak labour force

attachment.
I Several microeconometricians tried to replicate the results

without using the experimental control group, but instead
trying to construct another (nonexperimental) control group
from national datasets.

I Lalonde (1986), Dehejia and Wahba (1999 and 2002), Smith
and Todd (2001), Angrist and Pischke (2009) used this data to
evaluate the performance, e.g., of propensity score matching.

I We will do the same thing today.



Question 1

I Yit = x ′itβ + εit .
I Assume εit comprises a time-specific part δt and and error

term µit such that E (δt) = 0 and E (µi t|xit , δt) = 0.
I Essentially:

I Random effect is GLS using εit as the error term and using its
decomposition to find Ω. Problem: for GLS to be consistent,
we need some sort of A3, i.e. need to have δt uncorrelated
with xit (let’s call this A3RE here).

I Fixed effect identifies the effect within time period (here) or
individual (in most cases involving panel data). Then we do
not need the time-specific error term to be uncorrelated with
the observables: in effect, we control for it.

I So: FE consistency requires fewer assumptions than RE. Can
be the case that FE is consistent but not RE; but not the
opposite. However, if RE is consistent, then it is efficient,
contrary to FE.



Question 1 - A

I To check whether δt is indeed uncorrelated with xit (A3RE),
i.e. whether RE estimation is consistent: can run both RE and
FE and compare estimates.

I If A3RE is correct, both RE and FE will be consistent, so
estimates should not differ “too much”.

I There is a formal test to see how much is “too much”: the
Hausman test. (This test can be used in any context where
we have two estimators which are both consistent under H0,
one of which is efficient under H0.)

I Can show that under H0 : A3RE ,
H = (βRE −βFE )′( ˆaVar(βFE )− ˆaVar(βRE ))−1(βRE −βFE )→d
χ2(K ).



Question 1 - B

I Difference from mean: substract the averaged (by time
period) equation from the original equation.

I Averaged: Yt = xt
′β + δt + µt .

I Difference from the mean: Yit −Yt = (xit − xt)′β+ (µit −µt).
I This is then a well behaved model which we can estimate

consistently with OLS.
I Keep in mind that when we use differences from the mean, we

lose all the “between” variations: we only look at variations
“within” a time period (here) or an individual (usually with
panel data). RE, by contrast, uses all the variations.

I For it to make sense to difference from the mean, our initial
specification needs to be correct; in particular:

I The β’s must not differ accross individuals or time.
I The time-specific error component must take the same value

for all individuals at each t.



Question 1 - C

I How to check whether β does not vary with t? (i.e. the
effects of the different variables do not change over the time)

I Can run one regression for each t (or one big regression
allowing for different coefficients for different periods) and
then test whether β1 = β2 = .. = βT .



Question 2 - Difference in Differences

I A - Checking whether the experimental assignment really was
random.

I We cannot reject equality of the observables between
treatment and control group for most variables.

I Not so clear for the “no degree” variable. Seems to be more
dropouts in the control group.

I Overall, looks acceptably good.



Question 2 - Difference in Differences

I B - Replicating the experiment using the randomly assigned
control group (from the original experiment).

I In both cases: some positive effect of the treatment, although
not significant at the 5% level.

I Since it is randomly assigned, there should not be any OVB, so
omitting the observables should not bias the results.

I However, it will increase the R2 (or equivalently reduce the
residual variance), hence making the estimator for the
treatment effect (slightly) more precise.



Question 2 - Difference in Differences

I C,D - Difference-in-Differences
I Let us pretend we do not have a randomly assigned control

group (as would typically be the case using non-experimental
data).

I Then we need to find a clever identification strategy that does
not rely on randomization.

I Diff-in-diff is one such strategy.
I We no longer need the individuals to look the same in the

treatment and control group, nor their counterfactual y0 and
y1 to have the same expected value.

I It only requires the following assumption: if the treatment
group had not been treated, the difference in outcomes would
have remained the same over the period considered. I.e., the
difference in the evolution ("difference-in-difference") is due
solely to the effect of the treatment.

I Stata: find a much smaller treatment effect. Why?



Question 2 - Difference in Differences

I E - Checking our diff-in-diff assumption by looking at the
pretrend (74 to 75).

I If our identifying assumption is true (i.e., that in the absence
of treatment both groups have the same trend in outcomes),
then we should find nothing here.

I We do find a significant difference in the pretrends across
groups, i.e. diff-in-diff is probably biased.



Question 3 - Propensity Score Matching

I Alternatives: need to rely on CIA, i.e. assignment is random
conditional on a set of observables.

I We could match on all “suspicious” observables Xi and
compare outcomes for individuals with “similar” Xi ’s.

I Alternatively, can rely on propensity score, i.e.
p(Xi ) = E (Di |Xi ).

I Fondamental theorem:
I Suppose the CIA holds, i.e {y0i , y1i} is independent on Di

conditional on Xi . Then it is also the case that {y0i , y1i} is
independent on Di conditional on p(Xi ).

I (This answers section B of this question.)
I Idea of propensity score matching: simply match individuals

on the basis of the p(Xi ) instead of on the full Xi ’s.



Question 3 - Propensity Score Matching

I A - Let M = {0, .1, .2, .., .9}. For m ∈ M and individual i ,
denote pm,i a dummy that takes value 1 iff
m 5 p(Xi ) 5 m + .1.

I Then, for example, if p(Xi ) = .85, then p8,i = 1.
I Then we could run

yi =
∑

m∈M πmpm,i +
∑

m∈M θm(pm,iDi ) + εi .
I In that case, the θm’s would identify the treatment effect for

individuals with the considered propensity score.



Question 3 - Propensity Score Matching

I C - The specification in A is quite flexible, as it allows for
different treatment effects across propensity scores.



Question 4 - Propensity Score Matching with Data

I A, B, C, D - Stata


