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Overview

» Today's exercise covers fixed effects, Difference-in-Differences
and Propensity Score Matching estimators.

» Three ways to deal with non-experimental situations (i.e.
situations where we do not have a randomly assigned
comparison group to which we can compare the outcome of
the treatment group).



Overview

> Widely used benchmark: the NSW data.

>

Was a randomized experiment in the 70's (even though those
were quite rare at the time).

Provided work experience to recipients with weak labour force
attachment.

Several microeconometricians tried to replicate the results
without using the experimental control group, but instead
trying to construct another (nonexperimental) control group
from national datasets.

Lalonde (1986), Dehejia and Wahba (1999 and 2002), Smith
and Todd (2001), Angrist and Pischke (2009) used this data to
evaluate the performance, e.g., of propensity score matching.
We will do the same thing today.



Question 1

> Y = x,0+ €ir.

» Assume €;; comprises a time-specific part §; and and error
term pwjr such that E(6;) = 0 and E(u;t|xt, ;) = 0.

» Essentially:

» Random effect is GLS using €;; as the error term and using its
decomposition to find Q. Problem: for GLS to be consistent,
we need some sort of A3, i.e. need to have J; uncorrelated
with x;: (let’s call this A3RE here).

» Fixed effect identifies the effect within time period (here) or
individual (in most cases involving panel data). Then we do
not need the time-specific error term to be uncorrelated with
the observables: in effect, we control for it.

» So: FE consistency requires fewer assumptions than RE. Can
be the case that FE is consistent but not RE; but not the
opposite. However, if RE is consistent, then it is efficient,
contrary to FE.



Question 1 - A

» To check whether ¢; is indeed uncorrelated with x;; (A3RE),
i.e. whether RE estimation is consistent: can run both RE and
FE and compare estimates.

» If A3RE is correct, both RE and FE will be consistent, so
estimates should not differ “too much™.

» There is a formal test to see how much is “too much”: the
Hausman test. (This test can be used in any context where
we have two estimators which are both consistent under Hy,
one of which is efficient under Hp.)

» Can show that under Hp : ASRE,

H = (Bre — Bre)' (aVar(Bre) — aVar(Bre)) " (Bre — Bre) —+d
X (K).



Question 1 - B

» Difference from mean: substract the averaged (by time
period) equation from the original equation.

» Averaged: Y; = X{'B + 6 + Jir.
» Difference from the mean: Yi; — Y; = (xir — %2)'B + (pir — Tiz)-

» This is then a well behaved model which we can estimate
consistently with OLS.

> Keep in mind that when we use differences from the mean, we
lose all the “between” variations: we only look at variations
“within" a time period (here) or an individual (usually with
panel data). RE, by contrast, uses all the variations.

» For it to make sense to difference from the mean, our initial
specification needs to be correct; in particular:

» The 8's must not differ accross individuals or time.
» The time-specific error component must take the same value
for all individuals at each t.



Question 1 - C

» How to check whether /3 does not vary with t? (i.e. the
effects of the different variables do not change over the time)

» Can run one regression for each t (or one big regression
allowing for different coefficients for different periods) and
then test whether 51 = B> = .. = 7.



Question 2 - Difference in Differences

» A - Checking whether the experimental assignment really was
random.

» We cannot reject equality of the observables between
treatment and control group for most variables.

» Not so clear for the “no degree” variable. Seems to be more
dropouts in the control group.

» Overall, looks acceptably good.



Question 2 - Difference in Differences

» B - Replicating the experiment using the randomly assigned
control group (from the original experiment).

» In both cases: some positive effect of the treatment, although
not significant at the 5% level.

» Since it is randomly assigned, there should not be any OVB, so
omitting the observables should not bias the results.

» However, it will increase the R2 (or equivalently reduce the
residual variance), hence making the estimator for the
treatment effect (slightly) more precise.



Question 2 - Difference in Differences

» C,D - Difference-in-Differences

> Let us pretend we do not have a randomly assigned control
group (as would typically be the case using non-experimental
data).

» Then we need to find a clever identification strategy that does
not rely on randomization.

» Diff-in-diff is one such strategy.

» We no longer need the individuals to look the same in the
treatment and control group, nor their counterfactual yp and
y1 to have the same expected value.

> It only requires the following assumption: if the treatment
group had not been treated, the difference in outcomes would
have remained the same over the period considered. l.e., the
difference in the evolution ("difference-in-difference") is due
solely to the effect of the treatment.

» Stata: find a much smaller treatment effect. Why?



Question 2 - Difference in Differences

» E - Checking our diff-in-diff assumption by looking at the
pretrend (74 to 75).

» If our identifying assumption is true (i.e., that in the absence
of treatment both groups have the same trend in outcomes),
then we should find nothing here.

» We do find a significant difference in the pretrends across
groups, i.e. diff-in-diff is probably biased.



Question 3 - Propensity Score Matching

> Alternatives: need to rely on CIA, i.e. assignment is random
conditional on a set of observables.

» We could match on all "suspicious” observables X; and
compare outcomes for individuals with “similar” X;'s.

> Alternatively, can rely on propensity score, i.e.
p(X;) = E(D,‘X,)
» Fondamental theorem:

» Suppose the CIA holds, i.e {yoi, v1;} is independent on D;
conditional on X;. Then it is also the case that {yo;, y1;} is
independent on D; conditional on p(X;).

» (This answers section B of this question.)

> Idea of propensity score matching: simply match individuals
on the basis of the p(X;) instead of on the full X;'s.



Question 3 - Propensity Score Matching

v

A-Let M={0,.1,.2,..,.9}. For m € M and individual i,
denote pp, ;i a dummy that takes value 1 iff
m< p(X;) < m+ .1

Then, for example, if p(X;) = .85, then pg; = 1.

v

Then we could run

Yi= ZmEM TmPm,i + ZmeM em(Pm,iDi) + €.

In that case, the 0,,'s would identify the treatment effect for
individuals with the considered propensity score.

v

v



Question 3 - Propensity Score Matching

» C - The specification in A is quite flexible, as it allows for
different treatment effects across propensity scores.



Question 4 - Propensity Score Matching with Data

» A, B, C, D - Stata



