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Question 1

Question
> yi = x{0 + up with uy = e¢ + 041, for t =1,..., T and
where ¢; ~ i.i.d.(0,0?) ; €9 = 0 ; x; non-stochastic.
> i.e. linear regression model with MA(1) error term.
» 1. Find Var(u) = Var[(u1,...,ut)]

Answer
» For |t —s| > 1, cov(us, us—s) = 0 (because the €'s are i.i.d.)
> cov(ug, ur—1) = cov(er + 01,641 + Oct_2) =
cov(fe;_1,61-1) = 052,
» Var(u;) = Var(ey — 0gt_1) = Var(e;) + 0?Var(e;_1) because
g iid.; so Var(u) = (1+ 62)02.



Question 1

Answer

» In the end:

Var(u) = 0%Q = o2

1 0
0 1+ 62
0

0



Question 1

Question
2. Find matrix L such that e = Lu

Answer
> & = U — 051571 = ;;é(—@)sut,s.
1 0
—0 1
» This means: € = 92

_Q.T—l 92.



Question 1

Question

3. Assuming 6 is known, describe a way to compute the BLUE for
B without inverting Q.

Answer

» We've done the hard work in 2.: now we just have to notice
that the model Ly = LX + Lu satisfies AAGM; so we just
have to run OLS on this transformed model (which gives us
GLS of the original model) to obtain the BLUE.



Question 2

Question

> yi = x{0 + up with uy = pup_1 +¢e¢ for t =1,..., T and
where ¢, ~ i.i.d.(0,02) ; |p| < 1; x| and &, are process
independent; and plim (% ZtT:I xtx{) = Y .« hon-singular;
plim (% Yl thé—l) = Lox—

> i.e. linear regression model with AR(1) error term (and

well-behaved regressors).

T . ~
» 1. Run OLS and obtain &i;. Show that ¢ = 2%#”2’“ is
=2 U1

consistent for ¢.



Question 2

Answer

» First note that this came up in Michaelmas Term, PS8,
question 1 d) (except we had skipped that bit of the proof).

> Rewrite 0y = y; — Je = XL+ ur — x[B = ur — x[(B — B).
» The numerator of ¢ (divided by T) is then
% DUl = % doutup1 + % > At where

At = —UtXf_1(/§ —pB)— Ut—lxt{(ﬂl\ —-B) +X£(B - 5)4—1(5 — ).
» Hence, plim [ZTAt] = —plim(Zu}X;‘1 + ZutT_lxt,)p/im(B -




Question 2

Answer

» Now: as x; and u; are process independent, and using LLN2,
c o> uex g S uex qut - .
plim(=—==t) = plim(~—+-) = 0; likewise, /3 is consistent so
plim(B — ) =0; and fmaIIy, by assumption
plim <thxt_1) = Y ,x—. So using Slutzky,

plim(2=2%) = —(0 + 0).0 + (0.Exx_.0) = 0.

» Likewise, we could show that the plim of the denominator of

(&4,

li UrUt v(ut,ut
> plim(p) = panS( %”tli) = C?/ar(ut,l)l) Then two

(equivalent) ways to conclude plim($) = ¢.

P is plim




Question 2

Answer
» First way: compute those covariances manually and simplify.
0o?
. ~ _ 2
plim(3) = £ = .
1—4;2

» Second way: Look at u; = pus_1 + ¢, and call ¢ the OLS
estimator from the regression of u; on u;—1 (we can't compute
it as we do not know the true u;, but we can still talk about it

theoretically). Then easy to see that ¢ = % hence

t—1
from the previous slide plim($) = plim($); but we know, since

A3fi is satisfied, that ¢ is consistent, implying plim($) = .



Question 3
Question
> Vi =@Yi_1+er+0ep_q fort=1,..., T, with |p| < 1 and
e ~ i.i.d.N(0, 0?).

> i.e. y; follows an ARMA(1,1) process and we'd like to
estimate ¢ and 6.

> 1. Assuming y; = €1 = 0, write down the likelihood.

Answer

» Since E(¢) = 0 we know that y;|l;_1 ~ N(py; 1 + 0e;_1,02)
(where I;_1 is all the information available at t — 1, i.e. the
series of past ys and past €5, s <t — 1.

» Hence we know that
Et

— 1 — B )2
exp Ve = PYe1 —bee)
71'0'2 20'2

Fyelle—1) =




Question 3

Answer

» So the log likelihood is simply:

>

L log(27) — 1 log(c?)

log L(0, 0,05 y1,y2, ., yT) = —
202 Z ye = @ye1 — fee1)” + log f(y1)

» We know that y; = 1 = 0 so we can simply condition on yj,
i.e. we can take it as fixed. In this case we can just drop it
from the likelihood. This is most usually done in large samples
where losing one observation is not much of an issue.
(Otherwise we would have to include its distribution in the
likelihood).



Question 3

Question
2. Obtain the FOCs with respect to ¢ and @ (and ¢, though not
in the question).

Answer
dlog L )
> e = 0'2 Zstaa = 5 e(ye 1+ 0755 5)
dlog L a _
» gg = 0_2 Zﬁtagt = ?Zet(8t71+0 %tel)

OlogL __
> gz — 202 + (02)2 St




Question 3

Question
3. Obtain %l(w)

Answer

> 6

» As suggested, let us define ¢ =

» Remember that

I(y) = —E[H(¢)]



Question 3

Answer
Next we need to compute second order derivatives. The Hessian
matrix looks like this:

&logl 9%logl ?logl

02 0pdl 0pdo?

H(l/J) Plogl 9%logL d%logl
- 000¢ 062 000072
9%logl 8%logl 9?loglL

0020p 00200  9(02?)?




Question 3

Answer

» Makes more sense to compute directly the information matrix
(as suggested in the question), as taking the expectation leads
to many simplifications..

» After some (somewhat tedious) algebra, should find:

108) = &

ZE(yt 102y S E(ee1+ 0% (e +0255L) 0
ST E(ee 1+ef“)(yt1+9€‘1) ZEstweaE”)z 0
0 0 =t




Question 3

Question
How would you estimate the covariance matrix of )?

Answer

» Can show that the limit distribution of Maximum Likelihood is

given by VT (1) — 1) ~ N(0, IA())~1), where

IA(Y) = limT55 L;Zf) So with large enough sample

(asymptotic approximation), (¢ — 1) ~ N(0, M)

» Different ways to estimate the inverse of IA(%)).



Question 3

Answer
» Based on empirical information matrix: Lsz) (Substitute @ZA)
for 1) in the matrix found previously). Problem: not easy to

compute the expected values in the formulae.

> Instead, we can go back to the Hessian and just look at
#M. Then no problem with the expected values; but LLN
still guarantees convergence.

I
» Finally, an alternative is w where s is the score vector

(gradient of the log-likelihood). Indeed, can be shown that
this outer product has the same expectation as the hessian.



