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Question 1

Question
I yt = x ′tβ + ut with ut = εt + θεt−1, for t = 1, . . . ,T and

where εt ∼ i .i .d .(0, σ2) ; ε0 = 0 ; xt non-stochastic.
I i.e. linear regression model with MA(1) error term.
I 1. Find Var(u) = Var [(u1, . . . , uT )′]

Answer
I For |t − s| > 1, cov(ut , ut−s) = 0 (because the ε’s are i.i.d.)
I cov(ut , ut−1) = cov(εt + θεt−1, εt−1 + θεt−2) =

cov(θεt−1, εt−1) = θσ2.
I Var(ut) = Var(εt − θεt−1) = Var(εt) + θ2Var(εt−1) because
ε i.i.d.; so Var(ut) = (1 + θ2)σ2.



Question 1

Answer
I In the end:

Var(u) = σ2Ω = σ2



1 θ 0 · · · 0
θ 1 + θ2 . . . . . . ...
0 . . . . . . . . . 0
... . . . . . . . . . θ
0 · · · 0 θ 1 + θ2


.



Question 1

Question
2. Find matrix L such that ε = Lu

Answer
I εt = ut − θεt−1 =

∑t−1
s=0(−θ)sut−s .

I This means: ε =



1 0 · · · · · · 0
−θ 1 . . . . . . ...
θ2 . . . . . . . . . 0
... . . . . . . . . . 0

−θT−1 · · · θ2 −θ 1


u.



Question 1

Question
3. Assuming θ is known, describe a way to compute the BLUE for
β without inverting Ω.

Answer
I We’ve done the hard work in 2.: now we just have to notice

that the model Ly = LXβ + Lu satisfies A4GM; so we just
have to run OLS on this transformed model (which gives us
GLS of the original model) to obtain the BLUE .



Question 2

Question
I yt = x ′tβ + ut with ut = ϕut−1 + εt , for t = 1, . . . ,T and

where εt ∼ i .i .d .(0, σ2) ; |ϕ| < 1 ; x ′t and εt are process
independent; and plim

(
1
T
∑T

t=1 xtx ′t
)

= Σxx non-singular;

plim
(

1
T
∑T

t=1 xtx ′t−1

)
= Σxx−

I i.e. linear regression model with AR(1) error term (and
well-behaved regressors).

I 1. Run OLS and obtain ût . Show that ϕ̂ =

∑T
t=2 ût ût−1∑T

t=2 û2
t−1

is
consistent for ϕ.



Question 2

Answer
I First note that this came up in Michaelmas Term, PS8,

question 1 d) (except we had skipped that bit of the proof).
I Rewrite ût = yt − ŷt = x ′tβ + ut − x ′t β̂ = ut − x ′t(β̂ − β).
I The numerator of ϕ̂ (divided by T ) is then

1
T
∑

ût ût−1 = 1
T
∑

utut−1 + 1
T
∑

At where
At = −utx ′t−1(β̂−β)−ut−1x ′t(β̂−β) + x ′t(β̂−β)x ′t−1(β̂−β).

I Hence, plim
[∑

At
T

]
= −plim(

∑
utx ′t−1
T +

∑
ut−1x ′t
T )plim(β̂ −

β) + plim(
(β̂−β)′(

∑
xtx ′t−1)(β̂−β)
T ).



Question 2

Answer
I Now: as xt and ut are process independent, and using LLN2,

plim(

∑
utx ′t−1
T ) = plim(

∑
utx ′t
T ) = 0; likewise, β̂ is consistent so

plim(β̂ − β) = 0; and finally, by assumption
plim

(∑
xtxt−1
T

)
= Σxx−. So using Slutzky,

plim(
∑

At
T ) = −(0 + 0).0 + (0.Σxx−.0) = 0.

I Likewise, we could show that the plim of the denominator of
ϕ̂ is plim(

∑
u2

t−1
T ).

I plim(ϕ̂) =
plim( 1

T
∑

utut−1)
plim( 1

T
∑

u2
t−1)

= cov(ut ,ut−1)
Var(ut−1)

. Then two
(equivalent) ways to conclude plim(ϕ̂) = ϕ.



Question 2

Answer
I First way: compute those covariances manually and simplify.

plim(ϕ̂) =
ϕσ2

1−ϕ2
σ2

1−ϕ2
= ϕ.

I Second way: Look at ut = ϕut−1 + ε, and call ϕ̃ the OLS
estimator from the regression of ut on ut−1 (we can’t compute
it as we do not know the true ut , but we can still talk about it
theoretically). Then easy to see that ϕ̃ =

∑
utut−1∑
u2

t−1
, hence

from the previous slide plim(ϕ̂) = plim(ϕ̃); but we know, since
A3fi is satisfied, that ϕ̃ is consistent, implying plim(ϕ̂) = ϕ.



Question 3
Question

I yt = ϕyt−1 + εt + θεt−1 for t = 1, . . . ,T , with |ϕ| < 1 and
εt ∼ i .i .d .N(0, σ2).

I i.e. yt follows an ARMA(1, 1) process and we’d like to
estimate ϕ and θ.

I 1. Assuming y1 = ε1 = 0, write down the likelihood.

Answer
I Since E (ε) = 0 we know that yt |It−1 ∼ N(ϕyt−1 + θεt−1, σ

2)
(where It−1 is all the information available at t − 1, i.e. the
series of past ys and past εs , s ≤ t − 1.

I Hence we know that

f (yt |It−1) =
1√
2πσ2

exp−(

εt︷ ︸︸ ︷
yt − ϕyt−1 − θεt−1)2

2σ2



Question 3

Answer
I So the log likelihood is simply:
I

log L(θ, ϕ, σ; y1, y2, .., yT ) = −T − 1
2 log(2π)− T − 1

2 log(σ2)

− 1
2σ2

T∑
t=2

(yt − ϕyt−1 − θεt−1)2 + log f (y1)

I We know that y1 = ε1 = 0 so we can simply condition on y1,
i.e. we can take it as fixed. In this case we can just drop it
from the likelihood. This is most usually done in large samples
where losing one observation is not much of an issue.
(Otherwise we would have to include its distribution in the
likelihood).



Question 3

Question
2. Obtain the FOCs with respect to ϕ and θ (and σ2, though not
in the question).

Answer
I ∂ log L

∂ϕ = − 1
σ2
∑
εt
∂εt
∂ϕ = 1

σ2
∑
εt(yt−1 + θ ∂εt−1

∂ϕ )

I ∂ log L
∂θ = − 1

σ2
∑
εt
∂εt
∂θ = 1

σ2
∑
εt(εt−1 + θ ∂εt−1

∂θ )

I ∂ log L
∂σ2 = −T−1

2σ2 + 1
(σ2)2

∑
ε2

t



Question 3

Question
3. Obtain 1

T I(ψ)

Answer

I As suggested, let us define ψ =

 ϕ
θ
σ2


I Remember that

I(ψ) = −E [H(ψ)]

.



Question 3

Answer
Next we need to compute second order derivatives. The Hessian
matrix looks like this:

H(ψ) =


∂2 log L
∂ϕ2

∂2 log L
∂ϕ∂θ

∂2 log L
∂ϕ∂σ2

∂2 log L
∂θ∂ϕ

∂2 log L
∂θ2

∂2 log L
∂θ∂σ2

∂2 log L
∂σ2∂ϕ

∂2 log L
∂σ2∂θ

∂2 log L
∂(σ2)2





Question 3

Answer
I Makes more sense to compute directly the information matrix

(as suggested in the question), as taking the expectation leads
to many simplifications..

I After some (somewhat tedious) algebra, should find:
I(β) = 1

σ2

 ∑
E(yt−1 + θ

∂εt−1
∂ϕ

)2
∑

E(εt−1 + θ
∂εt−1
∂θ

)(yt−1 + θ
∂εt−1
∂ϕ

) 0∑
E(εt−1 + θ

∂εt−1
∂θ

)(yt−1 + θ
∂εt−1
∂ϕ

)
∑

E(εt−1 + θ
∂εt−1
∂θ

)2 0
0 0 T−1

2σ2





Question 3

Question
How would you estimate the covariance matrix of ψ̂?

Answer
I Can show that the limit distribution of Maximum Likelihood is

given by
√
T (ψ̂ − ψ) ∼ N(0, IA(ψ)−1), where

IA(ψ) = limT→∞
I(ψ)
T . So with large enough sample

(asymptotic approximation), (ψ̂ − ψ) ∼ N(0, IA(ψ)−1

T ).
I Different ways to estimate the inverse of IA(ψ).



Question 3

Answer
I Based on empirical information matrix: I(ψ̂)

T . (Substitute ψ̂
for ψ in the matrix found previously). Problem: not easy to
compute the expected values in the formulae.

I Instead, we can go back to the Hessian and just look at
−H(ψ̂)

T . Then no problem with the expected values; but LLN
still guarantees convergence.

I Finally, an alternative is s(ψ̂)s′(ψ̂)
T , where s is the score vector

(gradient of the log-likelihood). Indeed, can be shown that
this outer product has the same expectation as the hessian.


