MEI LT TS Problem Set 2¹

Timothee Carayol

March 19, 2010

 $^{^1 {\}sf Available \ on \ http://personal.lse.ac.uk/carayolt/ec402.htm}$

Some theory

- The two following questions are instances of applications of the LM test to situations where MLE coincides with NLS and the restrictions do now involve σ².
- Then the LM test has the particularly simple form given to you in the lecture notes. Let's prove it again slowly.
- Starting point: y_t = g(x_t, β) + ε_t, where ε_t is contemporaneously independent of x_t (x_t can include lagged y_t's and lagged ε_t's); ε ~ i.i.d.N(0, σ²).

• Denote
$$\psi = \begin{pmatrix} \beta & \sigma^2 \end{pmatrix}$$
.

Some theory

- Under these conditions, suffices to write down the log-likelihood to see that β̂_{MLE} is the same as β̂_{NLS}.
- Indeed,

$$\log L(\psi) = -\frac{T}{2}\log(2\pi) - \frac{T}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_t \varepsilon_t(\beta)^2$$

so that $\hat{\beta}$ from maximizing log *L* w.r.t. ψ is the same as from minimizing *RSS* w.r.t. β .

${\sf Question}\ 1$

Some theory

• Score w.r.t. β gives

$$\frac{\partial \log L}{\partial \beta}(\psi) = \frac{1}{\sigma^2} \sum_t \varepsilon_t(\beta) z_t(\beta) = \frac{1}{\sigma^2} Z(\beta)' \varepsilon(\beta)$$

with
$$z_t(\beta) = -\frac{\partial \varepsilon_t}{\partial \beta}(\beta)$$
 and $Z(\beta) = (z_1 \quad z_2 \quad \cdots \quad z_T)'$.
FOC w.r.t σ^2 gives

$$\frac{\partial \log L}{\partial (\sigma^2)}(\psi) = -\frac{T}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_t \varepsilon_t(\beta)^2 = 0$$

i.e.
$$\hat{\sigma^2} = \frac{\sum_t \varepsilon_t (\hat{\beta})^2}{T}$$

Some theory

- We want to test a (potentially nonlinear) $r \times 1$ restriction on β , say $H_0 : R(\beta) = 0$.
- Denote $\hat{\psi}_0 = \begin{pmatrix} \hat{\beta}_0 & \hat{\sigma}^2_0 \end{pmatrix}$ the constrained MLE.
- Then, taking as granted the result

$$LM = \frac{\partial \log L}{\partial \psi'}(\hat{\psi}_0) I(\hat{\psi}_0)^{-1} \frac{\partial \log L}{\partial \psi}(\hat{\psi}_0) \xrightarrow{d} \chi^2(r)$$

we will show that we can rewrite LM as related to the R^2 of an artificial regression.

Some theory

- First note that even though ψ includes both β and σ^2 , we actually only care about β in the above, because since σ^2 is not constrained the corresponding score is 0 (in other words at the constrained optimum $\hat{\psi}_0$ is such that $\frac{\partial \log L}{\partial(\sigma^2)}(\hat{\psi}_0) = 0$. (Otherwise, would be possible to find a σ^2 that achieves higher log likelihood.)
- This means that actually,

$$LM = \frac{\partial \log L}{\partial \beta'}(\hat{\psi}_0) I(\hat{\psi}_0)_{\beta\beta}^{-1} \frac{\partial \log L}{\partial \beta}(\hat{\psi}_0) \xrightarrow{d} \chi^2(r)$$

Some theory

Also note that

$$\begin{split} I(\psi)_{\beta\beta} &= -E\left(\frac{\partial^2 \log L}{\partial \beta \beta'}(\psi)\right) = \frac{1}{\sigma^2} E\left(\sum_t \left(\varepsilon_t \frac{\partial^2 \varepsilon_t}{\partial \beta \beta'} + \frac{\partial \varepsilon_t}{\partial \beta} \frac{\partial \varepsilon_t}{\partial \beta'}\right)\right) \\ &= \frac{1}{\sigma^2} E(Z(\beta)' Z(\beta)) \end{split}$$

• So a consistent estimator for $\frac{l(\hat{\psi}_0)_{\beta\beta}}{T}$ is

$$\frac{1}{T.\hat{\sigma^2}_0}Z(\hat{\beta}_0)'Z(\hat{\beta}_0)$$

Some theory

 Hence, given the expression for the score w.r.t β found earlier, we can rewrite (omitting in the notations, but keeping in mind, that Z and ε are taken at β₀)

$$LM = \left(\frac{Z'\varepsilon}{\hat{\sigma}_{0}^{2}}\right)' \left[\frac{1}{\hat{\sigma}_{0}^{2}}Z'Z\right]^{-1} \left(\frac{Z'\varepsilon}{\hat{\sigma}_{0}^{2}}\right) = \frac{1}{\hat{\sigma}_{0}^{2}}\varepsilon'Z(Z'Z)^{-1}Z'\varepsilon$$

Now note that if you see something like y'X(X'X)⁻¹X'y, you should recognize the (uncentered) ESS of the regression of y on X. Indeed:

$$y'X(X'X)^{-1}X'y = y'P_Xy = (P_Xy)'P_Xy = \hat{y}\hat{y}$$

Some theory

- So ε(Z'Z)⁻¹Z'ε from above is the ESS of the regression of ε on Z. ε(β̂₀) = y_t − g(x_t, β̂₀) on Z(β̂₀)
- ▶ Remember also that $\hat{\sigma}_0^2 = \frac{\varepsilon(\hat{\beta}_0)'\varepsilon(\hat{\beta}_0)}{T}$, i.e. $\frac{1}{T}$ of the *TSS* from the same regression.
- ► So $LM = T \cdot \frac{ESS}{TSS} = TR^2$ where the R^2 is from the regression of $\varepsilon(\hat{\beta}_0)$ on $Z(\hat{\beta}_0)$.

Question

- ► $1.y_t = \varepsilon_t + \theta \varepsilon_{t-1}$, for t = 1, ..., T and with $\varepsilon_t \sim i.i.d.\mathbf{N}(0, \sigma^2)$; $\varepsilon_0 = 0$.
- ▶ i.e. y_t is MA(1).
- Derive the Lagrange-Multiplier test of the null $\theta = 0$.

Answer

• $\epsilon_t(\theta) = y_t - \theta \epsilon_{t-1}(\theta)$, so with previous notation

$$z_t(\theta) = -\frac{\partial \varepsilon_t}{\partial \theta}(\theta) = -\left(-\epsilon_{t-1}(\theta) - \theta \frac{\partial \varepsilon_{t-1}}{\partial \theta}(\theta)\right)$$

Answer

• Hence at the restricted estimate $\hat{\theta}_0$,

$$\epsilon_t(\hat{\theta}_0) = y_t$$

and

$$z_t(\hat{\theta}_0) = \epsilon_{t-1}(\hat{\theta}_0) = y_{t-1}$$

- Therefore under H₀, LM = TR² ∼ χ²(1), where R² refers to the R² from the regression of y_t on y_{t-1}. Compare LM to the relevant quantile of a χ².
- So LM test is computationally very simple here; LR would be more complicated. (Would need to actually solve the unrestricted ML problem).

Question

- ▶ 2. $y_t = \beta_1 x_{1t} + \beta_2 \frac{1}{2(x_{2t} \gamma)^2} + \varepsilon_t$, for t = 1, ..., T and with $\varepsilon_t \sim i.i.d.\mathbf{N}(0, \sigma^2)$; x_1, x_2 process independent from ε .
- Derive the Lagrange-Multiplier test of the null $\gamma = 0$.

Answer

- As opposed to 1., here we have to first solve the restricted ML problem (was trivial in 1; not so here). If γ = 0, then LM (or NLS) is the same as OLS of y on x₁ and 1/2x_t.
- $\epsilon_t(\psi) = y_t \beta_1 x_{1t} + \beta_2 \frac{1}{2(x_{2t} \gamma)^2}$, so with previous notation

$$z_t(\psi) = -rac{\partial arepsilon_t}{\partial \psi}(\psi)$$

Answer

• Hence evaluating at the restricted estimate $\hat{\psi}_0$,

$$z_t(\hat{\psi}_0) = \left(egin{array}{c} x_{1t} \ rac{1}{2x_{2t}^2} \ -rac{eta_{20}}{x_{2t}^3} \end{array}
ight)$$

- Therefore under H₀, LM = TR² ~ χ²(1), where R² refers to the R² from the regression of ê_t = ε_t(ψ̂₀) (obtained from OLS of y on x₁ and 1/2x_t) on x_{1t}, 1/(x_{2t})² and 1/(x_{2t})³. Compare LM to the relevant quantile of a χ².
- Again LM test is computationally simple here; LR would be more complicated. (Would need to actually solve the unrestricted ML problem).

I do this one on the board.