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Question 1

Some theory
I The two following questions are instances of applications of

the LM test to situations where MLE coincides with NLS and
the restrictions do now involve σ2.

I Then the LM test has the particularly simple form given to
you in the lecture notes. Let’s prove it again slowly.

I Starting point: yt = g(xt , β) + εt , where εt is
contemporaneously independent of xt (xt can include lagged
yt ’s and lagged εt ’s); ε ∼ i .i .d .N(0, σ2).

I Denote ψ =
(
β σ2

)
.



Question 1

Some theory
I Under these conditions, suffices to write down the

log-likelihood to see that β̂MLE is the same as β̂NLS .
I Indeed,

log L(ψ) = −T
2 log(2π)− T

2 log(σ2)− 1
2σ2

∑
t
εt(β)

2

so that β̂ from maximizing log L w.r.t. ψ is the same as from
minimizing RSS w.r.t. β.



Question 1

Some theory
I Score w.r.t. β gives

∂ log L
∂β

(ψ) =
1
σ2

∑
t
εt(β)zt(β) =

1
σ2 Z (β)′ε(β)

with zt(β) = −∂εt
∂β (β) and Z (β) =

(
z1 z2 · · · zT

)′
.

I FOC w.r.t σ2 gives

∂ log L
∂(σ2)

(ψ) = − T
2σ2 +

1
2(σ2)2

∑
t
εt(β)

2 = 0

i.e. σ̂2 =

∑
t εt(β̂)2

T



Question 1

Some theory
I We want to test a (potentially nonlinear) r × 1 restriction on
β, say H0 : R(β) = 0.

I Denote ψ̂0 =
(
β̂0 σ̂20

)
the constrained MLE.

I Then, taking as granted the result

LM =
∂ log L
∂ψ′

(ψ̂0)I(ψ̂0)
−1∂ log L

∂ψ
(ψ̂0)

d−→ χ2(r)

we will show that we can rewrite LM as related to the R2 of
an artificial regression.



Question 1

Some theory
I First note that even though ψ includes both β and σ2, we

actually only care about β in the above, because since σ2 is
not constrained the corresponding score is 0 (in other words
at the constrained optimum ψ̂0 is such that ∂ log L

∂(σ2) (ψ̂0) = 0.
(Otherwise, would be possible to find a σ2 that achieves
higher log likelihood.)

I This means that actually,

LM =
∂ log L
∂β′

(ψ̂0)I(ψ̂0)
−1
ββ

∂ log L
∂β

(ψ̂0)
d−→ χ2(r)



Question 1

Some theory
I Also note that

I(ψ)ββ = −E
(
∂2 log L
∂ββ′

(ψ)

)
=

1
σ2 E

(∑
t
(εt

∂2εt
∂ββ′

+
∂εt
∂β

∂εt
∂β′

)

)

=
1
σ2 E (Z (β)′Z (β))

I So a consistent estimator for I(ψ̂0)ββ

T is

1
T .σ̂20

Z (β̂0)
′Z (β̂0)



Question 1

Some theory
I Hence, given the expression for the score w.r.t β found earlier,

we can rewrite (omitting in the notations, but keeping in
mind, that Z and ε are taken at β̂0)

LM =

(
Z ′ε
σ̂20

)′ [ 1
σ̂20

Z ′Z
]−1(Z ′ε

σ̂20

)
=

1
σ̂20

ε′Z (Z ′Z )−1Z ′ε

I Now note that if you see something like y ′X (X ′X )−1X ′y , you
should recognize the (uncentered) ESS of the regression of y
on X . Indeed:

y ′X (X ′X )−1X ′y = y ′PX y = (PX y)′PX y = ŷ ŷ



Question 1

Some theory
I So ε(Z ′Z )−1Z ′ε from above is the ESS of the regression of ε

on Z . ε(β̂0) = yt − g(xt , β̂0) on Z (β̂0)

I Remember also that σ̂20 = ε(β̂0)′ε(β̂0)
T , i.e. 1

T of the TSS from
the same regression.

I So LM = T . ESS
TSS = TR2 where the R2 is from the regression

of ε(β̂0) on Z (β̂0).



Question 1 Section 1

Question
I 1.yt = εt + θεt−1, for t = 1, . . . ,T and with
εt ∼ i .i .d .N(0, σ2) ; ε0 = 0.

I i.e. yt is MA(1).
I Derive the Lagrange-Multiplier test of the null θ = 0.

Answer
I εt(θ) = yt − θεt−1(θ), so with previous notation

zt(θ) = −
∂εt
∂θ

(θ) = −
(
−εt−1(θ)− θ

∂εt−1
∂θ

(θ)

)



Question 1 Section 1

Answer
I Hence at the restricted estimate θ̂0,

εt(θ̂0) = yt

and
zt(θ̂0) = εt−1(θ̂0) = yt−1

I Therefore under H0, LM = TR2 ∼ χ2(1), where R2 refers to
the R2 from the regression of yt on yt−1. Compare LM to the
relevant quantile of a χ2.

I So LM test is computationally very simple here; LR would be
more complicated. (Would need to actually solve the
unrestricted ML problem).



Question 1 Section 2

Question
I 2. yt = β1x1t + β2

1
2(x2t−γ)2 + εt , for t = 1, . . . ,T and with

εt ∼ i .i .d .N(0, σ2) ; x1, x2 process independent from ε.
I Derive the Lagrange-Multiplier test of the null γ = 0.

Answer
I As opposed to 1., here we have to first solve the restricted ML

problem (was trivial in 1; not so here). If γ = 0, then LM (or
NLS) is the same as OLS of y on x1 and 1/2xt .

I εt(ψ) = yt − β1x1t + β2
1

2(x2t−γ)2 , so with previous notation

zt(ψ) = −
∂εt
∂ψ

(ψ)



Question 1 Section 2

Answer
I Hence evaluating at the restricted estimate ψ̂0,

zt(ψ̂0) =


x1t

1
2x2

2t

− β̂20
x3

2t


I Therefore under H0, LM = TR2 ∼ χ2(1), where R2 refers to

the R2 from the regression of ε̂t = εt(ψ̂0) (obtained from OLS
of y on x1 and 1/2xt) on x1t , 1/(x2t)

2 and 1/(x2t)
3. Compare

LM to the relevant quantile of a χ2.
I Again LM test is computationally simple here; LR would be

more complicated. (Would need to actually solve the
unrestricted ML problem).



Question 2

I do this one on the board.


