MEI MT Problem Set 1

Timothee Carayol

October 23, 2009

Introduction

- Your class teacher:
- Timothee Carayol
- t.m.carayol@lse.ac.uk
- http:
personal.lse.ac.uk\carayolt\EC402.htm
- Office hours: Tuesdays 11.30 to 12.30 in S684.
- 3 class groups on Fridays: 9 to 10 in K105, 3 to 4 in K105 and 5 to 6 in D211.
- My slides will be available on my website after classes.

Question 1

What is a random variable?

Question 2

- (a) and (b) basically same question, but (a) discrete and (b) continuous: given the distribution of r.v. X, we want the distribution of $Y=f(X)=X^{2}+2$.
- The way to answer is very different.

Question 2 (a)

$$
X=\left\{\begin{array}{c}
-1 \text { with probability } \frac{1}{3} \\
0 \text { with probability } \frac{1}{3} \\
1 \text { with probability } \frac{1}{3}
\end{array}\right.
$$

We can conclude directly, as this maps, through function f, to:

$$
Y=f(X)=\left\{\begin{array}{l}
3 \text { with probability } \frac{2}{3} \\
2 \text { with probability } \frac{1}{3}
\end{array}\right.
$$

Question 2 (b)

- X uniformly distributed on $[-1,+1]$; i.e. its pdf is .5 on that interval, 0 elsewhere.
- Remember September course: we had a formula to derive the pdf of a monotonic function of a random variable. Here, $f(X)=X^{2}+2$ is NOT monotonic on $[-1,+1]$ so we can't apply this directly.
- Let us think in terms of cdf. The cdf of X is:

$$
F_{X}(x)=\left\{\begin{array}{c}
0 \text { if } x \leq-1 \\
\frac{x+1}{2} \text { if }-1 \leq x \leq 1 \\
1 \text { if } 1 \leq x
\end{array}\right.
$$

Question 2 (b)

$$
\begin{align*}
F_{Y}(y) & =P(Y \leq y)=P\left(X^{2}+2<y\right)=P\left(X^{2}<y-2\right) \\
& =P(-\sqrt{y-2}<X<\sqrt{y-2}) \\
& =F_{X}(\sqrt{y-2})-F_{X}(-\sqrt{y-2}) \\
& =2 F_{X}(\sqrt{y-2})-1 \\
& =\left\{\begin{array}{c}
0 \text { if } y \leq 2 \\
\sqrt{y-2} \text { if } 2 \leq y \leq 3 \\
1 \text { if } 3 \leq y
\end{array}\right. \tag{1}
\end{align*}
$$

- (From there, can differentiate to get pdf)

Question 3

- Linearity of expectations.

$$
\begin{aligned}
E(a X+b Y)= & \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(a x+b y) f_{X, Y}(x, Y) d x d y \\
= & a \int_{-\infty}^{+\infty} x\left(\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y\right) d x \\
& +b \int_{-\infty}^{+\infty} y\left(\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x\right) d y \\
= & a \int_{-\infty}^{+\infty} x f_{X}(x) d x+b \int_{-\infty}^{+\infty} y f_{Y}(y) d y
\end{aligned}
$$

Question 4

- Important question about the relationship between independence, mean-independence and uncorrelatedness. See also p. 99 of your handout.
- (a) Independence stronger than mean-independence.
- (b) Mean-independence stronger than uncorrelatedness.
- Also noteworthy:
- Mean-independence of X on Y is not the same thing as mean-independence of Y on X .
- X mean-independent on Y and Y mean-independent on X does NOT imply X and Y independent (can find counterexample)
- A subtle point. The statement on top of p. 100 is only correct if X and Y are jointly normal, which is stronger than saying that they are both normal. More on this next week.

Question 4 (a)

$$
\begin{aligned}
E(X \mid Y) & =\int_{-\infty}^{+\infty} x f_{X \mid Y}(x \mid Y) d x=\int_{-\infty}^{+\infty} x f_{X}(x) d x \text { by independence } \\
& =E(X)
\end{aligned}
$$

Question 4 (b)

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =E(E(X Y \mid Y))-E(X) E(Y) \\
& =E(Y E(X \mid Y))-E(X) E(Y) \\
& =E(Y E(X))-E(X) E(Y) \\
& =E(X) E(Y)-E(X) E(Y)=0
\end{aligned}
$$

Question 5

Definition

$X_{1}, . ., X_{n}$ are jointly normal (i.e., the vector $\left(X_{1}, X_{2}, . ., X_{n}\right)$ is gaussian) if either of these (equivalent) propositions is satisfied:

- Any linear combination of the X_{i} 's is normal (in particular, each X_{i} is normal-but that is NOT sufficient)
- The joint pdf of $X_{1}, . ., X_{n}$ is $f\left(x_{1}, . ., x_{n}\right)=\frac{1}{(2 \pi)^{\frac{n}{2}} \sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}\left((x-m)^{\prime} \Sigma^{-1}(x-m)\right.}$, where m is the expected value of the gaussian vector and Σ is its variance-covariance matrix.

Question 5

- So here, by definition we know that $Z=5+2 Y-X$ is normally distributed, as it is a linear combination of the elements of a gaussian vector. So all we have to do is find its mean and variance.
- $E(Z)=5+2 E(Y)-E(X)=5+2 \mu_{Y}-\mu_{X}$
- $\operatorname{Var}(Z)=\operatorname{Var}(2 Y-X)=\operatorname{Var}(2 Y)+\operatorname{Var}(X)-2 \operatorname{cov}(2 Y, X)=$ $4 \operatorname{Var}(Y)+\operatorname{Var}(X)-4 \operatorname{cov}(X, Y)=4 \sigma_{Y}^{2}+\sigma_{X}^{2}-4 \sigma_{X Y}$
- Hence we conclude $Z \sim \mathcal{N}\left(5+2 \mu_{Y}-\mu_{X}, 4 \sigma_{Y}^{2}+\sigma_{X}^{2}-4 \sigma_{X Y}\right)$.

Question 6 and 7

- Question 6: sample
- Question 7: tests
- Let's talk about it quickly in class.

Question 8

- X_{i} : uniform distribution over $[\theta, 100]$.
- Method of moments: $\hat{\theta}_{M M}$ such that the sample counterpart of the first moment (e.g., sample mean) would coincide with the population mean for $\theta=\hat{\theta}_{M M}$.
- Here: sample mean is \bar{X}; population mean is $\frac{100+\theta}{2}$. So $100+\hat{\theta}_{M M}=2 \bar{X}$; hence $\hat{\theta}_{M M}=2 \bar{X}-100=2 \times 50-100=0$

