MEI MT Problem Set 2¹

Timothee Carayol

October 30, 2009

 $^{^1 {\}sf Available \ on \ http://personal.lse.ac.uk/carayolt/ec402.htm}$

Question

A is an $n \times m$ matrix and A'A = 0, prove that A = 0.

- ▶ Denote $A = (a_{ij})$
- A'A is a $m \times m$ matrix whose (i, i) element is $\sum_{k=1}^{n} a'_{ik} a_{ki} = \sum_{k=1}^{n} a_{ki} a_{ki} = \sum_{k=1}^{n} a_{ki}^{2}$.
- ► Hence the only way that A'A be zero is if $\forall i \sum_{k=1}^{n} a_k i^2 = 0 \Leftrightarrow \forall (i,k)a_{ki} = 0 \Leftrightarrow A = 0.$

Question 2 (a)

Question

Show that A positive definite (p.d.) \Rightarrow A non-singular.

Answer

▶ "Reductio ad absurdum": Suppose $\exists x \neq 0$ such that $Ax = 0_n$. Then for this x, $x'Ax = x'0_n = 0$, which contradicts A p.d.

Question 2 (b)

Question

Show that if X is $n \times k$ and full column rank, then X'X is p.d. (and hence non-singular).

- Let z any non-zero $k \times 1$ vector $\Rightarrow Xz$ is a $n \times 1$ vector.
- z'(X'X)z = (Xz)'(Xz) is the inner product of a n × 1 product by itself. Therefore z'(X'X)z > 0 as soon as Xz ≠ 0.
- Since X is full column rank, Xz, which is a linear combination of the columns of X, is only 0 if z is 0n.
- ► Hence for any non-zero z, z'(X'X)z > 0, which proves that (X'X) is positive definite.

Question

Show that if A and B square, conformable and non-singular, then (a) $(AB)^{-1} = B^{-1}A^{-1}$ and (b) $(A')^{-1} = (A^{-1})'$.

- ► Very simple: AB(B⁻¹A⁻¹) = AIA⁻¹ = I, therefore B⁻¹A⁻¹ is the inverse of AB.
- $A'A^{-1'} = (A^{-1}A)' = I$, therefore $A^{-1'}$ is the inverse of A'.

Question

If x ($n \times 1$) is distributed $\mathcal{N}(\mu, \Sigma)$, what is the distribution of a'x, where a is a vector of constants?

Answer

Remember last week: one of the the characterizations of joint normality is that ANY linear combination of the x_i's is normally distributed. Hence, a'x is normally distributed.

$$\blacktriangleright E(a'x) = a'E(x) = a'\mu$$

•
$$Var(a'x) = a'Var(x)a = a'\Sigma a$$

So: $a'x \sim \mathcal{N}(a'\mu, a'\Sigma a)$.

Question 5 (a)

Question

A is symmetric, positive definite. Show that there exists a square non-singular matrix P such that A = QQ'.

- Given that A is symmetric, the spectral theorem tells us that we can find a matrix P such that M = PΛP', with P orthogonal (P' = P⁻¹) and Λ = diag(λ₁,..,λ_n) diagonal matrix of eigenvalues of A.
- Given that A is also positive definite, its eigenvalues are strictly positive. So we can define $\sqrt{\Lambda} = diag(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$, so that $\sqrt{\Lambda}^2 = \Lambda$.

From here:
$$A = P\sqrt{\Lambda}\sqrt{\Lambda}P' = \underbrace{(P\sqrt{\Lambda})}_{Q}(P\sqrt{\Lambda})'$$

Question 5 (b)

Question

 $x \sim \mathcal{N}(0, \Sigma)$. Show that $z = x' \Sigma^{-1} x \sim \chi^2(n)$.

- Σ, being a variance covariance matrix and full rank, is symmetric and positive definite. Σ⁻¹ is therefore also symmetric and positive definite. It plays the role of A in the previous question.
- Hence we can write $\Sigma^{-1} = PP'$ with P non-singular.

Question 5 (b) (cont.)

- Therefore: z = x'PP'x = (P'x)'P'x = y'y where y = P'x. y = P'x is a random vector, each element of which is a linear combination of the elements of x; therefore any linear combination of the elements of y = P'x is also a linear combination of the elements of x, which are jointly normal; hence that linear combination is normally distributed. Hence y is jointly normal.
- E(y) = E(P'x) = P'E(x) = 0 ; Var(y) = Var(P'x) = P'Var(x)P = P'ΣP = P'(PP')⁻¹P = P'P'⁻¹P⁻¹P = I_n. So y ~ N(0, I_n); in other words, the elements of y are independent standard normals.
- $z = y'y = \sum_i y_i^2$. z is the sum of n squared standard normals, which is the definition of a χ^2 with n degrees of freedom.

Question

Show that if A and B square, conformable and non-singular, then (a) tr(A') = tr(A); (b) tr(A + B) = tr(A) + tr(B); and (c) tr(AB) = tr(BA).

- (a) and (b) are trivial. (c) is not.
- Let us prove something (a bit) stronger: ∀ (k, n) ∈ N², if A is a (N × K) matrix and B is a (K × N) matrix, then tr (AB) = tr (BA).
- ► $C = AB \Rightarrow c_{ij} = \sum_{k=1}^{K} (a_{ik}b_{kj})$, hence $tr(AB) = \sum_{n=1}^{N} c_{nn} = \sum_{n=1}^{N} \sum_{k=1}^{K} (a_{nk}b_{kn}) = \sum_{k=1}^{K} \sum_{n=1}^{N} (b_{kn}a_{nk}) = \sum_{k=1}^{K} d_{kk}$ where D = BA, so tr(AB) = tr(BA).

Question

Suppose *M* is $n \times n$, symmetric, idempotent, with rank *J*. Suppose *x* is $n \times 1$, $\sim \mathcal{N}(0_n, I_n)$. Prove that $z = x'Mx \sim \chi^2(J)$.

Answer

Given that *M* is symmetric, the spectral theorem tells us that we can find a matrix *P* such that *M* = *P*Λ*P'*, with *P* orthogonal (*P'* = *P*⁻¹) and Λ = *diag*(λ₁, ..., λ_n) diagonal matrix of eigenvalues of *M*. Furthermore, as *M* is idempotent of rank *J*, its eigenvalues are *J* ones and *n* − *J* zeros. Hence Λ² = Λ.

Then

$$z = x'Mx = x'P\Lambda P'x = (x'P\Lambda)(\Lambda P'x) = (\Lambda P'x)'(\Lambda P'x).$$

Question 7 (cont.)

- y = P'x is a random vector, each element of which is a linear combination of the elements of x; therefore any linear combination of the elements of y = P'x is also a linear combination of the elements of x, which are jointly normal; hence that linear combination is normally distributed. Hence y is jointly normal.
- E(y) = E(P'x) = P'E(x) = 0; Var(y) = Var(P'x) = P'Var(x)P = P'I_nP = P'P = I_n as P is orthogonal. Hence y ~ N(0_n, I_n), i.e. the elements of y are independent standard normals.
- z = (Λy)'(Λy) = ∑ⁿ_{i=1}(λ²_iy²_i). Since J λ_i's are ones and n − J are zeros, this is a sum of J squared standard normals–i.e., by definition of a χ², z ∼ χ²(J).

Question

 i_n is a $n \times 1$ vector of ones. (a) What is the effect of the transformation $A = I_n - \frac{1}{n}i_ni_n'$? (b) Show that A is symmetric and idempotent. (c) What is Ai_n? What does it imply?

Answer

• (a) A demeans the vector that it multiplies. e.g., let

$$z = \begin{pmatrix} z_1 & \dots & z_i & \dots & z_n \end{pmatrix}'$$
. Then
 $Az = z - \frac{1}{n}i_ni'_nz = z - \frac{1}{n}\begin{pmatrix} \sum_{i=1}^n z\\ \vdots\\ \sum_{i=1}^n z \end{pmatrix} = z - \overline{z}i_n$ where \overline{z} is
the average of the elements of z

the average of the elements of Z.

Question 8 (cont.)

- (b) A' = I'_n ¹/_n(i_ni'_n)' = A; A² = I_n - 2I_n¹/_ni_ni'_n + ¹/_{n²}i_ni'_ni_ni'_n = I_n - 2¹/_ni_ni'_n + ¹/_{n²}i_nni'_n = A. (The deviations from the mean of the deviations from the mean are the deviations from the mean, because the mean of the deviations from the mean is zero.)
- ▶ (c) Ai_n = 0_n: i_n is a vector of ones, so it never deviates from its mean.