MEI MT Problem Set 2^{1}

Timothee Carayol

October 30, 2009
${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

A is an $n \times m$ matrix and $A^{\prime} A=0$, prove that $A=0$.
Answer

- Denote $A=\left(a_{i j}\right)$
- $A^{\prime} A$ is a $m \times m$ matrix whose (i, i) element is $\sum_{k=1}^{n} a_{i k}^{\prime} a_{k i}=\sum_{k=1}^{n} a_{k i} a_{k i}=\sum_{k=1}^{n} a_{k i}{ }^{2}$.
- Hence the only way that $A^{\prime} A$ be zero is if

$$
\forall i \sum_{k=1}^{n} a_{k} i^{2}=0 \Leftrightarrow \forall(i, k) a_{k i}=0 \Leftrightarrow A=0 .
$$

Question 2 (a)

Question

Show that A positive definite (p.d.) $\Rightarrow A$ non-singular.
Answer

- "Reductio ad absurdum": Suppose $\exists x \neq 0$ such that $A x=0_{n}$. Then for this $x, x^{\prime} A x=x^{\prime} 0_{n}=0$, which contradicts A p.d.

Question 2 (b)

Question

Show that if X is $n \times k$ and full column rank, then $X^{\prime} X$ is p.d. (and hence non-singular).

Answer

- Let z any non-zero $k \times 1$ vector $\Rightarrow X z$ is a $n \times 1$ vector.
- $z^{\prime}\left(X^{\prime} X\right) z=(X z)^{\prime}(X z)$ is the inner product of a $n \times 1$ product by itself. Therefore $z^{\prime}\left(X^{\prime} X\right) z>0$ as soon as $X z \neq 0$.
- Since X is full column rank, $X z$, which is a linear combination of the columns of X, is only 0 if z is 0_{n}.
- Hence for any non-zero $z, z^{\prime}\left(X^{\prime} X\right) z>0$, which proves that $\left(X^{\prime} X\right)$ is positive definite.

Question 3

Question

Show that if A and B square, conformable and non-singular, then (a) $(A B)^{-1}=B^{-1} A^{-1}$ and (b) $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$.

Answer

- Very simple: $A B\left(B^{-1} A^{-1}\right)=A I A^{-1}=I$, therefore $B^{-1} A^{-1}$ is the inverse of $A B$.
- $A^{\prime} A^{-1^{\prime}}=\left(A^{-1} A\right)^{\prime}=I$, therefore $A^{-1^{\prime}}$ is the inverse of A^{\prime}.

Question 4

Question

If $x(n \times 1)$ is distributed $\mathcal{N}(\mu, \Sigma)$, what is the distribution of $a^{\prime} x$, where a is a vector of constants?

Answer

- Remember last week: one of the the characterizations of joint normality is that ANY linear combination of the x_{i} 's is normally distributed. Hence, $a^{\prime} x$ is normally distributed.
- $E\left(a^{\prime} x\right)=a^{\prime} E(x)=a^{\prime} \mu$
- $\operatorname{Var}\left(a^{\prime} x\right)=a^{\prime} \operatorname{Var}(x) a=a^{\prime} \Sigma a$
- So: $a^{\prime} x \sim \mathcal{N}\left(a^{\prime} \mu, a^{\prime} \Sigma a\right)$.

Question 5 (a)

Question

A is symmetric, positive definite. Show that there exists a square non-singular matrix P such that $A=Q Q^{\prime}$.

Answer

- Given that A is symmetric, the spectral theorem tells us that we can find a matrix P such that $M=P \wedge P^{\prime}$, with P orthogonal ($P^{\prime}=P^{-1}$) and $\Lambda=\operatorname{diag}\left(\lambda_{1}, . ., \lambda_{n}\right)$ diagonal matrix of eigenvalues of A.
- Given that A is also positive definite, its eigenvalues are strictly positive. So we can define $\sqrt{\Lambda}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, . ., \sqrt{\lambda_{n}}\right)$, so that $\sqrt{\Lambda}^{2}=\Lambda$.
- From here: $A=P \sqrt{\Lambda} \sqrt{\Lambda} P^{\prime}=\underbrace{(P \sqrt{\Lambda})}_{Q}(P \sqrt{\Lambda})^{\prime}$

Question 5 (b)

Question

$x \sim \mathcal{N}(0, \Sigma)$. Show that $z=x^{\prime} \Sigma^{-1} x \sim \chi^{2}(n)$.
Answer

- Σ, being a variance covariance matrix and full rank, is symmetric and positive definite. Σ^{-1} is therefore also symmetric and positive definite. It plays the role of A in the previous question.
- Hence we can write $\Sigma^{-1}=P P^{\prime}$ with P non-singular.

Question 5 (b) (cont.)

Answer

- Therefore: $z=x^{\prime} P P^{\prime} x=\left(P^{\prime} x\right)^{\prime} P^{\prime} x=y^{\prime} y$ where $y=P^{\prime} x$. $y=P^{\prime} x$ is a random vector, each element of which is a linear combination of the elements of x; therefore any linear combination of the elements of $y=P^{\prime} x$ is also a linear combination of the elements of x, which are jointly normal; hence that linear combination is normally distributed. Hence y is jointly normal.
- $E(y)=E\left(P^{\prime} x\right)=P^{\prime} E(x)=0 ; \operatorname{Var}(y)=\operatorname{Var}\left(P^{\prime} x\right)=$ $P^{\prime} \operatorname{Var}(x) P=P^{\prime} \Sigma P=P^{\prime}\left(P P^{\prime}\right)^{-1} P=P^{\prime} P^{\prime-1} P^{-1} P=I_{n}$. So $y \sim \mathcal{N}\left(0, I_{n}\right)$; in other words, the elements of y are independent standard normals.
- $z=y^{\prime} y=\sum_{i} y_{i}^{2} . z$ is the sum of n squared standard normals, which is the definition of a χ^{2} with n degrees of freedom.

Question 6

Question

Show that if A and B square, conformable and non-singular, then
(a) $\operatorname{tr}\left(A^{\prime}\right)=\operatorname{tr}(A)$; (b) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$; and (c)
$\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Answer

- (a) and (b) are trivial. (c) is not.
- Let us prove something (a bit) stronger: $\forall(k, n) \in \mathbb{N}^{2}$, if A is a $(N \times K)$ matrix and B is a $(K \times N)$ matrix, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
- $C=A B \Rightarrow c_{i j}=\sum_{k=1}^{K}\left(a_{i k} b_{k j}\right)$, hence $\operatorname{tr}(A B)=\sum_{n=1}^{N} c_{n n}=$ $\sum_{n=1}^{N} \sum_{k=1}^{K}\left(a_{n k} b_{k n}\right)=\sum_{k=1}^{K} \sum_{n=1}^{N}\left(b_{k n} a_{n k}\right)=\sum_{k=1}^{K} d_{k k}$ where $D=B A$, so $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

Question 7

Question

Suppose M is $n \times n$, symmetric, idempotent, with rank J. Suppose x is $n \times 1, \sim \mathcal{N}\left(0_{n}, I_{n}\right)$. Prove that $z=x^{\prime} M x \sim \chi^{2}(J)$.

Answer

- Given that M is symmetric, the spectral theorem tells us that we can find a matrix P such that $M=P \wedge P^{\prime}$, with P orthogonal $\left(P^{\prime}=P^{-1}\right)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, . ., \lambda_{n}\right)$ diagonal matrix of eigenvalues of M. Furthermore, as M is idempotent of rank J, its eigenvalues are J ones and $n-J$ zeros. Hence $\Lambda^{2}=\Lambda$.
- Then

$$
z=x^{\prime} M x=x^{\prime} P \wedge P^{\prime} x=\left(x^{\prime} P \Lambda\right)\left(\wedge P^{\prime} x\right)=\left(\wedge P^{\prime} x\right)^{\prime}\left(\wedge P^{\prime} x\right)
$$

Question 7 (cont.)

Answer

- $y=P^{\prime} x$ is a random vector, each element of which is a linear combination of the elements of x; therefore any linear combination of the elements of $y=P^{\prime} x$ is also a linear combination of the elements of x, which are jointly normal; hence that linear combination is normally distributed. Hence y is jointly normal.
- $E(y)=E\left(P^{\prime} x\right)=P^{\prime} E(x)=0$;
$\operatorname{Var}(y)=\operatorname{Var}\left(P^{\prime} x\right)=P^{\prime} \operatorname{Var}(x) P=P^{\prime} I_{n} P=P^{\prime} P=I_{n}$ as P is orthogonal. Hence $y \sim \mathcal{N}\left(0_{n}, I_{n}\right)$, i.e. the elements of y are independent standard normals.
- $z=(\Lambda y)^{\prime}(\Lambda y)=\sum_{i=1}^{n}\left(\lambda_{i}^{2} y_{i}^{2}\right)$. Since $J \lambda_{i}$'s are ones and $n-J$ are zeros, this is a sum of J squared standard normals-i.e., by definition of a $\chi^{2}, z \sim \chi^{2}(J)$.

Question 8

Question

i_{n} is a $n \times 1$ vector of ones. (a) What is the effect of the transformation $A=I_{n}-\frac{1}{n} i_{n} i_{n}^{\prime}$? (b) Show that A is symmetric and idempotent. (c) What is $A i_{n}$? What does it imply?

Answer

- (a) A demeans the vector that it multiplies. e.g., let $z=\left(\begin{array}{lllll}z_{1} & \ldots & z_{i} & \ldots & z_{n}\end{array}\right)^{\prime}$. Then
$A z=z-\frac{1}{n} i_{n} i_{n}^{\prime} z=z-\frac{1}{n}\left(\begin{array}{c}\sum_{i=1}^{n} z \\ \vdots \\ \sum_{i=1}^{n} z\end{array}\right)=z-\bar{z} i_{n}$ where \bar{z} is
the average of the elements of z.

Question 8 (cont.)

Answer

- (b) $A^{\prime}=I_{n}^{\prime}-\frac{1}{n}\left(i_{n} i_{n}^{\prime}\right)^{\prime}=A$; $A^{2}=I_{n}-2 I_{n} \frac{1}{n} i_{n} i_{n}^{\prime}+\frac{1}{n^{2}} i_{n} i_{n}^{\prime} i_{n} i_{n}^{\prime}=I_{n}-2 \frac{1}{n} i_{n} i_{n}^{\prime}+\frac{1}{n^{2}} i_{n} n i_{n}^{\prime}=A$.
(The deviations from the mean of the deviations from the mean are the deviations from the mean, because the mean of the deviations from the mean is zero.)
- (c) $A i_{n}=0_{n}: i_{n}$ is a vector of ones, so it never deviates from its mean.

