MEI MT Problem Set 3^{1}

Timothee Carayol

November 6, 2009
${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

Suppose $A 1, A 2$ hold (and we use the standard notations from the MEI handout).

Answer

- (a) $y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t}$ holds by assumption $A 2$ ($A 2$ further says that $E(\varepsilon)=0)$.
- (b) $y_{t}=\hat{\beta_{1}}+\hat{\beta_{2}} x_{t}+\hat{\varepsilon_{t}}$ holds by definition of $\hat{\varepsilon_{t}}$.
- (c) $\hat{y_{t}}=\hat{\beta_{1}}+\hat{\beta_{2}} x_{t}$ by definition of $\hat{y_{t}}$

Question 1 (cont)

Answer

- (d) $y_{t}=\hat{\beta_{1}}+\hat{\beta_{2}} x_{t}+\varepsilon_{t}$ wrong (from (a)) unless we get exactly the right $\hat{\beta}$ (which of course happens with probability zero).
- (e) $y_{t}=\beta_{1}+\beta_{2} x_{t}$ wrong unless there is no unexplained randomness in y (i.e. $\varepsilon_{t}=0$)
- (f) $y_{t}=\beta_{1}+\beta_{2} x_{t}+\hat{\varepsilon_{t}}$ wrong (from (a)) unless we get exactly the right $\hat{\beta}$ (which of course happens with probability zero).
- (g) $\sum_{t} \varepsilon_{t}=0$ true in expected value (from A2), but no reason why it would hold for a given sample.
- (h) $\sum_{t} x_{t} \varepsilon_{t}=0$ likewise: true in expected value (if some version of $A 3$ holds) but no reason why it would be true for our sample.

Question 1 (cont)

Answer

- Note: For (g) and (h), those equalities hold if you substitute the error ε with the residual $\hat{\varepsilon}$. This is a property of OLS, a proof of which goes as follows:
- $X^{\prime} \hat{\varepsilon}=X^{\prime}(y-X \hat{\beta})=X^{\prime}\left(y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y\right)=$ $X^{\prime} y-X^{\prime} X\left(X^{\prime} X\right)^{-1} y=X^{\prime} y-X^{\prime} y=0$
- Hence the inner product of any column of X by ε is zero. For the first column (the constant) this gives $\sum_{t} \hat{\varepsilon_{t}}=0$; for any other column i it gives $\sum_{t} x_{i} \hat{\varepsilon}_{t}$.
- NB: If there was no intercept in our specification, the residuals would not sum to zero anymore; but $x_{i t} \varepsilon_{t}$ would still sum to zero.
- NB2: Those are basically the sample counterparts of A3, and we can find OLS by performing GMM with these moment conditions.

Question 2

Question
$y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t}$ where $A 1, A 2, A 3, A 4$ hold. (a) $\operatorname{Var}\left(\hat{\beta_{1}}\right)(\mathrm{b})$ $\operatorname{cov}\left(\hat{\beta_{1}}, \hat{\beta_{2}}\right)(c) E\left(\sum_{t} \hat{\varepsilon}_{t}^{2}\right)$.

Answer

- Start with $\operatorname{Var}(\hat{\beta})=\sigma^{2}\left(X^{\prime} X\right)^{-1}$. Then the answer to (a) is the first diagonal element of this 2×2 matrix, and (b) is the off-diagonal element.

$$
\begin{aligned}
& X^{\prime} X=\binom{1_{T}^{\prime}}{x^{\prime}}\left(\begin{array}{cc}
1_{T} & x
\end{array}\right)=\left(\begin{array}{cc}
T & \sum_{t} x_{t} \\
\sum_{t} x_{t} & \sum_{t} x_{t}^{2}
\end{array}\right) \\
& \\
& =T\left(\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \overline{x^{2}}
\end{array}\right) \\
& -\left|X^{\prime} X\right|=T^{2}\left(\overline{x^{2}}-\bar{x}^{2}\right)
\end{aligned}
$$

Question 2 (cont)

Answer

- $\left(X^{\prime} X\right)^{-1}=\frac{T}{\left|X^{\prime} X\right|}\left(\begin{array}{cc}\overline{x^{2}} & -\bar{x} \\ -\bar{x} & 1\end{array}\right)$
$-\operatorname{Var}\left(\hat{\beta_{1}}\right)=\sigma^{2} \frac{T \bar{x}^{2}}{T^{2}\left(\bar{x}^{2}-\bar{x}^{2}\right)}=\sigma^{2} \frac{1}{T} \frac{\bar{x}^{2}-\bar{x}^{2}+\bar{x}^{2}}{\bar{x}^{2}-\bar{x}^{2}}=\frac{\sigma^{2}}{T} \frac{\bar{x}^{2}}{\bar{x}^{2}-\bar{x}^{2}}$ which is the answer to (a).
- $\operatorname{cov}\left(\hat{\beta_{1}}, \hat{\beta_{2}}\right)=\sigma^{2} \frac{-T \bar{x}}{T^{2}\left(\bar{x}^{2}-\bar{x}^{2}\right)}$ is the answer to (b).
- For (c), see extra handout ${ }^{2}$ for the general case.

[^0]
Question 3 (a)

Question

$y=X \beta+\varepsilon$ with $X: T \times K^{3}, A 1, A 2, A 3, A 4, A 5$. (a) Construct $(1-\alpha)$ confidence interval for β_{i} based on $\beta_{i O L S}$.

Answer

- $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ with $y \sim \mathcal{N}\left(X \beta, \sigma^{2} I_{T}\right)$. Hence $\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$.
- Therefore $\forall i, \hat{\beta}_{i} \sim \mathcal{N}\left(\beta_{i}, \sigma^{2}\left(X^{\prime} X\right)^{-1}{ }_{i j}\right)$.
- Therefore $Z=\frac{\beta_{i}-\hat{\beta}_{i}}{\sigma \sqrt{\left(X^{\prime} X\right)^{-1}}} \sim \mathcal{N}(0,1)$, which would allow use to do inference iff we knew the true σ^{2}.

[^1]
Question 3 (a) (cont)

Answer

- Typically we do not know σ^{2} and instead have to estimate it (without bias) with $s^{2}=\frac{1}{N-K} \sum \hat{\varepsilon}_{t}^{2}$.
- Can prove that $t=\frac{\beta_{i}-\hat{\beta}_{i}}{s \sqrt{\left(X^{\prime} X\right)^{-1}}} \sim t(T-K)$.
- Therefore, $(1-\alpha)$ C.I. for β_{i} is given by $\left[\hat{\beta}_{i}-t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}}{ }_{i i}, \hat{\beta}_{i}+t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}}{ }_{i i}\right]$

Question 3 (b)

Question

Show that the two-tailed test of $H_{0}: \beta_{i}=0$ at the level α will fail to reject iff zero lies inside the $(1-\alpha)$ C.I. for β_{i}.

Answer

- Zero lies inside the $(1-\alpha)$ C.I. for β_{i}

$$
\begin{aligned}
& \Leftrightarrow \hat{\beta}_{i}-t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}} i i \\
& \Leftrightarrow-t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}} \hat{\beta}_{i i}+t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}} \\
& \Leftrightarrow \hat{\beta}_{i} \leq t_{T-K, 1-\alpha / 2} s \sqrt{\left(X^{\prime} X\right)^{-1}}{ }_{i i} \\
& \Leftrightarrow-t_{T-K, 1-\alpha / 2} \leq \underbrace{\frac{0-\hat{\beta}_{i}}{s \sqrt{\left(X^{\prime} X\right)_{i i}^{-1}}}}_{\text {Test statistic }} \leq t_{T-K, 1-\alpha / 2}
\end{aligned}
$$

- The quantity in the middle is our test statistic for $\beta_{i}=0$, distributed $t(T-K)$ under the null; hence this inequality is the condition under which we fail to reject the null.

Question 4

Question

$y=X \beta+\varepsilon$ is estimated by OLS. \hat{y} and $\hat{\varepsilon}$ denote predicted value and residual, respectively. Show that $T S S=E S S+R S S$, and that the R^{2} is the square of the sample correlation between y and \hat{y}.

Answer

$$
\begin{align*}
T S S & =(y-\bar{y})^{\prime}(y-\bar{y})=(y-\hat{y}+\hat{y}-\bar{y})^{\prime}(y-\hat{y}+\hat{y}-\bar{y}) \\
& =(y-\hat{y})^{\prime}(y-\hat{y})+(\hat{y}-\bar{y})^{\prime}(\hat{y}-\bar{y})+2(y-\hat{y})^{\prime}(\hat{y}-\bar{y}) \\
& =R S S+E S S+2 \hat{\varepsilon}^{\prime}(\hat{y}-\bar{y}) \tag{1}\\
& =R S S+E S S+2\left(\hat{\varepsilon}^{\prime} X \beta\right)-2 \bar{y} \sum_{t} \hat{\varepsilon_{t}}=R S S+E S S \tag{2}
\end{align*}
$$

- (1) to (2) comes from $X^{\prime} \hat{\varepsilon}=0$, which we have seen in question 1.

Question 4 (cont)

Answer

$$
\begin{align*}
\operatorname{corr}^{2}(y, \hat{y}) & =\frac{\left((y-\bar{y})^{\prime}(\hat{y}-\bar{y})\right)^{2}}{\left[(y-\bar{y})^{\prime}(y-\bar{y})\right]\left[(\hat{y}-\bar{y})^{\prime}(\hat{y}-\bar{y})\right]} \\
& =\frac{\left((y-\hat{y}+\hat{y}-\bar{y})^{\prime}(\hat{y}-\bar{y})\right)^{2}}{T S S \cdot E S S} \\
& =\frac{\left(\hat{\varepsilon}^{\prime}(\hat{y}-\bar{y})+(\hat{y}-\bar{y})^{\prime}(\hat{y}-\bar{y})\right)^{2}}{T S S \cdot E S S} \tag{3}\\
& =\frac{(0+E S S)^{2}}{T S S . E S S}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S} \tag{4}
\end{align*}
$$

[^0]: ${ }^{2}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

[^1]: ${ }^{3}$ The question from the handout uses only $K=2$, but let us do the more general case.

