MEI MT Problem Set 4^{1}

Timothee Carayol

January 15, 2010

${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1 (a)

Question

$y_{t}=\beta_{1}+\beta_{2} x_{t}+\varepsilon_{t} ; A 1, A 2$ hold. (a) Obtain $\hat{\beta_{1} O L S}$ and $\hat{\beta_{2} O L S}$.
Answer

- (a) From last week, $\left(X^{\prime} X\right)^{-1}=\frac{1}{T\left(x^{2}-\bar{x}^{2}\right)}\left(\begin{array}{cc}\overline{x^{2}} & -\bar{x} \\ -\bar{x} & 1\end{array}\right)$; also have $X^{\prime} y=\binom{\sum_{t} y_{t}}{\sum_{t} x_{t} y_{t}}$.
- Could do (somewhat) tedious algebra to find an expression for $\binom{\hat{\beta_{1}}}{\hat{\beta_{2}}}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.

Question 1 (a) (cont)

Answer

- Simplest perhaps is to first find

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{1}{T\left(\bar{x}^{2}-\bar{x}^{2}\right)}\left(\begin{array}{ll}
-\bar{x} & 1
\end{array}\right)\binom{\sum_{t} y_{t}}{\sum_{t} x_{t} y_{t}}= \\
& \frac{1}{\bar{x}^{2}-\bar{x}^{2}}(-\bar{x} \bar{y}+\overline{x y})=\frac{\operatorname{cov}(x, y) 2}{\operatorname{Var}(x)} .
\end{aligned}
$$

- From here, a "trick" allows us to get $\hat{\beta_{1}}$ with no further algebra. Note that $\hat{y}=\hat{\beta_{1}}+x \hat{\beta_{2}}$, so that, taking the average over the sample, $\bar{y}=\hat{\beta_{1}}+\bar{x} \hat{\beta}_{2} \Rightarrow \hat{\beta}_{1}=\bar{y}-\bar{x} \frac{\operatorname{cov}(x, y)}{\operatorname{Var}(x)}$.
${ }^{2}$ A formula which holds with one regressor and one intercept only and which you should learn by heart

Question 1 (b)

Question

(b) $\operatorname{Obtain} \operatorname{Var}\left(\hat{\beta_{1}}\right), \operatorname{Var}\left(\hat{\beta_{2}}\right), \operatorname{cov}\left(\hat{\beta_{1}}, \hat{\beta_{2}}\right)$.

Answer

- Already found $\operatorname{Var}\left(\hat{\beta_{1}}\right), \operatorname{cov}\left(\hat{\beta_{1}}, \hat{\beta_{2}}\right)$. last week.
- With the same method we would find: $\operatorname{Var}\left(\hat{\beta}_{2}\right)=\frac{\sigma_{\varepsilon}^{2}}{T\left(x^{2}-\bar{x}^{2}\right)}$

Question 2

Question

In each of five seemingly nonlinear models, explain whether and how we can apply linear regression methods to estimate the unknown parameters.

Answer

- (a) $y_{t}=\beta_{1} x_{2 t}^{\beta_{2}} x_{3 t}^{\beta_{3}} \varepsilon_{t}$. By taking the logs, we get $\log \left(y_{t}\right)=\log \left(\beta_{1}\right)+\beta_{2} \log \left(x_{2 t}\right)+\beta_{3} \log \left(x_{3 t}\right)+\log \left(\varepsilon_{t}\right)$. Hence OLS of $y^{*}=\log (y)$ on an intercept, $x_{2}^{*}=\log \left(x_{2}\right)$ and $x_{3}^{*}=\log \left(x_{3}\right)$ can estimate $\beta_{1}^{*}=\log \left(\beta_{1}\right), \beta_{2}^{*}=\beta_{2}$ and $\beta_{3}^{*}=\beta_{3}$ without bias if $E\left(\log \left(\varepsilon_{t}\right)\right)=0$ (which is not the same as $E\left(\varepsilon_{t}\right)=1$, because of Jensen's inequality.)
- (b) $y_{t}=\beta_{1}+\frac{\beta_{2}}{x_{2 t}}+\beta_{3} x_{3 t}^{2}+\varepsilon_{t}$. OLS of $y^{*}=y$ on an intercept, $x_{2}^{*}=\frac{1}{x_{2}}$ and $x_{3}^{*}=x_{3}^{2}$ can estimate $\beta_{1}^{*}=\beta_{1}$, $\beta_{2}^{*}=\beta_{2}$ and $\beta_{3}^{*}=\beta_{3}$ without bias.

Question 2

Answer

- (c) $y_{t}=\beta_{1} \beta_{2}^{\chi_{2 t}}+\varepsilon_{t}$. No way to make this linear.
- (d) $\log \left(y_{t}\right)=\beta_{1}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+\beta 4 x_{2 t} x_{3 t}+\beta_{5} x_{2 t}^{2}+\beta_{6} x_{3 t}^{2}+\varepsilon_{t}$. Regress $\log \left(y_{t}\right)$ on intercept, $x_{2 t}, x_{3 t}, x_{2 t} x_{3 t}, x_{2 t}^{2}, x_{3 t}^{2}$. Note: some students think it's not ok to include a variable and its square in the same model, because they may be highly correlated. Actually makes sense if you suspect the relationship between y and the variable is nonlinear. In most cases, correlation is not much of a problem. $x_{2 t} x_{3 t}$ is also fine. It is an interaction term, telling us whether, e.g., there is a "complementarity" between $x_{2 t}$ and $x_{3 t}$.
- (e) $y_{t}=\left(x_{1 t}^{\beta_{1}}+x_{2 t}^{\beta_{2}}+\beta_{3}\right)^{\beta_{4}}+\varepsilon_{t}$. No way to make this linear.

Question 3

Question

Suppose $y=\beta_{0}+X \beta+\varepsilon ; A 1, A 2, A 3 R m i, A 4 G M$ hold. (a) Find matrix A such that the differenced formulation $\Delta y=\Delta X \beta+\Delta \varepsilon$ can be written as $A y=A X \beta+A \varepsilon$. (b) Show that the $\hat{\beta}_{\Delta}$ from the differenced equation cannot have a lower variance than $\hat{\beta}$ from the levels data.

Answer

- (a) First, note that A has to be $T-1 \times T$. We want

$$
A\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{T}
\end{array}\right)=\left(\begin{array}{c}
z_{2}-z_{1} \\
z_{3}-z_{2} \\
\vdots \\
z_{T}-z_{T-1}
\end{array}\right)
$$

Question 3

Answer

- Taking $A=\left(\begin{array}{cccccc}-1 & 1 & 0 & \ldots & \ldots & 0 \\ 0 & -1 & 1 & 0 & \ldots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & 0 & -1 & 1\end{array}\right)$

Question 3

Answer

- $A i=0$, so we have to drop the constant, otherwise $A(i X)$ will not be full-rank.
- (b) $\hat{\beta}_{\Delta}=\left(X^{\prime} A^{\prime} A X\right)^{-1} X^{\prime} A^{\prime} A y$ is linear in y and unbiased (from $A 3 R m i$), hence cannot be better than OLS, from the Gauss-Markov theorem.
- Note 1: that we are talking about estimating $\beta=\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{K}\end{array}\right)$, i.e. we do not consider β_{0} as it can't be identified from the differenced specification. Hence, what we are comparing to $\hat{\beta}_{\Delta}$ is, from Frisch-Waugh: $\hat{\beta}=\left(X^{\prime} M_{i} X\right)^{-1} X^{\prime} M_{i} y$.
- Note 2: We know from PS2 question 8 than M_{i} has the effect of taking the deviations from the mean of the vectors it multiplies.

Question 4

Question

Given estimates of $\hat{\beta}$ and its variance / covariance matrix, test at the 5% level (a) $H_{0}: \beta_{2}=1$ vs. $H_{1}: \beta_{2}<1$; and (b)
$\beta_{3}+\beta_{4}+\beta_{5}=1$ vs. $\beta_{3}+\beta_{4}+\beta_{5} \neq 1$.
Answer

- Let us denote as \hat{V} the estimate variance covariance matrix of $\hat{\beta}$.
- (a) Under $H_{0}, T=\frac{\hat{\beta}_{2}-1}{\sqrt{\hat{V}_{11}}} \sim t(140)^{3}$. Reject H_{0} iff $T<-t_{140, .05}=-1.655$. We find here $T=-16$, so we do reject CRS.

$$
{ }^{3} 140=145-5
$$

Question 4

Answer

- (b) First note: $\operatorname{Var}\left(\hat{\beta_{3}}+\hat{\beta}_{4}+\hat{\beta}_{5}\right)=\operatorname{Var}\left(\hat{\beta_{3}}\right)+\operatorname{Var}\left(\hat{\beta_{4}}\right)+$ $\operatorname{Var}\left(\hat{\beta_{5}}\right)+2 \operatorname{cov}\left(\hat{\beta_{3}}, \hat{\beta_{4}}\right)+2 \operatorname{cov}\left(\hat{\beta_{3}}, \hat{\beta_{5}}\right)+2 \operatorname{cov}\left(\hat{\beta_{4}}, \hat{\beta_{5}}\right)$. So our estimate for this, given our data, is $\hat{V}_{33}+\hat{V}_{44}+\hat{V}_{55}+2\left(\hat{V}_{34}+\hat{V}_{35}+\hat{V}_{45}\right)=.222$.
- Under $H_{0}, T=\frac{\hat{\beta}_{3}+\hat{\beta}_{4}+\hat{\beta}_{5}-1}{S \cdot E \cdot\left(\hat{\beta}_{3}+\hat{\beta}_{4}+\hat{\beta}_{5}\right)}=\frac{\hat{\beta}_{3}+\hat{\beta}_{4}+\hat{\beta}_{5}-1}{\sqrt{\hat{\beta}_{3}+\hat{\beta}_{4}+\hat{\beta}_{5}}} \sim t(140)$.
- Reject H_{0} iff $T<-t_{140,025}=-1.977$ or $T<t_{140, .025}=1.977$. We find here $T=-.7575$, so we do not reject homogeneity of degree one in prices.

