MEI MT Problem Set 4¹

Timothee Carayol

January 15, 2010

 $^{^1 {\}sf Available \ on \ http://personal.lse.ac.uk/carayolt/ec402.htm}$

Question 1 (a)

Question

 $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$; A1, A2 hold. (a) Obtain $\hat{\beta}_{1OLS}$ and $\hat{\beta}_{2OLS}$. Answer

► (a) From last week,
$$(X'X)^{-1} = \frac{1}{T(\bar{x^2} - \bar{x}^2)} \begin{pmatrix} \bar{x^2} & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$
; also have $X'y = \begin{pmatrix} \sum_t y_t \\ \sum_t x_t y_t \end{pmatrix}$.

► Could do (somewhat) tedious algebra to find an expression for $\begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = (X'X)^{-1}X'y.$

Question 1 (a) (cont)

- ► Simplest perhaps is to first find $\hat{\beta}_2 = \frac{1}{T(\bar{x^2} - \bar{x}^2)} \begin{pmatrix} -\bar{x} & 1 \end{pmatrix} \begin{pmatrix} \sum_t y_t \\ \sum_t x_t y_t \end{pmatrix} = \frac{1}{\bar{x^2} - \bar{x}^2} (-\bar{x}\bar{y} + \bar{x}\bar{y}) = \frac{c\hat{o}v(x,y)}{\hat{Var}(x)}^2.$
- From here, a "trick" allows us to get β₁ with no further algebra. Note that ŷ = β₁ + xβ₂, so that, taking the average over the sample, ȳ = β₁ + xβ₂ ⇒ β₁ = ȳ x̄ côv(x,y)/Var(x).

 $^{^2\}mathsf{A}$ formula which holds with one regressor and one intercept only and which you should learn by heart

Question 1 (b)

Question (b) Obtain $Var(\hat{\beta}_1)$, $Var(\hat{\beta}_2)$, $cov(\hat{\beta}_1, \hat{\beta}_2)$.

- Already found $Var(\hat{\beta}_1)$, $cov(\hat{\beta}_1, \hat{\beta}_2)$. last week.
- With the same method we would find: $Var(\hat{\beta}_2) = \frac{\sigma_{\varepsilon}^2}{T(x^2 \bar{x}^2)}$

Question

In each of five seemingly nonlinear models, explain whether and how we can apply linear regression methods to estimate the unknown parameters.

- (c) $y_t = \beta_1 \beta_2^{x_{2t}} + \varepsilon_t$. No way to make this linear.
- (d) $log(y_t) = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{2t} x_{3t} + \beta_5 x_{2t}^2 + \beta_6 x_{3t}^2 + \varepsilon_t$. Regress $log(y_t)$ on intercept, x_{2t} , x_{3t} , $x_{2t}x_{3t}$, x_{2t}^2 , x_{3t}^2 . Note: some students think it's not ok to include a variable and its square in the same model, because they may be highly correlated. Actually makes sense if you suspect the relationship between y and the variable is nonlinear. In most cases, correlation is not much of a problem. $x_{2t}x_{3t}$ is also fine. It is an interaction term, telling us whether, e.g., there is a "complementarity" between x_{2t} and x_{3t} .
- (e) $y_t = (x_{1t}^{\beta_1} + x_{2t}^{\beta_2} + \beta_3)^{\beta_4} + \varepsilon_t$. No way to make this linear.

Question

Suppose $y = \beta_0 + X\beta + \varepsilon$; A1, A2, A3Rmi, A4GM hold. (a) Find matrix A such that the differenced formulation $\Delta y = \Delta X\beta + \Delta \varepsilon$ can be written as $Ay = AX\beta + A\varepsilon$. (b) Show that the $\hat{\beta}_{\Delta}$ from the differenced equation cannot have a lower variance than $\hat{\beta}$ from the levels data.

(a) First, note that A has to be
$$T - 1 \times T$$
. We want

$$A \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_T \end{pmatrix} = \begin{pmatrix} z_2 - z_1 \\ z_3 - z_2 \\ \vdots \\ z_T - z_{T-1} \end{pmatrix}.$$

Answer $\blacktriangleright \text{ Taking } A = \begin{pmatrix} -1 & 1 & 0 & \dots & \dots & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 0 & -1 & 1 \end{pmatrix}$

Answer

- ► Ai = 0, so we have to drop the constant, otherwise A(iX) will not be full-rank.
- ▶ (b) β_∆ = (X'A'AX)⁻¹X'A'Ay is linear in y and unbiased (from A3Rmi), hence cannot be better than OLS, from the Gauss-Markov theorem.
- ▶ Note 1: that we are talking about estimating $\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_K \end{pmatrix}$,

i.e. we do not consider β_0 as it can't be identified from the differenced specification. Hence, what we are comparing to $\hat{\beta}_{\Delta}$ is, from Frisch-Waugh: $\hat{\beta} = (X'M_iX)^{-1}X'M_iy$.

Note 2: We know from PS2 question 8 than M_i has the effect of taking the deviations from the mean of the vectors it multiplies.

Question

Given estimates of $\hat{\beta}$ and its variance / covariance matrix, test at the 5% level (a) $H_0: \beta_2 = 1$ vs. $H_1: \beta_2 < 1$; and (b) $\beta_3 + \beta_4 + \beta_5 = 1$ vs. $\beta_3 + \beta_4 + \beta_5 \neq 1$.

- Let us denote as \hat{V} the estimate variance covariance matrix of $\hat{\beta}$.
- ▶ (a) Under H_0 , $T = \frac{\hat{\beta}_2 1}{\sqrt{\hat{V}_{11}}} \sim t(140)^3$. Reject H_0 iff $T < -t_{140,.05} = -1.655$. We find here T = -16, so we do reject CRS.

- - $T < t_{140,.025} = 1.977$. We find here T = -.7575, so we do not reject homogeneity of degree one in prices.