MEI MT Problem Set 5^{1}

Timothee Carayol

January 15, 2010

${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

$y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i} ; A 1, A 2, A 3 F, A 4 G M, A 5$ normal hold, with $i=1, . ., 11$. Further assume: $x_{1}^{\prime} x_{1}=2, x_{2}^{\prime} x_{2}=2, x_{1}^{\prime} x_{2}=1$, $x_{1}^{\prime} y=1, x_{2}^{\prime} y=1, y^{\prime} y=\frac{4}{3}$. Finally assume that for two
hypothetical observations we have
$\left(\begin{array}{ll}x_{1,12} & x_{2,12} \\ x_{1,13} & x_{2,13}\end{array}\right)=\left(\begin{array}{ll}5 & -2 \\ 3 & -7\end{array}\right)$.

Answer

- Some preliminary algebra:

$$
X^{\prime} X=\left(\begin{array}{ll}
x_{1}^{\prime} x_{1} & x_{1}^{\prime} x_{2} \\
x_{2}^{\prime} x_{1} & x_{2}^{\prime} x_{2}
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

- Therefore $\left(X^{\prime} X\right)^{-1}=\frac{1}{3}\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$.
- $\binom{\beta_{1}}{\beta_{2}}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\frac{1}{3}\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)\binom{1}{1}=\binom{\frac{1}{3}}{\frac{1}{3}}$.

Question 1 (cont)

Answer

$$
\begin{aligned}
s^{2} & =\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{11-2}=\frac{y^{\prime} M_{X} y}{9}=\frac{y^{\prime} y-y^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime} y}{9} \\
& =\frac{\frac{4}{3}-\left(\begin{array}{ll}
1 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\binom{1}{1}}{9} \\
& =\frac{\frac{4-2}{3}}{9}=\frac{2}{27}
\end{aligned}
$$

- We'll start with (b), and then do (a), because (a) builds on (b).

Question 1 (b)

Answer

- (b) Want to find 80% prediction intervals for the expected value of the dependent variable y for observation 12 and 13.
- Note that we talk about prediction rather than confidence intervals here, because we want to find an interval around a predicted value than around a population parameter. But the method is the same: find a pivotal quantity whose distribution is known, and which allows us to build an interval which has a known probability to include our quantity of interest.

$$
\begin{aligned}
E\left(y_{12}\right)=x_{12}^{\prime} \beta & \Rightarrow E\left(y_{12}\right)-x_{12}^{\prime} \hat{\beta}=x_{12}^{\prime} \beta-x_{12}^{\prime} \hat{\beta} \\
& \Rightarrow E\left(y_{12}\right)-x_{12}^{\prime} \hat{\beta}=x_{12}^{\prime}(\beta-\hat{\beta})
\end{aligned}
$$

Question 1 (b) (cont)

Answer

- $\beta-\hat{\beta} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\left(X^{\prime} X\right)^{-1}\right) \Rightarrow x_{12}^{\prime}(\beta-\hat{\beta}) \sim$ $\mathcal{N}\left(0, \sigma_{\epsilon}^{2} x_{12}^{\prime}\left(X^{\prime} X\right)^{-1} x_{12}\right)$

$$
\begin{aligned}
E\left(y_{12}\right)-x_{12}^{\prime} \hat{\beta} & \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} x_{12}^{\prime}\left(X^{\prime} X\right)^{-1} x_{12}\right) \\
& \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\left(\begin{array}{ll}
5 & -2
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\binom{5}{-2}\right) \\
& \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}(26)\right) \\
& \sim \mathcal{N}\left(0,26 \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

Question 1 (b) (cont)

Answer

- But we do not know σ_{ε}, so we use instead

$$
T=\frac{E\left(y_{12}\right)-x_{12}^{\prime} \hat{\beta}}{\sqrt{26 s^{2}}}=\frac{E\left(y_{12}\right)-x_{12}^{\prime} \hat{\beta}}{\sqrt{1.93}} \sim t(N-K)=t(9) .
$$

- Our prediction interval for $E\left(y_{12}\right)$ is, then,

$$
\begin{aligned}
& {\left[x_{12}^{\prime} \hat{\beta}-t_{9,10} \% \sqrt{1.93}, x_{12}^{\prime} \hat{\beta}+t_{9,10} \% \sqrt{1.93}\right]=} \\
& {[1-1.383 \sqrt{1.93}, 1+1.383 \sqrt{1.93}]}
\end{aligned}
$$

- Likewise, we could find an 80% prediction interval for $E\left(y_{13}\right)$: $\left[-\frac{4}{3}-1.383 \sqrt{3.901},-\frac{4}{3}+1.383 \sqrt{3.901}\right]$.

Question 1 (a)

Answer

- (a) Want to find 80% prediction intervals for the dependent variable y for observation 12 and 13.

$$
\begin{aligned}
y_{12}=x_{12}^{\prime} \beta+\varepsilon_{12} & \Rightarrow y_{12}-x_{12}^{\prime} \hat{\beta}=x_{12}^{\prime} \beta-x_{12}^{\prime} \hat{\beta}+\varepsilon_{12} \\
& \Rightarrow y_{12}-x_{12}^{\prime} \hat{\beta}=x_{12}^{\prime}(\beta-\hat{\beta})+\varepsilon_{12}
\end{aligned}
$$

- Note that the only difference from (b) is this extra randomness from the error term, which will increase the variance, and hence lead to a wider prediction interval compared to (b).

$$
\begin{aligned}
y_{12}-x_{12}^{\prime} \hat{\beta} & \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} x_{12}^{\prime}\left(X^{\prime} X\right)^{-1} x_{12}+\sigma_{\varepsilon}^{2}\right) \\
& \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}(26+1)\right) \\
& \sim \mathcal{N}\left(0,27 \sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

Question 1 (a) (cont)

Answer

- Otherwise, same thing as (b): substitute s^{2} for σ_{ε}^{2}, etc.
- Our prediction interval for y_{12} is, then, $\left[x_{12}^{\prime} \hat{\beta}-t_{9,10 \%} \sqrt{2}, x_{12}^{\prime} \hat{\beta}+t_{9,10 \%} \sqrt{2}\right]=$ $[1-1.383 \sqrt{2}, 1+1.383 \sqrt{2}]$.
- Likewise, we could find an 80% prediction interval for y_{13} : $\left[-\frac{4}{3}-1.383 \sqrt{3.975},-\frac{4}{3}+1.383 \sqrt{3.975}\right]$.

Question 1 (c)

Answer

- Our answers differ because our prediction for y has to take into account the added randomness of the error term, which our prediction for $E(y)$ ignores. Hence our prediction interval for y is wider.

Question 2

Question

Consider the model $y=X \beta+\varepsilon, X: T \times K$, with (say) A1, A2, A3Rmi.

Answer

- First note that you can see both of the transformations suggested as a multiplication of the matrix of regressors X on the right by some $K \times K$ non-singular matrix, say A.
- To see this, note that for any matrix A, each column of $X A$ is a linear combination of the columns of X. Conversely, any transformation of X whereby each regressor is transformed into a linear combination of the columns of X can be written as $Z=X A$ for some square matrix A; if the transformation is such that no information is lost ${ }^{2}$, then A is non-singular.

[^0]
Question 2

Answer

- Through such a transformation, the regression of y on Z is essentially the same as y on X. The coefficients may change, but not the residuals, the predictions, nor the goodness-of-fit.
To see this, note that
$P_{Z}=(X A)\left([X A]^{\prime} X A\right)^{-1}(X A)^{\prime}=(X A)\left(A^{\prime} X^{\prime} X A\right)^{-1} A^{\prime} X^{\prime}=$ $X A A^{-1}\left(X^{\prime} X\right)^{-1} A^{\prime-1} A^{\prime} X^{\prime}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=P_{X}$, hence $\hat{y}_{Z}=P_{Z y}=P_{X y}=\hat{y} X$, and also $\hat{\varepsilon}_{Z}=M_{Z} y=M_{X} y=\hat{\varepsilon}_{X}$.
- But, in general, the estimated coefficients will change: $\hat{\beta}_{Z}=$ $\left([X A]^{\prime} X A\right)^{-1}(X A)^{\prime} y=A^{-1}\left(X^{\prime} X\right)^{-1} A^{\prime-1} A^{\prime} X^{\prime} y=A^{-1} \hat{\beta}_{X}$.

Question 2 (a)

Question

(a) Consider the transformation whereby one regressor is multiplied by $\lambda \neq 0$. Use this to explain whether and how linear regressions are sensitive to units of measurement.

Answer

- The transformation leaves all columns of X unchanged except one which is multiplied by λ, meaning that A will be the $K \times K$ identity matrix with one 1 substituted with λ.
- The inverse of A is then the identity with the same 1 replaced with $\frac{1}{\lambda}$. This implies, from the previous discussion, that the coefficient on that regressor is multiplied by $\frac{1}{\lambda}$, while all the others are unchanged.
- Note: Easy to see from $\beta_{k} \cdot x_{k}=\frac{\beta_{k}}{\lambda}$. $\left(\lambda x_{k}\right)$.

Question 2 (b)

Question

(b) Consider the transformation whereby we add a constant λ to one regressor. Use this to explain whether and how linear regressions are sensitive to units of measurement when the corresponding regressor is measured in logs.

Answer

- Again, the transformation leaves all columns unchanged except one to which λ is added. A will be the $K \times K$ identity matrix, with a λ at the first row of the column corresponding to the modified regressor.
- The inverse of A is then the identity with a $-\lambda$ instead of the λ in A (see board). Hence the coefficient on the regressors are unchanged, except for the constant, to which we substract λ.
- Note: Easy to see from

$$
\beta_{0}+\beta_{k} \cdot x_{k}=\left(\beta_{0}-\lambda \beta_{k}\right)+\beta_{k} \cdot\left(\lambda+x_{k}\right) .
$$

[^0]: ${ }^{2}$ Loosely speaking. Another way of saying this is that each column of X is also a linear combination of the columns of Z.

