MEI MT Problem Set 6^{1}

Timothee Carayol

November 26, 2009
${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

- Set of four dummy variables $d 1, d 2, d 3, d 4 . d k$ is $T \times 1$.

$$
\forall i \in\{1, . ., T\}, k \in\{1,2,3,4\},\left\{\begin{array}{l}
d k_{i}=0 \text { or } 1 \\
\sum_{k} d k_{i}=1
\end{array}\right.
$$

- i.e, one and only one of the $d k$'s takes value 1 for each observation, the others are 0 .

Answer

- Suppose true model is

$$
h_{i}=\beta_{0}+\beta_{1} d 1_{i}+\beta_{2} d 2_{i}+\beta_{3} d 3_{i}+\beta_{4} d 4_{i}+x_{i}^{\prime} \gamma+\epsilon_{i}
$$

Question 1 (a)

Answer

- Then the matrix of regressors is

$$
X=\left(i d 1 d 2 d 3 d 4 X_{2}\right)
$$

- Problem? $i=d 1+d 2+d 3+d 4 \Rightarrow$ the columns of X are not linearly independent.
- Hence $\operatorname{rank}(X)<k$: $A 1$ is violated, and we cannot compute $\hat{\beta}_{\text {ols. }}$. ($X^{\prime} X$ not invertible.)
- This is known as the "dummy variable trap". Solution: drop either the constant or one dummy.

Question 1 (b)

Question

- Want to compare two specifications (i) and (ii):
- (i) $h_{i}=\beta_{0}+\beta_{2} d 2_{i}+\beta_{3} d 3_{i}+\beta_{4} d 4_{i}+x_{i}^{\prime} \gamma+\epsilon_{i}=x_{i}^{\prime} \beta+\epsilon_{i}$
- (ii) $h_{i}=\theta_{1} d 1_{i}+\theta_{2} d 2_{i}+\theta_{3} d 3_{i}+\theta_{4} d 4_{i}+x_{i}^{\prime} \delta+\epsilon_{i}=z_{i}^{\prime} \theta+\epsilon_{i}$

Answer

- With: $X=\left(\begin{array}{llll}i & d 2 & d 3 & d 4\end{array} X_{2}\right), Z=\left(\begin{array}{ll}d & d 2 d 3 d 4\end{array} X_{2}\right)$,

$$
\beta=\left(\begin{array}{lllll}
\beta_{0} & \beta_{2} & \beta_{3} & \beta_{4} & \gamma
\end{array}\right)^{\prime}, \theta=\left(\begin{array}{lllll}
\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4} & \delta
\end{array}\right)^{\prime} .
$$

- Note that $Z=X A$ with

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0_{k-4}^{\prime} \\
-1 & 1 & 0 & 0 & 0_{k-4}^{\prime} \\
-1 & 0 & 1 & 0 & 0_{k-4}^{\prime} \\
-1 & 0 & 0 & 1 & 0_{k-4}^{\prime} \\
0_{k-4} & 0_{k-4} & 0_{k-4} & 0_{k-4} & I_{k-4}
\end{array}\right), k \times k
$$

non-singular.

Question 1 (b) (cont)

Answer

- So from last week, we know that computing OLS on either specification will yield the same predicted values and residuals.
- We also know from last week that $\hat{\theta}_{o l s}=A^{-1} \hat{\beta}_{o l s}$, i.e. $\hat{\beta}_{o l s}=A \hat{\theta}_{o l s}$.

$$
\begin{aligned}
& \left(\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3} \\
\hat{\beta}_{4} \\
\hat{\gamma}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0_{k-4}^{\prime} \\
-1 & 1 & 0 & 0 & 0_{k-4}^{\prime} \\
-1 & 0 & 1 & 0 & 0_{k-4}^{\prime} \\
-1 & 0 & 0 & 1 & 0_{k-4}^{\prime} \\
0_{k-4} & 0_{k-4} & 0_{k-4} & 0_{k-4} & I_{k-4}
\end{array}\right)\left(\begin{array}{c}
\hat{\theta}_{1} \\
\hat{\theta}_{2} \\
\hat{\theta}_{3} \\
\hat{\theta}_{4} \\
\hat{\delta}
\end{array}\right) \\
& =\left(\begin{array}{c}
\hat{\theta_{1}} \\
\hat{\theta_{2}}-\hat{\theta}_{1} \\
\hat{\theta_{3}}-\hat{\theta_{1}} \\
\hat{\theta}_{4}-\hat{\theta_{1}} \\
\hat{\delta}
\end{array}\right)
\end{aligned}
$$

Question 2

Question

- Similar setup as previously. Set of four dummy variables $d 1, d 2, d 3, d 4$. $d k$ is $T \times 1$.
- True model for $y: y=S \beta_{1}+X_{2} \beta_{2}+\epsilon$ with $S=\left(\begin{array}{lll}d & d 2 d 3 d 4\end{array}\right)$, where each $d k$ is a quarter dummy.
- Purpose of the exercise: show that the OLS estimator from the specification above is numerically equal to the OLS estimator obtained from regressing the "deseasonalized" y on the "deseasonalized" X_{2}.
- "Deseasonalize" means removing the seasonal variations from a variable, i.e. take the residuals from the regression of that variable on the quarter dummies.
- (a) Show that for any $T \times 1$ vector z, the formula for the "deseasonalized" z is therefore $M_{S} z$.

Question 2 (a)

Answer

- $M_{S} z=\left(I_{T}-S\left(S^{\prime} S\right)^{-1} S^{\prime}\right) z$.
- $S^{\prime} S=\left(\begin{array}{llll}d 1^{\prime} d 1 & d 1 d^{\prime} 2 & d 1^{\prime} d 3 & d 1^{\prime} d 4 \\ d 2^{\prime} d 1 & d 2^{\prime} d 2 & d 2^{\prime} d 3 & d 2^{\prime} d 4 \\ d 3^{\prime} d 1 & d 3^{\prime} d 2 & d 3^{\prime} d 3 & d 3^{\prime} d 4 \\ d 4^{\prime} d 1 & d 4^{\prime} d 2 & d 4^{\prime} d 3 & d 4^{\prime} d 4\end{array}\right)$
- $\forall i \neq j,(i, j) \in 1,2,3,4^{2}, d i^{\prime} d j=\sum_{t=1}^{T} d i_{t} d j_{t}=0$ because either $d i_{t}$ or $d j_{t}$ (or both) are zero.
- $\forall i \in 1,2,3,4^{2}$, $d i^{\prime} d i=\sum_{t=1}^{T} d i_{t}^{2}=\sum_{t=1}^{T} d i_{t}$ (because $d i_{t}$ is 0 or 1 , hence equals $d i_{t}^{2}$).
- Let us denote $T_{i}=\sum_{t=1}^{T} d i_{t} . T_{i}$ is the number of observations in quarter i, i.e. such that $d i_{t}=1$.

Question 2 (a) (cont)

Answer

$$
\begin{aligned}
& \text { - } S^{\prime} S=\left(\begin{array}{cccc}
T_{1} & 0 & 0 & 0 \\
0 & T_{2} & 0 & 0 \\
0 & 0 & T_{3} & 0 \\
0 & 0 & 0 & T_{4}
\end{array}\right) \Rightarrow\left(S^{\prime} S\right)^{-1}= \\
& \left(\begin{array}{cccc}
\frac{1}{T_{1}} & 0 & 0 \\
0 & \frac{1}{T_{2}} & 0 & 0 \\
0 & 0 & \frac{1}{T_{3}} & 0 \\
0 & 0 & 0 & \frac{1}{T_{4}}
\end{array}\right) \\
& -S^{\prime} z=\left(\begin{array}{c}
d 1^{\prime} z \\
d 2^{\prime} z \\
d 3^{\prime} z \\
d 4^{\prime} z
\end{array}\right)=\left(\begin{array}{l}
\sum_{t=1}^{T} d 1_{t} z_{t} \\
\sum_{t=1}^{T} d 2_{t} z_{t} \\
\sum_{t=1}^{T} d 3_{t} z_{t} \\
\sum_{t=1}^{T} d 4_{t} z_{t}
\end{array}\right)
\end{aligned}
$$

Question 2 (a) (cont)

Answer

- Hence:

$$
\begin{align*}
\left(S^{\prime} S\right)^{-1} S^{\prime} z & =\left(\begin{array}{cccc}
\frac{1}{T_{1}} & 0 & 0 & 0 \\
0 & \frac{1}{T_{2}} & 0 & 0 \\
0 & 0 & \frac{1}{T_{3}} & 0 \\
0 & 0 & 0 & \frac{1}{T_{4}}
\end{array}\right)\left(\begin{array}{c}
\sum_{t=1}^{T} d 1_{t} z_{t} \\
\sum_{t=1}^{T} d 2_{t} z_{t} \\
\sum_{t=1}^{T} d 3_{t} z_{t} \\
\sum_{t=1}^{T} d 4_{t} z_{t}
\end{array}\right) \tag{1}\\
& =\left(\begin{array}{c}
\sum_{t=1}^{T} d 1_{t} z_{t} \\
\frac{\sum_{t=1}^{T} T_{1} d 2_{t} z_{t}}{T} \\
\frac{\sum_{t=1}^{T} T_{2} d 3_{t} z_{t}}{\sum_{t}^{T}} \\
\frac{\sum_{t=1}^{T} d d_{t} z_{t}}{T_{4}}
\end{array}\right)=\left(\begin{array}{c}
\bar{z}^{(1)} \\
\bar{z}^{(2)} \\
\bar{z}^{(3)} \\
\bar{z}^{(4)}
\end{array}\right) \tag{2}
\end{align*}
$$

where $\bar{z}^{(k)}$ is the mean of variable z for all observations in quarter k.

Question 2 (a) (cont)

Answer

- Hence the t th row of $S\left(S^{\prime} S\right)^{-1} S^{\prime} z$ is $\bar{z}^{\left(q_{t}\right)}$ with $q_{t}=i$ iff $d i_{t}=1$ (e.g. $\bar{z}^{(1)}$ for an observation from the first quarter).
- Thus, the t th row of $M_{S} z$ is
$\left(I_{T}-S\left(S^{\prime} S\right)^{-1} S^{\prime}\right) z_{t}=z_{t}-\bar{z}^{\left(q_{t}\right)}$, that is to say, z_{t} minus the seasonal average for t th quarter. (QED)

Question 2 (b)

Question

Explain why $\hat{\beta}_{2 O L S}$ can also be obtained from regressing deseasonalized y on deseasonalized X_{2}.

Answer

- Note that, from Frisch-Waugh theorem, $\hat{\beta_{2}}=$ $\left(X_{2}^{\prime} M_{S} X_{2}\right)^{-1} X_{2}^{\prime} M_{S} y=\left(\left(M_{S} X_{2}\right)^{\prime} M_{S} X_{2}\right)^{-1}\left(M_{S} X_{2}\right)^{-1} M_{S} y$.
- Hence, $\hat{\beta}_{2}$ is the OLS estimator from the regression of deseasonalized y on deseasonalized X_{2}.

Question 3 (a) i.

Question

- Exact same setup as question 1 from PS5, so we will use some results from that question directly here. I assume A3>A3Rsru.
- (a) i. We want to test $\left\{\begin{array}{l}H_{0}: \beta_{1}=0 \\ H_{1}: \beta_{1} \neq 0\end{array}\right.$

Answer

- We know that under A1-A5,

$$
\hat{\beta} \left\lvert\, X \sim \mathcal{N}\left(\beta, \sigma_{\epsilon}^{2}\left(X^{\prime} X\right)^{-1}\right)=\mathcal{N}\left(\beta, \frac{\sigma_{\epsilon}^{2}}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\right)\right.
$$

- So $Z_{1}=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\frac{2}{3} \sigma_{\epsilon}^{2}}} \sim \mathcal{N}(0,1)$

Question 3 (a) i. (cont)

Answer

- We can therefore show that

$$
T_{1}=\frac{\hat{\beta}_{1}-\beta_{1}}{S E\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\frac{2}{3} s^{2}}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\frac{4}{81}}}=\frac{\frac{1}{3}-\beta_{1}}{\frac{2}{9}} \sim t(N-K)=t(9)
$$

- In this question: want to test $\left\{\begin{array}{l}H_{0}: \beta_{1}=0 \\ H_{1}: \beta_{1} \neq 0\end{array}\right.$ Under H_{0},

$$
T_{1}=\frac{\frac{1}{3}}{\frac{2}{9}}=1.5<t_{2.5 \%}(9)=2.262, \text { so we do not reject } H_{0} \text {. }
$$

Question 3 (a) ii.

Answer

- Very similar.
- $Z_{2}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\frac{2}{3} \sigma_{\epsilon}^{2}}} \sim \mathcal{N}(0,1): \beta_{2}$, here, has the same standard deviation as β_{1}.
- So

$$
T_{2}=\frac{\frac{1}{3}-\beta_{2}}{\frac{2}{9}} \sim t(N-K)=t(9)
$$

- In this question: want to test $\left\{\begin{array}{l}H_{0}: \beta_{2}=0 \\ H_{1}: \beta_{2} \neq 0\end{array}\right.$ Under H_{0},

$$
T_{2}=\frac{\frac{1}{3}}{\frac{3}{9}}=1.5<t_{2.5 \%}(9)=2.262, \text { so we do not reject } H_{0} \text {. }
$$

Question 3 (a) iii.

Question

- (a) We want to test $\left\{\begin{array}{l}H_{0}: \beta=\left(\begin{array}{ll}0 & 0\end{array}\right)^{\prime} \\ H_{1}: \beta \neq\left(\begin{array}{ll}0 & 0\end{array}\right)^{\prime}\end{array}\right.$

Answer

- Perform Wald test: use the fact that, if R is $r \times K$,

$$
F=\frac{(R \hat{\beta}-R \beta)^{\prime}\left(s^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right)^{-1}(R \hat{\beta}-R \beta)}{r} \sim F(r, N-K)
$$

- Here: $R=I_{2}$; under $H_{0}, R \beta=0_{2}$. Therefore under H_{0},

$$
F=\frac{\hat{\beta}^{\prime}\left(s^{2}\left(X^{\prime} X\right)^{-1}\right)^{-1} \hat{\beta}}{2} \sim F(2,9)
$$

- So here, $F=\frac{27}{4}\left(\frac{1}{3} \frac{1}{3}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{\frac{1}{3}}{\frac{1}{3}}=4.5$.
- Compare this to $F_{5 \%}(2,9)=4.26<F$: hence we can reject H_{0} at the 5% level. Our estimates are jointly significant (even thought they are not individually significant).

Question 3 (b)

Answer

- Rather subtle point: sometimes testing joint significance gives different results than succesive tests of individual significances. This happens typically when the X 's are correlated (but not perfectly, otherwise OLS could not even be computed). e.g. imagine x_{1} and x_{2} strongly positively correlated. Coefficient on x_{1} indicates what happens to the dependent variable when x_{1} varies but x_{2} remains constant. If x_{1} and x_{2} typically vary together, then there is much less information we can use than if they are independent: hard to tell how much of the variations in y are due to variations in x_{1} and how much to variations in x_{2}. In extreme case of perfect collinearity, we cannot even compute $\hat{\beta}_{o l s}$.

Question 4

Question

$y_{t}=\beta_{1}+\beta_{2} x_{2 t}+\beta_{3} x_{3 t}+\beta_{4} x_{4 t}+\epsilon_{t}, t=1, . ., T$ with
A1, A2, A3Rmi, A4GM, A5normal. (a) Rewrite 3 sets of hypotheses in the form $R \beta=q$, with $R r \times 4$. (b) Rewrite the W statistic in the form $F=\frac{\frac{R S S_{R}-R S S_{U}}{r S_{U}}}{\frac{R S S_{U}}{T-K}}$. Explain how you would find $R S S_{R}$.

Answer

- (i) $H_{0}: \beta_{2}-3 \beta_{3}=4, \beta_{1}=2 \beta_{4} \Rightarrow r=2, q=\binom{4}{0}, R=$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 1 & -3 & 0 \\
1 & 0 & 0 & -2
\end{array}\right), \text { and } \\
& W=(R \hat{\beta}-q)^{\prime}\left(R \hat{V}(\hat{\beta}) R^{\prime}\right)^{-1}(R \hat{\beta}-q) / r \sim F(2, T-4)
\end{aligned}
$$

Question 4 (a)

Answer

- (ii) $H_{0}: \beta_{1}=1, \beta_{2}=3 \beta_{4}-1, \beta_{3}=0 \Rightarrow r=3, q=$

$$
\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 0
\end{array}\right) \text {, and } W \sim F(3, T-4)
$$

- (iii) $H_{0}: \beta_{2}=\beta_{3}=2 \beta_{4} \Rightarrow r=2, q=\binom{0}{0}, R=$

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -2
\end{array}\right) \text {, and } W \sim F(2, T-4)
$$

Question 4 (b)

Answer

- (i) Obtain $R S S_{R}$ from $y_{t}=2 \beta_{4}+\left(3 \beta_{3}+4\right) x_{2 t}+\beta_{3} x_{3 t} \beta_{4} x_{4 t}+\epsilon_{t}$, or $y_{t}-4 x_{2 t}=\beta_{3}\left(3 x_{2 t}+x_{3 t}\right)+\beta_{4}\left(2+x_{4 t}\right)+\epsilon_{t}$-i.e., regress $y_{t}-4 x_{2 t}$ on $3 x_{2 t}+x_{3 t}$ and $2+x_{4 t}$ without a constant (because we constrained the constant β_{1} to be equal to twice the coefficient on x_{4}).
- (ii) Same idea \Rightarrow Regress $y_{t}-1+x_{2 t}$ on $3 x_{2 t}+x_{4 t}$ without a constant (we constrained the constant to be equal to 1).
- (iii) Same idea \Rightarrow Regress y_{t} on a constant (because we haven't put any constraint on β_{1} this time) and $2 x_{2 t}+2 x_{3 t}+x_{4 t}$.

