MEI MT Problem Set 7 Part 1^{1}

Timothee Carayol

December 11, 2009

${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

- $y_{t}=\alpha+x_{t} \beta+\varepsilon_{t}$
- T observations, 1 independent variable (plus the constant).
- Assumptions:
- ε_{t} are iid with mean 0 and variance σ_{ε}^{2}.
- x_{t} are random, iid with mean μ_{x} and variance σ_{x}^{2}, and $\forall t x_{t}$ and ε_{t} are independent.
- Also assume that $x_{t} \varepsilon_{t}$ are independently distributed (not stated in the question, but otherwise the exercise is a bit more complicated, e.g. need to use Chebyshev-Markov LLN4 instead of Khinshine. We use that LLN at some point in question 2, so for now stick to the simpler case $x_{t} \varepsilon_{t}$ iid).
- Denote

$$
Z=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{T}
\end{array}\right)=\left(\begin{array}{c}
z_{1}^{\prime} \\
z_{2}^{\prime} \\
\vdots \\
z_{T}^{\prime}
\end{array}\right)
$$

Question 1

Answer

- (a) $Z^{\prime} Z . Z^{\prime} Z=\left(\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{T}\end{array}\right)\left(\begin{array}{c}z_{1}^{\prime} \\ z_{2}^{\prime} \\ \vdots \\ z_{T}^{\prime}\end{array}\right)=\sum_{t=1}^{T} z_{t} z_{t}^{\prime}$.
(This is 2×2.)

$$
Z^{\prime} \varepsilon . Z^{\prime} \varepsilon=\left(\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{T}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{T}
\end{array}\right)=\sum_{t=1}^{T} z_{t} \varepsilon_{t}
$$

(This is 2×1.)

Question 1

Answer

- (b) $E\left(z_{t} z_{t}^{\prime}\right)$.

$$
\begin{aligned}
E\left(z_{t} z_{t}^{\prime}\right) & =E\left(\binom{1}{x_{t}}\left(\begin{array}{ll}
1 & x_{t}
\end{array}\right)\right)=\left(\begin{array}{cc}
E(1) & E\left(x_{t}\right) \\
E\left(x_{t}\right) & E\left(x_{t}^{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \mu_{x} \\
\mu_{x} & \mu_{x}^{2}+\sigma_{x}^{2}
\end{array}\right)=\Sigma_{z z}
\end{aligned}
$$

- (c) $\operatorname{plim}\left(\frac{Z^{\prime} Z}{T}\right)$. From Khinchine LLN on $w_{t}=z_{t} z_{t}^{\prime}: w_{t}$ are iid (because z_{t} are) and have finite expected value, hence $\operatorname{plim}\left(\frac{1}{T}\left(\sum_{t} w_{t}\right)\right)=E\left(w_{t}\right)=\Sigma_{z z}$.
- (d) $E\left(z_{t} \varepsilon_{t}\right)=E\left(\binom{1}{x_{t}} \varepsilon_{t}\right)=\binom{E\left(\varepsilon_{t}\right)}{E\left(x_{t} \varepsilon_{t}\right)}=\binom{0}{0}$ from our assumptions.
- (e) $\operatorname{Var}\left(z_{t} \varepsilon_{t}\right)=E\left(z_{t} \varepsilon_{t} \varepsilon_{t} z_{t}^{\prime}\right)=E\left(\varepsilon_{t}^{2}\right) E\left(z_{t} z_{t}^{\prime}\right)=\sigma_{\varepsilon}^{2} \Sigma_{z z}$ (from independence of z_{t} and ε_{t}).

Question 1

Answer

- (f) $\operatorname{plim}\left(\frac{Z^{\prime} \varepsilon}{T}\right) . v_{t}=z_{t} \varepsilon_{t}$ are independently distributed (i.e., $\forall t \neq s, v_{s}$ and v_{t} are independent), because ε_{t} are iid and we assumed $x_{t} \varepsilon_{t}$ to be independent accross t as well. So we can use LLN1 (Chebyshev); this, combined with (d), gives the results.
- (g) $\sqrt{T}\left(\frac{Z^{\prime} \varepsilon}{T}\right) \rightarrow^{d} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2} \Sigma_{z z}\right)$. This is CLT1 combined with (d) and (e).
- (h) $\sqrt{T}\left(\frac{Z^{\prime} Z}{T}\right)^{-1}\left(\frac{Z^{\prime} \varepsilon}{T}\right) \rightarrow^{d} \mathcal{N}\left(0, \sigma_{\varepsilon}^{2} \Sigma_{z z}^{-1}\right)$. (c) implies (through Slutsky theorem) $\operatorname{plim}\left(\frac{1}{T}\left(Z^{\prime} Z\right)\right)^{-1}=\Sigma_{z z}^{-1}$. This combined with (g) gives the result (through Cramér).
- Clear from (c) and (f) that OLS is consistent. (Slutsky).

Question 1

Answer

$$
\begin{align*}
\operatorname{Var}(\hat{\beta}) & =\operatorname{Var}\left(\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \varepsilon\right]_{2}\right) \\
& =E\left(\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \varepsilon\left(\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \varepsilon\right)^{\prime}\right]_{22}\right) \tag{1}\\
& =E\left(\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \varepsilon \varepsilon^{\prime} Z\left(Z^{\prime} Z\right)^{-1}\right]_{22}\right) \\
& =E\left(\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime} E\left(\varepsilon \varepsilon^{\prime} \mid Z\right) Z\left(Z^{\prime} Z\right)^{-1}\right]_{22}\right) \\
& =\sigma_{\varepsilon}^{2} E\left(\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Z\left(Z^{\prime} Z\right)^{-1}\right]_{22}\right) \\
& =\sigma_{\varepsilon}^{2} E\left(\left[\left(Z^{\prime} Z\right)^{-1}\right]_{22}\right) \\
& =\sigma_{\varepsilon}^{2} E\left(\frac{1}{\sum_{t} x_{t}^{2}-\frac{1}{T}\left(\sum_{t} x_{t}\right)^{2}}\right) \\
& =\sigma_{\varepsilon}^{2} E\left(\frac{1}{\sum_{t}\left(x_{t}-\frac{1}{T} \sum_{t} x_{t}\right)^{2}}\right)
\end{align*}
$$

Question 1

Answer
In (1) I use $E\left(\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \varepsilon\right)=0$ (because ε and Z are independent). Slutsky and LLN2 (Khinchine) allow us to conclude (also using that s^{2} is consistent for σ_{ε}^{2}, which we show in the next question).

Question 2

Question

- $y=X \beta+\varepsilon$, where X is $T \times K . \varepsilon_{t}$ are $i i d\left(0, \sigma_{\varepsilon}^{2}\right) ; x_{t}$ are random, iid $\left(0, \Sigma_{x}\right) ; \forall s, t, x_{s}$ independent of ε_{t} : very strong assumption which we relax later.
- $s^{2}=\frac{1}{T-K} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2}$. Want to prove that s^{2} is consistent for σ_{ε}^{2}.

Answer

$$
\begin{aligned}
s^{2} & =\frac{1}{T-K} \hat{\varepsilon}^{\prime} \hat{\varepsilon}=\left(\frac{T}{T-K}\right) \frac{\varepsilon^{\prime} M_{X} \varepsilon}{T} \\
& =\left(\frac{T}{T-K}\right) \frac{\varepsilon^{\prime} \varepsilon-\left(X^{\prime} \varepsilon\right)^{\prime}\left(X^{\prime} X\right)^{-1}\left(X^{\prime} \varepsilon\right)}{T} \\
& =\left(\frac{T}{T-K}\right)\left(\left(\frac{\varepsilon^{\prime} \varepsilon}{T}\right)-\left(\frac{X^{\prime} \varepsilon}{T}\right)^{\prime}\left(\frac{X^{\prime} X}{T}\right)^{-1}\left(\frac{X^{\prime} \varepsilon}{T}\right)\right)
\end{aligned}
$$

Question 2

Answer

- Hence, using the Slutsky theorem:

$$
\operatorname{plim}\left(s^{2}\right)=1\left(\sigma_{\varepsilon}^{2}-\left(0_{K}^{\prime} \Sigma_{X}^{-1} 0_{K}\right)\right)=\sigma_{\varepsilon}^{2}
$$

because

- $\operatorname{plim}\left(\frac{T}{T-K}\right)=1$ trivial.
- $\operatorname{plim}\left(\frac{\varepsilon^{\prime} \varepsilon}{T}\right)=E\left(\varepsilon_{t}^{2}\right)=\sigma_{\varepsilon}^{2}$ from Khinchine LLN2.
- plim $\left(\frac{X^{\prime} \varepsilon}{T}\right)=E\left(x_{t} \varepsilon_{t}\right)=0$ from Khinchine LLN2 (because $\forall s, t, v_{s}=x_{s} \varepsilon_{s}$ is independent from v_{t} from our assumptions, i.e. the v_{t} are iid).
- And finally, plim $\left(\frac{x^{\prime} x}{T}\right)=E\left(x_{t} x_{t}^{\prime}\right)=\Sigma_{X}$ from Khinchine LLN2.

Question 2

Answer

- Now relax our assumption that $\forall s, t, x_{s}$ independent of ε_{t}.
- We have instead $y=X \beta+\varepsilon$, where X is $T \times K$. ε_{t} are $\operatorname{iid}\left(0, \sigma_{\varepsilon}^{2}\right) ; x_{t}$ are random, $\operatorname{iid}\left(0, \Sigma_{x}\right) ; E\left(x_{t} \varepsilon_{t}\right)=0$.
- Still the case that

$$
s^{2}=\left(\frac{T}{T-K}\right)\left(\left(\frac{\varepsilon^{\prime} \varepsilon}{T}\right)-\left(\frac{X^{\prime} \varepsilon}{T}\right)^{\prime}\left(\frac{X^{\prime} X}{T}\right)^{-1}\left(\frac{X^{\prime} \varepsilon}{T}\right)\right)
$$

- More tricky than previously: cannot use Chebyshev or Khinshine $L L N$ for $x_{t} \varepsilon_{t}$ anymore. Instead we'll have to use Chebyshev-Markov (LLN4).

Question 2

Answer

- To use Chebyshev-Markov on $\frac{1}{T} \sum_{t} x_{t} \varepsilon_{t}=\frac{1}{T} \sum_{t} u_{t}$: need $\operatorname{Var}\left(\frac{1}{T} \sum_{t} u_{t}\right)=\frac{1}{T^{2}}\left(\sum_{t} \sigma_{t}^{2}+2 \sum_{t \neq s} \sigma_{t s}\right) \rightarrow 0$ as $T \rightarrow \infty$ with $V\left(u_{t}\right)=\sigma_{t}^{2}$ and $\operatorname{cov}\left(u_{t}, u_{s}\right)=\sigma_{t s}$

Question 2

Answer

$$
\begin{align*}
\operatorname{Var}\left(\frac{1}{T} \sum_{t} u_{t}\right) & =\frac{1}{T^{2}} \operatorname{Var}\left(\sum_{t} x_{t} \varepsilon_{t}\right) \\
& =\frac{1}{T^{2}} \operatorname{Var}\left(X^{\prime} \varepsilon\right) \\
& =\frac{1}{T^{2}} E\left(\left[X^{\prime} \varepsilon-E\left(X^{\prime} \varepsilon\right)\right]\left[X^{\prime} \varepsilon-E\left(X^{\prime} \varepsilon\right)\right]^{\prime}\right) \\
& =\frac{1}{T^{2}} E\left(X^{\prime} \varepsilon \varepsilon^{\prime} X\right) \\
& =\frac{1}{T^{2}} E\left(X^{\prime} E\left(\varepsilon \varepsilon^{\prime} \mid X\right) X\right) \\
& =\frac{1}{T^{2}} E\left(X^{\prime} \sigma_{\varepsilon}^{2} X\right) \tag{2}\\
& =\frac{1}{T}\left(\sigma_{\varepsilon}^{2} \Sigma_{X}\right) \rightarrow T \rightarrow \infty 0
\end{align*}
$$

Question 2

Answer

- In (2) I use $E\left(\varepsilon \varepsilon^{\prime} \mid X\right)=\sigma_{\varepsilon}^{2} I_{T}$, which is not explicitly mentioned in the question (we only know it is true unconditional on X). But we cannot conclude without making an additional assumption.

