MEI MT Problem Set 7 Part 2¹

Timothee Carayol

January 15, 2010

 $^{^1 {\}sf Available \ on \ http://personal.lse.ac.uk/carayolt/ec402.htm}$

- ► True model: $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$ with X_1 : $N \times k_1$; X_2 : $N \times k_2$; $k_1 + k_2 = k$; X_1 and X_2 fixed in repeated samples (A3f). Finally, assume that A4GM holds: $V(\varepsilon) = \sigma_{\varepsilon}^2 I_N$.
- Researcher omits (or cannot observe) X₂, and therefore uses the following estimator for β₁: γ̂ = (X'₁X₁)⁻¹X'₁y. Also uses, as an estimator for the variance of γ̂:
 V₁ = Û(γ̂) = s₁²(X'₁X₁)⁻¹ with s₁² = (y-X₁γ̂)/(y-X₁γ̂)/T = V̂(γ̂)
- Note that those are exactly what one would obtain with OLS on the (wrong) specification y = X₁β₁ + ε.

Question (a) $\hat{\gamma}$ biased for β_1 .

Answer

►

$$E(\hat{\gamma}) = E\left((X_1'X_1)^{-1}X_1'y\right) = (X_1'X_1)^{-1}X_1'E\left(X_1\beta_1 + X_2\beta_2 + \varepsilon\right)$$

= $(X_1'X_1)^{-1}X_1'\left(X_1\beta_1 + X_2\beta_2 + 0\right) = \beta_1 + \underbrace{(X_1'X_1)^{-1}X_1'X_2\beta_2}_{bias}$

Note how the bias relates to the true β₂ on the one hand, and on the OLS estimates of the X₂'s regressed on the X₁'s on the other hand.

Question
(b)
$$V(\hat{\gamma}) = \sigma_{\varepsilon}^2 (X'_1 X_1)^{-1}$$
.

Answer

$$V(\hat{\gamma}) = V\left((X_1'X_1)^{-1}X_1'y\right) = (X_1'X_1)^{-1}X_1'V(y)\left((X_1'X_1)^{-1}X_1'\right)'$$

= $(X_1'X_1)^{-1}X_1'E(\varepsilon\varepsilon')X_1(X_1'X_1)^{-1} = \sigma_{\varepsilon}^2(X_1'X_1)^{-1}$

from A4GM.

Question (c) s_1^2 biased for σ_{ε}^2 . Answer

$$\begin{split} E(s_{1}^{2}) &= \frac{1}{T - k_{1}} E\left((y - X_{1}\hat{\gamma})'(y - X_{1}\hat{\gamma})\right) \\ &= \frac{1}{T - k_{1}} E\left((X_{2}\beta_{2} + \varepsilon)'M_{X_{1}}(X_{2}\beta_{2} + \varepsilon)\right) \\ &= \frac{1}{T - k_{1}} E\left[\left((X_{2}\beta_{2})'M_{X_{1}}(X_{2}\beta_{2})\right) + \left(\varepsilon'M_{X_{1}}\varepsilon\right) + 2\underbrace{\left(\varepsilon'M_{X_{1}}X_{2}\beta_{2}\right)}_{E(\ldots)=0}\right] \\ &= \frac{1}{T - k_{1}} \left(E\left[\varepsilon'M_{X_{1}}\varepsilon\right] + (X_{2}\beta_{2})'M_{X_{1}}(X_{2}\beta_{2})\right) \\ &= \frac{1}{T - k_{1}} \left(\sigma_{\varepsilon}^{2} tr(M_{X_{1}}) + (X_{2}\beta_{2})'M_{X_{1}}(X_{2}\beta_{2})\right) \\ &= \frac{1}{T - k_{1}} \left(\sigma_{\varepsilon}^{2}(T - k_{1}) + (X_{2}\beta_{2})'M_{X_{1}}(X_{2}\beta_{2})\right) \\ &= \sigma_{\varepsilon}^{2} + \frac{1}{T - k_{1}} \left((X_{2}\beta_{2})'M_{X_{1}}(X_{2}\beta_{2})\right) \ge \sigma_{\varepsilon}^{2} \end{split}$$

Question

(d) The question here is a bit misleading: "uncorrelated" is not a strong enough assumption to conclude in this context. Assume instead that $X'_1X_2 = 0$ (which would be the sample counterpart of x_{1t} and x_{2t} uncorrelated if we knew that either of them has mean 0, e.g. if we consider deviations from the mean.).

Answer

•
$$E(\hat{\gamma}) = \beta_1 + \underbrace{(X'_1X_1)^{-1}X'_1X_2\beta_2}_{bias} = \beta_1$$
 i.e. the bias disappears.

$$E(s_1^2) = \sigma_{\varepsilon}^2 + \frac{1}{T - k_1} \left((X_2 \beta_2)' M_{X_1}(X_2 \beta_2) \right) \\ = \sigma_{\varepsilon}^2 + \frac{1}{T - k_1} \left((X_2 \beta_2)' I_n(X_2 \beta_2) \right)$$

i.e. the bias is at its worst.

- What I suspect Vassilis meant:
- ► The coefficients of a regression of each variable in X₂ on the variables in X₁ are all zero (except maybe the constant).
- ► Then the bias in \$\[\[\gamma\$ is \$(X'_1X_1)^{-1}X'_1X_2\beta_2\$. Recall that \$(X'_1X_1)^{-1}X'_1X_2\$ is a \$k_1 \times k_2\$ matrix whose \$k\$th column is the OLS estimator of the regression of the \$k\$th column of \$X_2\$ on the variables in \$X_1\$. If there is a constant in \$X_1\$, then the bias in the \$k_1 1\$ last elements of \$\[\[\[\gamma\$ will be zero iff the variables in \$X_1\$ have no explanatory power over the variables in \$X_2\$... OR if \$\[\[\[\beta_2\$ is actually zero, e.g. if the omitted variables do not explain the variations in \$y\$ once you control for \$X_1\$.

- Textbook example is much simpler to think about, with X₁ containing only one variable beside the constant, and X₂ only one variable. E.g. in a wage equation, think of X₁ as education and of X₂ as intrinsic ability.
- $w_i = \alpha + \beta \ educ_i + \gamma \ ability_i + \varepsilon_i$.
- The problem is that we have at the same time:
 - ► X₁ and X₂ are (likely) positively correlated.
 - ► X₂ is (likely) also a determinant of wages BEYOND its effect on education.
- So that if we omit ability in our regression, the coefficient on education will be upwards biased, as it will capture some of the effect of ability on wages.

- y = Xβ + ε with X : T × k fixed in repeated samples. A1, A2, A3f hold, and E(εε') = Σ positive definite and symmetric. (i.e. may be heteroskedasticity and autocorrelation in the error term.)
- We consider the usual OLS estimator for β, and estimate its covariance matrix as s²(X'X)⁻¹.

Question (a) $\hat{\beta}$ unbiased.

Answer

$$E(\hat{\beta}) = E\left((X'X)^{-1}X'y\right) = E\left((X'X)^{-1}X'(X\beta + \varepsilon)\right)$$
$$= \beta + (X'X)^{-1}X'E(\varepsilon) = \beta$$

Question
(b)
$$V(\hat{\beta}) = (X'X)^{-1}X'\Sigma X(X'X)^{-1}$$
.

Answer

$$V(\hat{\beta}) = V\left((X'X)^{-1}X'(X\beta + \varepsilon)\right) = V\left((X'X)^{-1}X'\varepsilon\right)$$
$$= E\left((X'X)^{-1}X'\varepsilon)(X'X)^{-1}X'\varepsilon)'\right)$$
$$= \left((X'X)^{-1}X'\right)E(\varepsilon\varepsilon')\left(X(X'X)^{-1}\right)$$
$$= (X'X)^{-1}X'\Sigma X(X'X)^{-1}$$

Question

(c) Does the Gauss-Markov theorem allow us to compare the matrix found in (b) and $\sigma_{\varepsilon}^2(X'X)^{-1}$?

Answer

Gauss-Markov does not tell us anything about how $(X'X)^{-1}X'\Sigma X(X'X)^{-1}$ compares with $\sigma_{\varepsilon}^2(X'X)^{-1}$. In this context (i.e. with this version of A4), the latter matrix does not mean anything interesting, and is actually not even well defined as we haven't defined σ_{ε} . More interestingly, it can be shown that the GLS estimator has covariance matrix equal to $(X'\Sigma^{-1}X)^{-1}$, which can be shown to be smaller than $V(\hat{\beta}_{OLS})$ (see Vassilis' solution for a proof).