MEI MT Problem Set 7 Part 2^{1}

Timothee Carayol

January 15, 2010

${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 3

Question

- True model: $y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$ with $X_{1}: N \times k_{1} ; X_{2}$: $N \times k_{2} ; k_{1}+k_{2}=k ; X_{1}$ and X_{2} fixed in repeated samples (A3f). Finally, assume that A4GM holds: $V(\varepsilon)=\sigma_{\varepsilon}^{2} I_{N}$.
- Researcher omits (or cannot observe) X_{2}, and therefore uses the following estimator for $\beta_{1}: \hat{\gamma}=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y$. Also uses, as an estimator for the variance of $\hat{\gamma}$:

$$
V_{1}=\hat{V}(\hat{\gamma})=s_{1}^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1} \text { with } s_{1}^{2}=\frac{\left(y-X_{1} \hat{\gamma}\right)^{\prime}\left(y-X_{1} \hat{\gamma}\right)}{T-k_{1}}
$$

- Note that those are exactly what one would obtain with OLS on the (wrong) specification $y=X_{1} \beta_{1}+\varepsilon$.

Question 3

Question

(a) $\hat{\gamma}$ biased for β_{1}.

Answer

$$
\begin{aligned}
E(\hat{\gamma}) & =E\left(\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y\right)=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} E\left(X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon\right) \\
& =\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+0\right)=\beta_{1}+\underbrace{\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}}_{\text {bias }}
\end{aligned}
$$

- Note how the bias relates to the true β_{2} on the one hand, and on the OLS estimates of the X_{2} 's regressed on the X_{1} 's on the other hand.

Question 3

Question

(b) $V(\hat{\gamma})=\sigma_{\varepsilon}^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}$.

Answer

$$
\begin{aligned}
V(\hat{\gamma}) & =V\left(\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y\right)=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} V(y)\left(\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\right)^{\prime} \\
& =\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1}=\sigma_{\varepsilon}^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}
\end{aligned}
$$

from $A 4 G M$.

Question 3

Question
(c) s_{1}^{2} biased for σ_{ε}^{2}.

Answer

$$
\begin{aligned}
E\left(s_{1}^{2}\right) & =\frac{1}{T-k_{1}} E\left(\left(y-X_{1} \hat{\gamma}\right)^{\prime}\left(y-X_{1} \hat{\gamma}\right)\right) \\
& =\frac{1}{T-k_{1}} E\left(\left(X_{2} \beta_{2}+\varepsilon\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}+\varepsilon\right)\right) \\
& =\frac{1}{T-k_{1}} E[\left(\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right)+\left(\varepsilon^{\prime} M_{X_{1}} \varepsilon\right)+2 \underbrace{\left(\varepsilon^{\prime} M_{X_{1}} X_{2} \beta_{2}\right)}_{E(. .)=0}] \\
& =\frac{1}{T-k_{1}}\left(E\left[\varepsilon^{\prime} M_{X_{1}} \varepsilon\right]+\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right) \\
& =\frac{1}{T-k_{1}}\left(\sigma_{\varepsilon}^{2} \operatorname{tr}\left(M_{X_{1}}\right)+\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right) \\
& =\frac{1}{T-k_{1}}\left(\sigma_{\varepsilon}^{2}\left(T-k_{1}\right)+\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right) \\
& =\sigma_{\varepsilon}^{2}+\frac{1}{T-k_{1}}\left(\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right) \geq \sigma_{\varepsilon}^{2}
\end{aligned}
$$

Question 3

Question

(d) The question here is a bit misleading: "uncorrelated" is not a strong enough assumption to conclude in this context. Assume instead that $X_{1}^{\prime} X_{2}=0$ (which would be the sample counterpart of $x_{1 t}$ and $x_{2 t}$ uncorrelated if we knew that either of them has mean 0 , e.g. if we consider deviations from the mean.).

Answer

- $E(\hat{\gamma})=\beta_{1}+\underbrace{\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}}_{\text {bias }}=\beta_{1}$ i.e. the bias disappears.

$$
\begin{aligned}
E\left(s_{1}^{2}\right) & =\sigma_{\varepsilon}^{2}+\frac{1}{T-k_{1}}\left(\left(X_{2} \beta_{2}\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}\right)\right) \\
& =\sigma_{\varepsilon}^{2}+\frac{1}{T-k_{1}}\left(\left(X_{2} \beta_{2}\right)^{\prime} I_{n}\left(X_{2} \beta_{2}\right)\right)
\end{aligned}
$$

i.e. the bias is at its worst.

Question 3

- What I suspect Vassilis meant:
- The coefficients of a regression of each variable in X_{2} on the variables in X_{1} are all zero (except maybe the constant).
- Then the bias in $\hat{\gamma}$ is $\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}$. Recall that $\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}$ is a $k_{1} \times k_{2}$ matrix whose k th column is the OLS estimator of the regression of the k th column of X_{2} on the variables in X_{1}. If there is a constant in X_{1}, then the bias in the $k_{1}-1$ last elements of $\hat{\gamma}$ will be zero iff the variables in X_{1} have no explanatory power over the variables in X_{2}.. OR if β_{2} is actually zero, e.g. if the omitted variables do not explain the variations in y once you control for X_{1}.

Question 3

- Textbook example is much simpler to think about, with X_{1} containing only one variable beside the constant, and X_{2} only one variable. E.g. in a wage equation, think of X_{1} as education and of X_{2} as intrinsic ability.
- $w_{i}=\alpha+\beta$ educ $_{i}+\gamma$ ability $_{i}+\varepsilon_{i}$.
- The problem is that we have at the same time:
- X_{1} and X_{2} are (likely) positively correlated.
- X_{2} is (likely) also a determinant of wages BEYOND its effect on education.
- So that if we omit ability in our regression, the coefficient on education will be upwards biased, as it will capture some of the effect of ability on wages.
- In this simple case, expression for omitted variable bias simplifies to: $\frac{\operatorname{cov}(\text { ability }, \text { education })}{\operatorname{var(education)}} * \gamma$.

Question 4

Question

- $y=X \beta+\varepsilon$ with $X: T \times k$ fixed in repeated samples. $A 1$, $A 2$, $A 3 f$ hold, and $E\left(\varepsilon \varepsilon^{\prime}\right)=\Sigma$ positive definite and symmetric. (i.e. may be heteroskedasticity and autocorrelation in the error term.)
- We consider the usual OLS estimator for β, and estimate its covariance matrix as $s^{2}\left(X^{\prime} X\right)^{-1}$.

Question 4

Question
(a) $\hat{\beta}$ unbiased.

Answer

$$
\begin{aligned}
E(\hat{\beta}) & =E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} y\right)=E\left(\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon)\right. \\
& =\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E(\varepsilon)=\beta
\end{aligned}
$$

Question 4

Question
(b) $V(\hat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} \Sigma X\left(X^{\prime} X\right)^{-1}$.

Answer

$$
\begin{aligned}
V(\hat{\beta}) & =V\left(\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon)\right)=V\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right) \\
& \left.\left.=E\left(\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right)\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right)^{\prime}\right) \\
& =\left(\left(X^{\prime} X\right)^{-1} X^{\prime}\right) E\left(\varepsilon \varepsilon^{\prime}\right)\left(X\left(X^{\prime} X\right)^{-1}\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \Sigma X\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Question 4

Question

(c) Does the Gauss-Markov theorem allow us to compare the matrix found in (b) and $\sigma_{\varepsilon}^{2}\left(X^{\prime} X\right)^{-1}$?

Answer

Gauss-Markov does not tell us anything about how $\left(X^{\prime} X\right)^{-1} X^{\prime} \Sigma X\left(X^{\prime} X\right)^{-1}$ compares with $\sigma_{\varepsilon}^{2}\left(X^{\prime} X\right)^{-1}$. In this context (i.e. with this version of $A 4$), the latter matrix does not mean anything interesting, and is actually not even well defined as we haven't defined σ_{ε}. More interestingly, it can be shown that the GLS estimator has covariance matrix equal to $\left(X^{\prime} \Sigma^{-1} X\right)^{-1}$, which can be shown to be smaller than $V\left(\hat{\beta}_{O L S}\right)$ (see Vassilis' solution for a proof).

