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Question 1
Question

I y = Xβ + ε with X : T × k such that X full column rank and
E (ε|X ) = 0.

I We consider four different specifications for the variance of
the error term:

I (a) E (ε2t |X ) = θ0 + θ1x2
3t + θ2

x4
5t
, and ∀s 6= t,E (εsεt |X = 0).

I (b) E (ε2t |X ) = σ2
νnt , with n1, .., nT known, and

∀s 6= t,E (εsεt |X = 0).
I (c) εt = ρεt−1 + νt , with |ρ| < 1, νt i.i.d. with (conditional)

expected value 0 and finite (conditional) variance σ2
ν . (The

{εt} sequence follows an AR(1) process).
I (d) εt = νt + λνt−1, with |ρ| < 1, νt i.i.d. with (conditional)

expected value 0 and finite (conditional) variance σ2
ν . (The

{εt} sequence follows a MA(1) process).
I For each specification, we will first write down the

variance-covariance matrix of ε, and second explain how we
would implement the FGLS estimator.



Question 1

Answer
I Reminder: GLS = General Least squares; FGLS = Feasible

General Least Squares.
I The BLUE estimator under A4Ω is
β̂GLS = (X ′Ω−1X )−1X ′Ω−1Y ; but Ω is typically unknown so
in general GLS has in general only a theoretical appeal.

I It is sometimes possibly to estimate Ω consistently, though
(say by Ω(θ̂)), which allows us to use instead
β̂FGLS = (X ′Ω(θ̂)−1X )−1X ′Ω(θ̂)−1Y .

I The FGLS estimator has messy finite sample properties. It
may be biased and non-linear. However it can be shown that
as long as Ω(θ̂) is consistent for Ω, FGLS and GLS are
asymptotically equivalent, which implies that it is consistent
and asymptotically efficient for β.



Question 1

Answer
I (a) E (ε2t |X ) = θ0 + θ1x2

3t + θ2
x4

5t
, and ∀s 6= t,E (εsεt |X ) = 0.

I Off-diagonal terms will be zeros (no autocorrelation); diagonal
terms are given by E (ε2t |X ) above.

I Hence V (ε) = c2Ω =
θ0 + θ1x2

31 + θ2
x4

51
0 · · · 0

0 θ0 + θ1x2
32 + θ2

x4
52

. . .
...

...
. . . . . . 0

0 · · · 0 θ0 + θ1x2
3T + θ2

x4
5T

.



Question 1

Answer
I To implement FGLS:

I The parameters in Ω are θ =

 θ0
θ1
θ2

. If we find a consistent

estimator for θ, we are done.
I To obtain this θ̂: first find β̂OLS from the original equation.

We know it is not an efficient estimator, but it is consistent.
Denote the residual as ε̂.

I Now: perform the OLS regression of ε̂t 2 on a constant, x3t and
1

x4
5t
. That the resulting θ̂ is then consistent for θ is true, but

not trivial: to be entirely thorough this would need a short
proof. I prove it IN THIS CASE in the appendix; for (c) and
(d) the proof would be similar in spirit..

I Define Ω(θ̂) as the expression for Ω from previous slide, where
θ is replaced by its consistent estimator θ̂.

I Define β̂FGLS = (X ′Ω(θ̂)−1X )−1X ′Ω(θ̂)−1Y .



Question 1

Answer
I (b) E (ε2t |X ) = σ2

νnt , with n1, .., nT known, and
∀s 6= t,E (εsεt |X ) = 0.

I Off-diagonal terms will be zeros (no autocorrelation); diagonal
terms are given by E (ε2t |X ) above.

I Hence V (ε) = σ2
ν


n1 0 · · · 0

0 n2
. . .

...
...

. . . . . . 0
0 · · · 0 nT

 = σ2
νΩ.



Question 1

Answer
I To implement FGLS:

I The parameters n1, .., nT are known, so the only unknown
parameter here is σν . Since it multiplies every element of the
Ω matrix, we can apply GLS rather than FGLS here: σν does
not appear in the GLS formula.



Question 1

Answer
I (c) εt = ρεt−1 + νt , with |ρ| < 1, νt i.i.d. with (conditional)

expected value 0 and finite (conditional) variance σ2
ν . (The

{εt} sequence follows an AR(1) process).
I This time we will have autocorrelation. In particular,

cov(εt , εt−1) = cov(ρεt−1 + νt , εt−1) = ρσ2
ε . Likewise, ∀s, t,

cov(εt , εs) = ρ|t−s|σ2
ε . We could compute σ2

ε too: but the
nice thing here is that we do not need it.

I Hence V (ε) = c2Ω = σ2
ε


1 ρ · · · ρT−1

ρ 1
. . .

...
...

. . . . . . ρ

ρT−1 · · · ρ 1

.



Question 1

Answer
I To implement FGLS:

I The only parameter in Ω (besides σε, which cancels out in the
expression for β̂FGLS), is ρ.

I Denote the residual as ε̂ the OLS residual from the original
equation.

I Now: perform the OLS regression of ε̂t on ˆεt−1. That the
resulting ρ̂ is then consistent for ρ is true, but not trivial: to be
entirely thorough this would need a short proof.

I Define Ω(ρ̂) as the expression for Ω from previous slide, where
ρ is replaced by its consistent estimator ρ̂.

I Define β̂FGLS = (X ′Ω(ρ̂)−1X )−1X ′Ω(ρ̂)−1Y .



Question 1
Answer

I (d) εt = νt + λνt−1, with νt i.i.d. with (conditional) expected
value 0 and finite (conditional) variance σ2

ν . (The {εt}
sequence follows a MA(1) process).

I V (εt) = σ2
ε = V (νt + λνt−1) = σ2

ν(1 + λ2), i.e. σ2
ν = σ2

ε
1+λ2 .

Likewise, this time we will have autocorrelation, but only first
order. i.e., cov(εt , εt−1) = cov(νt + λνt−1, νt−1 + λνt−2) =
λσ2

ν = σ2
ε

λ
1+λ2 ; but, ∀s, t such that |t − s| > 1,

cov(εt , εs) = 0.
I Hence in fine,

V (ε) = c2Ω = σ2
ε



1 λ
1+λ2 0 · · · 0

λ
1+λ2 1

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . λ

1+λ2

0 · · · 0 λ
1+λ2 1


.



Question 1

Answer
I To implement FGLS:

I The only parameter in Ω (besides σν , which cancels out in the
expression for β̂FGLS), is λ

1+λ2 .
I We know that cov(εt , εt−1) = λ

1+λ2σε
2, which implies

corr(εt , εt−1) = λ
1+λ2 .

I This, intuitively, should lead us to consider the sample
correlation between ε̂t and ˆεt−1 and use it as an estimator for

λ
1+λ2 . That the resulting estimator is then consistent for λ

1+λ2

is true, but not trivial: to be entirely thorough this would need
a short proof.

I Define Ω̂ as the expression for Ω from previous slide, where
λ

1+λ2 is replaced by its consistent estimator.
I Define β̂FGLS = (X ′Ω̂−1X )−1X ′Ω̂−1Y .



Question 2
Question

I y = Xβ + ε, X : N × 5.

I Want to test H0 :
β1β2 = 1

β3 = 4β4 − 2 .

Answer
I Problem: we are used to dealing with linear hypotheses. But

this time, the first equation is non-linear in β.

I Rewrite H0 : g(β) =

(
0
0

)
where g(β) =

(
β1β2 − 1

β3 − 4β4 + 2

)
.

I Theorem (Delta Method)
If xn is a sequence of random variables such that√
n(xn − x)→d N(0,Σ) and g is continuous and differentiable,

then
√
n(g(xn)− g(x))→d N(0, ∂g(x)

∂x ′ Σ∂g ′(x)
∂x ).



Question 2

Answer
I Here: we know (e.g. from PS7 question 1) that, under

A1,A2,A3Rsru,
√
N(β̂OLS − β)→d N(0, aVar(β̂)). (Where

aVar stands for “asymptotic variance”.
aVar(β̂) = σ2

εE (xtx ′t)−1 under A4GM; and we have
Var(β̂) = aVar(β̂)

N ).
I Hence it is also the case that√

N(g(β̂)− g(β))→d N(0, gβ(β̂)aVar(β̂)gβ(β̂)′). Note that
under H0, g(β) = 02.

I This in turn implies that
Ng(β̂)′

(
gβ(β̂)aVar(β̂)gβ(β̂)′

)−1
g(β̂)→d χ

2(2). (Remember
that if x ∼ N(0,Σ), then x ′Σ−1x ∼ χ2(rank(Σ))

I Equivalently g(β̂)′
(
gβ(β̂)Var(β̂)gβ(β̂)′

)−1
g(β̂)→d χ

2(2).



Question 2

Answer
I This asymptotic distribution will also hold (via Slutsky) if we

replace Var(β̂) by a consistent estimator, e.g.
V̂ar(β̂) = s2(X ′X )−1 if A4GM holds. We therefore recognize
Q = g(β̂)′

(
gβ(β̂)V̂ (β̂)gβ(β̂)′

)−1
g(β̂) as the Wald test

statistic corresponding to hypothesis H0.
I Hence, under H0, Q →d χ

2(2).



Question 2

Answer
I Alternative approach: likelihood ratio test, based on the

likelihood ratio: LR = L(β̃)
L(β̂) where I define β̂ as the maximum

likelihood estimator under the unconstrained model, and β̃ as
the maximum likelihood estimator under the (non-linear)
constrained model. Then it can be shown that
−2ln(LR)→d χ

2(2), and this test is asymptotically equivalent
to the Wald test.



Appendix

Proof of consistency of θ in (a)

I Let us consider the difference between θ̂, estimated using the
ε̂ as outlined in the slides, and the (hypothetical) θ̃, estimated
using the (unobserved) ε. Let us denote Z the 3× 1 matrix of
regressors containing an intercept, x2

3 and 1
x4

5
.

I Then:

θ̂ − θ̃ = (Z ′Z )−1Z ′(ε̂2)− (Z ′Z )−1Z ′(ε2) = (Z ′Z )−1Z ′(ε̂2 − ε2)

= (
Z ′Z
T )−1(

∑
t z ′t(ε̂2

t − ε2
t )

T )

= (
Z ′Z
T )−1(

∑
t z ′t(2εtx ′t(β − β̂) + [x ′t(β − β̂)]2

T ) (1)



Appendix

Proof of consistency of θ in (a)

I In the last equation, I used the fact that:

ε̂t = yt − x ′t β̂ = yt − x ′tβ + x ′t(β − β̂) = εt + x ′t(β − β̂)

implying ε̂2
t = ε2

t + [x ′t(β − β̂]2 + 2εtx ′t(β − β̂).
I From (1), it is straightforward to see that the consistency of β̂

for β implies that θ̂ converges in probability to θ̃. Since the
latter is consistent for θ, this means the former is also
consistent, which is what we wanted to prove.
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