MEI MT Problem Set 8^{1}

Timothee Carayol

January 21, 2010

${ }^{1}$ Available on http://personal.Ise.ac.uk/carayolt/ec402.htm

Question 1

Question

- $y=X \beta+\epsilon$ with $X: T \times k$ such that X full column rank and $E(\epsilon \mid X)=0$.
- We consider four different specifications for the variance of the error term:
- (a) $E\left(\epsilon_{t}^{2} \mid X\right)=\theta_{0}+\theta_{1} x_{3 t}^{2}+\frac{\theta_{2}}{x_{5 t}^{4}}$, and $\forall s \neq t, E\left(\epsilon_{s} \epsilon_{t} \mid X=0\right)$.
- (b) $E\left(\epsilon_{t}^{2} \mid X\right)=\sigma_{\nu}^{2} n_{t}$, with $n_{1}, . ., n_{T}$ known, and $\forall s \neq t, E\left(\epsilon_{s} \epsilon_{t} \mid X=0\right)$.
- (c) $\epsilon_{t}=\rho \epsilon_{t-1}+\nu_{t}$, with $|\rho|<1, \nu_{t}$ i.i.d. with (conditional) expected value 0 and finite (conditional) variance σ_{ν}^{2}. (The $\left\{\epsilon_{t}\right\}$ sequence follows an $A R(1)$ process).
- (d) $\epsilon_{t}=\nu_{t}+\lambda \nu_{t-1}$, with $|\rho|<1, \nu_{t}$ i.i.d. with (conditional) expected value 0 and finite (conditional) variance σ_{ν}^{2}. (The $\left\{\epsilon_{t}\right\}$ sequence follows a $M A(1)$ process).
- For each specification, we will first write down the variance-covariance matrix of ϵ, and second explain how we would implement the FGLS estimator.

Question 1

Answer

- Reminder: GLS $=$ General Least squares; FGLS $=$ Feasible General Least Squares.
- The BLUE estimator under $A 4 \Omega$ is $\hat{\beta}_{G L S}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} Y$; but Ω is typically unknown so in general GLS has in general only a theoretical appeal.
- It is sometimes possibly to estimate Ω consistently, though (say by $\Omega(\hat{\theta})$), which allows us to use instead $\hat{\beta}_{F G L S}=\left(X^{\prime} \Omega(\hat{\theta})^{-1} X\right)^{-1} X^{\prime} \Omega(\hat{\theta})^{-1} Y$.
- The FGLS estimator has messy finite sample properties. It may be biased and non-linear. However it can be shown that as long as $\Omega(\hat{\theta})$ is consistent for Ω, FGLS and GLS are asymptotically equivalent, which implies that it is consistent and asymptotically efficient for β.

Question 1

Answer

- (a) $E\left(\epsilon_{t}^{2} \mid X\right)=\theta_{0}+\theta_{1} x_{3 t}^{2}+\frac{\theta_{2}^{2}}{x_{5 t}^{4}}$, and $\forall s \neq t, E\left(\epsilon_{s} \epsilon_{t} \mid X\right)=0$.
- Off-diagonal terms will be zeros (no autocorrelation); diagonal terms are given by $E\left(\epsilon_{t}^{2} \mid X\right)$ above.
- Hence $V(\epsilon)=c^{2} \Omega=$

$$
\left(\begin{array}{cccc}
\theta_{0}+\theta_{1} x_{31}^{2}+\frac{\theta_{2}}{x_{51}^{4}} & 0 & \cdots & 0 \\
0 & \theta_{0}+\theta_{1} x_{32}^{2}+\frac{\theta_{2}}{x_{52}^{4}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \theta_{0}+\theta_{1} x_{3 T}^{2}+\frac{\theta_{2}}{x_{5 T}^{4}}
\end{array}\right)
$$

Question 1

Answer

- To implement FGLS:
- The parameters in Ω are $\theta=\left(\begin{array}{c}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right)$. If we find a consistent estimator for θ, we are done.
- To obtain this $\hat{\theta}$: first find $\hat{\beta}_{O L S}$ from the original equation. We know it is not an efficient estimator, but it is consistent. Denote the residual as $\hat{\epsilon}$.
- Now: perform the OLS regression of $\hat{\epsilon}_{t}^{2}$ on a constant, $x_{3 t}$ and $\frac{1}{x_{5 t}^{4}}$. That the resulting $\hat{\theta}$ is then consistent for θ is true, but not trivial: to be entirely thorough this would need a short proof. I prove it IN THIS CASE in the appendix; for (c) and (d) the proof would be similar in spirit..
- Define $\Omega(\hat{\theta})$ as the expression for Ω from previous slide, where θ is replaced by its consistent estimator $\hat{\theta}$.
- Define $\hat{\beta}_{F G L S}=\left(X^{\prime} \Omega(\hat{\theta})^{-1} X\right)^{-1} X^{\prime} \Omega(\hat{\theta})^{-1} Y$.

Question 1

Answer

- (b) $E\left(\epsilon_{t}^{2} \mid X\right)=\sigma_{\nu}^{2} n_{t}$, with $n_{1}, . ., n_{T}$ known, and $\forall s \neq t, E\left(\epsilon_{s} \epsilon_{t} \mid X\right)=0$.
- Off-diagonal terms will be zeros (no autocorrelation); diagonal terms are given by $E\left(\epsilon_{t}^{2} \mid X\right)$ above.
- Hence $V(\epsilon)=\sigma_{\nu}^{2}\left(\begin{array}{cccc}n_{1} & 0 & \cdots & 0 \\ 0 & n_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & n_{T}\end{array}\right)=\sigma_{\nu}^{2} \Omega$.

Question 1

Answer

- To implement FGLS:
- The parameters $n_{1}, . ., n_{T}$ are known, so the only unknown parameter here is σ_{ν}. Since it multiplies every element of the Ω matrix, we can apply GLS rather than FGLS here: σ_{ν} does not appear in the GLS formula.

Question 1

Answer

- (c) $\epsilon_{t}=\rho \epsilon_{t-1}+\nu_{t}$, with $|\rho|<1, \nu_{t}$ i.i.d. with (conditional) expected value 0 and finite (conditional) variance σ_{ν}^{2}. (The $\left\{\epsilon_{t}\right\}$ sequence follows an $A R(1)$ process).
- This time we will have autocorrelation. In particular, $\operatorname{cov}\left(\epsilon_{t}, \epsilon_{t-1}\right)=\operatorname{cov}\left(\rho \epsilon_{t-1}+\nu_{t}, \epsilon_{t-1}\right)=\rho \sigma_{\epsilon}^{2}$. Likewise, $\forall s, t$, $\operatorname{cov}\left(\epsilon_{t}, \epsilon_{s}\right)=\rho^{|t-s|} \sigma_{\varepsilon}^{2}$. We could compute σ_{ϵ}^{2} too: but the nice thing here is that we do not need it.
- Hence $V(\epsilon)=c^{2} \Omega=\sigma_{\epsilon}^{2}\left(\begin{array}{cccc}1 & \rho & \cdots & \rho^{T-1} \\ \rho & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho^{T-1} & \cdots & \rho & 1\end{array}\right)$.

Question 1

Answer

- To implement FGLS:
- The only parameter in Ω (besides σ_{ϵ}, which cancels out in the expression for $\left.\hat{\beta}_{F G L S}\right)$, is ρ.
- Denote the residual as $\hat{\epsilon}$ the OLS residual from the original equation.
- Now: perform the OLS regression of $\hat{\epsilon_{t}}$ on $\hat{\epsilon_{t-1}}$. That the resulting $\hat{\rho}$ is then consistent for ρ is true, but not trivial: to be entirely thorough this would need a short proof.
- Define $\Omega(\hat{\rho})$ as the expression for Ω from previous slide, where ρ is replaced by its consistent estimator $\hat{\rho}$.
- Define $\hat{\beta}_{F G L S}=\left(X^{\prime} \Omega(\hat{\rho})^{-1} X\right)^{-1} X^{\prime} \Omega(\hat{\rho})^{-1} Y$.

Question 1

Answer

- (d) $\epsilon_{t}=\nu_{t}+\lambda \nu_{t-1}$, with ν_{t} i.i.d. with (conditional) expected value 0 and finite (conditional) variance σ_{ν}^{2}. (The $\left\{\epsilon_{t}\right\}$ sequence follows a $M A(1)$ process).
- $V\left(\epsilon_{t}\right)=\sigma_{\epsilon}^{2}=V\left(\nu_{t}+\lambda \nu_{t-1}\right)=\sigma_{\nu}^{2}\left(1+\lambda^{2}\right)$, i.e. $\sigma_{\nu}^{2}=\frac{\sigma_{\epsilon}^{2}}{1+\lambda^{2}}$. Likewise, this time we will have autocorrelation, but only first order. i.e., $\operatorname{cov}\left(\epsilon_{t}, \epsilon_{t-1}\right)=\operatorname{cov}\left(\nu_{t}+\lambda \nu_{t-1}, \nu_{t-1}+\lambda \nu_{t-2}\right)=$ $\lambda \sigma_{\nu}^{2}=\sigma_{\epsilon}^{2} \frac{\lambda}{1+\lambda^{2}}$; but, $\forall s, t$ such that $|t-s|>1$, $\operatorname{cov}\left(\epsilon_{t}, \epsilon_{s}\right)=0$.
- Hence in fine,

$$
V(\epsilon)=c^{2} \Omega=\sigma_{\epsilon}^{2}\left(\begin{array}{ccccc}
1 & \frac{\lambda}{1+\lambda^{2}} & 0 & \cdots & 0 \\
\frac{\lambda}{1+\lambda^{2}} & 1 & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \frac{\lambda}{1+\lambda^{2}} \\
0 & \cdots & 0 & \frac{\lambda}{1+\lambda^{2}} & 1
\end{array}\right)
$$

Question 1

Answer

- To implement FGLS:
- The only parameter in Ω (besides σ_{ν}, which cancels out in the expression for $\hat{\beta}_{F G L S}$), is $\frac{\lambda}{1+\lambda^{2}}$.
- We know that $\operatorname{cov}\left(\epsilon_{t}, \epsilon_{t-1}\right)=\frac{\lambda}{1+\lambda^{2}} \sigma \epsilon^{2}$, which implies $\operatorname{corr}\left(\epsilon_{t}, \epsilon_{t-1}\right)=\frac{\lambda}{1+\lambda^{2}}$.
- This, intuitively, should lead us to consider the sample correlation between $\hat{\epsilon_{t}}$ and $\hat{\epsilon_{t-1}}$ and use it as an estimator for $\frac{\lambda}{1+\lambda^{2}}$. That the resulting estimator is then consistent for $\frac{\lambda}{1+\lambda^{2}}$ is true, but not trivial: to be entirely thorough this would need a short proof.
- Define $\hat{\Omega}$ as the expression for Ω from previous slide, where $\frac{\lambda}{1+\lambda^{2}}$ is replaced by its consistent estimator.
- Define $\hat{\beta}_{F G L S}=\left(X^{\prime} \hat{\Omega}^{-1} X\right)^{-1} X^{\prime} \hat{\Omega}^{-1} Y$.

Question 2

Question

- $y=X \beta+\epsilon, X: N \times 5$.
- Want to test $H_{0}: \begin{gathered}\beta_{1} \beta_{2}=1 \\ \beta_{3}=4 \beta_{4}-2\end{gathered}$

Answer

- Problem: we are used to dealing with linear hypotheses. But this time, the first equation is non-linear in β.
- Rewrite $H_{0}: g(\beta)=\binom{0}{0}$ where $g(\beta)=\binom{\beta_{1} \beta_{2}-1}{\beta_{3}-4 \beta_{4}+2}$.
- Theorem (Delta Method)

If x_{n} is a sequence of random variables such that $\sqrt{n}\left(x_{n}-x\right) \rightarrow_{d} \mathcal{N}(0, \Sigma)$ and g is continuous and differentiable, then $\sqrt{n}\left(g\left(x_{n}\right)-g(x)\right) \rightarrow_{d} \mathcal{N}\left(0, \frac{\partial g(x)}{\partial x^{\prime}} \Sigma \frac{\partial g^{\prime}(x)}{\partial x}\right)$.

Question 2

Answer

- Here: we know (e.g. from PS7 question 1) that, under $A 1, A 2, A 3 R s r u, \sqrt{N}\left(\hat{\beta}_{O L S}-\beta\right) \rightarrow_{d} \mathcal{N}(0, a \operatorname{Var}(\hat{\beta}))$. (Where a Var stands for "asymptotic variance". $a \operatorname{Var}(\hat{\beta})=\sigma_{\varepsilon}^{2} E\left(x_{t} x_{t}^{\prime}\right)^{-1}$ under A4GM; and we have $\left.\operatorname{Var}(\hat{\beta})=\frac{\operatorname{aVar}(\hat{\beta})}{N}\right)$.
- Hence it is also the case that $\sqrt{N}(g(\hat{\beta})-g(\beta)) \rightarrow_{d} \mathcal{N}\left(0, g_{\beta}(\hat{\beta}) \operatorname{arar}(\hat{\beta}) g_{\beta}(\hat{\beta})^{\prime}\right)$. Note that under $H_{0}, g(\beta)=0_{2}$.
- This in turn implies that $\operatorname{Ng}(\hat{\beta})^{\prime}\left(g_{\beta}(\hat{\beta}) a \operatorname{Var}(\hat{\beta}) g_{\beta}(\hat{\beta})^{\prime}\right)^{-1} g(\hat{\beta}) \rightarrow_{d} \chi^{2}(2)$. (Remember that if $x \sim \mathcal{N}(0, \Sigma)$, then $x^{\prime} \Sigma^{-1} x \sim \chi^{2}(\operatorname{rank}(\Sigma))$
- Equivalently $g(\hat{\beta})^{\prime}\left(g_{\beta}(\hat{\beta}) \operatorname{Var}(\hat{\beta}) g_{\beta}(\hat{\beta})^{\prime}\right)^{-1} g(\hat{\beta}) \rightarrow_{d} \chi^{2}(2)$.

Question 2

Answer

- This asymptotic distribution will also hold (via Slutsky) if we replace $\operatorname{Var}(\hat{\beta})$ by a consistent estimator, e.g. $\hat{\operatorname{Var}}(\hat{\beta})=s^{2}\left(X^{\prime} X\right)^{-1}$ if A 4 GM holds. We therefore recognize $Q=g(\hat{\beta})^{\prime}\left(g_{\beta}(\hat{\beta}) \hat{V}(\hat{\beta}) g_{\beta}(\hat{\beta})^{\prime}\right)^{-1} g(\hat{\beta})$ as the Wald test
statistic corresponding to hypothesis H_{0}.
- Hence, under $H_{0}, Q \rightarrow_{d} \chi^{2}(2)$.

Question 2

Answer

- Alternative approach: likelihood ratio test, based on the likelihood ratio: $L R=\frac{L(\tilde{\beta})}{L(\hat{\beta})}$ where I define $\hat{\beta}$ as the maximum likelihood estimator under the unconstrained model, and $\tilde{\beta}$ as the maximum likelihood estimator under the (non-linear) constrained model. Then it can be shown that $-2 \ln (L R) \rightarrow_{d} \chi^{2}(2)$, and this test is asymptotically equivalent to the Wald test.

Appendix

Proof of consistency of θ in (a)

- Let us consider the difference between $\hat{\theta}$, estimated using the $\hat{\varepsilon}$ as outlined in the slides, and the (hypothetical) $\tilde{\theta}$, estimated using the (unobserved) ε. Let us denote Z the 3×1 matrix of regressors containing an intercept, x_{3}^{2} and $\frac{1}{x_{5}^{4}}$.
- Then:

$$
\begin{align*}
\hat{\theta}-\tilde{\theta} & =\left(Z^{\prime} Z\right)^{-1} Z^{\prime}\left(\hat{\varepsilon}^{2}\right)-\left(Z^{\prime} Z\right)^{-1} Z^{\prime}\left(\varepsilon^{2}\right)=\left(Z^{\prime} Z\right)^{-1} Z^{\prime}\left(\hat{\varepsilon}^{2}-\varepsilon^{2}\right) \\
& =\left(\frac{Z^{\prime} Z}{T}\right)^{-1}\left(\frac{\sum_{t} z_{t}^{\prime}\left(\hat{\varepsilon}_{t}^{2}-\varepsilon_{t}^{2}\right)}{T}\right) \\
& =\left(\frac{Z^{\prime} Z}{T}\right)^{-1}\left(\frac{\sum_{t} z_{t}^{\prime}\left(2 \varepsilon_{t} x_{t}^{\prime}(\beta-\hat{\beta})+\left[x_{t}^{\prime}(\beta-\hat{\beta})\right]^{2}\right.}{T}\right) \tag{1}
\end{align*}
$$

Appendix

Proof of consistency of θ in (a)

- In the last equation, I used the fact that:

$$
\hat{\varepsilon_{t}}=y_{t}-x_{t}^{\prime} \hat{\beta}=y_{t}-x_{t}^{\prime} \beta+x_{t}^{\prime}(\beta-\hat{\beta})=\varepsilon_{t}+x_{t}^{\prime}(\beta-\hat{\beta})
$$

implying $\hat{\varepsilon}_{t}^{2}=\varepsilon_{t}^{2}+\left[x_{t}^{\prime}(\beta-\hat{\beta}]^{2}+2 \varepsilon_{t} x_{t}^{\prime}(\beta-\hat{\beta})\right.$.

- From (1), it is straightforward to see that the consistency of $\hat{\beta}$ for β implies that $\hat{\theta}$ converges in probability to $\tilde{\theta}$. Since the latter is consistent for θ, this means the former is also consistent, which is what we wanted to prove.

