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We’ll discuss systems of regression equations
This structure is appealing since we often think of
economic variables as being interrelated
This is why simultaneous equation models used to be very
popular.
For example, Central Banks used this a lot before:

1 the Lucas’ critique;
2 the introduction of Vector Autoregression Models (VAR) that

are more appropriate in modeling macro time series.
Note: several results of the simultaneous equation models will

extend to VAR
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Multivariate Regressions

This is characterized by a set of N reduced form
regressions.
The first building block is to extend single to multivariate
regression. So yt becomes an N vector,

yt = Xtβ + εt , t = 1, ..., T

where

yt =

26664
y1t

y2t
...

yNt

37775 , Xt =

26664
x ′

1t 0 · · · 0
0 x ′

2t · · · 0
...

...
. . .

...
0 0 · · · x ′

Nt

37775 , β =

26664
β1

β2
...

βN

37775 , εt =

26664
ε1t

ε2t
...

εNt

37775 .

Note: each of the i equations does not need have the same
regressors.
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Assume that the i − th equation has Ki regressors. Hence
Xt is N × K where K =

∑
i Ki .

The errors are assumed correlated across the i ,

E
(
εtε

′
t
)

= Ω

an N × N matrix, but uncorrelated across t .
Note: This is a better model where we have multiple

observations on each unit in a random sample (e.g.
multiple demands by a household or firm) – VAR models
are generally better for macro time series (in a VAR all the
variables are endogenous, as normally is the case in a
General Equilibrium model)
This is known as SUR (seemingly unrelated regressions):
equations appear to be unrelated but are in fact related
through the errors.
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Estimation

A possible estimator for β is least squares on each of the i
equations individually,

β̂ =

(
T∑

t=1

X ′
t Xt

)−1 T∑
t=1

X ′
t yt .

If the regressors are process independent, the estimates
are unbiased with standard small sample properties. BUT
this estimator is not in general efficient.
An alternative if Ω is known is GLS:

β̂gls =

(
T∑

t=1

X ′
t Ω

−1Xt

)−1 T∑
t=1

X ′
t Ω

−1yt .

As usual, if regressors are process independent the GLS
estimator is optimal.
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Estimation

In general Ω is not known and we need to fall back on
feasible GLS. The approach is absolutely standard:

1 Estimate the N equations separately using least squares
2 Calculate the least squares residuals and estimate Ω as

Ω̂ =
1
T

∑
t

ε̂t ε̂
′
t .

3 Then use the GLS formula, with Ω̂ for Ω to obtain the F-GLS
estimator.

Note under two circumstances the GLS estimator simplifies to
least squares:

1 (Obviously) if Ω is known to be diagonal.
2 (Less obviously) if the regressors in each of the N

equations are the same (this result will also extend to the
VAR models we’ll discuss later on)
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General Simultaneous Equations Model

Suppose yt is an N × 1 vector of endogenous variables.
Each of these is a linear function of the other endogenous
variables and of a set of K exogenous variables, xt .
Usually xt are contemporaneously independent of the
errors or may be process independent.

Note: xt may include lagged endogenous variables.
The set of N equations is written

Γyt = Bxt + εt t = 1, ..., T , (1)

where Γ is N × N, B is N × K , εt is N × 1, xt is K × 1, yt is
N × 1.
(1) is called the Structural Form.
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Example: suppose

y1t = γ12y2t + β11x1t + β14x4t + ε1t

y2t = γ23y3t + β22x2t + β23x3t + ε2t

y3t = γ32y2t + β31x1t + β33x3t + β34x4t + ε3t .

Then, in structural form, we have24 1 −γ12 0
0 1 −γ23

0 −γ32 1

35
| {z }

Γ

24 y1t

y2t

y3t

35 =

24 β11 0 0 β14

0 β22 β23 0
β31 0 β33 β34

35
| {z }

B

2664
x1t

x2t

x3t

x4t

3775+

24 ε1t

ε2t

ε3t

35 .
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The solution for yt in terms of xt is called the Reduced
Form, that is,

yt = Γ−1Bxt + Γ−1εt ⇒ yt = Πxt + vt (2)

where Π = Γ−1B, N × K and vt = Γ−1εt .
Note: each element of vt is generally a function of all the

elements of εt , so each endogenous variable depends on
all the errors.
The data may be thought of as being generated by the
reduced form (2) (the SUR results apply to this form)

⇒ So, given the data, we can make estimates of the elements
of Π and the variance matrix of v .
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Identification

Identification

If we know (estimate) the elements of Π, can we find out
about the parameters Γ and B?
This is a problem of identification and, in general, the
answer is no.

Why?
The basic equation is

B = ΓΠ.

Looking at each element in turn, we have N × K equations.
Assuming that the diagonal elements of Γ are restricted to
be equal to 1 (this is simply a normalization), there are
N × K unknowns in B and N × (N − 1) unknowns in Γ.
That is, we have many more unknowns than equations!
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Identification

What are the conditions for identification?
1 Conditions apply to one equation at a time.
2 A necessary condition (order condition) is that the number

of omitted x , y variables in the equation ≥ N − 1.
Note: a linear restriction counts as a omitted variable.

3 A necessary and sufficient condition (rank condition) is that
the matrix obtained from all the Γ, B coefficients in the
other equations corresponding to the zero’s in the equation
concerned, is of rank N − 1 (note that this matrix has
(N − 1) rows).

4 If the nec./suff. conditions is passed and the number of
zero’s + linear restrictions > N − 1, the equation is
over-identified; if equal to N − 1, it is just identified.

5 an identity (e.g. y = c + i + g) is always identified.
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Identification

Example:

y1t = γ12y2t + β11z1t + β13z3t + β14z4t + u1t

y2t = γ24y4t + β22z2t + β24z4t + u2t

y3t = γ32y2t + β32z2t + β33z3t + u3t

y4t = γ42y2t + γ43y3t + β41z1t + β42z2t + β44z4t + u4t .

First, write in matrix form

2664
1 −γ12 0 0 −β11 0 −β13 −β14

0 1 0 −γ24 0 −β22 0 −β24

0 −γ32 1 0 0 −β32 −β33 0
0 −γ42 −γ43 1 −β41 −β42 0 −β44

3775
| {z }

[Γ,B]

266666666664

y1t

y2t

y3t

y4t

z1t

z2t

z3t

z4t

377777777775
=

2664
u1t

u2t

u3t

u4t

3775

Note: N = 4, N − 1 = 3.
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Identification


1 −γ12 0 0 −β11 0 −β13 −β14
0 1 0 −γ24 0 −β22 0 −β24
0 −γ32 1 0 0 −β32 −β33 0
0 −γ42 −γ43 1 −β41 −β42 0 −β44


︸ ︷︷ ︸

[Γ,B]

Equation 1
Order: No. of zeros = 3 = N − 1

Rank: Rank

 0 −γ24 −β22
1 0 −β32
−γ43 1 −β42

 = 3

(det 6= 0)

⇒ So just identified.
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Identification


1 −γ12 0 0 −β11 0 −β13 −β14
0 1 0 −γ24 0 −β22 0 −β24
0 −γ32 1 0 0 −β32 −β33 0
0 −γ42 −γ43 1 −β41 −β42 0 −β44


︸ ︷︷ ︸

[Γ,B]

Equation 2
Order: No. of zeros = 4 > N − 1

Rank: Rank

 1 0 −β11 −β13
0 1 0 −β33
0 −γ43 −β41 0

 = 3

(det. of 1st sub-matrix 6= 0)

⇒ So over-identified.
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Identification


1 −γ12 0 0 −β11 0 −β13 −β14
0 1 0 −γ24 0 −β22 0 −β24
0 −γ32 1 0 0 −β32 −β33 0
0 −γ42 −γ43 1 −β41 −β42 0 −β44


︸ ︷︷ ︸

[Γ,B]

Equation 3
Order: No. of zeros = 4 > N − 1

Rank: Rank

 1 0 −β11 −β14
0 −γ24 0 −β24
0 1 −β41 −β44

 = 3

(det. of 1st sub-matrix 6= 0)

⇒ So over-identified.
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Identification


1 −γ12 0 0 −β11 0 −β13 −β14
0 1 0 −γ24 0 −β22 0 −β24
0 −γ32 1 0 0 −β32 −β33 0
0 −γ42 −γ43 1 −β41 −β42 0 −β44


︸ ︷︷ ︸

[Γ,B]

Equation 4
Order: No. of zeros = 2 < N − 1

⇒ So not identified.
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Identification

So, if order and rank conditions are satisfied we can
estimate the model in reduced form and then use the
restrictions to pin down the structural parameters

But
1 From (2), we know that each y is correlated with all errors.

So, to estimate the model, we need to use IV (instrumental
variables).

2 Moreover, if the system if over-identified (i.e. we have more
equations than unknown), how do we recover the
parameters of the structural form?

⇒ We’ll discuss estimation in the next lecture
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