
EC402: MEI. Spring Term: The Analysis of Time Series�

Problem Set 3

1. Cointegration

Suppose that aggregate income, Yt; follows a random walk with drift

Yt = �y + Yt�1 + "yt

and that the government always spends a fraction of the previous period output

Gt = �g + gYt�1 + "gt (1.1)

where 0 < g < 1; "yt and "gt are mean zero serially independent iid variables.

Moreover, assume that the government runs a balanced budget (Tt = Gt 8t) and that

consumption follows

Ct = �+ � (Yt � Tt) (1.2)

with �; � > 0

1. Are Y; C and G stationary? What are their orders of integration?

2. Are Ct andGt cointegrated? Are Yt andGt cointegrated? Are Ct and Yt cointegrated?

Are Ct; Yt and Gt cointegrated?
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3. How many linearly independent cointegration vectors are there? Why?

4. What are the long-run trends of Yt; Gt and Ct?

2. Dynamic Simultaneous Equations

Consider the following model

y1t = 
y2t + �xt + "1t

y2t = �y1;t�1 + "2t

where "1t and "2t are serially uncorrelated disturbances which may be contemporaneously

correlated with each other.

1. Are the parameters identi�able?

2. Write down the �nal form and the autoregressive �nal form of the model.

3. Assume xt is stationary. What is the necessary condition for the model to be stable?

3. VAR Estimation

Consider the VAR

yt = c+ �1yt�1 + :::+ �pyt�p + "t

where yt is a n � 1 vector of time series, c is n � 1 vector of constants, the ��s are n � n

matrixes of coe¢ cients and "t is a vector of disturbances s.t. "t � iidN (0;
).

1. De�ne the (np+ 1)� 1 vector
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and the n� (np+ 1) matrix

�0 = [c; �1; :::;�p] :

Write down the sample log likelihood of this model.

2. Show that the term
PT

t=1 (yt � �0xt)
0
�1 (yt � �0xt) in the log likelihood you derived

above can be rewritten as
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where �̂ is the OLS equation-by-equation estimate of � and "̂t is the vector of OLS

residuals.

3. Show that (3.1) can be further simpli�ed as
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[Hint: use the fact that (3.1) is a scalar and recall that the OLS residuals are, by

construction, orthogonal to the regressors]

4. Use this last result to show that the OLS estimator of � (�̂) is the MLE.
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