
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture Notes #2: MLE of Time Series Data

In what follows we discuss how to implement ML estimation for dependent data and

present several practical examples.

1. Ergodic Theorem

If a stochastic process yt, t = 1; 2; ::: is ergodic with mean � <1 then

P lim
1

T

TP
t=1

yt = �:

Ergodicity is a su¢ cient condition for sample means to converge to their expectations.

The de�nitions above extend naturally to vector valued stochastic processes. If a vector

valued stochastic process is stationary then functions of that stochastic process are also

stationary; if (xt; yt) are a jointly stationary stochastic process then

zt = f(xt; yt)

is a stationary stochastic process and in particular

zt = axt + byt

is a stationary stochastic process. Similarly, functions of vector valued ergodic processes

are ergodic.
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2. Maximum Likelihood Estimation of Time Series Models

Last term you were introduced to the basic ideas of Maximum Likelihood (ML). However

most of the arguments presented rested on the assumption that the observations were

independent. In time series, observations are dependent. Do the ML results carry over?

The basic answer is yes for ergodic processes.

The standard approach to ML that you have seen last term is to obtain the likelihood

function by writing down the density for each observation and then (since the observations

are independent) producting them. However a moments thought indicates that the standard

approach will not work in time series since the observations are generally dependent.

However it is always the case that a joint density can be factored into a conditional

times a marginal

For example if you have three observations

f(y3; y2; y1) = f (y3j y2; y1) � f(y2; y1)

= f (y3j y2; y1) � f (y2j y1) � f(y1):

Hence the likelihood for T observations is

L (y; ) =

"
TY
t=2

f (ytjyt�1; :::; y1)
#
� f(y1)

This can be written as

L(y; ) =
TY
t=2

f (ytjIt�1) � f(y1)

where It�1 denotes all the information available at time t� 1.

Taking logs then yields

logL(y; ) =

TX
t=2

log f (ytjIt�1) + log f(y1):

This is only useful if the conditional densities are easily written down. But many time

series models are actually speci�ed in terms of their conditional distributions.
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Most importantly when the likelihood is constructed as shown above we have that, for

ergodic processes, the standard asymptotics results you have seen last term still hold. That

is, the ML estimator of a vector of parameters  is consistent and

p
T ( ̂MLE �  )

D! N

 
0;

�
lim

1

T
I( )

��1!

where I( ) is the information matrix.

This implies that, for example, the variance of  ̂ can be approximated by eitherh
�@2 logL( ̂MLE)

@ @ 0

i�1
or the inverse of the empirical information matrix, I( )�1, where

I( ) = �E
�
@2 logL( )

@ @ 0

�
:

In what follows, several examples of ML for time series data are provided.

2.1. MLE of the AR(1) process

Consider the AR(1)

yt = �yt�1 + "t "t � iid N(0; �2); j�j < 1:

Then ytj yt�1 is N(�yt�1; �2) and

f (ytj It�1) = f (ytj yt�1) =
1p
2��2

exp

8<:� 1

2�2

�
yt � �y2t�1| {z }

�2
"t

9=;
and the log likelihood is simply,

logL(y;�; �2) = �(T � 1)
2

log 2� � (T � 1)
2

log �2 � 1

2�2

TP
t=2

(yt � �yt�1)
2 + log f(y1):

What do we do about the initial conditions? One possibility is to condition on y1, take it as

�xed. In this case the �nal term can be dropped and the likelihood becomes the likelihood

for the linear regression of yt on yt�1 for observations t = 2; :::; T .
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Thus we have, at the maximum,

@ logL

@�
=
1

�2

TP
t=2

(yt � �yt�1) yt�1 = 0) �̂ =

TP
t=2

ytyt�1

TP
t=2

y2t�1

so we end up with the OLS estimator.

Alternatively, you can use the unconditional distribution for y1, N
�
0; �2

(1��2)

�
. Recall

that in the AR(1), the unconditional mean, E(yt) = 0, and the unconditional variance,

var(yt) =
�2

(1��2) . This assumption for y1 is sensible if the process has been going on for a

long time at t = 1. Under this assumption

log f(y1) = �
1

2
log 2� � 1

2
log �2 +

1

2
log(1� �2)� 1

2�2
(1� �2)y21

and gives the log likelihood

logL(y;�; �2) = �T
2
log 2� � T

2
log �2 � 1

2�2

TP
t=2

(yt � �yt�1)
2

+
1

2
log(1� �2)� 1

2�2
(1� �2)y21:

This makes the ML estimator non-linear. Whether you estimate the truncated likelihood,

least squares or the likelihood above, the adjustment involves only a single observation.

As a result its e¤ect in large samples is negligible and you can approximate the nonlinear

estimator by the least squares estimator in large samples and the large sample properties

are the same.

To sum up, we have shown that for the stationary AR(1), even though least squares

does not have the standard small sample properties, in large samples it is maximum likeli-

hood and hence consistent, asymptotically e¢ cient and asymptotically normal and hence

standard inference procedures are valid in large samples.

Again these results can be extended to the stationary AR(p)model and to the regression

model with both process independent control regressors and lagged dependent variables.
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2.2. MLE of Nonlinear least squares models

Obviously the class of all ML models is huge. An important sub class is that of nonlinear

regression models,

yt = g(xt; �) + "t "t iid N(0; �2); t = 1; :::; T;

xt process independent. So

"t(�) := yt � g(xt; �)

and

f("t(�)) =
1

(2��2)
1
2

exp

�
�"t(�)2
2�2

�
:

Hence,

logL(�; �2) = �T
2
log 2� � T

2
log �2 � 1

2�2

TP
t=1

"t(�)
2;

It is clear that maximizing logL (or L) with respect to � is equivalent to minimizing

the residual sum of squares with respect to � and hence that the nonlinear least squares

estimator is ML. Di¤erentiating the log likelihood,

@ logL

@�
= � 1

�2
P
t

@"t(�)

@�
"t(�) =

1

�2
P
t

zt"t = 0

@ logL

@�2
= � T

2�2
+

1

2(�2)2
P
t

"t(�)
2 = 0

at maximum, where

zt := �
@"t
@�

=
@g(xt; �)

@�
:

The �rst order conditions with respect to � are generally nonlinear and the ML estimates

of � have to be obtained by an iterative maximization algorithm. The �rst order conditions

with respect to �2 yield the usual ML estimator for �2,

�̂2 =
1

T

P
t

"t(�̂)
2:

Recall from your ML notes that we constructed an estimate of the variance-covariance

matrix of our estimates based on the empirical information matrix I( ),

I( ) = �E
�
@2 logL( )

@ @ 0

�
:
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In the present case  = (�0; �2). If xt is process independent, xt is independent of "t and

thus zt = �@"t
@�
= @g(xt;�)

@�
is also independent of "t, as are the second derivatives of "t.

So, looking at the components of I( ), we have

�E
�
@2 logL

@�@�0

�
=

1

�2

�
E
P
t

@2"t
@�@�0

� "t + E
P
t

@"t
@�

@"t
@�0

�
=

1

�2

�P
t

E
@2"t
@�@�0

� E("t) + E
P
t

@"t
@�

@"t
@�0

�
=

1

�2
E
P
t

ztz
0
t since E("t) = 0:

�E
�
@2L

@(�2)2

�
= � T

2(�2)2
+

2

2(�2)3
P
t

E("2t )

= � T

2(�2)2
+

2T

2(�2)3
�2

=
T

2(�2)2

�E
�
@2 logL

@�@�2

�
=

1

(�2)2
E
P
t

zt"t =
1

(�2)2
P
t

E(zt)E("t)

= 0:

Hence by previous results, the information matrix is

I( ) =
1

�2

"
E
P
t

ztz
0
t 0

0 T
2�2

#
:

Inverting, and substituting the consistent ML estimates of � and �2 for unknown para-

meters, and the sample moment
P
t

ztz
0
t for E

P
t

ztz
0
t, we approximate the distribution of

(�̂
0
; �̂2) by a Normal distribution, mean (�0; �2) and variance covariance matrix,24 �̂2

�P
t

ztz
0
t

��1
0

0 2�̂4

T

35 :
i.e. �

�̂
0 � �0

�̂2 � �2

�
� N

0@� 0
0

�
;

24 �̂2
�P

t

ztz
0
t

��1
0

0 2�̂4

T

351A
In particular, therefore, var(�̂) = �̂2 (�ztz

0
t)
�1, where zt = @g(xt; �)=@� is evaluated at �̂.

Furthermore, it may be shown that this procedure is valid in large samples even if xt is

only contemporaneously independent of "t.
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2.3. MLE of the MA(1) process

yt = "t + �"t�1 "t iid N(0; �2)

So ytj "t�1 � N (�"t�1; �
2). Assume that we start from "0 = 0, then we may de�ne "t(�) by

using the recursive equation

"t(�) := yt � �"t�1(�); t = 1; 2; :::; T:

Since "0 = 0,

"1(�) = y1

"2(�) = y2 � �y1

"3(�) = y3 � �y2 + �2y1

����������

"t(�) = yt � �yt�1 + �2yt�2 + :::+ (��)t�1y1:

Given ytj "t�1 � N (�"t�1; �
2), then

f (ytj It�1) =
1

(2��2)
1
2

exp�(yt � �"t�1(�))
2

2�2
:

So the log likelihood is

logL(�; �2) = �T
2
log 2� � T

2
log �2 � 1

2�2

TP
t=1

(yt � �"t�1(�))
2

= �T
2
log 2� � T

2
log �2 � 1

2�2

TP
t=1

"t(�)
2:

Following the results in the previous section, we have

@ logL

@�
=
1

�2
P
t

zt(�)"t(�) where zt(�) = �
@"t(�)

@�
:

So the ML (or nonlinear least squares) estimator, �̂ satis�es

P
t

zt(�)"t(�) = 0

where "t(�) is de�ned above.
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Furthermore, the variance of �̂ is given by

var(�̂) = �̂2
�P

t

z2t (�̂)

��1

where �̂2 = 1
T

TP
t=1

"2t (�̂).
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