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Bayes’ Theorem

Bayes’ Theorem

The conditional probability of A given B is

P (A|B) =
P (A ∩ B)

P (B)

since we can exchange A and B we have
Bayes’ Theorem:

P (A|B) =
P (B|A) P (A)

P (B)
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Bayes’ Theorem

Parameters as random variables

We observe the data ZT (ZT := {zt}T
t=0, zt ∈ Rn),

generated by a process with unknown parameters θ ∈ Θ,
that is realizations from the distribution

p (ZT |θ)

We are interested in, and would like to make probabilistic
statements about, θ and functions (g(.)) of θ and ZT (e.g.
forecasts). That is, we would like to know

p (θ|ZT ) and p (g (θ) |ZT )

Remarks:
Bayesians: θ is a random variable (not θ̂)

Frequentists: θ̂ is a random variable (θ is not)
But: given ZT , the estimator θ̂ is simply a mapping from ZT to Rm
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Mechanics of Priors and Posteriors

From priors to posteriors

From the Bayes’ Theorem

p (θ|ZT ) =
p (ZT |θ) p (θ)

p (ZT )

Since p (ZT ) does not depend on θ we can focus on

p (θ|ZT ) ∝

likelihood of the data︷ ︸︸ ︷
p (ZT |θ) ×

prior︷︸︸︷
p (θ)︸ ︷︷ ︸

posterior distribution

Note: to have the right hand side integrate to 1 and get a proper
distribution, we simply have to divide it by

k :=

∫
Θ

p (ZT |θ) p (θ) dθ
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Mechanics of Priors and Posteriors

Remark: for any non dogmatic prior, as T →∞ the
likelihood of the data will dominate the shape of the
posterior
Theorem: If there is a consistent estimator θ̂T of θ ∈ Θ, if
g(θ) is continuous and bounded above and below, and if
E [g (θ)] exists, then E [g (θ) |ZT ] (the Bayesian posterior
mean for g (θ)) converges to g (θ0), the true value, with
probability one.
That is

1
k

∫
g (θ) p (ZT |θ) p (θ) dθ −→

T−→∞
g (θ0) w.p. 1

(Proof: Schervish (1995), Theorem 7.78)
Note: the convergence could fail on sets with zero prior

probability
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The Likelihood Principle

The Likelihood Principle

“In drawing inference about θ after ZT is observed, all
relevant information is contained in the likelihood
function p (ZT |θ)” (BLR)
That is: if our model gives the data the conditional pdf
p (ZT |θ), all we need to know about the data to form the
conditional pdf p (θ|ZT ) is the likelihood function, and we
need to know it only up to a factor of proportionality
(follows form Bayes’ Th.)
In a nutshell: suppose we have a thermometer that we
know will simply record correctly the temperature up to “30
degrees Celsius.” Suppose that right now that thermometer
is outside the window and reads 23 degrees Celsius.
Should our reaction to this current outside reading be
affected by our knowledge that the thermometer’s
measurements are truncated at higher temperatures? No.
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Flat priors

THE CASE FOR

Avoid subjective elements in scientific reporting
Seem to represent ignorance or absence of prior prejudice

THE CASE AGAINST

The scientific reporting argument make sense but depends
on

the absence of strong economic prior beliefs
the parameter space being the “natural” one

But: flat priors do not represent “pure ignorance”:
generally not “flat” for reparametrizations (think to the
change of variable for a distribution)
might have infinite discontinuities after reparametrization
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Example of flat prior pitfall

Suppose we have the model:
yt = α+ ρyt−1 + εt , with flat prior p

(
α, ρ, logσ2) = 1

For |ρ| < 1, the unconditional mean and variance of y are

µ =
α

1− ρ
; v2 =

σ2
ε

1− ρ2

From the change of variable formula, the prior for the
reparametrization in terms of µ ,ρ , log v2 is∣∣∣∣∣det

(
∂
(
µ, ρ, log v2)

∂
(
α, ρ, logσ2

))∣∣∣∣∣
−1

p
(
µ · (1− ρ) , ρ, log v2

)
= |1− ρ|

A flat prior α, ρ, logσ2 implies a non-flat prior for µ, ρ, log v2

Note: The new prior puts a very low weight on |ρ| ∼= 1, and this implies that
the frequentist MLE (that is in this case the same thing as OLS) will be
biased toward stationarity in small sample.
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A LIKELIHOOD PERSPECTIVE 6
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Figure 2. Initial Conditions Rogues’ Gallery

Note: Rougher lines are Monte Carlo data. Smoother curved lines are deter-
ministic components. Horizontal lines are 95% probability bands around the
unconditional mean.

In the case where the true value of c is zero and the true value of ρ is one, the

OLS estimates (ĉ, ρ̂) of (c, ρ) = (0, 1) are consistent. But Ĉ = ĉ/(1− ρ̂) blows

up as T → ∞, because ρ → 1 faster than c → 0. This has the consequence

that, even restricting ourselves to samples in which |ρ̂| < 1, the proportion

of sample variance attributed by the estimated model to the predictable com-

ponent does not converge to zero, but rather to a nontrivial (and fat-tailed)

limiting distribution. In other words, the ratio of the sum over the sample of

ȳ(t)2 (as computed from (ĉ, ρ̂)) to the sum over the sample of y(t)2 does not

converge to zero as T →∞, but instead tends to wander randomly.

Looking at Figure 2, we see plots of 16 extreme cases, out of 100 random

draws generated from (2) with y(0) ∼ N(0, 100σ2) ,ρ = 1, for the estimated

amount of sample variance explained by the deterministic transient ȳ(0). Note

that in all of these cases the initial value of y(0) is outside the two-standard-

error band about C implied by the OLS estimates. Clearly the OLS fit is

“explaining” linear trend and initial curvature observed in these sample paths

as predictable from initial conditions.

Results from 17 out of 100 OLS estimations of the model yt = α + ρyt−1 + εt

using Monte Carlo data generated by {yt |yt−1} ∼ i.i.d .N (yt−1, 1).
Deterministic component=

`
1 − ρ̂t ´ α̂/ (1 − ρ̂) + ρ̂ty0

Source: Sims (2000)
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General remarks on choosing priors

Bauwens, Lubrano and Richard (1999) Ch.4 have an
extensive discussion on prior distributions
Non-flat priors can help a lot in estimating large models
and correct small sample problems of the estimators
Economic theory often give us guidance in choosing priors
Always check how sensitive are the results to the prior!
There is no mechanical rule for choosing priors that can
give results that will always be reasonable
Priors are not a peculiar problem of Bayesian
inference: many classical procedures (e.g. ML) are
equivalent to Bayesian inference with a flat prior (with all
the related problems). The difference is that in the classical
framework we cannot discuss these problems.
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The problem

“All models are wrong, but some are useful.”
Box (1976)

Suppose we have:
Data Z (Z := {zt}T

t=0, zt ∈ Rn)
Model 0 given by the likelihood f (Z |θ) with θ ∈ Θ

Model 1 given by the likelihood g (Z |ψ) with ψ ∈ Ψ

Questions:
1 How do we decide which model is more likely of being the

data generating process of Z?
2 Suppose we are interested in some quantity ∆ that is

well-defined for every model (e.g. utility or simply a
forecast). How do we compute E [∆|Z ]? How do we
measure uncertainty about E [∆|Z ]?
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Posterior Model Probabilities

Posterior Model Probabilities
define m = 0 if model 0 is true and = 1 otherwise
we would like to know the joint distribution v (θ, ψ,m|Z ) to
obtain Pr (m = 0|Z ).
From Bayes’ Th.
Pr (m = 0|Z ) = Pr(Z |m=0) Pr(m=0)

Pr(Z )
= Pr(Z |m=0) Pr(m=0)

Pr(Z |m=0) Pr(m=0)+Pr(Z |m=)(1−Pr(m=0))

Note: the distribution of Z |m is simply

f (Z |θ)1−m g (Z |ψ)m

⇒ if we have prior probability of m = 0 (µ (Θ)), and priors over
θ and ψ (p (θ) and q (ψ)), from Bayes Th. we can compute

posterior probability of m = 0|Z

µ (Θ)
∫
Θ f (Z |θ) p (θ) dθ

µ (Θ)
∫
Θ f (Z |θ) p (θ) dθ + (1− µ (Θ))

∫
Ψ g (Z |ψ) q (ψ) dψ

(1)
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Bayesian Model Averaging

Bayesian Model Averaging (BMA)

When we are interested in E [∆|Z ], where ∆ is some quantity
that is well-defined for every model (e.g. utility), we generally
proceed as follow:

1 we select a model using some statistics as selection
criterion

2 given the selected model (say model 0) we behave as if

E [∆|Z ] ≡ E [∆|Z ,m = 0]

But:
this is justified iff Pr [m = 0|Z ] ' 1
any approach that selects a single model and then makes
inference conditionally on that model ignores uncertainty in
model selection
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Bayesian Model Averaging

Bayesian Model Averaging

If we have K competing models, the posterior mean and
standard deviation of ∆ are

E [∆|Z ] =
KX

k=0

E [∆|Z , m = k ] Pr (m = k |Z )

Var [∆|Z ] =
KX

k=0

“
Var [∆|Z , m = k ] + E [∆|Z , m = k ]2

”
Pr (m = k |Z )

−E [∆|Z ]2

where Pr (m = k |Z ) is the posterior probability of model k

This result is based on the simple observation that

Pr (∆|Z ) =
K∑

k=0

Pr (∆|Z ,m = k) Pr (m = k |Z ) (2)
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