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Outline

We will drop the simultaneous equations assumption that
some variables are endogenous and that other are
exogenous, and we will treat all the variables as potentially
endogenous.

This is appealing since in economics, differently from
laboratory experiments, everything is endogenous in some
sense.



Outline

Outline

1 Reduced form VAR

2 Akaike and Bayesian Information Criteria

3 Causal Ordering

4 VAR properties from the Jordan decomposition

5 Vector Error Correction Models



Reduced form VAR AIC and BIC Causal Ordering VAR properties from the Jordan decomposition VECM

Outline

1 Reduced form VAR

2 Akaike and Bayesian Information Criteria

3 Causal Ordering

4 VAR properties from the Jordan decomposition

5 Vector Error Correction Models



Reduced form VAR AIC and BIC Causal Ordering VAR properties from the Jordan decomposition VECM

The Reduced from VAR

Let yt be a n× 1 vector of time series. A reduced form VAR
can be written as

yt = c︸︷︷︸
n×1

+ Φ1︸︷︷︸
n×n

yt−1 + Φ2yt−2 + ... + Φpyt−p + εt , (1)

εt ∼ iidN

0; Ω︸︷︷︸
n×n

 ; t = −p + 1, .., 0, .., T

where c is a vector of constants and the Φi are matrixes of
coefficients.
Each variable can potentially depend on its own lags and
the lags of all other variables.
The covariance matrix of the errors is not restricted to be
diagonal.
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To write the likelihood we can use the standard time series
approach we have already seen (factorization using the
conditionals and the marginal distribution) since

yt |yt−1, ..., y−p+1 ∼ N (c + Φ1yt−1 + Φ2yt−2 + ... + Φpyt−p; Ω)
(2)

Define:
the n × (np + 1) matrix Π′ = [c,Φ1, ...,Φp] i.e. the j − th row
of Π′ contains the parameters of the j − th equation.
the (np + 1)× 1 vector x ′t =

[
1, y ′t−1, y ′t−2, ..., y ′t−p

]
.

We can then rewrite equation (1) as

yt = Π′xt + εt

and (2) as

yt |yt−1, ..., y−p+1 ∼ N
(
Π′xt ; Ω

)
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Therefore, the conditional pdf of the t − th observation will
be given by the multivariate normal

p
(
yt |yt−1, ..., y−p+1

)
= (2π)−

n
2

∣∣∣Ω−1
∣∣∣ 1

2 ×

exp
{
−1

2
(
yt − Π′xt

)′
Ω−1 (

yt − Π′xt
)}

.

Treating the first p observation as given, the log likelihood
will then be

log L (Π,Ω) = −Tn
2

log 2π +
T
2

log
∣∣∣Ω−1

∣∣∣
−1

2

T∑
t=0

(
yt − Π′xt

)′
Ω−1 (

yt − Π′xt
)
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Therefore, the MLE will be

Π̂′
MLE︸ ︷︷ ︸

n×(np+1)

=

[
T∑

t=0

(
ytx ′t

)] [
T∑

t=0

(
xtx ′t

)]−1

.

Defining with π̂j the j − th row of Π̂′
MLE , we have

π̂j =

[
T∑

t=0

(
yjtx ′t

)] [
T∑

t=0

(
xtx ′t

)]−1

that is, the MLE is simply the OLS estimation equation by
equation.

Note: we have already seen the SUR result that if all the
equations have the same RHS variables GLS is equivalent
to OLS equation by equation.

Warning: if we have some restrictions on the Π coefficients, doing
OLS equation by equation is not appropriate – we have in
this case to maximize numerically the log likelihood.
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The MLE of the covariance matrix will also have the usual
form

Ω̂MLE =
1
T

T∑
t=0

ε̂t ε̂
′
t

→ σ̂ij =
T∑

t=1

ε̂it ε̂jt

where ε̂ are the estimated residuals and σij is the (i , j)
element of Ω.

Moreover, the usual MLE asymptotic results for the
parameters estimate apply.
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It is worth noticing that the likelihood evaluated at its peak
has a very simple form

log L
(
Π̂, Ω̂

)
= −Tn

2
log 2π +

T
2

log
∣∣∣Ω̂−1

∣∣∣− 1
2

T∑
t=0

ε̂′t Ω̂
−1ε̂t︸ ︷︷ ︸

1×1
(3)

Since the trace of a scalar is the scalar itself we have that
T∑

t=0

ε̂′t Ω̂
−1ε̂t = trace

[
T∑

t=0

ε̂′t Ω̂
−1ε̂t

]
= trace

[
T∑

t=0

Ω̂−1ε̂′t ε̂t

]
= trace

[
Ω̂−1

(
T Ω̂

)]
= trace [T × In] = Tn

(where In is the n × n identity matrix), the likelihood
evaluated at the MLE becomes simply

log L
(
Π̂, Ω̂

)
= −Tn

2
log 2π +

T
2

log
∣∣∣Ω̂−1

∣∣∣− Tn
2

(4)

⇒ Constructing the LR test is straightforward.
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Suppose we want to compare a restricted model (indexed
by 0) and an unrestricted one (indexed by 1), we then have

LR = 2
[

T
2

log
∣∣∣Ω̂−1

1

∣∣∣− T
2

log
∣∣∣Ω̂−1

0

∣∣∣]
= T

[
log

(
1/

∣∣∣Ω̂1

∣∣∣)− log
(

1/
∣∣∣Ω̂0

∣∣∣)]
= T

[
log

∣∣∣Ω̂0

∣∣∣− log
∣∣∣Ω̂1

∣∣∣] ∼ χ2
(#of restrictions)

In small sample Sims (1980) suggested to use a slightly
different construction of the LR statistic

LR := [T − (1 + np1)]
[
log

∣∣∣Ω̂0

∣∣∣− log
∣∣∣Ω̂1

∣∣∣] ∼ χ2
(#of restrictions)

where (1 + np1) is the number of parameters per equation
in the unrestricted model.
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Example
Suppose we want to choose between two different lag lenghts
p1 > p0. We can then simply proceed as follows:

1 Run OLS equation by equation using in turn p1 and p0 lags
2 Construct Ω̂1 and Ω̂0 from the OLS residuals
3 Form the LR statistic that will be distributed as χ2

(n2(p1−p0))
(since the difference in the number of lags is p1 − p0 for
each variable in each equation and we have n variables
and n equations)
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Akaike and Bayesian Information Criteria
The Akaike and the Bayesian information criteria (AIC and
the BIC) are often used in VAR model selection.
BIC and AIC are not based on the comparison between a
statistic and a distribution. Instead, they provide a way to
“rank” alternative specifications and provide a decision rule
that, as the sample size goes to infinity, will deliver the right
choice with probability one

Note: all the tests we have seen so far imply that even if T →∞
we will always be making the wrong choice with positive
probability (given by the chosen confidence level)

Idea: the best fitting model will be characterized by the sharpest
likelihood.

But: a model with more free parameters will generally fit better
than a model with a smaller number of parameters.
BIC and AIC: look at the value of the log likelihood at its
peak and introduce a penalty for dimensionality.
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Definition (BIC and AIC)

BIC := −2 log L
(
Π̂, Ω̂

)
+ d × log T

AIC := −2 log L
(
Π̂, Ω̂

)
+ 2d

where d is the number of independent parameters in Π̂ and Ω̂.

For both criteria the smaller the better (there is a minus
sign in from of the log likelihood).
The second term is a penalty for the dimensionality of the
model.

Note: the BIC has larger penalty term than the AIC, and will
therefore tend to favor more parsimonious models.
Given the simple form taken by the log L

(
Π̂, Ω̂

)
(see (4))

both statistics are very simple to construct (and are
normally computed by econometrics software).
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For example, if we wanted to decide how many lags to
include in a VAR, we could compute the BIC, or the AIC,
for each of the lag length considered and we would pick
the model that delivers the lowest value. This selection
criterion (under regularity conditions) would deliver the
right choice with probability one as T →∞.
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Granger Causal Ordering

In modeling relationships among variables in a VAR setting, is
helpful to introduce some formal concept of causality.

Definition (Granger Causality)

X does not Granger-cause Y (X ∼ GC Y ) iff prediction of Y
based on the universe of predictors U is not better than
prediction based on U − {X} i.e. the universe with X omitted.
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Example
Consider the reduced from VARI −

 B11 (L) B12 (L) B13 (L)
B21 (L) B22 (L) B23 (L)
B31 (L) B32 (L) B33 (L)


 yt

xt
zt

 =

 ε1t
ε2t
ε3t

 (5)

where I is the identity matrix of appropriate dimension, the
Bij (L) are polynomials in the lag operator and the ε’s are error
terms.
The universe of predictors consists of the past values y , x and
z, and we have that

x ∼ GC y iff B12 = 0; x ∼ GC z iff B32 = 0;

z ∼ GC y iff B13 = 0; z ∼ GC x iff B23 = 0;

y ∼ GC x iff B21 = 0; y ∼ GC z iff B31 = 0;



Reduced form VAR AIC and BIC Causal Ordering VAR properties from the Jordan decomposition VECM

Note that:
1 Granger-causality does not “discover” any true causal

structure if we don’t have a supporting theory: it is only a
necessary condition for a causal relation.

2 Granger-causality is not transitive, that is the fact that
y GC z and that z GC x does not imply that y GC x . This
is not the way we normally think about causality.

In the VAR (5) if B12 = 0 but all the other coefficients are
different from zero, we have that x GC z and z GC y but
x ∼ GC y .
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Nevertheless, we can define a transitive relation based on
Granger-causality

Definition (Granger Causal Priority)

x is Granger Causal Prior to y (x GCP y ) in a system like (5) iff
it is possible to group all the variables in the system into two
blocks, Y1 and Y2, such that y is in Y1 and x is in Y2, and
Y1 ∼ GC Y2.

Note: if x GCP y , it is also true that y ∼ GC x .

Example
In (5):

x GCP y iff either B21 = B23 = 0 or B21 = B31 = 0
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Testing for GCP and ∼ GC is simple since they both imply
linear parameter restrictions.
So, we can use any of the tests of parameter restrictions
seen in the previous lectures.
For example, we could just estimate the unrestricted and
restricted models and then from the LR test statistic.
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VAR properties from the Jordan decomposition

We can always rewrite the VAR

Xt︸︷︷︸
n×1

=
k∑

s=1

BsXt−s + εt (6)

as
Yt = AYt−1 + ηt

where

Yt =


Xt

Xt−1
...

Xt−k+1

 ; A =

[
B1 B2 ... Bk

I(k−1)×n 0

]
; ηt =

[
εt
0

]

and A is a square matrix
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The Jordan decomposition of A is

A = PΛP−1

where Λ is diagonal except that it might contain “Jordan blocks”
of the form 

λ 1 0 ... ... 0
0 λ 1 0 ... 0
... ... ... ... ... ...
0 ... ... ... 1 0
0 ... ... 0 λ 1
0 ... ... ... 0 λ


where the λi are eigenvalues and P is a matrix with columns
given by the eigenvectors of A

Note: this is handy since Am = PΛmP−1. Therefore, if we want to
study the long run behavior of our VAR, we can simply look
at the eigenvalues of A.
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If we define Zt = P−1Yt we have that

Zt = ΛZt−1 + η̃t where η̃t := P−1ηt

→ zi,t = Λizi,t−1 + η̃i,t

where i refers to the subsystem corresponding to the
Jordan block Λi with λi on the main diagonal.

∴ zi,t = Λt
i zi,0 +

t−1∑
s=0

Λs
i η̃i,t−s

Note that Λp
i has λp

i on the main diagonal and the q − th
diagonal above the main contains:

p!
q!(p−q)!λ

p−q for q ≤ p
0 for q > p
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So, since Y is a linear combination of Z

1 If |λi | < 1 ∀i , Y (and hence X ) is stationary
2 if ∃i s.t. |λi | = 1 and

∣∣λj
∣∣ ≯ 1∀j 6= i , Y contains components

that eventually grow at rate tm where m is the order of the
largest Jordan block with |λi | = 1

3 if ∃i s.t. |λi | > 1, Y contains components that explode at
exponential rate

4 if ∃i s.t. λi is complex, Y has elements that show a cyclical
component

It is often useful to look at the eigenvectors (columns of P)
corresponding to the various types of roots.
Ex.:consider a VAR containing nominal values in a country with high
and variable inflation. We should expect one unstable root to
correspond to the price level, and also that the row of P−1

corresponding to this root should put positive weight on a set of nominal
variables (if the variables are in logs we should expect the same
number for this weights)
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We can also link these results to the concepts of stationarity
and cointegration we have seen in the previous lectures.

Proposition:
In a VAR with n variables, if:

1 there are m unstable λi ,
2 they are all equal
3 their Jordan blocks are diagonal (this can be relaxed)

then, there are n −m stationary linear combinations of Xt

Note: We normally focus on unstable roots exactly equal to 1, but
the result above is more general.
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Vector Error Correction Models

As for the single dynamic equation case, a VAR for a n × 1
vector of time series Xt

Xt =

p∑
s=1

Bs︸︷︷︸
n×n

Xt−s + εt

can be rewritten in error correction form as

∆Xt =

p−1∑
s=1

Gs︸︷︷︸
n×n

∆Xt−s + G0CXt−1 + εt (7)

This is the VECM representation, that is a particular VAR.
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This representation is handy because if some of the
variables in Xt are I (1) but cointegrated, if we defined with
C the h × n matrix containing the h cointegrating vectors
(one for each row), we have that CXt is stationary, making
the all system stationary.

Note:
1 C is not of full rank since with n variables there is a

maximum of n − 1 linearly independent cointegration
relationships.

2 C is not unique since if CXt is stationary, for any h × h
non-zero matrix A, we have that ACXt is also stationary

Equation (7) makes clear that a VAR in first differences
(obtained setting G0 equal to zero) is not consistent with a
cointegrated system since it would rule out cointegration.
Nevertheless, a VAR in levels does not have this problem.
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The VECM form is problematic because we generally don’t
know ex-ante which linear combinations are stationary.
It is good if economic theory tells us which combinations of
variables should be stationary and which should not
Usually instead researchers claim not to know C and the
number of cointegrating relationships (h) in it, and try to
estimate it to then write the VECM form.
The problem is that there is a large set of potential
cointegrating relationships, and for each of them there are
several possible VECM.
Moreover, classical model selection is problematic since
with unstable roots there is no asymptotic Gaussianity of
the parameter estimated.
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The classical approach in modeling a VECM is the
following:

1 Try to estimate C.
Problem: there are many way of doing this (one is OLS one variable

at the time as we have seen) and:
generally give very different results,
Ĉ will tend to vary a lot in small sample.

2 Act as Ĉ is the “true” one and proceed.
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