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What happens if errors are serially correlated?

Example 1:

yt = x ′
t β + ut (1)

ut = φut−1 + εt

where t = 1, ..., T , |φ| < 1 (for stationarity) and εt is iid
(
0, σ2) .

Since

ut = φsut−s +
s−1∑
j=0

φjεt−j

we have that

σ2
u =

1
1− φ2 σ2

E [ut , ut−s] = φsσ2
u
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In then follows that

E
[
uu′] =

σ2

1− φ2


1 φ φ2 ... φT−1

φ 1 φ ... φT−2

φ2 φ 1 ... φT−3

... ... ... ... ...

φT−1 φT−2 φT−3 ... 1

 = σ2Ω

That is the covariance matrix of the residual is not diagonal due
to the serial correlation.
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Least Squares with Autocorrelated Disturbances

If we estimate model (1) by least square two cases can arise.
CASE 1: x is process independent i.e. xt is independent of εs for all

s and for all t (E [xtεs] = 0 ∀s, t).
In this case:

OLS estimates of β remain consistent (and unbiased) but
are inefficient.
The usual estimate of the variance covariance matrix of β̂
(namely σ2 (X ′X )

−1) is wrong.
The correct formula is

Var
(
β̂
)

= σ2 (X ′X )
−1 X ′ΩX (X ′X )

−1

Note: for Ω = I this reduces to the standard formula
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CASE 2: If the regressors are only contemporaneously independent
of εt , things are much more serious.
⇒ xt may be correlated with lags of εt , and hence with ut .
So xt is in effect endogenous and the OLS estimates are
inconsistent.
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Example:

yt = γyt−1 + ut |γ| < 1

ut = φut−1 + εt |φ| < 1, εt ∼ iid
(

0, σ2
)

, E [yt−1εt ] = 0

In this case

E [yt−1ut ] = E [(γyt−2 + ut−1) (φut−1 + εt)]

= γφE [yt−2ut−1] + φE
[
u2

t−1

]
→ E [yt−1ut ] =

1
1− γφ

φσ2
u =

φσ2

(1− γφ)
(
1− φ2

) 6= 0

since εt is iid (therefore independent of past information), and
by stationarity, E [yt−1ut ] = E [yt−2ut−1].
So OLS is not consistent!
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Generalized Least Squares (when Ω is known)

If we know Ω, the following estimator has desirable properties:

GLS

β̂GLS =
(

X ′Ω−1X
)−1

X ′Ω−1y

whit
Var

(
β̂GLS

)
= σ2

(
X ′Ω−1X

)−1

If x and ε are process independent, β̂GLS is unbiased and
consistent.
If x and ε are only contemporaneously independent, β̂GLS
is biased but consistent.
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Note that Ω−1 can be factorized as Ω−1 = L′L where L is
T × T and nonsingular.
Model (1) can be rewritten in matrix form as

y = Xβ + u, E [u] = 0

If we premultiply by L we get

Ly = LXβ + Lu (2)

So, if we do OLS on this last expression we get

β̂ =
[
(LX )′ (LX )

]−1
(LX )′ Ly

=
(
X ′L′LX

)−1 X ′L′Ly

=
(

X ′Ω−1X
)−1

X ′Ω−1y = β̂GLS
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Moreover, the variance of the residuals will be

E
[
(Lu) (Lu)′

]
= E

[
Luu′L′

]
= LE

[
uu′] L′

= σ2LΩL′

= σ2L
(
L′L

)−1 L′

= σ2LL−1L′−1L′

= σ2I

⇒ This insures that the errors in the transformed model (2)
are homoskedastic and serially uncorrelated.

⇒ If x and ε are process independent, GLS is BLUE.
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Feasible GLS (when Ω is unknown)

In general, Ω is unknown. We can nevertheless proceed in two
steps as follows:

1 obtain a consistent estimator of Ω

2 use Ω̂ in the GLS formulae
Under standard conditions we would expect that the resulting
estimator would have similar properties to GLS, consistent and
efficient in large samples.

There are three common methods of estimating Ω

Note: from now one we’ll use Example 1 as working
examples.
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Method 1

The first method uses the residuals from the OLS
regression of y on X , û.
if the x and ε are process independent, β̂OLS and the û are
consistent estimates u.
A consistent estimate of φ is obtained by regressing û on
û−1,

φ̂ =

∑T
t=2 ût ût−1∑T

t=2 û2
t

This technique combined with GLS omitting the first
observation is called the Cochrane Orcutt two-step
technique.

Warning: if the regressors are only contemporaneously independent of ε (the
usual case in time series), first stage OLS is inconsistent and this
causes both φ̂ and second stage estimates to be inconsistent.

Example: if lagged depended variables are among the regressors the
method delivers inconsistent estimates.
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Method 2

Subtract φ times the lagged model from equation (1)

yt − φyt−1 = (xt − φxt−1)
′β + ut − φut−1

→ yt = φyt−1 + x ′
t β − x ′

t−1(βφ) + εt .

So we can proceed as follows (Durbin):
1 Estimate the second equation above by OLS ignoring the

constraint on the third coefficient.
2 Use φ̂ for the second stage GLS.

Note: the first stage estimates are consistent regardless of
whether x is process or only contemporaneously
independent of ε so second stage estimates are also
consistent in both cases.
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Problems:
1 the standard errors generated are typically incorrect,

unless x is process independent.
2 suppose we have the standard case of contemporaneous

independence, say

yt = γyt−1 + w ′
t β + ut , |γ| < 1 (3)

ut = φut−1 + εt , εt ∼ iidN(0, σ2), 0 < |φ| < 1
wt stationary and process independent of εt .

if we subtract φ times the lagged model we have

yt = (φ + γ)yt−1 + φγyt−2 + w ′
t β − w ′

t−1(φβ) + εt

we estimate by OLS and find that the coefficient on yt−1 is
(φ̂ + γ̂) and that on yt−2 is φ̂γ̂, but since there is perfect
symmetry we don’t know what is γ̂ and what is φ̂.
We could go on to investigate the coefficients on wt−1 and
wt , but why not simply estimate φ, γ, β in (3) by MLE? (this
would directly take into account the non-linear restrictions
among coefficients)
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Method 3: MLE
Let’s use model (3) as our basic example. This implies as
before

yt = φyt−1 + γ(yt−1 − φyt−2) + (wt − φwt−1)
′β + εt ∼ iidN(0, σ2)

So the conditional density of yt given information
(yt−1, yt−2, wt , wt−1) is

N
“
φyt−1 + γ(yt−1 − φyt−2) + (wt − φwt−1)

′β, σ2
”

Taking the product of the conditional densities, and
conditioning on y1, y2 fixed, the log likelihood is

log L
“
β, γ, φ, σ2

”
= −T − 2

2
log 2π − (T − 2)

2
log σ2 − 1

2σ2

TX
t=3

ε2
t

εt = yt − φyt−1 − γ(yt−1 − φyt−2)− (wt − φwt−1)
′β.

Note: This is nonlinear least squares since maximizing log L wrt
β, γ, φ is equivalent to minimizing

∑T
t=3 ε2

t .
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Then the FOC for a maximum are given by
T∑

t=3

ztεt = 0

where
zt =

264 − ∂εt
∂β

− ∂εt
∂γ

− ∂εt
∂φ

375 =

24 wt − φwt−1

yt−1 − φyt−2

yt−1 − γyt−2 − w ′
t−1β

35
The solutions are the ML estimates β̂, γ̂, φ̂ which can be
used to compute

σ̂2 =
1

T − 2

TX
t=3

h
yt − φ̂yt−1 − γ̂

“
yt−1 − φ̂yt−2

”
−
“

wt − φ̂wt−1

”′
β
i2

.

Then, by the usual formula for the variance of the MLE

Var

24 β̂
γ̂

φ̂

35 = σ̂2

 
TX

t=3

ẑt ẑ′t

!−1

where ẑt is zt evaluated at β̂, γ̂, φ̂.
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Comparison of the 3 methods

If all the regressors are process independent, then all three
estimates are consistent and asymptotically efficient and
provide consistent estimates of the variance covariance
matrix of the estimates.
If the xt are only contemporaneously independent,
Cochrane-Orcutt is inconsistent.
If the xt are only contemporaneously independent, the
Durbin procedure remains consistent, but the simple
estimates of the variance covariance matrix are wrong.
Only ML maintains its properties, consistency and
asymptotic efficiency and provides a consistent estimate of
the variance covariance matrix.
In practice, it is probably best to use the ML method.
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