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There are three main frequentist1 approaches to inference
within the Maximum Likelihood framework: the Wald test, the
Likelihood Ratio test and the Lagrange Multiplier test.

1Bayesian inference will not be introduced at this stage.
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Key assumptions

We have already seen that even if observations are dependent,
the results derived for the MLE in the iid setting carry over for
ergodic processes, and we’ll be assuming that:

1 the MLE of a vector of parameters ψ is consistent
2 And that

√
T (ψ̂ − ψ)

D→ N

(
0,
(

lim
1
T

I(ψ)

)−1
)

where I(ψ) is the information matrix.
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The Wald tests

Idea: use the MLE of the unrestricted model.
Suppose we have a model with k unknown parameters ψ
that delivers the log likelihood logL(ψ).
We know that

√
T (ψ̂ − ψ)

d→ N
(

0, IA(ψ)−1
)

where IA(ψ) = lim 1
T I(ψ), I(ψ) = −E

(
∂2 log L(ψ)
∂ψ∂ψ′

)
.

Suppose we want to test a linear hypothesis H0 : Rψ = q
vs. HA : Rψ 6= q, where R has r < k linearly independent
rows (r restrictions)

⇒ then under H0

√
TR(ψ̂ − ψ) =

√
T (Rψ̂ − q)

d→ N

0,RIA(ψ)−1R′︸ ︷︷ ︸
r×r


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Recall: if the n vector, x ∼ N(0,A)⇒ x ′A−1x ∼ χ2(n).]
This implies that

√
T (Rψ̂ − q)′

[
RIA(ψ)−1R′

]−1√
T (Rψ̂ − q)

d→ χ2(r).

But: we do not observe IA(ψ). If we can find a consistent
estimator, the distribution remains unchanged
Possible estimators are: the empirical information matrix
based, 1

T I(ψ̂), and the empirical hessian based,

[− 1
T •

∂2 log L(ψ̂)
∂ψ∂ψ′ ]−1.

Assuming the first is available, then

W =
√

T (Rψ̂−q)′

[
R
(

1
T

I(ψ̂)

)−1

R′

]−1√
T (Rψ̂−q)

d→ χ2(r)
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Wald with nonlinear constraints

Wald test for nonlinear constraints

Consider H0 : R(ψ) = 0, a set of r linear or nonlinear
constraints. (R is a column r -vector).

Let ∂R
∂ψ =

[
∂R
∂ψ1

, ∂R
∂ψ2

, ..., ∂R
∂ψk

]
be a well defined r × k matrix

(k is the number of parameters in ψ).
Then, under H0 the statistic

W = R(ψ̂)′

[(
∂R(ψ̂)

∂ψ

)
I(ψ̂)−1

(
∂R(ψ̂)

∂ψ

)′]−1

R(ψ̂)→ χ2(r)

Intuition: Delta Method/Taylor Expansion.
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The Likelihood Ratio Test

Again suppose the model can be expressed in terms of a
likelihood function L(ψ).
Suppose we also have a set of r restrictions, either linear
or nonlinear i.e.

Rψ = q or R(ψ) = 0.

Idea:
1 Estimate the unrestricted model to obtain ML estimates, ψ̂

and L(ψ̂).
2 Estimate the model under the restrictions to obtain

restricted estimates ψ̂0 and L(ψ̂0).
3 Then compare L(ψ̂) and L(ψ̂0)
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It can be shown that under the null

LR = −2 log

{
L(ψ̂0)

L(ψ̂)

}
= 2

{
log L(ψ̂)− log L(ψ̂0)

}
→ χ2(r)

If the data conforms with the null you expect L(ψ̂) to be
close to L(ψ̂0) and for LR to be close to 0. If the data does
not conform you expect L(ψ̂) >> L(ψ̂0) and LR >> 0.
Hence the test is to reject H0 at the α level if LR > χ2

α(r).
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Lagrange Multiplier Tests

Again suppose the model can be expressed in terms of a
likelihood function L(ψ) and that we have r restrictions
R(ψ) = 0.
If the restrictions are valid ψ̂0 (the MLE of the restricted
model) will be close to ψ̂ (the MLE of the unrestricted
model) and the partial derivatives in the vector ∂ log L(ψ̂0)

∂ψ will

also be close to zero (note: ∂ log L(ψ̂)
∂ψ = 0 by construction)
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It can be shown that under the null, the quadratic form

LM =
1
T
∂ log L(ψ̂0)

∂ψ′
IA(ψ0)

−1∂ log L(ψ̂0)

∂ψ

d→ χ2(r).

As usual, we normally do not know IA(ψ0) and this must be
replaced by a consistent estimate.
Assuming that 1

T I(ψ̂) or a consistent alternative is
available, then

∂ log L(ψ̂0)

∂ψ′
I(ψ̂0)

−1∂ log L(ψ̂0)

∂ψ

d→ χ2(r) (1)

and is referred to as a Lagrange Multiplier statistic.
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The LM test in Nonlinear Least Squares

LM test for nonlinear least squares

This result can be specialized for nonlinear least squares
problems. Thus we have

yt = g(xt ;β) + εt , εt iid N(0, σ2)

xt independent of εt , t = 1, ...,T .

Then the unrestricted log likelihood has the form

log L(β, σ2) = −T
2

log 2π − T
2

logσ2 − 1
2σ2

T∑
t=1

εt(β)2

εt(β) = yt − g(xt ;β).
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The LM test in Nonlinear Least Squares

Assume that the r restrictions involve only β (not σ2):
R(β) = 0.
Then

∂ log L(β, σ2)

∂β
=

1
σ2

∑
t

ztεt ,

zt = −∂εt

∂β
. (2)

and as before,

1
T

I(ψ) = −E
[

1
T
∂2 log L(ψ)

∂ψ∂ψ′

]
But as σ2 is not in the restriction the information matrix is
block diagonal. Consider only the sub matrix associated
with β. Since xt is independent of εt ,

Iββ(ψ) = −E
[
∂2 log L
∂β∂β′

]
=

1
σ2 E

∑
t

ztz ′t . (3)
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The LM test in Nonlinear Least Squares

Evaluating the LM-statistics at (β̂0, σ̂
2
0), where

σ̂2
0 = 1

T
∑

t ε
2
t (β̂0), and replacing the expectations with their

sample analog

LM =
1
σ̂2

0

(∑
t

ztεt

)′ [∑
t

ztz ′t

]−1(∑
t

ztεt

)
.

By inspection, LM is related to the regression of εt on zt
(i.e. εt = z ′tγ + ut , γ̂ = (Σztz ′t )

−1Σztεt ).
Define fitted values for such a regression

ηt = z ′t γ̂ = z ′t
[∑

ztz ′t
]−1 (∑

ztεt

)
.
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The LM test in Nonlinear Least Squares

Now consider the R2 from this regression

T × R2 = T
∑
η2

t∑
ε2

t
=

η′η
1
T ε

′ε

=
(
∑

ztεt)
′ [
∑

ztz ′t ]
−1 [
∑

ztz ′t ] [
∑

ztz ′t ]
−1 (

∑
ztεt)

σ̂2
0

= LM.

Hence a valid LM statistic can always be obtained by
regressing εt(ψ̂0) on zt(ψ̂0) and calculating LM∗ = T × R2.
Then reject H0 at the α level if LM∗ > χ2

α(r).
Intuition if β̂0 is close to β̂, the εt(β̂0) shouldn’t be forecastable.
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All three tests are asymptotically equivalent.
Warning: these are asymptotic distribution results, so caution should

be used in small sample.
In small sample (but there are exceptions):

1 In general the LR test is the best, in the sense that its finite
sample behavior most closely approximates its expected
large sample properties.

2 The Wald test is second best and the LM procedure worst.
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The Durbin-Watson Test

The Durbin Watson test is the only test for which we have
small sample properties.
Unfortunately the circumstances in which it is valid are so
restricted that it is almost always inappropriate.
The model:

yt = x ′tβ + ut

ut = φut−1 + εt , εt iid N(0, σ2).

We want to test

H0 : φ = 0 against HA : φ > 0.
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Under the null, estimate the model by least squares and
calculate the test statistic

d =

PT
t=2 (ût − ût−1)

2PT
t=1 û2

t

=

PT
t=2 û2

tPT
t=1 û2

t

+

PT
t=2 û2

t−1PT
t=1 û2

t

− 2
PT

t=2 ût ût−1PT
t=1 û2

t

.

Note: d ≈ 2(1− r1), where r1 is the simple correlation between ût
and ût−1.

V d lies in the interval [0,4].
Unfortunately the exact distribution of d depends on X

But d is subject to an upper (dU ) and lower bound ( dL ) that
depend on both the sample size and the number of
regressors.
We are testing against positive serial correlation so we
reject if d is too small.
If d < dL reject, if d > dU fail to reject. If dL < d < dU
inconclusive.

Note: to be valid, i) the regression must contain a constant, ii) all
RHS variables are processed independent of the errors
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