
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture Notes #6: Vector Autoregressions

We will drop the simultaneous equations assumption that some variables are endogenous

and that other are exogenous, and we will treat all the variables as potentially endogenous.

This is appealing since in economics, di¤erently from laboratory experiments, everything

is endogenous in some sense.

1. Reduced form VAR

Let yt be a n� 1 vector of time series. A reduced form VAR can be written as

yt = c|{z}
n�1

+ �1|{z}
n�n

yt�1 + �2yt�2 + :::+ �pyt�p + "t; (1.1)

"t � iidN

 
0; 
|{z}

n�n

!
; t = �p+ 1; ::; 0; ::; T

where c is a vector of constants and the �i are matrixes of coe¢ cients. In this model

each variable can potentially depend on its own lags and the lags of all other variables.

Moreover, the covariance matrix of the errors is not restricted to be diagonal.

Conditioning on the �rst p observations and on the parameters (that we summarize by

�) the joint pdf of the data will be

p (yT ; yT�1; :::; y1jy0; y�1; :::; y�p+1; �)
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To write the likelihood we can use the standard time series approach we have already seen

(factorization using the conditionals and the marginal distribution) since

ytjyt�1; :::; y�p+1 � N (c+ �1yt�1 + �2yt�2 + :::+ �pyt�p; 
) (1.2)

De�ne the n � (np+ 1) matrix �0 = [c;�1; :::;�p] i.e. the j � th row of �0 contains the

parameters of the j�th equation. De�ne the (np+ 1)�1 vector x0t =
�
1; y0t�1; y

0
t�2; :::; y

0
t�p
�
:

We can then rewrite equation (1.1) as

yt = �
0xt + "t

and (1.2) as

ytjyt�1; :::; y�p+1 � N (�0xt; 
)

Therefore, the conditional pdf of the t � th observation will be given by the multivariate

normal

p (ytjyt�1; :::; y�p+1) = (2�)�
n
2

��
�1�� 12 exp��1
2
(yt � �0xt)0
�1 (yt � �0xt)

�
:

This means that the log-likelihood, treating the �rst p observation as given, will be

logL (�;
) = �Tn
2
log 2� +

T

2
log
��
�1��

�1
2

TX
t=0

(yt � �0xt)0
�1 (yt � �0xt)

implying that1

�̂0MLE| {z }
n�(np+1)

=

"
TX
t=0

(ytx
0
t)

#"
TX
t=0

(xtx
0
t)

#�1
:

De�ning with �̂j the j � th row of �̂0MLE, we have

�̂j =

"
TX
t=0

(yjtx
0
t)

#"
TX
t=0

(xtx
0
t)

#�1
that is, the MLE is simply the OLS estimation equation by equation. This is not sur-

prisingly since we have seen the SUR result that if all the equations have the same RHS

1See Hamilton, page 293 for a derivation.

2



variables GLS is equivalent to OLS equation by equation. This also implies that if we have

some restrictions on the � coe¢ cients, this approach is not appropriate �we should in this

case maximize numerically the log likelihood.

The MLE of the covariance matrix will also have the usual form


̂MLE =
1

T

TX
t=0

"̂t"̂
0
t

! �̂ij =

TX
t=1

"̂it"̂jt

where "̂ are the estimated residuals and �ij is the (i; j) element of 
:

Moreover, the usual MLE asymptotic results of the parameters estimate apply.

It is worth noticing that the likelihood evaluated at its peak has a very simple form

logL
�
�̂; 
̂

�
= �Tn

2
log 2� +

T

2
log
���
̂�1���� 1

2

TX
t=0

"̂0t
̂
�1"̂t| {z }

1�1

(1.3)

Since the trace of a scalar2 is the scalar itself we have that
TX
t=0

"̂0t
̂
�1"̂t = trace

"
TX
t=0

"̂0t
̂
�1"̂t

#
= trace

"
TX
t=0


̂�1"̂0t"̂t

#
= trace

h

̂�1

�
T 
̂
�i
= trace [T � In]

= Tn

(where In is the n�n identity matrix), the likelihood evaluated at the MLE becomes simply

logL
�
�̂; 
̂

�
= �Tn

2
log 2� +

T

2
log
���
̂�1���� Tn

2
2Recall that the trace of a n � n matrix A is de�ned as the sum of the elements along the principal

diagonal

trace (A) = a11 + a22 + :::+ ann:

Recall also that if A is m� n and B is n�m, then

trace (AB) = trace (BA)

and that if A and B are both n� n, then

trace (A+B) = trace (A) + trace (B)
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This implies that the construction of the likelihood ratio test is straightforward. Suppose

we want to compare a restricted model (denoted by the index 0) and an unrestricted one

(denoted by the index 1), the likelihood ratio test will simply be

LR = 2

�
T

2
log
���
̂�11 ���� T2 log ���
̂�10 ���

�
= T

h
log
�
1=
���
̂1����� log �1= ���
̂0����i

= T
h
log
���
̂0���� log ���
̂1���i � �2(#of restrictions)

Example 1. Suppose we want to choose between two di¤erent lag lenghts p1 > p0: We

can then simply proceed as follows:

1. Run OLS equation by equation using in turn p1 and p0 lags

2. Construct 
̂1 and 
̂0 from the OLS residuals

3. Then form the LR statistic that will be distributed as �2(n2(p1�p0)) (since the di¤erence

in the number of lags is p1 � p0 for each variable in each equation and we have n

variables and n equations)

In small sample Sims (1980) suggested to use a slightly di¤erent construction of the LR

statistic

LR := [T � (1 + np1)]
h
log
���
̂0���� log ���
̂1���i � �2(#of restrictions)

where (1 + np1) is the number of parameters per equation in the unrestricted model.

1.1. Akaike and Bayesian Information Criteria

The Akaike information criterion, AIC, and the Bayesian information criterion, BIC (also

called the Schwartz criterion), are often used in VAR model selection (but can also be used

in other settings).

BIC and AIC are not based on the comparison between a statistic and a distribution.

Instead, they provide a way to �rank�alternative speci�cations and provide a decision rule

that, as the sample size goes to in�nity, will deliver the right choice with probability one
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(while instead all the tests we have seen so far imply that even if T !1 we will always be

making the wrong choice with positive probability �with probability given by the chosen

con�dence level).

Both BIC and AIC are based on the same idea: the best �tting model will be char-

acterized by the sharpest likelihood. Therefore, they are both based on the value of the

likelihood evaluated at its peak. Nevertheless, since a model with more parameters will

generally �t better than a model with a smaller number of parameters, both statistics

introduce a penalty for dimensionality.

De�nition 1. Bayesian Information Criterion

BIC := �2 logL
�
�̂; 
̂

�
+ d� log T

where d is the number of independent parameters in �̂ and 
̂:

De�nition 2. Akaike Information Criterion

AIC := �2 logL
�
�̂; 
̂

�
+ 2d

For both criteria the smaller the better (since there is a minus sign in from of the log

likelihood evaluated at its peak). The second term is a penalty for the dimensionality of

the model. Note that the BIC has larger penalty term than the AIC, and it will therefore

tend to favor more parsimonious models.

Given the simple form taken by the log likelihood at its peak (see (1.3)) both statistics

are very simple to construct (and are normally computed by econometrics software).

For example, if we wanted to decide how many lags to include in a VAR, we could

compute the BIC, or the AIC, for each of the lag length considered and we would pick the

model that delivers the lowest value. This selection criterion (under regularity conditions)

would deliver the right choice with probability one as T !1.

1.2. Granger Causality and Causal Ordering

In modeling relationships among variables in a VAR setting, it is helpful to introduce some

formal concept of causality.
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De�nition 3. X does not Granger-cause Y (X � GC Y ) i¤ prediction of Y based on the

universe of predictors U is not better than prediction based on U � fXg i.e. the universe

with X omitted.

Example 2. Consider the reduced from VAR(
I �

"
B11 (L) B12 (L) B13 (L)
B21 (L) B22 (L) B23 (L)
B31 (L) B32 (L) B33 (L)

#)"
yt
xt
zt

#
=

"
"1t
"2t
"3t

#
(1.4)

where I is the identity matrix of appropriate dimension, the Bij (L) are polynomials in the

lag operator and the "�s are error terms.

In this case the universe of predictors consists of the past values y; x and z: In this case

we have that

x � GC y i¤B12 = 0; x � GC z i¤B32 = 0;

z � GC y i¤B13 = 0; z � GC x i¤B23 = 0;

y � GC x i¤B21 = 0; y � GC z i¤B31 = 0;

Note that:

1. Granger-causality does not �discover� any true causal structure if we don�t have a

supporting theory: it is only a necessary condition for a causal relation.

2. Granger-causality is not transitive, that is the fact that y GC z and that z GC x

does not imply that y GC x. This is not the way we normally think about causality.

Example 3. In the VAR (1.4) if B12 = 0 but all the other coe¢ cients are di¤erent from

zero, we have that x GC z and z GC y but x � GC y.

Nevertheless, we can de�ne a transitive relation based on Granger-causality

De�nition 4. x is Granger Causal Prior to y (x GCP y) in a system like (1.4) i¤ it is

possible to group all the variables in the system into two blocks, Y1 and Y2, such that y is

in Y1 and x is in Y2, and Y1 � GC Y2.
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Note that if x GCP y, it is also true that y � GC x.

Example 4. In (1.4):

x GCP y i¤ either B21 = B23 = 0 or B21 = B31 = 0

Testing for GCP and � GC is simple since they both imply linear parameter restric-

tions. So, we can use any of the tests of parameter restrictions seen in the previous lectures.

For example, we could just estimate the unrestricted and restricted models and then from

the LR test statistic.

1.3. VAR properties from the Jordan decomposition

We can always rewrite a VARwith k lags (where for simplicity I�m disregarding the constant

terms)

Xt|{z}
n�1

=
kX
s=1

BsXt�s + "t (1.5)

as a VAR with only one lag

Yt = AYt�1 + �t

where

Yt =

264 Xt

Xt�1
:::

Xt�k+1

375 ; A = � B1 B2 ::: Bk
I(k�1)�n 0

�
; �t =

�
"t
0

�
Note that A is a square matrix, therefore we can write the Jordan decomposition3

A = P�P�1

where � is diagonal except that it might contain �Jordan blocks�of the form2666664
� 1 0 ::: ::: 0
0 � 1 0 ::: 0
::: ::: ::: ::: ::: :::
0 ::: ::: ::: 1 0
0 ::: ::: 0 � 1
0 ::: ::: ::: 0 �

3777775
3See the Appendix for a formal de�nition.
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where the �i are eigenvalues and P is a matrix with columns given by the eigenvectors of

A

If we de�ne Zt = P�1Yt we have that

Zt = �Zt�1 + ~�t where ~�t := P
�1�t

! zi;t = �izi;t�1 + ~�i;t

where i refers to the subsystem corresponding to the Jordan block �i with �i on the main

diagonal. We can solve this last equation backward obtaining

) zi;t = �tizi;0 +
t�1X
s=0

�si~�i;t�s

Note that �pi has �
p
i on the main diagonal and the q� th diagonal above the main contains:

1. p!
q!(p�q)!�

p�q for q � p

2. 0 for q > p

Since Yt is a linear combination of Zt (Yt = PZt), we can state the following results:

1. If j�ij < 1 8i, Y (and hence X) is stationary.

2. If 9i s.t. j�ij = 1 and j�jj � 18j 6= i, Y contains components that eventually grow at

rate tm where m is the order of the largest Jordan block with j�ij = 1

3. If 9i s.t. j�ij > 1; Y contains components that explode at exponential rate If 9i s.t.

�i is complex, Y has elements that show a cyclical component.

It is often useful to look at the eigenvectors (in the matrix P ) corresponding to the

various types of roots.

Example 5. Consider a VAR containing nominal values in a country with high and vari-

able in�ation. We should in this case expect one unstable root to correspond to the price

level. Moreover, we would expect that the row of P�1 corresponding to this root should

put positive weights on a set of nominal variables (if the variables are in logs we should

expect the same number for this weights).
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We can use the results from the Jordan decomposition an link them to the concepts of

Cointegration and Stationarity studied in previous lectures.

Proposition 1. If i) there are m unstable �i, ii) they are all equal and iii) their Jordan

blocks are diagonal,4 there are n�m stationary linear combinations of Xt.

1.4. Vector Error Correction Models

As for the single dynamic equation case, a VAR for a n� 1 vector of time series Xt

Xt =

pX
s=1

Bs|{z}
n�n

Xt�s + "t

can be rewritten in error correction form as

�Xt =

p�1X
s=1

Gs|{z}
n�n

�Xt�s + G0|{z}
n�h

C|{z}
h�n

Xt�1 + "t (1.6)

This is the VECM representation, that is a particular VAR.

This representation is handy because if some of the variables in Xt are I (1) but cointe-

grated, if we de�ned with C the matrix containing the h linearly independent cointegrating

relationships among variables (one cointegration vector for each row) we have that CXt�1

is stationary, making the all system stationary.

Note that C is not of full rank since with n variables there is a maximum of n � 1

linearly independent cointegrating relations (since there is a maximum of n � 1 common

trends), that is h < n. Moreover, C is not unique since if CXt is stationary, for any non

zero h� h matrix A we also have that ACXt is stationary.

Equation (1.6) makes also clear that a VAR in �rst di¤erences (obtained settingG0 equal

to zero) is not consistent with a cointegrated system since it would rule out cointegration.

Nevertheless, a VAR in levels does not have this problem.

The VECM form is problematic because we generally don�t know ex-ante which linear

combinations are stationary. It is good if economic theory tells us which combinations of

4This last requirement can be relaxed.
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variables should be stationary and which should not. Usually instead researchers claim not

to know C and the number of cointegrating relationship in it, and try to estimate it to then

write the VECM form.

The problem is that there is a large set of potential cointegrating relationship, and

for each of them there are several possible VECM. Moreover, classical model selection is

problematic since with unstable roots there is no asymptotic Gaussianity of the parameter

estimated.5

The classical approach is the following:

1. Try to estimate C. Problem: there are many way of doing this �one is OLS one

variable at the time as we have seen �and i) generally give very di¤erent results, ii)

Ĉ will tend to vary a lot in small sample.

2. Act as Ĉ is the �true�one and proceed.

2. Structural VAR (S-VAR)

Let Xt be a n� 1 vector of time series. A Structural VAR (S-VAR) takes the form

�0Xt + �1Xt�1 + ::::�pXt�p = c|{z}
n�1

+ "t|{z}
n�1

where "t � N (0;�) (2.1)

where � is of dimension n � n as well as each �i matrix, n is the number of variables in

the system, c is a n� 1 vector of constants and "t span the space of innovations to Xt.

This structure implies that each variables in the system can potentially depend on past

and current values of all the other variables.

Two commonly used normalizations are: � = I (the identity matrix) or each variable

has coe¢ cient 1 in one of the � (L). We will use the former in what follows.

We also assume �0 is full rank i.e. the system can be solved to determine Xt from past

X and " (the system is �complete�), that is we can rewrite the system in �reduced form�

Xt = 
 +B (L)Xt�1 + vt (2.2)
5This is a problem only of the frequentist approach, since the standard Bayesian asymptotic Gaussian

approximation of the likelihood holds even for unit roots.
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where vt = ��10 "t, 
 = �
�1
0 c and B (L) = ���10 (�1 + �2L::::+ �pL

p�1). We can estimate

equation (2.2) as discussed in Section (1).

2.1. Identi�cation

As in the simultaneous equation case, a key question is whether we can recover the para-

meters of the structural form (2.1) from the parameters of the reduced form (2.2).

Let�s consider the normalization � = I (we already discussed the other alternative

normalization in the case of simultaneous equations).

The reduced form gives in 
 and B (L) as many parameters as in c and �1; :::�p. More-

over, we have that

vt � N
�
0; ��10

�
��10
�0�

so we could hope to recover �0 from the covariance matrix of vt. The problem is that there

are many n� n matrixes G such that GG0 = ��10
�
��10
�0
: This is due to the fact that there

are (n+ 1)n=2 free elements in ��10
�
��10
�0
while �0 has n2 free elements. This means that

if we want to �nd the structural parameters we need at least (n� 1)n=2 restrictions.

The most commonly used approach to obtain identi�cation is to impose restrictions in

the �0 matrix alone. There are two good reasons why this is appealing.

First, these restrictions have a natural interpretation as assumptions about delays in

reactions of particular variables.

Example 6. When dealing with quarterly data, it might be natural to assume that, in

setting the Federal funds rate, the Federal Reserve Bank reacts contemporaneously to

in�ation, but that the level of in�ation in the economy is not in�uenced immediately by

the actions of the central bank. In writing a S-VAR for the interest rate, i, and in�ation,

�, this assumption would be formulated as

�0

�
it
�t

�
+ �1

�
it�1
�t�1

�
+ ::::�p

�
it�p
�t�p

�
= c+ "t

with �0 =
�
� �
0 �

�
where � denotes non-zero elements.
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Second, the structural estimation can be performed in a relatively simple way by �rst

estimating 
 and B (L) performing OLS equation by equation in the reduced form, and

then maximizing

�Tn
2
log 2� +

T

2
log

�������10 ���10 �0��1����� 12trace
"�
��10

�
��10
�0��1 TX

t=0

v̂0tv̂t

!#

with respect to �0; where v̂t are the reduced form OLS residuals.6 This last step is straight-

forward if we have exactly (n� 1)n=2 restrictions, but it requires numerical optimization

if we have more than (n� 1)n=2 restrictions (i.e. if the system is over-identi�ed).

Note that imposing at least (n� 1)n=2 restrictions in the �0 matrix is only a neces-

sary condition, but it is not su¢ cient since we also need the restrictions to be linearly

independent otherwise �0 wouldn�t be invertible.

Example 7. In a 2 variables system we need at least (n� 1)n=2 = (2� 1) 2=2 = 1 zero

restrictions. Examples that works are �0 of the form�
� 0
� �

�
or equivalently

�
0 �
� �

�
.

A useless �0 is �
� 0
� 0

�
since it is not invertible.

In a 3 variables system we need at least (n� 1)n=2 = (3� 1) 3=2 = 2 zero restrictions. An

exactly identi�ed �0 is then of the form" � � �
0 � �
0 0 �

#
:

An interesting one is " � 0 �
0 � �
0 � �

#
:

In this case we have enough zeros but nevertheless we don�t have identi�cation since it

would not be invertible (the last two rows are not linearly independent). In this case, even

6Note that this expression is simply the likelihood maximized with respect to 
 and B (L).
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though we can identify the �rst equation with respect to the other two, we cannot identify

the last two equations and the system is not fully identi�ed.

2.2. Impulse-Response Functions

Given the S-VAR (where for simplicity I�m disregarding the vector of constant terms)

�0Xt = A (L)Xt�1 + "t where "t � N (0; I) (2.3)

we might be interest in how a shock in one of the equations in�uences the other variables

in the system. In Example (6) we might want to know how a shock to the current interest

rate would a¤ect in�ation in the future.

The system (2.3) can be rewritten as

Xt = �
�1
0 A (L)Xt�1 + �

�1
0 "t

and this implies that

Xt+1 = ��10 A (L)Xt + �
�1
0 "t+1

=
�
��10 A (L)

�2
Xt�1 + �

�1
0 A (L) �

�1
0 "t + �

�1
0 "t+1

Xt+2 = ��10 A (L)Xt+1 + �
�1
0 "t+2

=
�
��10 A (L)

�3
Xt�1 +

�
��10 A (L)

�2
��10 "t + �

�1
0 A (L) �

�1
0 "t+1 + �

�1
0 "t+2

We can therefore de�ne the Impulse Response Function (IRF) of the j � th variable in

X to a shock in the i� th equation as

@Et [Xj;t+S]

@"i;t
=
n�
��10 A (L)

�S
��10

o
ji

(2.4)

where fgji denotes the (j; i) element.

The IRF�s are a very useful data summary since they concisely report the link between

variables over time. For example we would like to know what will be the e¤ect of a monetary

policy shock on GDP and in�ation in the future.

Note that we can obtain correct IRF�s for some of the shocks even if the system is not

fully identi�ed, that is even if the system is only partially identi�ed.

13



Example 8. Suppose we want to write a S-VAR for in�ation, �, output gap, x and the

interest rate, i. Moreover, suppose we believe that the central bank reacts contempora-

neously to news about in�ation and output gap (in a Taylor rule fashion), but that both

in�ation and output gap reacts with a lag to monetary policy shocks. These assumptions

will deliver the S-VAR model" � � 0
� � 0
� � �

#
| {z }

�0

"
�t
xt
it

#
= A (L)| {z }

3�3

"
�t�1
xt�1
it�1

#
+

"
"�t
"xt
"it

#
; "t � N (0; I) :

Since to reach identi�cation we need n (n� 1) =2 = 3 zeros, this �0 will not deliver iden-

ti�cation unless we add a zero in one of the �rst two equations. But adding a zero in the

�rst two equation would imply that either in�ation reacts with a lag to output gap, or that

output gap react with a lag to in�ation, and any of these assumption might be hard to

justify.

Nevertheless, it is interesting to notice that the third row of �0 is identi�ed with respect to

the �rst two ones. That is, if we considered the model as being composed by two blocks,

the �rst one containing the �rst two rows and the second one containing the third one, we

have that the two blocks are identi�ed with respect to each other. This implies that the

impact of a monetary policy shock ("i) on the upper block is well identi�ed. So, if we are

only interested in the IRF�s of an "i shock, we can simply add an arbitrary zero restriction

in one of the �rst two rows of �0 and equation (2.4) will give the appropriate answer for

the "i shocks (but not for the others).

Partial identi�cation schemes are often used in applied research. For example, Chris-

tiano, Eichenbaum, Evans (1999) study the following S-VAR model of the US economy

�0

"
X1t

it
X2t

#
= � (L)

"
X1t�1
it�1
X2t�1

#
+ "t � iidN (0; I)

where X1t and X2t are vectors of dimensions n1 � 1 and n2 � 1 (with n1; n2 > 1), it is

the Federal Funds interest rate, �0 is a square matrix of appropriate dimensions, � (L) is

a matrix with elements given by polynomials of order k in the lag operator, 0 is a column
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vector of zeros and I is the identity matrix. In order to identify the e¤ect of monetary

policy shocks, i.e. shocks to the Federal Funds interest rate, these authors assume that:

1) the interest rate, it, reacts contemporaneously to the X1t variables but with a lag to

the X2t variables, 2) the X2t variables react contemporaneously to all the variables in the

systems and 3) the X1t variables react with a lag to all the other variables in the system.

That is, they assume the following form of the �0 matrix:

�0 =

26666664


11|{z}
n1�n1

0|{z}
n1�1

0|{z}
n1�n2


21|{z}
1�n1


22|{z}
1�1

0|{z}
1�n2


31|{z}
n2�n1


32|{z}
n2�1


33|{z}
n2�n2

37777775 : (2.5)

Obviously, this model is not fully identi�ed. Nevertheless, the row corresponding to the

interest rate is linearly independent form all the other rows in the system. That is, shocks

to this equation are correctly identi�ed. So, if we are only interested in the IRF�s of an

monetary policy shock, we can simply add arbitrary - linearly independent - zero restrictions

in the other two blocks of �0 and equation (2.4) will deliver appropriate impulse responses

for this shock (but not for the others).

2.2.1. The Cholesky Decomposition

A very popular approach to identi�cation of the IRF�s from a reduced form VAR of the

form

Xt = B (L)Xt�1 + vt where vt � N (0;
) (2.6)

is the Cholesky decomposition. This approach is based on the simple fact that for any real

symmetric positive de�nite matrix 
 there exist a unique lower triangular matrix A with

1s along the main diagonal and a unique diagonal matrix D with positive entries along the

main diagonal such that


 = ADA0 = AD1=2D1=2A0 = PP 0 where P := AD1=2

Note that P is also lower triangular.
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Using A we can construct an n� 1 vector ut := A�1vt: Note that the covariance matrix

of u is diagonal since

E (utu
0
t) =

�
A�1

�
E (vtv

0
t)
�
A�1

�0
=
�
A�1

�

 (A0)

�1

=
�
A�1

�
AD1=2D1=2A0 (A0)

�1
= D

that is, the elements of u are orthogonalized errors with variance given by D.

Note that similarly �t := P
�1vt = D

�1=2ut is also a vector of orthogonalized errors.

Using these observations, researchers often reports IRF�s given by either7

@Et [Xj;t+T ]

@ui;t
or
@Et [Xj;t+T ]

@�i;t
(2.7)

The Cholesky decomposition approach in not a magic wand that delivers meaningful

identi�cation of the IRF�s. But instead should be thought of as one particular set of

restrictions on the ��10 matrix of the structural form, and it will make sense i¤ this set

of restrictions does. To see this note that if we think of the Cholesky decomposition as

identifying the e¤ect of the �true�structural shocks �that are assumed to be orthogonal

to each other �we should have

��10 = AD1=2 :=

26664
1 0 0 0 0
a21 1 0 0 0
a31 a32 1 0 0
::: ::: ::: ::: :::
an1 an2 an3 ::: 1

37775D1=2 (2.8)

Therefore, the Choleski orthogonalization approach will make economic sense i¤ this set of

zero restrictions are economically meaningful.

In particular, this approach imposes an order among the variables. Equation (2.8)

implies that the �rst variable in the system will respond contemporaneously only to its

own structural shock, the second variable in the system will respond contemporaneously to

its own structural shock and to the structural shock of the �rst variable, and so on. If such

7This two are the same up to a scale factor equal to the (i; i) element of D1=2,
p
dii that is

@Et [Xj;t+T ]

@�i;t
�
p
dii
@Et [Xj;t+T ]

@ui;t
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a natural ordering among the variables applies, then this approach is appropriate, but if it

doesn�t the IRF�s constructed in this fashion will be misleading.

3. S-VAR�s, SEM�s and the Lucas�Critiques

[This section is provided for your information only and will not be examined]

Lucas (1976) observed that simultaneous equation models (SEM�s) that assume that

private agents�expectations are �xed linear function of past data, are likely to be inappro-

priate to evaluate the impact of systematic changes in monetary policy.

This is due to the fact that a policy change would be likely to change the agents�optimal

forecasting rule, and thus change the dynamic of the private sector behavior that the SEM�s

assumes to be constant.

Given the similarities between S-VAR�s and SEM�s, the use of SVAR�s to analyze the

e¤ects of variations in monetary policy is sometimes taken to be subject to the Lucas

Critique.

However, the SVAR�s, unlike the old SEM�s, do not contain �xed-coe¢ cient expectation

rules. Moreover, VAR�s are best thought of as a linear approximations to the behavior of

the private sector and monetary authorities (Sims(1987), Leeper and Zha(2001)), and the

behavior they model implicitly includes dynamics arising from revision in the forecasting

rules (as well as other sources of dynamics). That is, they are meant to capture some local

linear approximation to the actual nonlinear behavioral rules. As a consequence, a SVAR

may do a good job in projecting the impact of monetary policy shocks as long as the model�s

nonlinearity is not too severe. This implies that if the model appears to �t historical data

well and shows little sign of nonlinearity in the sample period, then policy changes that

produce policy equation shocks with patterns similar to what has been observed in the past

will probably be projected accurately by the model.
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4. Appendix

Here we recall some useful results and de�nitions from linear algebra.

Theorem 1 (Cofactor Expansion). The cofactor expansion of the determinant of a

N �N matrix A is

det (A) =

NX
n=1

ainAin =
NX
n=1

ajnAjn

for any row i and column j, where Aij denotes the (i; j)th cofactor of the matrix A. 8

De�nition 5 (Characteristic Equation). Given the N � N real matrix A, the deter-

minantal equation

det (A� � � I) = 0

is called the characteristic equation of A.

The characteristic function is a polynomial equation of degree N . Therefore, there are

N (potentially complex) roots of the characteristic equation and complex roots occur in

conjugate pairs. Let�s denote the roots by �1; :::; �N : According to the cofactor expansion

we can write

det (A� � � I) =
NQ
n=1

(�� �n) :

(since the coe¢ cient on � must be one). The roots are not necessarily distinct. If there

are only K � N distinct roots, ��k (k = 1; :::; K) and denote the multiplicity of the k-th

distinct root by mk, then

det (A� � � I) =
KQ
k=1

(�� ��k)
mk :

De�nition 6 (Eigenvalue). A root � of the characteristic equation of A is an eigenvalue

of A.

De�nition 7 (Eigenvector). A vector x 2 CN for which there is a scalar � such that

Ax = � � x is an eigenvector of A.
8See the Appendix of Lecture notes #5 if you don�t rember the de�nition of cofactor.
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De�nition 8 (Block Diagonal Matrix). A block diagonal matrix has blocks along the

main diagonal, and zeros elsewhere.

De�nition 9 (Upper Bidiagonal Matrix). A matrix B is upper bidiagonal if its

(i; j) element is equal to zero unless i = j or i = j � 1, for all i and j.

Theorem 2 (Jordan Decomposition). For any N � N matrix A there exists P such

that A = P�P�1, where

1. � is an upper bidiagonal matrix consisting of the eigenvalues of A repeated according

to their multiplicities.

2. � is block-diagonal and each block has one of A�s eigenvalues repeated along its main

diagonal, 1�s along the diagonal above it and 0�s elsewhere (that is, � has Jordan

blocks on the main diagonal).

3. P is a matrix with columns given by the eigenvectors of A:
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