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MLE for Time Series Models

The standard approach to MLE you have seen so far is to
obtain the likelihood function by

1 writing the density for each observation and then
2 since the observations are independent, write the likelihood

as the product of these densities.

the standard approach will not work in our case since the
observations are dependent .

But: a joint density can be always factored into a conditional
times a marginal.
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Example: if you have three observations

f (y3, y2, y1) = f (y3| y2, y1) · f (y2, y1)

= f (y3| y2, y1) · f (y2| y1) · f (y1).

Hence the likelihood for T observations is

L(y ;ψ) =

[
T∏

t=2

f (yt | yt−1, ..., y1)

]
·f (y1) =

T∏
t=2

f (yt | It−1)·f (y1)

where It−1 denotes all the information available at time
t − 1.
Taking logs then yields

log L(y ;ψ) =
T∑

t=2

log f (yt | It−1) + log f (y1).

Note: f (y1) can be either modeled directly or y1 can be assumed
to be a constant (more on this later)
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(An) Ergodic Theorem

If a stochastic process yt , t = 1,2, ... is ergodic with mean
µ <∞ then

p lim
1
T

T∑
t=1

yt = µ.

Ergodicity is a sufficient condition for sample means to
converge to their expectations.
This definition extends to vector valued stochastic
processes.
Moreover, functions of vector valued ergodic processes are
ergodic.
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MLE Asympotics for Time Series Models

Even if observations are dependent, for ergodic processes,
the ML estimator of a vector of parameters ψ is generally
consistent.
Moreover, the asymptotic results derived for the MLE in the
iid setting carry over for ergodic processes.
That is, for a vector of parameters ψ and ergodic
processes, we have the standard results

√
T (ψ̂ − ψ)

D→ N

(
0,
(

lim
1
T

I(ψ)

)−1
)

(1)

where I(ψ) is the information matrix.
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MLE of the AR(1) process

Consider the AR(1)

yt = φyt−1 + εt εt ∼ iid N(0, σ2), |φ| < 1.

Then yt | yt−1 is N(φyt−1, σ
2), therefore

f (yt | It−1) = f (yt | yt−1) =
1√

2πσ2
exp

− 1
2σ2

(
yt − φy2

t−1︸ ︷︷ ︸
)2

εt


And the log likelihood is simply,

log L(y ;φ, σ2) = −(T − 1)

2
log 2π − (T − 1)

2
logσ2

− 1
2σ2

T∑
t=2

(yt − φyt−1)
2 + log f (y1).
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MLE of the AR(1) process

What do we do about the initial condition?
One possibility is to condition on y1, i.e. take it as fixed. In
this case the final term can be dropped and the likelihood
becomes the likelihood for the linear regression of yt on
yt−1 for observations t = 2, ...,T .
Thus we have, at the maximum,

∂ log L
∂φ

=
1
σ2

∑
(yt − φyt−1) yt−1 = 0

⇒ φ̂ =

∑
ytyt−1∑
y2

t−1
⇒ φ̂ = φ̂OLS
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MLE of the AR(1) process

Alternatively, you can use the unconditional distribution for
y1,

Recall: in the AR(1), the unconditional mean, E(yt) = 0, and the
unconditional variance, var(yt) = σ2

(1−φ2)
.

so the unconditional distribution is N
(

0, σ2

(1−φ2)

)
.

This assumption for y1 is sensible if the process has been
going on for a long time at t = 1.
Under this assumption

log f (y1) = −1
2

log 2π−1
2

logσ2+
1
2

log(1−φ2)− 1
2σ2 (1−φ2)y2

1

And this gives the log likelihood

log L(y ;φ, σ2) = −T
2

log 2π − T
2

logσ2 − 1
2σ2

T∑
t=2

(yt − φyt−1)
2

+
1
2

log(1− φ2)− 1
2σ2 (1− φ2)y2

1 .
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MLE of the AR(1) process

Note: these results can be extended to:

1 the stationary AR(p) model

2 the regression model with both process independent
regressors and lagged dependent variables.
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MLE of Nonlinear least squares

MLE of Nonlinear least squares models

An important sub class of MLE is that of nonlinear
regression models,

yt = g(xt ;β) + εt εt iid N(0, σ2), t = 1, ...,T ,

xt process independent.
Note that

εt(β) = yt − g(xt ;β)

f (εt(β)) =
1√

2πσ2
exp

{
−εt(β)2

2σ2

}
.

Hence,

log L(β, σ2) = −T
2

log 2π − T
2

logσ2 − 1
2σ2

T∑
t=1

εt(β)2,

So, maximizing log L wrt β is equivalent to minimizing the
residual sum of squares with respect to β.
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MLE of Nonlinear least squares

Differentiating the log likelihood,

∂ log L
∂β

= − 1
σ2

∑
t

∂εt(β)

∂β
εt(β) =

1
σ2

∑
t

ztεt = 0

∂ log L
∂σ2 = − T

2σ2 +
1

2(σ2)2

∑
t

εt(β)2 = 0

where
zt = −∂εt

∂β
=
∂g(xt ;β)

∂β
.

Note: the first order conditions with respect to β are nonlinear
and the ML estimates of β have to be obtained by
numerical maximization.
The first order conditions with respect to σ2 yield the usual
ML estimator for σ2,

σ̂2 =
1
T

∑
t

εt(β̂)2.
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MLE of Nonlinear least squares

Recall that we constructed an estimate of the
variance-covariance matrix of our estimates based on the
empirical information matrix I(ψ),

I(ψ) = −E
[
∂2 log L(ψ)

∂ψ∂ψ′

]
.

In the present case ψ = (β′, σ2).



MLE for Time Series Ergodic Theorem Examples of MLE estimation

MLE of Nonlinear least squares

So, looking at the components of I(ψ), we have

−E
»

∂2 log L
∂β∂β′

–
=

1
σ2

"
E

X
t

∂2εt

∂β∂β′ · εt + E
X

t

∂εt

∂β

∂εt

∂β′

#

=
1
σ2

"X
t

E
∂2εt

∂β∂β′ · E(εt) + E
X

t

∂εt

∂β

∂εt

∂β′

#

=
1
σ2 E

X
t

ztz′
t since E(εt) = 0.

−E
»

∂2L
∂(σ2)2

–
= − T

2(σ2)2 +
2

2(σ2)3

X
t

E(ε2
t )

= − T
2(σ2)2 +

2T
2(σ2)3 σ2

=
T

2(σ2)2

−E
»

∂2 log L
∂β∂σ2

–
=

1
(σ2)2 E

X
t

ztεt =
1

(σ2)2

X
t

E(zt)E(εt)

= 0 (since x is indipendent of ε)
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MLE of Nonlinear least squares

Hence, the information matrix is

I(ψ) =
1
σ2

[
E
∑
t

ztz ′t 0

0 T
2σ2

]
.

Inverting, and substituting the consistent ML estimates of β
and σ2 for unknown parameters, and the sample moment∑
t

ztz ′t for E
∑
t

ztz ′t , we approximate the distribution of

(β̂′, σ̂2) by

[
β̂′ − β′

σ̂2 − σ2

]
∼ N

[ 0
0

]
;

 σ̂2
(∑

t
ztz ′t

)−1

0

0 2σ̂4

T




that is equivalent to (1)
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MLE of the MA(1) process

MLE of the MA(1) process

Consider the MA(1)

yt = εt + θεt−1 εt iid N(0, σ2)

→ yt | εt−1 ∼ N
(
θεt−1, σ

2
)

Assume we start from ε0 = 0, then we may define εt(θ) by
using the recursive equation

εt(θ) = yt − θεt−1(θ), t = 1,2, ...,T .

Since ε0 = 0,

ε1(θ) = y1

ε2(θ) = y2 − θy1

ε3(θ) = y3 − θy2 + θ2y1

εt(θ) = yt − θyt−1 + θ2yt−2 + ...+ (−θ)t−1y1.
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MLE of the MA(1) process

Since yt | εt−1 ∼ N
(
θεt−1, σ

2), then

f (yt | It−1) =
1

(2πσ2)
1
2

exp−(yt − θεt−1(θ))
2

2σ2 .

So the log likelihood is

log L(θ, σ2) = −T
2

log 2π − T
2

logσ2 − 1
2σ2

T∑
t=1

(yt − θεt−1(θ))
2

= −T
2

log 2π − T
2

logσ2 − 1
2σ2

T∑
t=1

εt(θ)
2.

As before we have
∂ log L
∂θ

=
1
σ2

∑
t

zt(θ)εt(θ) where zt(θ) = −∂εt(θ)

∂θ
.

So the θ̂MLE satisfies∑
t

zt(θ)εt(θ) = 0
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MLE of the MA(1) process

Furthermore, using the empirical I (ψ) we can show as before
that the variance of θ̂ is given by

var(θ̂) = σ̂2

(∑
t

z2
t (θ̂)

)−1

where

σ̂2 =
1
T

T∑
t=1

ε2
t (θ̂).
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