
EC402: MEI. Spring Term: The Analysis of Time Series�

Problem Set 1

1. Regression with MA(1) errors

Consider a regression model with MA (1) distrurbance term

yt = x0t� + ut (1.1)

ut = "t + �"t�1; t = 1; :::; T

where "t � iid (0; �2) with "0 = 0 and xt non-stochastic.

1. Derive an expression for the covariance matrix, �2
; of the vector of disturbances

u = (u1; :::; uT )
0 in terms of �:

Answer. Since

E(ut) = 0, var(ut) = E(u2t ) = �2(1 + �2) t � 2

E(utut�1) = ��2, E(utut�s) = 0 s > 1

we have that
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2. By using "t = ut � �"t�1 recursively, starting from "0 = 0; "1 = u1, �nd the lower

triangular matrix L such that " = Lu where " = ("1; :::; "T )
0
:

Answer. Since "t = ut � �"t�1 and "0 = 0;we have that

"1 = u1

"2 = u2 � �u1

"3 = u3 � �u2 + �2u1

:::

Hence
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" = Lu:

3. Assume � is known. Noting that V ar (Lu) = �2I, determine a method for computing

the best linear unbiased estimator of � which does not require the construction and

inversion of 
.

Answer. To estimate the model with known �, rewrite (1.1) in matrix form and

multiply through by L obtaining

Ly = LX� + Lu

= LX� + " " � (0; �2I):

Hence OLS on this transformed model is BLUE.

2. F �GLS estimation of the regression model with AR (1) errors

Consider the model

yt = x0t� + ut (2.1)

ut = �ut�1 + "t t = 1; :::; T
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where j�j < 1, "t � iid (0; �2), x0t and "t are process independent and

p lim
1

T

TX
t=1

xtx
0
t = �xx; p lim

1

T

TX
t=1

xtx
0
t�1 = �xx� ;

and �xx is non-singular.

1. You estimate (2.1) by OLS and obtain the residual ût. You estimate � by

�̂ =

PT
t=2 ûtût�1PT
t=2 û

2
t�1

:

Assuming that �̂OLS is consistent, show that �̂ is a consistent estimator of �.

Answer. but are the OLS residuals so:
but = yt � byt

= x0t� + ut � x0t
b�

= �x0t(b� � �) + ut

) 1

T

Xbutbut�1 = 1

T

X
utut�1 + (b� � �)0

1

T

X
xtx

0
t�1(

b� � �)

�(b� � �)0
1

T

X
xtut�1 � (b� � �)0

1

T

X
xt�1ut:

Since: i) b� is consistent so p lim(b���) = 0; ii) p lim 1
T

P
xt�1ut = 0; p lim

1
T

P
xtut�1 =

0 (since x is process independent) and iii) p lim 1
T

PT
t=1 xtx

0
t�1 = �xx�, we have that

p lim
1

T

Xbutbut�1 = p lim
1

T

X
utut�1:

Similarly p lim 1
T

Pbu2t�1 = p lim 1
T

P
u2t�1. But ut is an AR(1) hence p lim

1
T

P
u2t =

�2

(1��2) and p lim
1
T

P
utut�1 =

��2

(1��2) . Hence

p lim b� =
p lim 1

T

Pbutbut�1
p lim 1

T

Pbu2t�1
=

��2=(1� �2)

�2=(1� �2)
= �:
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3. Maximum Likelihood of the ARMA(1,1)

Consider the ARMA (1; 1) process

yt = �yt�1 + "t + �"t�1 t = 1; :::; T

where j�j < 1; "t � iidN (0; �2)

1. Assuming, y1 = "1 = 0 write down the log likelihood.

2. Obtain the FOCs wrt � and �:

3. Obtain
1

T
I ( )

where  := [�; �; �2]0.

4. In �nite sample we can approximate the distribution of
�
 ̂ �  0

�
as a mean zero

normal with covariance depending on I
�
 ̂
�
: How would you estimate the covariance

matrix?

Answer. Since

ytjyt�1; "t�1 � N
�
�yt�1 + �"t�1; �

2
�

if we condition on y1; "1 = 0

LogL(�; �; �2) = �(T � 1)
2

log 2� � (T � 1)
2

log �2

� 1

2�2

TX
t=2

(yt � �yt�1 � �"t�1)
2

This is nonlinear least squares where

"t = yt � �yt�1 � �"t�1 t = 2; :::; T; "1 = 0; y1 = 0

zt =

�
�@"t
@�

�@"t
@�

�
=

"
yt�1 + � @"t�1

@�

"t�1 + � @"t�1
@�

#
;

@"1
@�

=
@"1
@�

= 0:
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Then � @ logL
@�

@ logL
@�

�
=

24 1
�2

P�
yt�1 + � @"t�1

@�

�
"t

1
�2

P�
"t�1 + � @"t�1

@�

�
"t

35 = 1

�2

TX
t=2

zt"t

@ logL

@�2
= �(T � 1)

2�2
+

1

2(�2)2

TX
t=2

"2t :

Next, compute expected second derivatives, to compute I( ). Recall

I( ) = �E

264
@2 logL
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@2 logL
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@2 logL
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@2 logL
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@2 logL
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@�@�2
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@�2@�

@2 logL
@�2@�

@2 logL
@(�2)2

375
�E

�
@2 logL

@�2

�
=

1

�2

 X
E

�
yt�1 +

�@"t�1
@�

�2
�
X

E
�@2"t�1

@�2
:"t

!
:

Since "t is iid, E
�@2"t�1
@�2

"t = �E @2"t�1
@�2

E("t) = 0. So

�E
�
@2 logL

@�2

�
=

1

�2

X
E

�
yt�1 +

�@"t�1
@�

�2
�E

�
@2 logL

@�@�

�
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1

�2

�X
E

�
yt�1 +

�@"t�1
@�

��
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@�

�
�
X

E
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@�@�

:"t �
X

E
@"t�1
@�

"t

�
=

1

�2

�X
E

�
yt�1 +

�@"t�1
@�

��
"t�1 +

�@"t�1
@�

��
:

The second and the third terms are zero by the same argument as above. Similarly

�E
�
@2 logL

@�2

�
=

1

�2

X
E

�
"t�1 +

�@"t�1
@�

�2
�E

�
@2 logL

@�2@�

�
= �E

�
@2 logL

@�2@�

�
= 0

�E
�
@2 logL

@(�2)2

�
= �E

�
(T � 1)
2(�2)2

� 1

(�2)3

X
"2t

�
=
(T � 1)
2(�2)2

So

I( ) =
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To approximate the variance-covariance matrix, replace �, �, �2 by b�, b�, b�2 and
replace expectations by sample moments, i.e.

I(b )�1 ' " b�2 (P ztz
0
t)
�1 0

0 2b�4
(T�1)

#
:
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