
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture notes #1: Regression with Autocorrelated

Disturbances

Up to this point of the course you have normally assumed that the regression errors are

iid (0; �2). Now let us consider what happens if they are serially correlated.

Consider the following simple model with AR(1) errors

yt = x0t� + ut (t = 1; :::; T ) (0.1)

ut = �ut�1 + "t;

j�j < 1, "t iid(0; �2). Extension to more complex ARMA(p; q) is feasible, but we will focus

on the AR(1) case as illustrative setting.

Note that

V ar (ut) = �2V ar (ut�1) + V ar ("t) + �2Cov (ut�1; "t)

! �2u = �
2�2u + �

2 since Cov (ut�1; "t) = 0

impliying that �2u =
�2

(1��2) . Also note that

ut = �
sut�s +

s�1X
j=0

�j"t�j ! E(ut; ut�s) = �
s�2u
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Then we have

V ar(u) = E(u u0)

=
�2

(1� �2)
f

2666664
1 � �2 � � � �T�1

� 1 � � � � �T�2

�2 � 1 � � � �T�3

...
...

...
. . .

...
�T�1 �T�2 �T�3 � � � 1

3777775
= �2
:

Obviously this is no longer diagonal as in the case of iid errors.

1. Least Squares with Autocorrelated Disturbances

What happens if we estimate the model (0.1) with ordinary least squares?

Unsurprisingly this depends on whether the regressors are process independent of "t or

if there is lagged feedback and they are only contemporaneously independent.1

If the regressors are process independent of "t, then this is basically the GLS problem

discussed last term in the context of heteroskedasticity and the results are the same.

1. OLS estimates of � remain consistent (and unbiased) but are ine¢ cient.

2. The usual estimate of the variance covariance matrix of �̂ (namely �2(X 0X)�1) is

wrong. The correct formula is (check that it is so)

V ar(�̂OLS) = �
2(X 0X)�1X 0
X(X 0X)�1:

If the regressors are only contemporaneously independent of "t, things are much more

serious. If xt is only contemporaneously independent of "t, it may be correlated with lags of

"t, and hence with ut. So xt is in e¤ect endogenous and the OLS estimates are inconsistent.2

1If you don�t remember these de�nitions from the �rst part of this course, check the appendix at the

end of this handout.
2Since

p lim �̂OLS = p lim
h
(X 0X)

�1
X 0y

i
= � + p lim

"�
1

N
X 0X

��1#
p lim

�
1

N
X 0u

�
and the last term does not go to zero if x and u are correlated.
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For example, consider the simple model with a lagged dependent variable

yt = 
yt�1 + w
0
t� + ut; j
j < 1 (1.1)

ut = �ut�1 + "t; "t iid (0; �2), 0 < j�j < 1

wt stationary and process independent of "t.

As a consequence of these assumptions, yt and ut are stationary and E(wtus) = 0 all t; s.

Now consider the correlation between yt�1 and ut. Intuitively this is unlikely to be zero

because yt�1 is correlated with ut�1 and ut�1 is correlated with ut. More formally

E(yt�1ut) = E
��

yt�2 + w

0
t�1� + ut�1

�
(�ut�1 + "t)

�
= 
�E(yt�2ut�1) + E

�
ut�1w

0
t�1��

�
+ �E(u2t�1)

+
E(yt�2"t) + E("tw
0
t�1�) + E("tut�1):

Consider each of these terms in turn:

E(yt�2ut�1) = E(yt�1ut) (by stationarity)
E(ut�1w

0
t�1��) = 0 (wt process independent)

�E(u2t�1) =
��2

(1��2) (as shown in the previous section)

E(yt�1"t) = 0 ("t iid, so independent of past information)
E("tw

0
t�1�) = 0 ditto

E("tut�1) = 0 ditto

:

From this we have

E(yt�1ut) = 
�E(yt�1ut) +
��2

(1� �2)
or equivalently

E(yt�1ut) =
��2

(1� �2)(1� 
�)
6= 0:

So yt�1 is correlated with the error in (1.1), therefore OLS applied to (1.1) will generate

inconsistent parameter estimates.

2. 
 Known: Generalized Least Squares

If we know 
 (that is, we know �), then using results proved last term, the GLS estimator

is

�̂GLS =
�
X 0
�1X

��1
X 0
�1y (2.1)
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with

V ar(�̂GLS) = �
2
�
X 0
�1X

��1
:

If the x variables are process independent of ", �̂GLS is unbiased and consistent.
3 If the x

variables are only contemporaneously independent, �̂GLS is biased, but consistent.
4

In our example with AR(1) errors


�1 =

266666664

1 �� 0 � � � 0 0
�� 1 + �2 �� 0 0

0 �� 1 + �2
. . . 0 0

...
. . . . . . . . .

0 0 0
. . . 1 + �2 ��

0 0 0 � � � �� 1

377777775
:

Check that multiplying this by 
 gives the unit matrix. Next you can verify that 
�1 can

be factored into L0L where L is the T � T nonsingular matrix,

L =

26666664

p
1� �2 0 0 � � � 0 0
�� 1 0 � � � 0 0
0 �� 1 0 0
...

. . . . . .
...

0 0 0 � � � 1 0
0 0 0 � � � �� 1

37777775 :

An easy way to carry out GLS is to premultiply the basic model by L and perform OLS.

Why does this work? Writing (0.1) in matrix form gives

y = X� + u E(u) = 0:

Premultiply by L,

Ly = LX� + Lu: (2.2)

Two points are worth noting. First, OLS on (2.2) gives

�̂ = [(LX)0(LX)]
�1
(LX)0Ly

= (X 0L0LX)
�1
X 0L0Ly

=
�
X 0
�1X

��1
X 0
�1y

= �̂GLS:

3E�̂GLS = � , and p lim �̂GLS = �
4E�̂gls 6= � but p lim �̂gls = �
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Second, note that the variance matrix of Lu is

E ((Lu)(Lu)0) = E (Lu u0L0) = LE(u u0)L0

= �2L
L0 = �2L(L0L)�1L0

= �2LL�1L0�1L0

= �2I:

This ensures that the errors in (2.2) are homoskedastic and serially uncorrelated.

In order to use OLS on (2.2), we need to compute Ly and LX. Let Ly = y�, LX = X�.

Given the de�nition of L, we have

y�1 =

�q
1� �2

�
y1

y�t = yt � �yt�1; t = 2; :::; T

x�1 =

�q
1� �2

�
x1

x�t = xt � �xt�1; t = 2; :::; T:

The transformed model satis�es the usual assumptions of the linear regression model and

hence as for least squares in the independent homoskedastic case. If the regressors are

process independent of ", the GLS estimator is Best Linear Unbiased. If there is lagged

feedback and the regressors are only contemporaneously independent of ", the GLS esti-

mator is biased but consistent.

As the �rst observation is handled di¤erently from the rest, there is a temptation to

drop it. If this is done the resulting transform is known as the Cochrane Orcutt transform.

In large samples dropping the �rst observation has no e¤ect. In small samples it can result

in a substantial loss of e¢ ciency.

3. 
 Unknown: Feasible GLS, Two Step Procedures

In general we do not know 
. This leads to the obvious feasible GLS two step estimator:

(i) obtain a consistent estimator of �, (ii) use it in the GLS formula. Under standard

conditions we would expect that the resulting estimator would have similar properties to
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GLS, consistent and e¢ cient in large samples. There are three main methods of estimating

�.

3.1. Method 1

The �rst method uses the residuals from the OLS regression of y on X, û. Provided that

the x are process independent of ", then the least squares estimates of � are consistent

and the residuals, û are consistent estimates of the errors, u. A consistent estimate of � is

obtained by regressing û on û�1,

�̂ =

TP
t=2

ûtût�1

TP
t=2

û2t�1

:

This technique combined with GLS omitting the �rst observation is called the Cochrane

Orcutt two-step technique. Unfortunately if the regressors are only contemporaneously

independent of " (the usual case in time series),5 the �rst stage OLS estimates are incon-

sistent and this in turn causes both �̂ and the second stage estimates to be inconsistent as

well.

3.2. Method 2

If we take the original model (0.1) and subtract o¤ � times the lagged model, we obtain

yt � �yt�1 = (xt � �xt�1)0� + ut � �ut�1

= (xt � �xt�1)0� + "t

or

yt = �yt�1 + x
0
t� � x0t�1(��) + "t:

Durbin suggested estimating the second equation by OLS ignoring the constraint on the

third coe¢ cient. Then use the estimate of the coe¢ cient on lagged y, �̂ as the estimate of �

for the second stage GLS. Unlike the �rst procedure, the �rst stage estimates are consistent

5For example when lagged depended variables are among the regressors.
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regardless of whether x is process or only contemporaneously independent of " which means

that the second stage estimates are also consistent in both cases. However, there are two

problems here. First, the standard errors generated by following this procedure are typically

incorrect, unless the x variables are process independent. Second, suppose we have the

standard case of contemporaneous independence, that is where there is a lagged dependent

variable as in (1.1). So if we take (1.1) and subtract o¤ (1.1) lagged times �, we have

yt � �yt�1 = 
(yt�1 � �yt�2) + (w0t � �w0t�1)� + "t

or

yt = (�+ 
)yt�1 + �
yt�2 + w
0
t� � w0t�1(��) + "t: (3.1)

In this case, following Durbin�s procedure, we estimate by OLS and �nd that the coe¢ cient

on yt�1 is (�̂ + 
̂) and that on yt�2 is �̂
̂. We can solve these for �̂ and 
̂, but since there

is perfect symmetry between �̂ and 
̂ here, we �nd two values but we don�t know which

is �̂ and which is 
̂. Of course, we could go on to investigate the ratios of the coe¢ cients

on wt�1 (a vector) to those on wt, all of which generate estimates of �. But this would be

half baked. Why not simply estimate �; 
; � in (3.1) using maximum likelihood, which will

take account of the nonlinear restrictions on the coe¢ cients? So we have the next method.

3.3. Method 3: MLE

As our basic example, we use (1.1), that is

yt = 
yt�1 + w
0
t� + ut; j
j < 1

ut = �ut�1 + "t; j�j < 1; t = 1; :::; T

"t, iid N(0; �2); wt process independent of "t.

Lagging the equation, multiplying by � and subtracting gives

yt = �yt�1 + 
(yt�1 � �yt�2) + (wt � �wt�1)0� + "t:

So the conditional density of yt given information (yt�1; yt�2; wt; wt�1) is

N
�
�yt�1 + 
(yt�1 � �yt�2) + (wt � �wt�1)0�; �2

�
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Taking the product of the conditionals in the usual way, and conditioning on y1; y2 �xed,

the log likelihood is

logL
�
�; 
; �; �2

�
= �T � 2

2
log 2� � (T � 2)

2
log �2 � 1

2�2

TP
t=3

"2t

"t = yt � �yt�1 � 
(yt�1 � �yt�2)� (wt � �wt�1)0�:

This is nonlinear least squares since maximizing logL wrt �; 
; � is equivalent to minimizing
TP
t=3

"2t .

If we de�ne zt by

zt =

24 �@"t
@�

�@"t
@


�@"t
@�

35 = " wt � �wt�1
yt�1 � �yt�2

yt�1 � 
yt�2 � w0t�1�

#

then the FOC for a maximum are given by

TP
t=3

zt"t = 0:

The solutions are the ML estimates �̂; 
̂; �̂ which can be used to compute

�̂2 =
1

T � 2
TP
t=3

�
yt � �̂yt�1 � 
̂

�
yt�1 � �̂yt�2

�
�
�
wt � �̂wt�1

�0
�

�2
:

Then, by the usual formula MLE formula

V ar

24 �̂
̂
�̂

35 = �̂2� TP
t=3

ẑtẑ
0
t

��1

where ẑt is zt evaluated at �̂; 
̂; �̂.

3.4. Comparison of the Three Methods

If all the right-hand-side variables are process independent, then all three estimates are con-

sistent and asymptotically e¢ cient. They also provide consistent estimates of the variance

covariance matrix of the estimates.

If the xt are only contemporaneously independent, then the �rst stage of Cochrane-

Orcutt is inconsistent, which makes the whole procedure inconsistent. If the xt are only
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contemporaneously independent, the Durbin procedure remains consistent, but the simple

estimates of the variance covariance matrix are wrong. Only ML maintains its properties,

consistency and asymptotic e¢ ciency and provides a consistent estimate of the variance

covariance matrix. In practice it is probably best to use the ML method.

4. Appendix

Recall the following de�nitions:

1. Process independence: a variable x is process independent of the errors if each element

xt is independent of the errors, "s for all s and for all t. Process independence is closely

related to the idea of strong exogeneity and is often referred to as such.

2. Contemporaneous independence: a variable x is contemporaneously independent

if xt is independent of "t for all t, but it may be correlated with "s, where s <

t. The standard example of a right hand side variable that is contemporaneously

independent but not process independent is a lagged endogenous variable (i.e. yt�1).

Contemporaneous independence is closely related to the idea of weak exogeneity and

is often referred to as such. An alternative term that is frequently used to describe

contemporaneously independent variables is predetermined. The simplest example of

a linear model with a contemporaneously independent regressor is the AR(1),

yt = �yt�1 + "t; "t iid, j�j < 1:

It is directly implied by the model that yt�1 is a function of "t�1, indeed, since

yt�1 =
1P
j=0

�j"t�j�1 = "t�1 + �"t�2 + �
2"t�3 + :::, yt�1 depends on "t�1; "t�2; "t�3; :::.

3. Endogenous: a variable x is endogenous if xt is correlated with "t, i.e. contempora-

neously correlated.

9


