
EC402: MEI. Spring Term: The Analysis of Time Series�

Problem Set 3 �Solutions

1. Cointegration

Suppose that aggregate income, Yt; follows a random walk with drift

Yt = �y + Yt�1 + "yt

and that the government always spends a fraction of the previous period output

Gt = �g + gYt�1 + "gt (1.1)

where 0 < g < 1; "yt and "gt are mean zero serially independent iid variables.

Moreover, assume that the government runs a balanced budget (Tt = Gt 8t) and that

consumption follows

Ct = �+ � (Yt � Tt) (1.2)

with �; � > 0

1. Are Y; C and G stationary? What are their orders of integration?

Answer Y is a non stationary I (1) variable, as well as G from equation (1.1). Substituting

for Tt and Yt in (1.2) we have that

Ct = �+ �
�
�y + Yt�1 + "yt � �g � gYt�1 � "gt

�
_ � (1� g)Yt�1 + � ("yt � "gt)
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Therefore, since 0 < g < 1; Ct is also a non stationary I (1) variable.

2. Are Ct andGt cointegrated? Are Yt andGt cointegrated? Are Ct and Yt cointegrated?

Are Ct; Yt and Gt cointegrated?

Answer If Ct and Gt are cointegrated there 9�1 s.t. Ct � �1Gt � I (0) :

Ct � �1Gt = �+ �Yt � (� + �1)Gt

= �+ �
�
�y + Yt�1 + "yt

�
� (� + �1)

�
�g + gYt�1 + "gt

�
_ �Yt�1 � (� + �1) gYt�1 + (�"yt � (� + �1) "gt)

Since Yt�1is I (1), for cointegration among these variables we need �� (� + �) g = 0

that is satis�ed by �1 = 1
g
(� � �g) :

Yt and Gt are cointegrated if there 9�2 s.t. Yt � �2Gt � I (0) :

Yt � �2Gt _ Yt�1 + "yt � �2gYt�1 � �2"gt

that is we need 1� �2g = 0 that is satis�ed by �2 = 1=g

Ct and Yt are cointegrated if there 9�3 s.t. Ct � �3Yt � I (0) :

Ct � �3Yt _ (� � �3)Yt � �Gt

_ (� � �3)Yt�1 � �gYt�1 + (� � �3) "yt � �"gt

that is we need (� � �3)� �g = 0 that is satis�ed by �3 = � � g� = g�1

Ct; Yt and Gt are cointegrated if there 9�4; �5 and s.t. Ct � �4Yt � �5Gt � I (0)

Ct � �4Yt � �5Gt _ (� � �4)Yt � (� + �5)Gt

_ (� � �4)Yt�1 � (� + �5) gYt�1 + (� � �4) "yt � (� + �5) "gt

So we need (� � �4) � (� + �5) g = 0. This has in�nite solutions given by �4 =

� � g (� + �5) : One of the solutions is �5 = �� and �4 = �.

3. How many linearly independent cointegration vectors are there? Why?
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Answer Ordering the variables as Ct; Yt and Gt; we can write a matrix that has in each row

the cointegration vectors we have found before, that is264 1 0 �1
g
(� � �g)

0 1 �1=g
1 � (� � g�) 0
1 �� �

375
Note that the third row can be obtained by multiplying the second row by (� � g�) and

subtracting the result from the �rst row. That is, the third row is not linearly inde-

pendent from the �rst two rows. Moreover, the fourth row can be obtained multiplying

the second row by � and subtracting the result from the �rst row. That is, there are

only two linearly independent cointegrating vectors among these three variables. This

is due to the fact that N variables can at most share N � 1 common trends.

4. What are the long-run trends of Yt; Gt and Ct?

Answer

E [Yt+T � Yt] = E [(Yt+T � Yt+T�1) + :::+ (Yt+1 � Yt)] = �yT

E [Gt+T �Gt] = gE [Yt+T�1 � Yt�1] = g�yT

E [Ct+T � Ct] = � fE [Yt+T � Yt]� E [Gt+T �Gt]g = � (1� g)�yT

That is, the long run trend of Ct is a linear combination of the long run trends of Yt

and Gt.

2. Dynamic Simultaneous Equations

Consider the following model

y1t = 
y2t + �xt + "1t

y2t = �y1t�1 + "2t

where "1t and "2t are serially uncorrelated disturbances which may be contemporaneously

correlated with each other.
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1. Are the parameters identi�able?

Answer Two endogenous variables y1t; y2t, two exogenous variables y1;t�1; xt. (Note "1t; "2t

must be serially uncorrelated for y1t�1 to be treated as exogenous). As N = 2, N �

1 = 1. One exclusion restriction per equation. Therefore, the �rst equation is just

identi�ed by order condition as well as the second equation. Both pass rank condition.

2. Write down the �nal form and the autoregressive �nal form of the model.

Answer By substitution, we have

y1t = 
�y1;t�1 + 
"2t + �xt + "1t

) (1� 
�L)y1t = �xt + ("1t + 
"2t)

Lag the �rst equation of the system and substitute into the second,

y2t = �
y2;t�1 + ��xt�1 + �"1t�1 + "2t:

) (1� �
L)y2t = ��xt�1 + ("2t + �"1t�1)

) (1� �
L)
�
y1t
y2t

�
=

�
�
��L

�
xt +

�
1 

�L 1

� �
"1t
"2t

�
Autoregressive
Final Form

)
�
y1t
y2t

�
= 1

(1�
�L)

�
�
��L

�
xt +

1
(1��
L)

�
1 

�L 1

� �
"1t
"2t

�
Final Form

1. What is the necessary condition for the model to be stable?

Answer Stable i¤ j�
j < 1:

3. VAR Estimation

Consider the VAR

yt = c+ �1yt�1 + :::+ �pyt�p + "t

where yt is a n � 1 vector of time series, c is n � 1 vector of constants, the ��s are n � n

matrixes of coe¢ cients and "t is a vector of disturbances s.t. "t � iidN (0;
).
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1. De�ne the (np+ 1)� 1 vector

xt =

264 1
yt�1
:::
yt�p

375
and the n� (np+ 1) matrix

�0 = [c; �1; :::;�p] :

Write down the sample log likelihood of this model.

Answer The VAR can be rewritten as

yt = �
0xt + "t

therefore

ytjxt � N (�0xt;
) :

implying that

f (ytjxt; �;
) = (2�)�n=2
��
�1��1=2 exp��1

2
(yt � �0xt)0
�1 (yt � �0xt)

�
:

Therefore, conditioning on the �rst p observations ( y0; :::; y�p+1), the sample log like-

lihood is given by

logL (�;
) = �Tn
2
log 2� +

T

2
log
��
�1��

�1
2

TX
t=1

�
(yt � �0xt)0
�1 (yt � �0xt)

�
(3.1)

2. Show that the term
PT

t=1 (yt � �0xt)
0
�1 (yt � �0xt) in the log likelihood you derived

above can be rewritten as

TX
t=1

��
"̂t +

�
�̂� �

�0
xt

�0

�1

h
"̂t +

�
�̂� �

�
xt

i�
(3.2)

where �̂ is the OLS equation-by-equation estimate of � and "̂t is the vector of OLS

residuals.
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Answer Note that

(yt � �0xt)0
�1 (yt � �0xt)

=
�
yt � �̂0xt + �̂0xt � �0xt

�0

�1

�
yt � �̂0xt + �̂0xt � �0xt

�
=

�
"̂t +

�
�̂� �

�0
xt

�0

�1

�
"̂t +

�
�̂� �

�0
xt

�
since "̂t � yt � �̂0xt; implying that

TX
t=1

(yt � �0xt)0
�1 (yt � �0xt)

�
TX
t=1

��
"̂t +

�
�̂� �

�0
xt

�0

�1

h
"̂t +

�
�̂� �

�
xt

i�
3. Show that (3.2) can be further simpli�ed as

TX
t=1

"̂0t

�1"̂t +

TX
t=1

�
x0t

�
�̂� �

�

�1

�
�̂� �

�0
xt

�
(3.3)

[Hint: use the fact that this last expression is a scalar and recall that the OLS residuals

are, by construction, orthogonal to the regressors]

Answer Note that
TX
t=1

��
"̂t +

�
�̂� �

�0
xt

�0

�1

h
"̂t +

�
�̂� �

�
xt

i�

=
TX
t=1

"̂0t

�1"̂t + 2

TX
t=1

"̂0t

�1
�
�̂� �

�0
xt

+
TX
t=1

�
x0t

�
�̂� �

�

�1

�
�̂� �

�0
xt

�
Note that each of these elements is a scalar and that

TX
t=1

"̂0t

�1
�
�̂� �

�0
xt = trace

"
TX
t=1

"̂0t

�1
�
�̂� �

�0
xt

#

= trace

"
TX
t=1


�1
�
�̂� �

�0
xt"̂

0
t

#

= trace

"

�1

�
�̂� �

�0 TX
t=1

xt"̂
0
t

#
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But the OLS residuals are, by construction, orthogonal to the regressors, thereforePT
t=0 xt"̂

0
t is a matrix of zeros and the last expression is therefore identically zero

implying that

TX
t=1

��
"̂t +

�
�̂� �

�0
xt

�0

�1

h
"̂t +

�
�̂� �

�
xt

i�

=
TX
t=1

"̂0t

�1"̂t +

TX
t=0

�
x0t

�
�̂� �

�

�1

�
�̂� �

�0
xt

�

4. Use this last result to show that the OLS estimator of � (�̂) is the MLE.

Answer De�ne x�t =
�
�̂� �

�0
xt: The last term in (3.3) is therefore

TX
t=1

�
x0t

�
�̂� �

�

�1

�
�̂� �

�0
xt

�
=

TX
t=1

x�0t 

�1x�t :

Note that since 
 is a positive de�nite matrix, 
�1 is as well. Thus, the last expression

is positive for any sequence fx�tg
T
t=0 other than x

�
t = 0 8t. Thus the smallest value

that (3.3) can take is achieved when � = �̂: It than follows that the log likelihood

(3.1) is maximized by setting � = �̂; proving that OLS equation by equation is the

MLE estimator of the unrestricted VAR.
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