
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture Notes #5: Simultaneous Equations

1. Multivariate Regressions

This is characterized by a set of N reduced form regressions. The �rst building block is to

extend single to multivariate regression. So yt becomes an N vector,

yt = Xt� + "t; t = 1; :::; T

where

yt =

2664
y1t
y2t
...
yNt

3775 ; Xt =

2664
x01t 0 � � � 0
0 x02t � � � 0
...

...
. . .

...
0 0 � � � x0Nt

3775 ; � =
2664
�1
�2
...
�N

3775 ; "t =
2664
"1t
"2t
...
"Nt

3775 :
where each �i is a vector of coe¢ cients. Note that each of the i equations need not have

the same regressors.

Assume that the ith equation has Ki regressors. Hence Xt is N �K where K =
P

iKi;

and � is of size K � 1.

The errors are assumed correlated across the i,

E ("t"
0
t) = 
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an N � N matrix, but uncorrelated across t. Just because we are using the t su¢ x does

not mean that this is a good model for time series. It is a better model where we have

multiple observations on each unit in a random sample: multiple demands by a household

or �rm for example.

This model is known as SUR: seemingly unrelated regressions. The equations appear

to be unrelated but are in fact related through the errors.

A possible estimator for � is least squares on each of the i equations individually,

�̂ =

�
TP
t=1

X 0
tXt

��1 TP
t=1

X 0
tyt:

If the regressors are process independent, the estimates are unbiased with standard small

sample properties. However they are not in general e¢ cient.

An alternative if 
 is known is GLS. It is reasonably straightforward to see that the

GLS estimator is

�̂gls =

�
TP
t=1

X 0
t


�1Xt

��1 TP
t=1

X 0
t


�1yt:

Again if regressors are process independent the GLS estimator is optimal.

Of course in general 
 is not known and we need to fall back on feasible GLS. The

approach is absolutely standard. Estimate the N equations separately using least squares.

Calculate the least squares residuals. Estimate 
 as


̂ =
1

T

P
t

"̂t"̂
0
t:

Then use the GLS formula, with 
̂ for 
 to obtain the F-GLS estimator.

Note. under two circumstances the GLS estimator simpli�es to least squares:

1. (Obviously) if 
 is known to be diagonal.

2. (Less obviously) if the regressors in each of the N equations are the same.1

1This result will also extend to the VAR models we�ll discuss later on.
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2. The General Simultaneous Equations Model

Suppose yt is an N � 1 vector of endogenous variables. Each of these is a linear function

of the other endogenous variables and of a set of K exogenous variables, xt. Usually xt

are contemporaneously independent of the errors or may be process independent. xt may

include lagged endogenous variables. The set of N equations is written as

�yt = Bxt + "t t = 1; :::; T; (2.1)

where � is N �N , B is N �K, "t is N � 1, xt is K � 1, yt is N � 1. Expression (2.1) is

called the Structural Form.

For example, suppose

y1t = 
12y2t + �11x1t + �14x4t + "1t

y2t = 
23y3t + �22x2t + �23x3t + "2t

y3t = 
32y2t + �31x1t + �33x3t + �34x4t + "3t:

Then, in structural form, we have

"
1 �
12 0
0 1 �
23
0 �
32 1

#
| {z }

�

"
y1t
y2t
y3t

#
=

"
�11 0 0 �14
0 �22 �23 0
�31 0 �33 �34

#
| {z }

B

264 x1tx2tx3t
x4t

375+ " "1t"2t
"3t

#
:

The solution for yt in terms of xt is called the Reduced Form, that is,

yt = �
�1Bxt + �

�1"t

or

yt = �xt + vt (2.2)

where � = ��1B is N � K and vt = ��1"t. Note that each element of vt is generally a

function of all the elements of "t, so each endogenous variable depends on all the errors.

The data may be thought of as being generated by the reduced form (2.2). So, given

the data, we can make estimates of the elements of � and the variance matrix of v.
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2.1. Identi�cation

Focussing on �, if we know the elements of �, can we �nd out about the parameters � and

B? This is a problem of identi�cation. In general, the answer is no.

The basic equation is

��1B = �

or

B = ��:

Looking at each element in turn, we have N �K equations. Assuming that the diagonal

elements of � are all restricted to be equal to one,2 there are N �K unknowns in B and

N � (N � 1) unknowns in �. That is, many more unknowns than equations!

So what are the conditions for identi�cation?

i) Conditions apply to one equation at a time.

ii) A necessary condition (the order condition) is that the number of omitted x; y vari-

ables in the equation has to be � N � 1. Note that a linear restriction counts as a

omitted variable.

iii) A necessary and su¢ cient condition (the rank condition) is that the matrix obtained

from all the �; B coe¢ cients in the other equations corresponding to the zero�s in the

equation concerned, is of rank N � 1. (Note this matrix has (N � 1) rows.).

iv) If the nec./su¤. conditions is passed and the number of zero�s + linear restrictions

> N � 1, the equation is over-identi�ed; if equal to N � 1, it is just identi�ed.

Note: an identity (e.g. y = c+ i+ g) is always identi�ed.

2This is an innocuous normalization since we can always re-scale each equation by a constant.
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Example 1.

y1t = 
12y2t + �11z1t + �13z3t + �14z4t + u1t

y2t = 
24y4t + �22z2t + �24z4t + u2t

y3t = 
32y2t + �32z2t + �33z3t + u3t

y4t = 
42y2t + 
43y3t + �41z1t + �42z2t + �44z4t + u4t:

First, write in matrix form

y1t y2t y3t y4t z1t z2t z3t z4t

264 1 �
12 0 0 ��11 0 ��13 ��14
0 1 0 �
24 0 ��22 0 ��24
0 �
32 1 0 0 ��32 ��33 0
0 �
42 �
43 1 ��41 ��42 0 ��44

375
2666666664

y1t
y2t
y3t
y4t
z1t
z2t
z3t
z4t

3777777775
=

264 u1tu2tu3t
u4t

375

N = 4, N � 1 = 3.

Equation 1

Order: No. of zeros = 3 = N � 1

Rank:

"
0 �
24 ��22
1 0 ��32

�
43 1 ��42

#
= 3 (note det 6= 0)

So just identi�ed.

Equation 2

Order: No. of zeros = 4 > N � 1

Rank:

"
1 0 ��11 ��13
0 1 0 ��33
0 �
43 ��41 0

#
= 3 (det. of 1st sub-matrix 6= 0)

So over-identi�ed.

Equation 3

Order: No. of zeros = 4 > N � 1
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Rank:

"
1 0 ��11 ��14
0 �
24 0 ��24
0 1 ��41 ��44

#
= 3 (det. of 1st sub-matrix 6= 0)

Equation 4

No. of zeros = 2 < N � 1.

So not identi�ed.

Note, if �11 = �13, equivalent to one extra zero in Equation 1 so it becomes over identi�ed.

Section 2.4 presents a more extensive discussion of identi�cation issues. That section is

meant for your information only, and will not be examined.

2.2. Estimation

Structural Form : �yt = Bxt + "t (2.3)

Reduced Form: yt = �
�1Bxt + �

�1"t = �xt + vt: (2.4)

Consider �rst equation in the structural from (2.3)

y1t = Y
0
1t
1 +X

0
1t�1 + "1t (2.5)

where Y 01t = row vector of y variables included in �rst equation excluding y1t; X 0
1t = row

vector of x variables included in �rst equation. We can rewrite this in matrix form as

y1 = Y1
1 +X1�1 + "1 (2.6)

where

y1 =

2664
y11
y12
...
y1T

3775 ; Y1 =

2664
Y 011
Y 012
...
Y 01T

3775 etc.

y1 = T � 1, Y1 = T � (N1 � 1), X1 = T � K1, where N1 is the number of endogenous

variables in equation (2.5), K1 is number of exogenous variables in equation (2.5). Note
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(N�N1) = number of excluded y variables, K�K1 = number of excluded x variables. Let

XT
1 = T � (K �K1) matrix of excluded exogenous variables. Recall, from (2.4), each y is

correlated with all errors. So, to estimate (2.6), we need to use IV (instrumental variables).

We have (N1 � 1) right hand side endogenous variables correlated with the error. And

we have (K�K1) spare (excluded) X variables to use as instruments. But we need at least

as many instruments as endogenous variables, i.e. we need

(K �K1) � (N1 � 1)

or equivalently, adding N �N1 on each side

(N �N1) + (K �K1) � N � 1:

But the LHS is the number of zeros in �rst equation �so this is the order condition for

identi�cation. So, if the equation is identi�ed �i.e. this order condition is satis�ed �we

can do IV.

Proceeding to estimation, form the matrices

Z1 = [Y1; X1]; X = [X1; X
T
1 ]; �1 =

�

1
�1

�
:

So the �rst equation (2.6) can be written

y1 = Z1�1 + "1 (2.7)

Using X as the set of instruments, the IV estimator is

�̂1 =
�
Z 01X(X

0X)�1X 0Z1
��1

Z 01X(X
0X)�1X 0y1 (2.8)

where

var(�̂1) = s2iv
�
(Z 01X)(X

0X)�1(X 0Z1)
��1

s2iv =
1

(T �N1 �K1)

P
t

�
yt � Z 01t�̂1

�2
:
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Note that if Z 01X is square (i.e. N1 + K1 � 1 = K, so just identi�ed), then �̂1 can be

simpli�ed, i.e.

�̂1 =
�
Z 01X(X

0X)�1X 0Z1
��1

Z 01X(X
0X)�1X 0y1

= (X 0Z1)
�1(X 0X)(Z 01X)

�1(Z 01X)(X
0X)�1X 0y1

= (X 0Z1)
�1X 0y1: (2.9)

In the case of over-identi�cation, the IV estimator (2.8) is known as Two Stage Least

Squares.3 In the just-identi�ed case, (2.9) is known as Indirect Least Squares.

Notes:

1. The above seems to imply that if an equation passes the order condition then we can

estimate it. We know that you cannot estimate an underidenti�ed equation. But

the above seems to imply that you can estimate an equation which passes the order

condition but fails the rank condition. An estimate of the variance of the limiting

distribution of
p
T (�̂1 � �1) is

�2

"
1

T
Z 01X

�
1

T
X 0X

��1
1

T
X 0Z1

#�1
:

If an equation fails the rank condition, then in the limit 1
T
Z 01X tends to matrix with

rank less than the number of columns of Z1. This in turn makes the matrix in square

brackets singular and non-invertible. In �nite samples you get very large estimated

standard errors; the estimates are very poorly de�ned.

3To see why this is a two stage least square, note that if we regress Z1 on X we obtain the least square

coe¢ cients (X 0X)
�1
X 0Z1. We can therefore construct Ẑ1 := X (X 0X)

�1
X 0Z1. Regressing then y1 on

Ẑ1via least squares we get the coe¢ cients�
Ẑ 01Ẑ1

��1
Ẑ1y1 =

h
Z 01X (X

0X)
�1
X 0X (X 0X)

�1
X 0Z1

i�1
X (X 0X)

�1
X 0Z1y1

=
h
Z 01X (X

0X)
�1
X 0Z1

i�1
X (X 0X)

�1
X 0Z1y

= : �̂1
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2. The IV estimator is consistent but not e¢ cient. There are more complex techniques

which are asymptotically e¢ cient, in particular Full InformationMaximum Likelihood

(FIML) and Three Stage Least Squares (3SLS).

The underlying rationale of ML is exactly as you would expect. 3SLS is basically a

feasible GLS technique. It uses 2SLS for the initial estimates, estimates 
 from the

residuals and then does a �nal iteration of GLS based on the estimated 
.

2.3. Dynamic Models

The standard notation for a simultaneous system can be extended to simultaneous stochas-

tic di¤erence models,

A0yt = A1yt�1 + :::+ Apyt�p +B0xt + :::+Bsxt�s + "t: (2.10)

Note that lagged y variables are contemporaneously independent so long as "t is iid. Many

results from the static framework carry through. If the "t are serially independent, then

the standard criteria for identi�cation are valid. The reduced form is

yt = A
�1
0 A1yt�1 + :::+ A

�1
0 Apyt�p + A

�1
0 B0xt + :::+ A

�1
0 Bsxt�s + A

�1
0 "t: (2.11)

Note that the lagged y variables are treated as exogenous variables in the previous model.

Clearly (2.10) can be re-expressed using lag polynomials,

A(L)yt = B(L)xt + "t:

The key question is whether A(L) can be inverted. In general

A�1(L) =
A�(L)

jA(L)j (2.12)

where A�(L) is the adjoint of A, the transposed matrix of cofactors.4 For A(L) to be

invertible, jA(L)j 6= 0. If A(L) is invertible, (2.10) can be written as

yt = A
�1(L)B(L)xt + A

�1(L)"t: (2.13)

4A review of some linear algebra de�nition is presented in the appendix.

9



This is the Final Form and it expresses yt as a function of current and lagged exogenous

variables and errors only (these lags are usually in�nite). (2.13) can also be written as

jA(L)j yt = A�(L)B(L)xt + A�(L)"t: (2.14)

This is the Autoregressive Final Form. Now jA(L)j is just a scalar polynomial of order

p�N . Each equation in (2.14) is a stochastic di¤erence equation in lagged values of the

equation dependent variable, current and lagged values of the exogenous variables, and the

vector of errors. Further in all N equations the coe¢ cients on the lagged dependent vari-

ables are the same. This implies a common pattern of dynamic behavior for the endogenous

variables in the system.

In particular it implies that if one equation is stable, then the whole system is stable.

As usual the condition for stability is that the characteristic equation associated with the

lag polynomial jA(L)j should have roots with absolute values less than one.

In view of the importance of stability, one of the �rst things that you want to know

about any dynamic system is its autoregressive �nal form and hence the roots of jA(L)j.

How do we do this? Two ways: one is to do the formal matrix algebra. However in small

systems without too many lags it is sometimes easier to solve by hand.

Example 2. Consider the simple income-expenditure model in obvious notation,

ct = �11 + 
13yt + 
14yt�1 + "1t (2.15)

it = �21 + �22it�1 + "2t (2.16)

yt = ct + it: (2.17)

Identi�cation ct it yt yt�1 it�1
1 0 �
13 �
14 0 N = 3
0 1 0 0 ��22
�1 �1 1 0 0

(2.15) Order: Zeros = 2 = N � 1. Order condition satis�ed.

Rank =
�
1 ��22
�1 0

�
= 2: Rank condition satis�ed.

Just identi�ed.
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(2.16) Order: Zeros = 3 > N � 1. Order condition satis�ed.

Rank =
�
1 �
13 �
14
�1 1 0

�
= 2: Rank condition satis�ed.

Over identi�ed.

(2.17) Identify (it�s an identity).

To derive the reduced form, substitute (2.15), (2.16) into (2.17).

yt = �11 + 
13yt + 
14yt�1 + "1t

+�21 + �22it�1 + "2t

or

yt =
�11 + �21
1� 
13

+

14

1� 
13
yt�1 +

�22
1� 
13

it�1 +
"1t + "2t
1� 
13

(2.18)

it = �21 + �22it�1 + "2t: (2.19)

From the identity,

ct = yt � it;

using (2.18), (2.19), we have

ct =
�11 + �21
13
1� 
13

+

14

1� 
13
yt�1 +

�22
13
1� 
13

it�1 +
"1t + "2t
13
1� 
13

: (2.20)

These are the reduced form equations. To estimate (2.15), use it�1 as instrument for yt

which is correlated with "1t. (2.16) is already a reduced form equation, so it may be

estimated by OLS.

To estimate the stability of the model, generate a condensed model consisting of only y

and i equations, eliminating ct (and, in general, all its lags, although there are no lags of c

in this model).

So substituting (2.15) into (2.17), we have a condensed model,

yt = �11 + 
13yt + it + 
14yt�1 + "1t
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or

yt =
�11

(1� 
13)
+

1

(1� 
13)
it +


14
(1� 
13)

yt�1 +
"1t

(1� 
13)
(2.21)

it = �21 + �22it�1 + "2t:

Writing this condensed model in matrix lag operator form gives�
1� 
14L

(1�
13)
�1

1�
13
0 (1� �22L)

�
| {z }

A(L)

�
yt
it

�
=

�
�11
1�
13
�21

�
| {z }

B(L)

+

�
"1t

1�
13
"2t

�

Note that the x variables include only the constant terms in this case. The determinant,

jA(L)j = (1� �22L)
�
1� 
14L

(1� 
13)

�
= 1�

�
�22 +


14
1� 
13

�
L+

�22
14
(1� 
13)

L2:

The adjoint matrix

A�(L) =

"
(1� �22L) 1

1�
13
0 1� 
14L

(1�
13)

#
:

So the Autoregressive Final Form, based on (2.14), is�
1�

�
�22 +


14
1� 
13

�
L+

�22
14
(1� 
13)

L2
��

yt
it

�
=

"
(1� �22L) 1

1�
13
0 1� 
14L

(1�
13)

# �
�11

(1�
13)
�21

�
+

"
(1� �22L) 1

1�
13
0 1� 
14L

(1�
13)

# �
"1t

1�
13
"2t

�
:

Multiplying out gives

yt =

�
�22 +


14
1� 
13

�
yt�1 �

�22
14
(1� 
13)

yt�2 +
(1� �22)
(1� 
13)

�11 +
�21

(1� 
13)
+

"1t
(1� 
13)

� �22"1t�1
(1� 
13)

+
"2t

(1� 
13)

it =

�
�22 +


14
1� 
13

�
it�1 �

�22
14
(1� 
13)

iy�2 +

�
1� 
14

1� 
13

�
�21 + "2t �


14
(1� 
13)

"2t�1:

The model is stable if the roots of A(L) are less than 1 in absolute value. From jA(L)j, we

see that the roots satisfy the quadratic equation

�2 �
�
�22 +


14
1� 
13

�
�+

�22
14
(1� 
13)

= 0:
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In this case, this factorises and the roots are 
14
1�
13

, �22. So the model is stable i¤
��� 
14
1�
13

��� < 1,
j�22j < 1.

2.4. More on Identi�cation

[This section is for information only. Details will not be examined.]

A system of simultaneous equations can be written,

�yt = Bxt + "t t = 1; :::; T

where there are N equations and K exogenous variables. Thus � is N �N , with diagonal

elements normalized to 1, and B, N � K. � is assumed non-singular, hence the reduced

form is

yt = ��1Bxt + �
�1"t

= �xt + �t

� is an N � K matrix. The identi�cation problem arises because the most that can be

determined from data on yt and xt are the elements of � and the variance covariance

matrix of the ��s. Assuming that nothing is known about the covariance matrix of the "�s

and hence of the ��s, the problem is whether it is possible to solve back from � to obtain

estimates of the structural coe¢ cients, � and B. From the de�nition of the reduced form

��1B = �

and

B = ��: (2.22)

Thus there are N�K equations in N�K+N�(N�1) unknowns (allowing for the restric-

tions on the diagonal elements in �). As things stand there are far more unknowns than

equations and hence if the elements of � and B are unrestricted he structural coe¢ cients

are underidenti�ed and cannot be recovered.

13



However, it is usually the case that the elements of � and B are subject to restrictions,

in particular to exclusion restrictions: we know on a priori grounds that some variables

do not occur in a particular equation (economic theory can provide guidance in choosing

the exclusion restrictions). So the problem becomes, given a set of restrictions can the

structural coe¢ cients be identi�ed. This problem can be tackled equation by equation. So

consider the �rst equation. Transposing the �rst row of restrictions from (2.22),

�11 = �11
11+ � � � +�N1
1N
�12 = �12
11+ � � � +�N2
1N
...

...
. . .

...
�1K = �1K
11+ � � � +�NK
1N

:

Rearranging and using the normalizing restriction 
11 = 1

��11 = ��11 +�21
12+ � � � �N1
1N
��12 = ��12 +�22
12+ � � � �N2
1N
...

. . .
...

...
��1K = ��1K +�2K
12+ � � � �NK
1N

: (2.23)

This gives us K linear non-homogeneous equations in K +N � 1 unknowns.

Now recall, for a system of non-homogeneous linear equations in n unknowns, Bx = r

has a unique solution x = B�1r if and only if B contains n linearly independent equations,

otherwise B is not invertible. If there are fewer than n equations, there will be multiple

solutions. If there are more than n linearly independent equations, the system will in

general be inconsistent with no solutions.

Thus, referring back to (2.23) if the coe¢ cients of the �rst rows of � and B are un-

restricted, the structural coe¢ cients cannot be recovered; there are far too few equations.

However if we can �nd another N�1 linearly independent restrictions, then these, together

with the K restrictions in (2.23), implied by the reduced form, form a system which can

be solved for the structural coe¢ cients.

Expressing (2.23) in matrix terms, let �01 be the �rst row of B and 
01 be the �rst row

of �. The �rst element of 
1 is unity. De�ne 

�
1 to omit the �rst element,


1 =

"
1
� � �

�`

#
:
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De�ne

�1 =

"

1
� � �
�1

#
; ��1 =

"

�1
� � �
�1

#
:

Partition � so that

� =

"
�01
� � �
�02

#
; �2 is K � (N � 1):

Then (2.23) can be rewritten,

��1 = [�2 : �IK ]��1:

Exclusion Restrictions The simplest way to express an exclusion restriction in matrix

notation is to use a selection vector. Thus the restriction


1j = 0

can be expressed in vector notation as

�01

2666666664

0
...
0
1
0
...
0

3777777775
= 0:

If there are q such restrictions then the set can be written as

�01� = 0

where � is (N +K)� q matrix of selection vectors.

Some points:

1. Linear homogeneous restrictions involving several coe¢ cients are easily accommo-

dated within the framework.

2. 
11 is already restricted to be one, hence it cannot be subject to an exclusion restric-

tion. On the other hand restricting a second coe¢ cient to be a linear function of 
11

generates an implicit non-homogeneous restriction.
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3. The q columns of � are assumed linearly independent. If the columns are linearly

dependent it implies that the same restriction has been entered twice and hence that

at least one restriction is redundant.

Partition

� =

"
�01
� � �
�02

#
:

If restrictions are homogeneous �1 = 0.

Adding the exclusion restrictions to (2.23)�
��1
��1

�
=

�
�2 : �IK
�2

�
��1: (2.24)

It is straightforward from (2.24) to obtain the basic condition for identi�cation: that the

central matrix �
�2 : �IK
�2

�
(2.25)

should be non-singular. As this matrix has K + N � 1 columns a necessary condition for

invertibility is that (2.25) is square and has K + N � 1 rows. This in turn implies that

�2 must have N � 1 rows and hence that there are N � 1 exclusion restrictions. This is

the order condition: the number of variables excluded from an equation must be at least

as great as the number of equations minus one. The necessary and su¢ cient condition for

identi�cation of the �rst equation is the rank condition; the matrix (2.25) must be square

and of rank K +N � 1.

What happens if there are more than N � 1 exclusion restrictions? In this case the

number of restrictions on � and B is so large that they imply restrictions on �. Such a

situation is called over-identi�cation. In this case the restrictions appear not only in the

� matrix but also in the � matrix. Thus the same restriction appears twice. Once the

redundant restrictions are removed you are left with K +N � 1 rows.

If you examine (2.25) you will see that checking the rank condition is something of a

nightmare. In practice we use an alternative and equivalent (and slightly less nightmarish)

condition. The �rst equation passes the rank condition if rank (A�) = N � 1, where
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A = [� : �B]. Assuming that � contains (N � 1) restrictions then A� is N � (N � 1)

and is the product of the matrix of coe¢ cients with the selection matrix. Its columns are

the columns of the coe¢ cient matrix that are subject to exclusion restrictions in the �rst

equation. As a result the row associated with the current equation, in our case the �rst will

be identically zero. The equation passes the rank condition if the remaining (N�1)�(N�1)

matrix is non-singular.

If � contains more than (N � 1) restrictions then provided that A� contains one sub-

matrix of rank (N�1) the equation is identi�ed. If the equation is identi�ed and � contains

more than (N � 1) restrictions then the system is over-identi�ed.

3. Appendix

Here we recall some basic de�nitions from linear algebra.

Minors of a matrix. Given a n� n matrix A, consider the Aij matrix obtained by

deleting row i and column j. The (i; j)� th minor of a A is de�ned as

Mij = detAij:

Cofactors of a matrix. The (i; j)� th cofactor of a matrix A is de�ned as

Cij = (�1)i+jMij

where Mij is the (i; j)� th minor.

Adjoint matrix Given a n � n matrix A; the adjoint matrix of A (adj (A)) is the

n� n matrix whose (i; j)� th entry is the (j; i)� th cofactor of A.

We can now state the following Theorem from linear algebra:
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Theorem. For any n� n matrix A, we have that

A� adj (A) = detA� I

where I is the n� n identity matrix.

This implies that, if A is invertible

A�1 =
adj (A)

detA
:
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