
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture Notes #3: Hypothesis Tests within the

Maximum Likelihood Framework

There are three main frequentist1 approaches to inference within the Maximum Likeli-

hood Framework, the Wald test, the Likelihood ratio test and the Lagrange Multiplier or

LM test.

1. Wald Tests

Wald tests are based on the Maximum Likelihood Estimates of the unrestricted model.

Suppose we have a model with k unknown parameters  that can be expressed and esti-

mated in terms of a log likelihood logL( ). Then the ML estimates of  will have limiting

distribution
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(under regularity conditions, this is the

information matrix).

If we want to consider a linear hypothesis H0 : R = q against the alternative HA :
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R 6= q, where R has r < k linearly independent rows (r restrictions), then under H0
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As usual we do not observe IA( ), but if we can �nd a consistent estimator, the

distribution remains unchanged. Possible estimators are:

1. The empirical information matrix based
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Assuming the �rst is available, then
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So we can use the �2�(r) tabulated values to test at the � signi�cance level (reject the null

if the test statistic is bigger that the tabulated value).

1.1. Nonlinear Constraints

The Wald approach can be extended to nonlinear constraints. The approach is straight-

forward: linearize the constraints about the null using a �rst order Taylor expansion and

then apply the linear theory above.

So consider H0 : R( ) = 0, a set of r linear or nonlinear constraints. R is a column

r-vector.
2Recall, if the n-dimensional vector x � N(0; A)) x0A�1x � �2(n).
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is asymptotically �2(r) under H0.

For example, suppose we have

H0 :  1 2 3 = 1

 3 = 4 4 � 2

where k = 4. So
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So the Wald statistic is�
 ̂1 ̂2 ̂3 � 1;  ̂3 � 4 ̂4 + 2

���
 ̂2 ̂3  ̂1 ̂3  ̂1 ̂2 0
0 0 1 �4

�
I( ̂)�10BB@

 ̂2 ̂3 0

 ̂1 ̂3 0

 ̂1 ̂2 1
0 �4

1CCA
3775
�1�

 ̂1 ̂2 ̂3 � 1
 ̂3 � 4 ̂4 + 2

�
:

2. The Likelihood Ratio Test

Again suppose that we have a model with unknown parameters that can be expressed in

terms of a likelihood function L( ). Suppose we also have a set of r restrictions, either

linear

R = q

or nonlinear

R( ) = 0:
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The procedure is to estimate the unrestricted model to obtain ML estimates,  ̂; and

hence maximized likelihood L( ̂). Then estimate the model under the restrictions to obtain

restricted estimates,  ̂0; and the likelihood L( ̂0). Then compare the two.

It can be shown that under the null

LR = �2 log
(
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)
= 2

n
logL( ̂)� logL( ̂0)

o
is asymptotically �2(r). Obviously LR is proportional to log
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, hence LR is greater

than 0. If the data conforms with the null you expect L( ̂) to be close to L( ̂0) and for LR

to be close to 0. If the data does not conform you expect L( ̂) >> L( ̂0) and LR >> 0.

Hence the test is to reject H0 at the � level if LR > �2�(r).

3. Lagrange Multiplier Tests

The LM test is based on the restricted estimates. Again suppose that we have a model

with unknown parameters that can be expressed in terms of likelihood L( ). Suppose we

have r restrictions R( ) = 0.

Let  ̂0 denote the ML estimator of  in the restricted model. If the restrictions are

valid  ̂0 will be close to  ̂ and the partial derivatives in the vector
@ logL( ̂0)

@ 
will also be

close to zero.3 It can be shown that under the null, the quadratic form
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As usual, this is often not an operational statistic as we do not know IA( 0) and this must

be replaced by a consistent estimate. Assuming that 1
T
I( ̂) or a consistent alternative is

available, then
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and is referred to as a Lagrange Multiplier statistic.

3Note that
@ logL( ̂)

@ 
= 0

by �rst order optimality condition.
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3.1. The LM test in Nonlinear Least Squares

This result can be specialised for nonlinear least squares problems. Thus we have

yt = g(xt; �) + "t; "t iid N(0; �2)

xt independent of "t; t = 1; :::; T:

Then the unrestricted log likelihood has the form
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2
log 2� � T

2
log �2 � 1

2�2

TP
t=1

"t(�)
2;

where

"t(�) = yt � g(xt; �):

Assume that the r restrictions involve only � not �2, so they have the form R(�) = 0.

Then
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the sub matrix associated with �. Since xt is independent of "t,
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By inspection LM is related to the regression of "t on zt (i.e. "t = z0t
 + ut, 
̂ =

(�ztz
0
t)
�1�zt"t). De�ne �tted values for such a regression as
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Now consider the R2 from this regression
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Hence a valid LM statistic can always be obtained by regressing "t( ̂0) on zt( ̂0) and

calculating LM� = TR2. Then reject H0 at the � level if LM� > �2�(r).

Example: Testing for AR(1) error

The model:

yt = x0t� + ut

ut = �ut�1 + "t; j�j < 1; "t iid (0; �2):

xt contemporaneously independent of "t:

This implies

yt = �yt�1 + x0t� � �x0t�1� + "t:

We want to test

H0 : � = 0 against

HA : � 6= 0:

De�ne

"t(�; �) = yt � �yt�1 � (xt � �xt�1)
0 �
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@�
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�
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�
:
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Estimate the model under the null. ML is least squares on yt = x0t�+ ut, and calculate the

least squares residuals ût. Then evaluating under the null

"t(�̂; 0) = yt � x0t�̂ = ût

zt(�̂; 0) =

�
xt
ût�1

�
:

Calculate the LM statistic by regressing ût on (xt; ût�1), obtain TR2, reject if TR2 > �2�(1).

Note this is valid even if x contains the lagged dependent variable, since it requires only

contemporaneous independence.

4. Comparison between the Wald, LR and LM tests

The �rst point is that all three are asymptotically equivalent. The issue in �nite samples is

di¢ cult. However it is possible to give some tentative conclusions that have emerged from

several studies.

The basic conclusion is that in general the LR test is the best, in the sense that its

�nite sample behaviour most closely approximates its expected large sample properties.

The Wald test is second best and the LM procedure worst. However, there are exceptions.

5. Durbin Watson Test

You may be a little surprised that we have spent so much time discussing tests of serial

correlation without mentioning the Durbin Watson test.

The Durbin Watson test is the only test for which we have small sample properties.

Unfortunately the circumstances in which it is valid are so restricted that it is almost

always inappropriate.

The model:

yt = x0t� + ut

ut = �ut�1 + "t; "t iid N(0; �2):
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We want to test

H0 : � = 0 against

HA : � > 0:

Under the null, estimate the model by least squares and calculate the test statistic

d =
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ûtût�1

TP
1
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Note that d � 2(1 � r1), where r1 is the simple correlation between ût and ût�1. d lies in

the interval [0,4] with r1 = 0 corresponding to d = 2 and r1 = 1 corresponding to d = 0.

Unfortunately the exact distribution of d depends on X and as a result it cannot be

tabulated concisely. However, for a speci�c X it is possible to obtain the exact distribution

of d numerically and in particular to calculate the critical point d� such that under the null

Pr ob(d < d�) = �. A test based on this is called an exact Durbin Watson test.

Although the exact distribution of d depends on X, it is subject to an upper and lower

bound. These bounds dU and dL have been tabulated. They depend on both T the sample

size and K the number of regressors. To be valid, the regression must contain a constant

term. We are testing against positive serial correlation. Hence we reject if d is too small.

If d < dL reject, if d > dU fail to reject. If dL < d < dU inconclusive. In practice if d is

small in the sense of being close to its critical points, it is sensible to re-estimate allowing

for serial correlation.

Though the Durbin Watson statistic is often reported, the circumstances in which it is

valid are very restricted. In particular it requires not only a constant term on the right

hand side but it also requires that all right hand side variables are processed independent

of the errors. If the xt are only contemporaneously independent, the Durbin Watson test is

invalid. Under these circumstances the test tends to fail to reject in the presence of serial

correlation.
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