
EC402: MEI. Spring Term: The Analysis of Time Series�

Lecture Notes #4: Cointegration and Error

Correction Representation

1. Integrated and Cointegrated Processes

1.1. Integrated Processes

If a process xt is stationary, then the process

yt = xt + yt�1 =
1P
s=0

xt�s

is called integrated of order one, I(1). yt has the obvious property by construction that its

�rst di¤erence is xt and is, hence, stationary (I(0))

�yt = yt � yt�1 = xt:

If yt is I(1) and

zt = yt + zt�1;

then zt is said to be integrated of order two, I(2); and the second di¤erence of zt is I(0).

More generally, if yt is integrated of order p; I(p), and

zt = yt + zt�1;
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then zt is said to be integrated of order p+ 1, I(p+ 1):

Note that the di¤erence of a stationary process is stationary.

1.2. Cointegrated Process

Suppose the processes xt and yt are both I (1) (that is, non-stationary with a unit root).

If it exist a stationary linear combination of these processes, the processes are x and y are

said to be cointegrated.

More generally, an (n� 1) vector time series Yt = [y1 t; :::; y2 t]0 is said to be cointegrated

if each of the series is individually I (1) ; while some linear combination of the series a0Yt is

stationary (I (0)) for some non-zero (n� 1) vector a.

Example 1. Consider the following bivariate system

y1t = 
y2t + u1t

y2t = y2;t�1 + u2t

with u1 and u2 uncorrelated with noise.

Clearly, both processes are non-stationary and contain a unit root i.e. are I (1). Never-

theless, the linear combination (y1 � 
y2t) is stationary. Hence we would say that Yt =

(y1t; y2t)
0 is cointegrated with cointegrating vector a0 = (1;�
).

Cointegration means that although many developments can cause permanent changes

in the individual elements of Yt, there is some long-run equilibrium relation tying the

individual components together, and this is represented by the linear combination a0Yt.

Example 2. Suppose the optimal consumption rule for an agent is always to consume a

share �t of her current wealth W i.e.

Ct = �tWt;

where log�t � iid (��; �2�). Moreover, assume that log wealth follows a random walk process

with drift

logWt = �+ logWt�1 + "t; "t � iid
�
0; �2"

�
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Clearly, neither wealth nor consumption are stationary (they both grow exponentially), but

i) the log of each of these variables is I (1) and ii) logCt and logWt are cointegrated with

cointegration vector a0 = (1;�1) since

logCt � logWt = log�t

Moreover, we have that, on average, C will grow at the same rate � as X since

logCt = log�t + logWt

! logCt � logCt�1 = log�t � log�t�1 + logWt � logWt�1

! E [logCt � logCt�1] = E [logWt � logWt�1] = �

! E [logCt+T � logCt] = E [logWt+T � logWt] = �� T

that is, they share the same long-run trend, and the expected log consumption-wealth ratio

is constant

E

�
log

Ct
Wt

�
= ��:

This means that if we observe logCt=Wt > �� (< ��) we should expect the consumption-

wealth ratio to reduce (increase) in the future.

2. The Basic Time Series Model

The basic model is the stochastic di¤erence equation,

A(L)yt = D(L)xt + "t: (2.1)

xt contemporaneously independent; "t iid (0; �2):

where L is the �lag operator�de�ned as Lszt = zt�s; and A (L) and D (L) are polynomials

in the lag operator.

In the next lectures we�ll generalize this setting to have multiple equations i.e. the case

in which yt and "t are vectors, xt is a matrix and A (L) and D (L) are matrix of polynomials

in the lag operator.

In the Appendix we present a number of examples of economic models that can be

characterized as in equation (2.1).
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2.1. The Error Correction Form

For expositional purposes, consider the case of only one x variable. The general dynamic

model with one independent variable (with an explicit constant term), has the form

yt = �0 + �1yt�1 + �2yt�2 + :::+ �myt�m + �0xt + �1xt�1

+�2xt�2 + :::+ �nxt�n + ut (ut iid) (2.2)

or A(L)yt = �0 +B(L)xt + ut where

A(L) = 1� �1L� �2L2 � :::� �mLm

B(L) = �0 + �1L+ �2L
2 + :::+ �nL

n:

In this model, the short-run multiplier is @yt
@xt

= �0. The long-run relationship between x

and y is

A(1)y = �0 +B(1)x

or

y =
�0
A(1)

+
B(1)

A(1)
x: (2.3)

The long-run multiplier is @y
@x
= B(1)

A(1)
. We can rewrite the model (2.2) to isolate this

long-run relationship. Start by rewriting A(L)yt as a function of yt�1, �yt, �yt�1, �yt�2,...,

�yt�m+1 and B(L)xt as a function of xt�1, �xt; xt�1; :::;�xt�n+1. To do this, note

A(L) = (1� L) + (1� �1)L� �2L2 � :::� �mLm

= (1� L) + (1� �1 � �2 � :::� �m)L+ �2(L� L2) + �3(L� L3)

+:::+ �m(L� Lm)

= (1� L) + A(1)L+ �2(L� L2) + �3
�
(L� L2) + (L2 � L3)

�
+:::+ �m

�
(L� L2) + (L2 � L3) + :::+ (Lm�1 � Lm)

�
= (1� L) + A(1)L+ �2(1� L)L+ �3(1� L)(L+ L2)

+�4(1� L)(L+ L2 + L3) + :::+ �m(1� L)(L+ L2 + :::+ Lm�1)
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= (1� L) + A(1)L+ (�2 + �3 + :::+ �m)L(1� L)

+(�3 + �4 + :::+ �m)L
2(1� L) + (�4 + �5 + :::+ �m)L3(1� L)

:::

+�mL
m�1(1� L):

So

A(L)yt = A(1)yt�1 +�yt + �
�
1�yt�1 + �

�
2�yt�2 + :::+ �

�
m�1�yt�m+1

where

��j = (�j+1 + �j+2 + :::+ �m) :

Similarly

B(L)xt = B(1)xt�1 + �
�
0�xt � ��1�xt�1 � ��2�xt�2 � :::� ��n�1�xt�n+1

��0 = �0; ��j =
�
�j+1 + �j+2 + :::+ �n

�
:

So our equation becomes

�yt = �0 � A(1)yt�1 +B(1)xt�1 � ��1�yt�1 � ��2�yt�2

�:::� ��m�1�yt�m+1 + ��0�xt � ��1�xt�1 � ��12�xt�2

�:::� ��n�1�xt�n+1 + ut: (2.4)

Note �rst, (2.2), (2.4) are exactly the same equation. Second, the long-run multiplier is�
� coe¢ cient on xt�1
coe¢ cient on yt�1

�
. So, the �long-run�solution can be read o¤ immediately. Let y, x be

constant, namely �y = �x = 0 all time periods (you might think of this as the steady

state solution), then (2.4) reduces to

0 = �0 � A(1)y +B(1)x

or

y =
�0
A(1)

+
B(1)

A(1)
x;

which is the same as (2.3). If the equation (2.4) is rewritten as

�yt = �A(1)
�
yt�1 �

B(1)

A(1)
xt�1 �

�0
A(1)

�
+ terms in �xt�i; �yt�i;
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this is known as the error correction form. Why? yt�1 � B(1)
A(1)

xt�1 � �0
A(1)

is the di¤er-

ence between yt�1 and the long-run equilibrium value of y corresponding to xt�1, namely
B(1)
A(1)

xt�1+
�0
A(1)

. So if yt�1 is above (below) this value, this tends to move y down (up). This

di¤erence is the �error�and the movement is the �correction�. Note that any stochastic

di¤erence equation can be written in error correction form unless A(1) = 0. The remaining

�x;�y terms are often known as �short-run dynamics.�

2.2. Error Correction Form and Cointegration

The error correction form has been extensively used to model the relationships among

cointegrated variables. To �x idea consider the case of two I (1) variable yt and xt. By

de�nition, if yt and xt are cointegrated, there exist a vector a0 = (1;�
) such that a0 [yt; xt]0

is stationary. Moreover, the by assumption that yt and xt are I (1), we know that their

�rst di¤erences are I (0) : This implies that, if we know the cointegrating vector, we can

write the following error correction representation

�yt = c1 + c1 (yt � 
xt) + terms in �xt�i; �yt�i + ut

where all the right hand side terms are stationary variables (and this allows us to invoke the

standard MLE asymptotics). Moreover, the term c1 (yt � 
xt) will be the error correction

component with a straightforward economic interpretation.

One of the problems with this is that often we don�t know ex-ante whether two or

more variables should be cointegrated (economic theory can help us along this dimension).

So often applied researchers tend to test for cointegration among variables and then, if

such a relationship is detected, they impose the cointegration structure to the data. This

is problematic since cointegration tests tend to have very poor small sample properties.

Moreover, if we impose a cointegration relationship when it is not there, we might make

very misleading long run predictions.

In practices, researchers tend to proceed as follows:

1. In the �rst step they test whether each variable has a unit root. It will often be the

case that you are unable to reject a unit root. This is a totally reasonable step, but
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we shold be aware that the small sample proprtioes of unit root tests (like the DF

test you have already seen) is extremly poor (never rely on only one unit root test!).

Warning #1 Assuming that a variable has a unit root when it doesn�t is not an innocuous mistake

(even though many in practitioners think so!).

Example 3. Suppose the true model is

yt = �xt + "t v iid
�
0; �2

�
where xt is only contemporaneously independent of "t.

Suppose the econometrician estimates instead the model in �rst di¤erences

�yt = ��xt + ut:

Since now ut = "t�"t�1 this model has: i) serial correlation in the errors �with the re-

lated problems outlined in the �rst lecture �and ii)E [�xtut] = E [(xt � xt�1) ("t � "t�1)] =

�E [xt"t�1]�E [xt�1"t], and this does not need to be zero since x and " are only con-

temporaneously independent, ie regressor and error term might be correlated.

2. Testing for Cointegration. If all variables are I(1), write down the long-run rela-

tionship between y variable and the x variables, excluding the short-run dynamics

e.g.

yt = �0 +
P
�kxkt + "t: (2.5)

If there exists a long-run relationship cointegrating relationship we should be able to

�nd a set of parameter estimates �̂k so that�
yt �

P
�̂kxktfor

�
is stationary

If we can �nd no such parameter estimates, then y and all possible linear combinations

of the x variables will tend to drift apart over time (no long-run relationship between

y and the x variables).
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How should one test for cointegration? A simple way is to:

do OLS on (2.5) to generate "̂t. (we may also include short-run dynamics in (2.5).)

Then test the "̂t sequence for a unit root using the standard augmented DF procedure.

Note: you cannot use the standard DF tables. The problem is that we have "̂t

here and not "t. The appropriate statistics corresponding to �̂� are given in the

Davidson/MacKinnon text book (or Table 8.2 in Johnston/DiNardo)

Warning #2 Cointegration tests tend to have very poor small sample properties If we impose a

cointegration relationship when it is not there, we might make very misleading long

run predictions.

Example 4. From a theoretical point of view, the log housing price index (logP )

and household aggregated log income (log Y ) do not need to be cointegrated. Never-

theless, this two variables in the past seemed to be cointegrated and this was judged

to be consistent with some kind of common sense argument.

If an econometrician were to believe that such a long run restriction holds, any time

she observes P=Y above its historical average she would predict that P=Y should go

down some time in the future.

Would this be reasonable? Let�s consider as practical example the UK housing mort-

gage market. In the UK, and similarly in other countries, one of the standard banks�

rules in determining the maximum loan value is given by the sum of 3:75 times the

gross yearly income of the primary borrower plus 1 time the income of the gross yearly

income of the secondary borrower (typically the partner of the primary borrower).

It is therefore obvious that a shift in the typical household composition �namely

the increased share of single households �could cause a permanent upward shift in

the mean of the P=Y ratio in the long run. This means that inference based on the

assumption that logP and log Y are cointegrated might be very misleading.

Fortunately, economic theory can help us deciding which long-run restriction are

reasonable and which are not, and should be used to complement empirical tests.
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3. If you can reject non-cointegration (i.e. reject a unit root in the above test), then

estimate (by OLS) a general dynamic model in standard form

A(L)yt = �0 +B(L)xt + ut

or in equivalent error correction form (to taste1)

�yt = �0 � A(1)yt�1 +B(1)xt�1 � ��1�yt�1

�:::� ��m�1�yt�m+1 + ��0�xt � ��1�xt�1 � :::� ��n�1�xt�n+1:

3. Appendix

What kind of economic models underlie dynamic equations like (2.1)? Here we present a

number of examples where, for expositional purposes, we have only one x variable.

3.1. Examples of Underlying Models

3.1.1. Adaptive Expectations Model2

yt = �xet+1 + "t "t iid (0; �2)

xet+1 = xet + 
(xt � xet ) 0 < 
 < 1;

where xet+1 is the expectation formed at t of x at t+ 1.

If

 = 0; expectations do not adjust

 = 1; expectations adjust instantly.

The latter is often termed static expectations. The adaptive expectations model is rational

i¤ x follows the process

xt+1 = xt + "t+1 � (1� 
)"t; "t iid (0; �2):

1Frequentists have good reasons to prefer the second form, while Bayesians have good reasons to prefer

the �rst form.
2This kind of model was often used in economis before the Lucas�rational expectation critique.
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Note, rational means xet+1 = E(xt+1 jIt ), where It is the information set at t, which includes

xt; xt�1; ::: and "t.

Proof: Suppose

xet+1 = (1� 
)xet + 
xt

= (1� 
)
�
(1� 
)xet�1 + 
xt�1

�
+ 
xt

= (1� 
)2xet�1 + (1� 
)
xt�1 + 
xt

= (1� 
)2
�
(1� 
)xet�2 + 
xt�2

�
+ :::

= (1� 
)3xet�2 + (1� 
)2
xt�2 + (1� 
)
xt�1 + 
xt:

So,

xet+1 = 

�
xt + (1� 
)xt�1 + (1� 
)2xt�2 + :::

�
:

This is rational if

xt+1 = 

�
xt + (1� 
)xt�1 + (1� 
)2xt�2 + :::

�
+ "t+1

= 

�
1 + (1� 
)L+ (1� 
)2L2 + :::

�
xt + "t+1

=

xt

1� (1� 
)L + "t+1

or

xt+1 = xt + "t+1 � (1� 
)"t:

Going the other way round, suppose

xt+1 = xt + "t+1 � (1� 
)"t; "t iid (0; �2):

Then

xet+1 = xt � (1� 
)"t: (3.1)

So

xet = xt�1 � (1� 
)"t�1

or

xet = xt � "t
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[because xt = xt�1 + "t � (1� 
)"t�1]. Multiply this by (1� 
) and subtract from (3.1)

xet+1 � (1� 
)xet = 
xt

or

xet+1 = x
e
t + 
(xt � xet ): (QED)

The adaptive expectations equation can be written

xet+1 =

xt

[1� (1� 
)L] :

Substitute this into yt = �xet+1 + "t to obtain

yt =
�
xt

(1� (1� 
)L) + "t

or

yt = (1� 
)yt�1 + �
xt + "t � (1� 
)"t�1:

3.1.2. Partial adjustment

Desired or target outcome

y�t = �xt:

Because it is �costly�to adjust, yt reacts as

yt = yt�1 + 
(y
�
t � yt�1) + "t 0 < 
 < 1:


 = 0, no adjustment; 
 = 1; complete adjustment. So 
 is the �speed of adjustment�.

Substitute:

yt = (1� 
)yt�1 + 
�xt + "t:

Very similar to section (3.1.1) except error is no longer MA.
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3.1.3. General model

y� is �equilibrium� level of a variable (random variable). y is actual level of variable.

Suppose

y�t = �0 + �1xt + ut

where xt is exogenous and follows some stochastic process. Agent (representative or other-

wise) solves

min
1P
s=0

�s
h�
yt+s � Et(y�t+s)

�2
+ � (yt+s � yt+s�1)2

i
where 0 < � < 1. The idea here is that the agent would like to keep y close to y� but,

because of adjustment costs, y must not move too rapidly. Many dynamic optimization

models can be approximated by problems of this type.3 For example, standard investment,

consumption, labour demand and pricing models are often founded on this basic structure.

Here I present the solution although you are not expected to know this for the examination.

FOC : 2�s
�
yt+s � Et(y�t+s)

�
+ 2�s� (yt+s � yt+s�1)

�2�s+1� (yt+s+1 � yt+s) = 0 s = 0; 1; :::

or,

��yt+s�1 � (1 + ��+ �)yt+s + �yt+s�1 = �Et(y�t+s)

or, �
���L�1 + (1 + ��+ �)� �L

�
yt+s = Et(y

�
t+s): (3.2)

Now factorize this quadratic in the lag operator. Suppose the factors have the form

a1
�
1� a2L�1

�
[1� a3L] (3.3)

or

�a1a2L�1 + a1(1 + a2a3)� a1a2a3L:
3Such a representation often arises as the �Loss Function�of a central bank that wants to set monetary

policy optimally.
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Comparing coe¢ cients

a1a2 = ��; a1(1 + a2a3) = 1 + ��+ �; a1a3 = �:

So a1 = �
a3
, a2 = �a3. Substituting into the second equation gives

��a23 � (1 + ��+ �)a3 + � = 0: (3.4)

So a3 is the solution to a quadratic equation. If we suppose f(a3) = ��a23�(1+��+�)a3+�,

then f(0) = � > 0, f(1) = �1 < 0, f(1) > 0. So this quadratic has one root in the interval

(0,1) and one root in the interval (1;1). In order to generate a solution to the di¤erence

equation which is stable, we select the �stable�root in the (0,1) interval. Call this root �.

So a3 = �. a2 = ��, a1 = �
�
. Consequently the second order di¤erence equation (3.2)

may be factorized as (3.3) which has the form

�

�

�
1� ��L�1

�
(1� �L) yt+2 = Et(y�t+s); s = 0; 1; :::

This reduces to

(1� �L)yt+s =
�

�

Et(y
�
t+s)

(1� ��L�1) :

Because 0 < �� < 1, (1� ��L�1)�1 may be expanded as

1

(1� ��L�1) = 1 + ��L
�1 + (��)2L�2 + (��)3L�3 + :::

So, at time s = 0, the equation becomes

yt � �yt�1 =
�

�

1P
i=0

(��)iEt(y
�
t+i): (3.5)

Because � satis�es the quadratic (3.4), then

���2 � (1 + ��+ �)�+ � = 0 (3.6)

) �

�
= (1� �)(1� ��):

Substituting this into (3.5) yields

yt = �yt�1 + (1� �)(1� ��)
1P
i=0

(��)iEt(y
�
t+i): (3.7)
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This, along with the equation determining y�t , namely

y�t = �0 + �1xt + ut; (3.8)

is the solution to the agent�s problem. Note that (3.7) is a partial adjustment model with

(1� �) as the speed of adjustment and (1� ��)
P
(��)iEt(y

�
t+i) as the target. Note that

(1 � ��)
1P
i=0

(��)i = 1, so the target is a distributed lead on y� with weights summing to

1. The higher is � the lower the speed of adjustment and the more important the future.

Furthermore, we can show that @�
@�
> 0. So the bigger are the costs of adjustment, the

lower is the speed of adjustment.

In order to make the models (3.7), (3.8) operational, there are two basic methods, (A)

and (B).

(A) Consider (3.7) written as

yt = �yt�1 + (1� �)(1� ��)
�
y�t + ��Ety

�
t+1 + (��)

2Ety
�
t+2 + :::

�
:

Go one step forward

yt+1 = �yt + (1� �)(1� ��)
�
y�t+1 + ��Et+1y

�
t+2 + (��)

2Et+1y
�
t+3 + :::

�
:

Take expectations with respect to "t" dated information and multiply by ��,

��Etyt+1 = ��
2yt + (1� �)(1� ��)

�
��Ety

�
t+1 + (��)

2Ety
�
t+2 + (��)

3Ety
�
t+3 + :::

�
:

Note that Et
�
Et+1(y

�
t+s)

�
= Et(y

�
t+s) by the law of iterated expectations (see Blan-

chard/Fisher p.218 or Romer p.263). Subtract this from (3.7) to obtain

yt � ��Etyt+1 = �yt�1 � ��2yt + (1� �)(1� ��)y�t

or

yt =
��

(1 + ��2)
Etyt+1 +

�

(1 + ��2)
yt�1 +

(1� �)(1� ��)
(1 + ��2)

y�t :
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De�ning �t = (Etyt+1 � yt+1) and using (3.8), we have

yt =
��

(1 + ��2)
yt+1 +

�

(1 + ��2)
yt�1 +

(1� �)(1� ��)
(1 + ��2)

�0 +
(1� �)(1� ��)
(1 + ��2)

�1xt

+

�
(1� �)(1� ��)
(1 + ��2)

ut +
��

(1 + ��2)
�t

�
| {z }

�t

:

So we may estimate the model

yt = 
0 + 
1yt+1 + 
2yt�1 + 
3xt + �t

noting that yt+1 is correlated with �t because �t contains the term �t = (Etyt+1 � yt+1).

So we need instruments for yt+1 and yt�1; yt�2; xt�1; xt�2 are commonly used. Note

that from our estimates 
̂0; 
̂1; 
̂2; 
̂3, we can compute estimates of �; �; �0; �1, using

the equations

(1� �)(1� ��)
(1 + ��2)

�0 = 
̂0;
��

(1 + ��2)
= 
̂1;

�

(1 + ��2)
= 
̂2;

(1� �)(1� ��)�1
(1 + ��2)

= 
̂3:

(B) In this method, we specify the stochastic processes driving xt and ut. Suppose, for

example, that ut is iid (0; �2u) and that xt satis�es

xt = �xt�1 + "t; "t iid (0; �2"): (3.9)

Then from (3.8)

y�t+i = �0 + �1xt+i + ut+i:

So Ety�t+i = �0 + �1Etxt+i.

From (3.9),

xt+i = �xt+i�1 + "t+i:

Thus

Etxt+i = �Etxt+i�1 since "t is iid

= �Et(xt+i�2 + "t+i�1) = �
2Etxt+i�2 since "t is iid

= �ixt by backward recursion.
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So

Ety
�
t+i = �0 + �1�

ixt (all i > 0)

y�t = �1 + �1xt + ut:

So

P
(��)iEty

�
t+i

=
P
(��)i

�
�0 + �1�

ixt
�
+ ut

=
�0

1� �� +
�1xt

1� ��� + ut:

Substituting into (3.7) yields

yt = (1� �)�0 + �yt�1 +
�1(1� �)(1� ��)

(1� ���) xt + (1� �)(1� ��)ut (3.10)

and this, along with (3.9) gives the operational model.

The so-called deep parameters of the model are �, �, �0, �1, �. If we have outside

estimates of the parameter �, then estimating (3.9), (3.10) enables us to deduce the other

deep parameters. Equation (3.10) is a simple stochastic di¤erence equation model. Notice

that the coe¢ cients of (3.10)) depend on the parameter of the x process, �. So, if the

parameters of the x process shift, then the coe¢ cients of (3.10) will shift even though the

�deep�parameters of the agents�model (�; �; �0; �1) are unchanged. This is the foundation

of the �Lucas Critique�.
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