EC402 and FM437: additional handout.

Timothée Carayol

December 5, 2008

This is a (very) detailed proof of the unbiasedness of the s^{2} estimator of σ_{ϵ}
Assume the model is:

$$
Y=X \beta+\epsilon
$$

(Where X is $N \times K$.) Then under $A 1, A 2, A 3, A 4 G M$ ($A 4 G M$ is crucial here so let me spell it out: $\left.\operatorname{Var}(\epsilon \mid X)=\sigma_{\epsilon}^{2} I_{n}\right)$, the following holds:

$$
E\left(\sum_{i}\left(\hat{\epsilon}_{i}^{2}\right) \mid X\right)=(N-K) \sigma_{\epsilon}^{2}
$$

A proof goes like this:

$$
\begin{align*}
E\left(\sum_{i}\left(\hat{\epsilon}_{i}^{2}\right) \mid X\right) & =E\left(\hat{\epsilon}^{\prime} \hat{\boldsymbol{\epsilon}} \mid X\right)=E\left(\left(M_{X} \boldsymbol{\epsilon}\right)^{\prime}\left(M_{X} \boldsymbol{\epsilon}\right) \mid X\right) \tag{1}\\
& =E\left(\epsilon^{\prime} M_{X} M_{X} \boldsymbol{\epsilon} \mid X\right) \\
& =E\left(\boldsymbol{\epsilon}^{\prime} M_{X} \boldsymbol{\epsilon} \mid X\right) \tag{2}
\end{align*}
$$

In (1), I use the identity $M_{X} \boldsymbol{\epsilon}=\hat{\boldsymbol{\epsilon}}$; in (2) I use the idempotence of M_{X}.
Here is the property that I am going to need next:
Lemma 0.1. $\forall(k, n) \in \mathbb{N}^{2}$, if A is a $(N \times K)$ matrix and B is a $(K \times N)$ matrix, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
Proof. $C=A B \Rightarrow c_{i j}=\sum_{k=1}^{K}\left(a_{i k} b_{k j}\right)$, hence $\operatorname{tr}(A B)=\sum_{n=1}^{N} c_{n n}=\sum_{n=1}^{N} \sum_{k=1}^{K}\left(a_{n k} b_{k n}\right)=$ $\sum_{k=1}^{K} \sum_{n=1}^{N}\left(b_{k n} a_{n k}\right)=\sum_{k=1}^{K} d_{k k}$ where $D=B A$, so $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Back to the main proof:

$$
\begin{align*}
E\left(\sum_{i}\left(\hat{\epsilon}_{i}^{2}\right) \mid X\right) & =E\left(\operatorname{tr}\left(\boldsymbol{\epsilon}^{\prime} M_{X} \boldsymbol{\epsilon}\right) \mid X\right)=E\left(\operatorname{tr}\left(M_{X} \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime}\right) \mid X\right) \\
& =\operatorname{tr}\left(E\left(M_{X} \boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime} \mid X\right)\right) \\
& =\operatorname{tr}\left(M_{X} E\left(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{\prime} \mid X\right)\right) \tag{3}\\
& =\operatorname{tr}\left(M_{X}\left(\sigma_{\epsilon}^{2} I_{n}\right)\right) \tag{4}\\
& =\sigma_{\epsilon}^{2} \operatorname{tr}\left(M_{X}\right) \\
& =(N-K) \sigma_{\epsilon}^{2} \tag{5}
\end{align*}
$$

In (3), I use the linearity of conditional expectations (remember that the only stochastic thing in M_{X} is X, which is conditioned on in the expected value). In (4), I use the homoskedasticity assumption. In (5), I use the following lemma:

Lemma 0.2. If $P_{X}(n \times n)$ is an orthogonal projection matrix on a vector space of dimension k (with basis given by the k columns of the $(n \times k)$ matrix X, so that $P_{X}=$ $\left.X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)$, then $\operatorname{tr}\left(P_{X}\right)=k$.

Proof. $\operatorname{tr}\left(P_{X}\right)=\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=\operatorname{tr}\left(X^{\prime} X\left(X^{\prime} X\right)^{-1}\right)=\operatorname{tr}\left(I_{k}\right)$ (I used Lemma (0.1) to commute within the trace operator.)

Corollary 0.3. If $M_{X}(n \times n)$ is the annihilator matrix of X, so that $M_{X}=I_{n}-P_{X}$, then $\operatorname{tr}\left(M_{X}\right)=\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(P_{X}\right)=n-k$.

Note that another way to think about Corollary (0.3) is to understand that M_{X} is also the orthogonal projection matrix on the orthogonal to the vector space spanned by the columns of X (i.e. the set of all vectors that are orthogonal to the columns of X), which is a vectorial space of dimension $n-k$: then Corollary (0.3) is a direct application of Lemma (0.2).

A useful reference on the geometry of OLS, if you are curious, would be chapter 2 of Davidson and McKinnon's "Econometric Theory and Methods".

