EC402 and FM437: additional handout.

Timothée Carayol

December 5, 2008

This handout provides an outline of the proof of:
Theorem 0.1. Under $A 1, A 2, A 3 \geq A 3 R m i, A 4, A 5$, and if A is $1 \times K$ (so that $A \beta$ is a scalar, linear combination of the elements of β)

$$
T=\frac{A \hat{\beta}-A \beta}{S E(A \hat{\beta})} \sim t(N-K)
$$

where $S E(\hat{A \beta})=\sqrt{\widehat{\operatorname{Var}}(A \hat{\beta})}=\sqrt{s^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime}}$.
Proof. A random variable T is distributed with a Student's t-distribution with n degrees of freedom if and only if it can be written as $T=\frac{Z}{\sqrt{\frac{Q}{n}}}$, where $Z \sim \mathcal{N}(0,1), Q \sim \chi^{2}(n)$, and Z and Q are independent.

In our case, denoting $Z=\frac{A \hat{\beta}-A \beta}{\sqrt{\operatorname{Var}(A \hat{\beta})}}=\frac{A \hat{\beta}-A \beta}{\sqrt{\sigma_{\varepsilon}^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime}}}$,

$$
T=\frac{A \hat{\beta}-A \beta}{\sqrt{s^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime}}}=Z \sqrt{\frac{\sigma_{\epsilon}^{2}}{s^{2}}}=\frac{Z}{\sqrt{\frac{s^{2}}{\sigma_{\epsilon}^{2}}}}=\frac{Z}{\sqrt{\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{\sigma_{\epsilon}^{2}(N-K)}}}=\frac{Z}{\sqrt{\frac{Q}{N-K}}}
$$

where $Q=\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{\sigma_{\epsilon}^{2}}$.
Z is standard normal, as a consequence of $\hat{\beta}-\beta \mid X \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\left(X^{\prime} X\right)^{-1}\right)$: so all we have left to do is show that $Q \sim \chi^{2}(N-K)$ and that Z and Q are independent.

$$
Q=\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{\sigma_{\epsilon}^{2}}=\frac{\epsilon^{\prime} M_{X} \epsilon}{\sigma_{\epsilon}^{2}}=\frac{\epsilon^{\prime}}{\sigma_{\epsilon}} M_{X} \frac{\epsilon}{\sigma_{\epsilon}}
$$

Which is, basically, the setup of PS2, question 7, where we showed that $Q \sim \chi^{2}\left(\operatorname{rank}\left(M_{X}\right)\right)=$ $\chi^{2}(N-K)$. See solution to that exercise.

Left to prove, then, is that Z and Q are independent. The only random thing in Z is $\hat{\beta}$; the only random thing in Q is s^{2}. The fact that $\hat{\beta}$ is independent from s^{2} is a known property of the OLS estimator, e.g. in page 30 of your lecture notes. Hence Z and Q are also independent.

